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ABSTRACT

Because undesirable pharmacokinetics and toxicity

of candidate compounds are the main reasons for the

failure of drug development, it has been widely recog-

nized that absorption, distribution, metabolism, ex-

cretion and toxicity (ADMET) should be evaluated as

early as possible. In silico ADMET evaluation mod-

els have been developed as an additional tool to

assist medicinal chemists in the design and opti-

mization of leads. Here, we announced the release

of ADMETlab 2.0, a completely redesigned version

of the widely used AMDETlab web server for the

predictions of pharmacokinetics and toxicity prop-

erties of chemicals, of which the supported ADMET-

related endpoints are approximately twice the num-

ber of the endpoints in the previous version, in-

cluding 17 physicochemical properties, 13 medicinal

chemistry properties, 23 ADME properties, 27 tox-

icity endpoints and 8 toxicophore rules (751 sub-

structures). A multi-task graph attention framework

was employed to develop the robust and accurate

models in ADMETlab 2.0. The batch computation

module was provided in response to numerous re-

quests from users, and the representation of the

results was further optimized. The ADMETlab 2.0

server is freely available, without registration, at

https://admetmesh.scbdd.com/.

GRAPHICAL ABSTRACT

INTRODUCTION

A successful drug should achieve a �nely tuned combina-
tion of biochemical behavior, pharmacokinetics and safety.
In addition to high potency and selectivity, desirable ab-
sorption, distribution, metabolism, excretion and toxicity
(ADMET) pro�le is equally critical to the success of a drug
candidate (1–3). More speci�cally, an ideal drug should be
taken appropriately into the body, distributed reasonably to
various tissues and organs, metabolized in a way that does
not immediately remove its activity, eliminated in a suitable
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manner, and con�rmed non-toxicity (4). These issues seem
distinct but closely interrelated, covering the whole process
from administration to elimination.
Traditionally, the measurement of the ADMET proper-

ties for a drug candidate was usually scheduled after its po-
tency towards a speci�c target was determined (5). Unfor-
tunately, undesirable adverse effects were often detected in
this stage, and therefore a new round of molecular design
and syntheses need to be conducted or even the project has
to be terminated thoroughly. It was estimated that the con-
tribution of ADMET de�ciencies to attrition in drug de-
velopment reached up to 50% in the 1990s (6,7), which re-
minded us of the importance of ADMET evaluation in the
process from chemicals to drugs. Currently, the potency and
ADMETpro�les of molecules are usually tested at the same
stage, and thus undesirable compounds can be excluded at
an earlier stage of drug discovery and development (8,9).
However, the testing capacity of in vitro and in vivoADMET
assays seems stretched thin when confronted with the sheer
volume of biological screening data, although extensive ef-
forts have been dedicated to ramping up the testing capacity
(10). Additionally, the time and cost for experimental assays
is another burden, especially for drug discovery pipelines
with limited resources.
With the continuous accumulation of experimental AD-

MET data, a high number of in silico prediction models
for many endpoints have been developed to assist AD-
MET evaluation ef�ciently. More concretely, they could as-
sist medicinal chemists from two aspects: 1) excluding un-
desirable compounds at the drug design stage; 2) acquiring
timely feedback of ADMET information for lead optimiza-
tion. The past several years have witnessed many in silico
studies concerning ADMET parameters. Meanwhile, a va-
riety of web tools have been developed and used in drug dis-
covery applications, such as ADMETlab (11), FAF-Drugs4
(12), admetSAR (13), SwissADME (14), ProTox-II (15),
pkCSM (16), etc.
Thereinto, the webserver ADMETlab was released by

our team in 2018. Armed with high-quality experimen-
tal data and tailored quantitative structure-property rela-
tionship (QSPR) models, it allows users to perform mul-
tiple drug-likeness analyses and the predictions of most
ADMET-related properties. During the past three years, it
has been widely used for ADMET assessment, serving >50
000 users around the world, with millions of entries com-
puted. However, some shortcomings of ADMETlab still
need to be improved, such as redundant modules, incom-
plete endpoints, unclear representation of results, and so on.
As part of our continual efforts to provide the community
with a comprehensive, accurate and ef�cient online plat-
form for the evaluation of ADMET-related parameters for
chemicals, we updated the server to version 2.0, overcoming
all known shortcomings of the old version while maintain-
ing its battle-tested advantages. ADMETlab 2.0 currently
supports two computational modes: single-molecule evalu-
ation and batch screening, allowing for the calculation of 88
ADMET-related parameters, including 17 physicochemical
properties, 13 medicinal chemistry properties, 23 ADME
properties, 27 toxicity endpoints and 8 toxicophore rules
(751 substructures). It is backed up by the robust QSPR
models trained by the multi-task graph attention (MGA)

framework based on high-quality experimental ADMET
data. To sum up, the upgraded version is believed to have
greater capacity to assist medicinal chemists in accelerating
the drug research and development (R&D) process. AD-
METlab 2.0 is implemented as a publicly available web
server with an intuitive interface and can be freely accessed
at https://admetmesh.scbdd.com/.

PROGRAM DESCRIPTION AND METHODS

Software implementation

ADMETlab 2.0 was built using the Python web framework
of Django and deployed on an elastic compute service from
Aliyun running an Ubuntu Linux system. The web access
was enabled via the Nginx web server and the interactions
between Django and proxy server were supported by uwsgi.
This application was developed based on the Model-View-
Template (MVT) framework. The model layer maps the
business objects to the database objects. The view layer is
a business logic layer, responsible for performing the ac-
cess to the deep learning models, delivering the data to be
shown on the template layer, and handling the upload and
download of �les. The template layer provides the visual-
ization of results, page rendering, integration of documen-
tation, etc. The uploaded and downloaded �les, pre-trained
models andmodel predictions were stored in the server. The
prediction models were built with the Python programming
language. The deep learning packages, PyTorch and DGL,
were used in model implementation. Additionally, the RD-
Kit package was employed to provide various cheminfor-
matics support. The server has been successfully tested on
the recent version of Mozilla Firefox, Google Chrome and
Apple Safari.

Input and output

ADMETlab 2.0 provides a convenient and easy-to-use in-
terface for users. Two services, Evaluation and Screening,
are designed to support single-molecule and batch evalu-
ation, whose input parameters and output information will
be elaborated respectively.
In the Evaluation pattern, two molecular submission ap-

proaches are provided by pasting the SMILES string or
drawing the chemical structure with the help of JMSE
molecule editor (17). Once a user submits the job, the web-
server will automatically standardize the input SMILES
strings and compute all the endpoints. The prediction re-
sults are mainly displayed in the tabular format in the
browser, with the 2D molecular structure and a radar
plot summarizing the physicochemical quality of the com-
pound. For those endpoints predicted by the regression
models, such as Caco-2 permeability, plasma protein bind-
ing, etc., concrete predictive values are provided. For the
endpoints predicted by the classi�cation models, such as
Pgp-inhibitor, hERG Blocker, etc., the prediction probabil-
ity values are transformed into six symbols: 0-0.1(−−−),
0.1-0.3(−−), 0.3-0.5(−), 0.5-0.7(+), 0.7-0.9(++), and 0.9-
1.0(+++). Usually, the token ‘+++’ or ‘++’ represents
the molecule is more likely to be toxic or defective, while
‘−−−’ or ‘−−’ represents nontoxic or appropriate. Here,
we do not recommend trusting predictions symbolled by
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‘+’ or ‘−’ (probably values in 0.3-0.7), and correspond-
ing molecules require further assessment. The substruc-
tural rules available in the webserver, such as PAINS,
SureChEMBL Rule, etc., were implemented using the
SMARTS recognition capability of RDKit function. And
the calculation of physicochemical andmedicinal chemistry
endpoints was based on the python library Scopy (18), fol-
lowing the parameters reported in corresponding original
papers strictly. If the number of alerts is not zero, users can
click theDETAIL button to check the undesirable substruc-
tures in themolecule. Finally, the full result �le can be down-
loaded from the website in CSV or PDF format.
In the Screening pattern, two molecular submission ap-

proaches are provided by entering a list of SMILES strings
or uploading a SDF or TXT formatted �le. It should be
noted that the �le should only contain molecules without
column headers andmolecular indexes, otherwise the server
may declare invalid input type. After all the predictions are
completed, the results for each input molecule will be pre-
sented on a separate row, containing the assigned index,
SMILES string, 2D molecular structure, and a View but-
ton. The prediction details can be accessed by clicking the
View button of the corresponding molecule that links to the
single-molecule evaluation page. These results can also be
downloaded as a CSV-formatted �le to the user’s computer,
where concrete probably values of classi�cation endpoints
are provided to enable the users to de�ne their own thresh-
olds to �lter out de�cient compoundswith different levels of
reliability. A typical ADMETlab 2.0 task for 1000molecules
requires ∼84 s, but it may also depend on the complexity of
molecules.

Data collection

To obtain as much data as possible for model training, we
conducted a comprehensive data retrieval by using differ-
ent ADMET-related keywords. The data sources included
open-access bioactivity databases, such as ChEMBL (19),
PubChem (20) and OCHEM (21), peer-reviewed literature,
and freely accessible software Toxicity Estimation Soft-
ware Tools (TEST) developed by the U.S. Environmental
Protection Agency (22). In data curation, we �ltered off
organometallic compounds, isomeric mixtures and chemi-
cal mixtures, neutralized salts, eliminated counterions and
transformed SMILES strings into canonical form. Subse-
quently, the molecules with more than 128 atoms (unsuit-
able for GNN model training) and duplicated entries were
removed, leaving a high-quality dataset collection of 0.25M
entries spanning 53 ADMET-related endpoints. The scaf-
fold analysis indicated a high level of the structural diver-
sity of the training sets, and the models developed with such
datasets may have good prediction coverage for structurally
diverse compounds. More details of the modeling data and
scaffold analysis are provided in Supplementary Tables S1
and S2.

Model validation

In this update, a total of 53 prediction models were imple-
mented, including 40 classi�cation models and 13 regres-
sion models. For each endpoint, the dataset was split into

the training, validation and test sets by a ratio of 8:1:1,
and strati�ed sampling was used when partitioning the data
for classi�cation to keep the ratio of the positive and nega-
tive instances in the three subsets balanced. The larger part
was used for training, and the validation and test sets were
used to optimize the hyperparameters and test the predic-
tive capacity of each model, respectively. As for the eval-
uation parameters, we selected accuracy (ACC), speci�city
(SP), sensitivity (SE), the area under the ROC curve (AUC),
and the Matthews correlation coef�cient (MCC) (23) for
the classi�cation models, and R-square (R2), mean abso-
lute error (MAE), and root mean squared error (RMSE)
for the regression models. To obtain robust and accurate
prediction models, the model training process was repeated
ten times with random data splitting. The best performing
models were incorporated into the online platform, and dif-
ferent performance measures for the classi�cation and re-
gression models were separately summarized in Tables 1
and 2, respectively. For the classi�cation models, most of
them achieved an AUC of 0.85 or higher, except for some
cytochrome enzyme endpoints such as CYP1A2 substrate
and CYP2C9 substrate. Meanwhile, these models yielded
satisfactory prediction accuracy, with 27 models reaching
the ACC values above 0.8. The average MCC value of these
models is 0.53 and 50% of models obtain a MCC of more
than 0.5. The speci�city and sensitivity of most models were
relatively balanced, except for some endpoints in the Toxi-
cology in the 21st Century (Tox21) dataset, which was prob-
ably due to the imbalanced labeled data. For the regression
models, most of them achieved an R2 above 0.72. Never-
theless, some endpoints, such as Clearance and LC50DM,
had relatively limited historical data formodel training, ren-
dering the underperformance of the corresponding models.
The complete performance summary for the training and
test sets are listed in Supplementary Tables S3 and S4. Gen-
erally, these models can give relatively accurate predictions
for the ADMET-related properties of chemicals.
Besides, we also implemented more rigorous leave-

cluster-out validation, where the molecules were grouped
into clusters according to the Murcko scaffolds. The scaf-
folds of validation and test sets were excluded from the
training set. The classi�cation endpoints could obtain an
average MCC of 0.47, and regression endpoints could ob-
tain an average R2 of 0.65, suggesting that the knowledge
learned from the training set has the potential to be trans-
ferred to other different chemical structures and the predic-
tive ability of our webserver is reliable.More detailed results
of leave-cluster-out validation are listed in Supplementary
Tables S5 and S6.

Multi-task graph attention (MGA) framework

Traditional multitask graph neural network (GNN) meth-
ods usually handle homogeneous tasks, such as pure re-
gression or classi�cation tasks. However, in ADMET pre-
diction, both regression tasks and classi�cation tasks are
needed. Therefore, a multi-task graph attention (MGA)
framework was used to simultaneously learn the regres-
sion and classi�cation tasks for ADMET predictions in
this study. An overview of the Multi-task Graph Attention
framework is shown in Supplementary Figure S1. MGA is

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
9
/W

1
/W

5
/6

2
4
9
6
1
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



W8 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

Table 1. Performance of the classi�cation models incorporated into the ADMETlab 2.0 platform

Category Model AUC ACC MCC Speci�city Sensitivity

Absorption Pgp-inhibitor 0.922 0.867 0.723 0.844 0.882
Pgp-substrate 0.840 0.768 0.538 0.705 0.828
HIA 0.866 0.924 0.687 0.800 0.942
F20% 0.833 0.750 0.414 0.680 0.773
F30% 0.848 0.802 0.580 0.794 0.806

Distribution BBB Penetration 0.908 0.862 0.718 0.824 0.891
Metabolism CYP1A2 inhibitor 0.928 0.852 0.704 0.848 0.857

CYP1A2 substrate 0.737 0.649 0.298 0.632 0.667
CYP2C19 inhibitor 0.913 0.839 0.679 0.813 0.869
CYP2C19 substrate 0.758 0.654 0.300 0.667 0.636
CYP2C9 inhibitor 0.919 0.841 0.671 0.823 0.878
CYP2C9 substrate 0.725 0.707 0.386 0.776 0.606
CYP2D6 inhibitor 0.892 0.824 0.558 0.823 0.828
CYP2D6 substrate 0.847 0.775 0.553 0.733 0.818
CYP3A4 inhibitor 0.921 0.832 0.659 0.825 0.841
CYP3A4 substrate 0.776 0.713 0.437 0.820 0.608

Excretion T1/2 0.801 0.727 0.478 0.658 0.827
Toxicity hERG Blockers 0.943 0.889 0.778 0.869 0.909

H-HT 0.814 0.720 0.461 0.814 0.650
DILI 0.924 0.894 0.793 0.826 0.958
AMES Toxicity 0.902 0.807 0.606 0.732 0.865
Rat Oral Acute Toxicity Toxicity 0.853 0.778 0.549 0.769 0.793
FDAMDD 0.804 0.736 0.471 0.734 0.737
Skin Sensitization 0.707 0.775 0.462 0.539 0.889
Carcinogencity 0.788 0.731 0.476 0.623 0.843
Eye Corrosion 0.983 0.957 0.908 0.965 0.944
Eye Irritation 0.982 0.952 0.876 0.918 0.964
Respiratory Toxicity 0.828 0.764 0.514 0.732 0.786
NR-AR 0.886 0.890 0.348 0.896 0.731
NR-AR-LBD 0.915 0.936 0.472 0.942 0.783
NR-AhR 0.943 0.862 0.573 0.858 0.896
NR-Aromatase 0.852 0.849 0.264 0.859 0.615
NR-ER 0.771 0.815 0.320 0.845 0.567
NR-ER-LBD 0.850 0.903 0.364 0.918 0.618
NR-PPAR-gamma 0.893 0.896 0.344 0.901 0.750
SR-ARE 0.863 0.827 0.469 0.850 0.701
SR-ATAD5 0.874 0.919 0.361 0.929 0.640
SR-HSE 0.907 0.868 0.393 0.875 0.750
SR-MMP 0.927 0.897 0.660 0.908 0.835
SR-p53 0.881 0.841 0.365 0.849 0.723

Table 2. Performance of the regression models incorporated into the ADMETlab 2.0 platform

Category Model R2 RMSE MAE

Physicochemical property Log S 0.854 0.850 0.588
Log D7.4 0.892 0.462 0.347
Log P 0.957 0.357 0.256

Absorption Caco-2 permeability 0.746 0.307 0.222
MDCK permeability 0.731 0.291 0.199

Distribution PPB 0.733 0.135 0.834
VD 0.782 0.670 0.457
Fu 0.763 0.367 0.263

Excretion CL 0.678 3.375 2.240
Toxicity Bioconcentration factor 0.786 0.603 0.435

IGC50 0.723 0.496 0.335
LC50FM 0.745 0.863 0.643
LC50DM 0.524 0.994 0.692

composed of the input, relation graph convolution network
(RGCN) layers (24), attention layer, and fully-connected
(FC) layers. In the input, a node represents the informa-
tion of an atom, and after passing the RGCN layers, the
node represents the general features of the circular substruc-
ture centered on the atom. The attention layers can assign
different attention weights to different substructures, and
then generate the customized �ngerprints from the general

features for a speci�c task. It’s worth noting that MGA
has different attention layers for different tasks and can
generate customized �ngerprints for different tasks. The
FC layers predict the corresponding tasks based on the
customized �ngerprints. The classi�cation and regression
tasks adopt different loss functions (loss c and loss r), and
the loss function of MGA is a combination of loss c and
loss r (25). To alleviate data-imbalance problem, we em-
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ployedBCEWithLogitsLoss loss function and attached cor-
responding weights of positive examples (pos weight) ac-
cording to the proportion of positive and negative samples.
We used the empirical hyperparameters of MGA to con-
struct the ADMET prediction models and more informa-
tion on the MGA method can be seen in Supplementary
Data. The implementation and empirical hyperparameters
ofMGA can be found at https://github.com/wzxxxx/MGA.

NEW DEVELOPMENTS IN ADMETlab 2.0

To better facilitate the ADMET evaluation of chemicals,
ADMETlab 2.0 is presented with signi�cant updates to
functional modules, predictive models, and explanations.
Additionally, we also updated the user interface to improve
the user experience. Figure 1 presents the work�ow of AD-
METlab 2.0.

Comprehensively enhanced ADMET pro�les

Originally, ADMETlab could support the predictions of
7 basic physicochemical properties, 28 ADMET-related
properties and 6 drug-likeness rules, but some important
endpoints were still not taken into consideration. More-
over, the drug-likeness rules supported by ADMElab had
overlaps between their internal terms. These problems may
lead to an inadequate understanding of the whole ADMET
spectrum for a molecule. Therefore, ADMETlab needs to
be updated to overcome the existing limitations.
The ADME-related endpoints could be roughly divided

into seven different sections: (i) physicochemical proper-
ties, (ii) medicinal chemistry properties, (iii) absorption, (iv)
distribution, (v) metabolism, (vi) excretion and (vii) toxic-
ity. Most of the newly added endpoints in ADMETlab 2.0
belong to physicochemical properties, medicinal chemistry
properties and toxicity. At �rst, we added a number of struc-
tural properties closely relevant to drug-likeness, such as
formal charge, �exibility, and stereo centers (26–28). Then,
the empirical formula of logPwas replaced by awell-trained
MGA model based on more than ten thousand molecules.
For medicinal chemistry properties, we selected 4 comple-
mentary drug-likeness rules, including Lipinski’s rule-of-
�ve (29), P�zer rule (30), GSK rule (31) and Golden Trian-
gle (32). These rules were born within the long-term drug
discovery practice of world-famous pharmaceutical com-
panies. Some quantitative measures, including QED (33),
Fsp3 (34), MCE-18 (35), SAscore (36), and NPscore (37),
were also added to this section to evaluate molecular drug-
likeness, medicinal chemistry evolution, synthetic feasibil-
ity, and natural product likeness, respectively. Thereinto,
the Fsp3 measure is a simple and interpretable metric for
molecular saturation, and it is de�ned as the fraction of
sp3 carbon atoms (the number of sp3 hybridized carbons
/ total carbon count). This parameter is closely related to
solubility and melting points. The QED measure is a pub-
licly accepted drug-likeness parameter. It is derived from
a multivariate nonlinear function, in which several prop-
erties were parameterized and combined, including those
used by Lipinski’s rule-of-�ve, PSA, Nrotb, counts of aro-
matic rings (NAr), and the presence of certain undesirable
structural motifs. We also noticed the frequent hitters (38)

revoked more and more attention, and therefore four kinds
of substructural rules were added to facilitate the detection
of frequent hitters, thereby avoiding false positive results
in drug discovery. For the toxicity section, the involvement
of Tox21 made the toxicity prediction of our platform ex-
tend to biological target-based pathways. The binding data
for twelve different biological targets, belonging to two ma-
jor groups (the nuclear receptor pathway and the stress re-
sponse pathway), constitute the complete Tox21 dataset.
The prediction results of these endpoints in Tox21 could
give users information on how chemicals may affect human
health. In addition to traditional QSPR models, eight dif-
ferent toxicophore rules were integrated into this section,
including human toxicity, environmental toxicity and com-
prehensive toxicity. It was believed that the combined appli-
cation of toxicity prediction models and toxicophore rules
could greatly improve the predictivity and interpretability of
models (18). Other sections were also expanded in different
degrees, and the introduction of the supported endpoints
was provided in Supplementary Data and the website.
Further, it should be noted that the enhancement of AD-

MElab was not only con�ned to the addition of ADMET-
related endpoints. The quality and quantity of the experi-
mental data for model building was signi�cantly improved.
For example, the number of the molecules in the logD
7.4 dataset increased roughly tenfold from 1031 to 10 370,
and a dramatic data increase also occurred to the hERG
dataset. Other datasets were also extended with different
magnitudes, such as Clearance, T1/2, VD, Caco-2 perme-
ability, etc. Meanwhile, the number of some datasets de-
creased due to more rigorous data curation, where loosely
de�nedmolecules were removed and irrelevant data consol-
idation was corrected. Collectively, our platform could sup-
port the calculation of 88 ADMET-related endpoints span-
ning seven different categories, which is currently the most
integrated online platform of this kind. In terms of the data,
compared with the initial version, the number of the entries
for model training in the current release has almost tripled.

Re-engineered modules and batch evaluation support

In the previous release of ADMETlab, we designed three
main modules: Drug-likeness Analysis, ADMET Predic-
tion, and Systematic Evaluation, whose meanings were self-
explanatory. Drug-likeness analysis and ADMET evalu-
ation were separated into different modules, and single-
property prediction and all-sided ADMET prediction were
both supported to meet the demands of users. Our orig-
inal intention was to make the webserver well organized.
However, according to the feedback from users, most peo-
ple preferred to obtain the whole ADMET pro�le as the
foundation of the decision-making that whether the chem-
icals were worth further exploration, rather than speci�c
endpoints. The single-property evaluation module seemed
redundant and embarrassed in most situations. Moreover,
due to the absence of drug-likeness rules in Systematic Eval-
uation, the users had to switch back and forth between the
two modules, leading to bad user experience. To solve these
problems, we re-engineered and optimized the functional
modules from three aspects. Firstly, the single-property
prediction module was completely removed. Secondly, the
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Figure 1. Work�ow scheme of ADMETlab 2.0.

independent drug-likeness module was incorporated into
the Systematic Evaluation as the Medicinal Chemistry sec-
tion. The combined module could provide an integral cal-
culation and evaluation of ADMET pro�les by entering
molecules only once, and it was renamed to ADMET Eval-
uation to re�ect its essence more intuitively. Further, AD-
METlab also had a built-in database, which included >280
000 entries from multiple data sources, recording the ba-
sic information and ADMET pro�les. In addition to ac-

curate searching, it could implement similarity searching
with the user-de�ned criterion and provide the most simi-
lar molecules to the query molecules. However, some public
integrated databases have matured considerably in offering
high-quality and up-to-date resources, such as ChEMBL,
BindingDB, admetSAR, etc. Moreover, it is hard to mea-
sure to which extent similarity searching bene�t the users in
their structure optimization work. Considering all the fac-
tors together, the database will be no longer retained within
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the latest version. Nevertheless, the interested readers still
could access this function in the previous version.
Another notable weakness of the previous version is the

inability of batch evaluation. The application of in sil-
ico frameworks enables earlier ADMET evaluation, even
before syntheses. It also means signi�cantly higher com-
putation demands, from dozens to thousands in number.
Clearly, single-molecule evaluation was powerless to han-
dle a large number of molecules unless drawing support
from in-house scripts. During the past three years, there
were numerous letters from different institutes asking for
the possibility of adding additional batch evaluation func-
tion. As a response, we developed ADMET Screening as
an independent module supporting batch uploading and
downloading, which could effectively avoid laboring opera-
tions for fetching results one by one. By using this module,
synthetic chemists and computational chemists could con-
veniently evaluate a series of empirically designed or virtu-
ally screened compounds before syntheses and biochemical
assays.
In summary, ADMETlab 2.0 currently provides the users

with concise, explicit, and ef�cient functional modules to
facilitate the ADMET evaluation of chemicals.

Robust and accurate MGA models

As the core component of the web server, the accuracy of
models determines the reliability of predictions. With �xed
datasets, the performance of ADMET evaluation models
depends heavily on the selection of algorithms and de-
scriptors. Traditionally, researchers needed to select multi-
ple types of descriptors as the proxy for molecular struc-
tures, each combined with several algorithms, to construct
prediction models and evaluate prediction performance,
thereby obtaining the optimum combination. Such orthog-
onal strategy was also employed in the development of
ADMETlab, where a total of 11 molecular descriptors
and 6 modeling algorithms were engaged in the compar-
ison. Although the process was tedious, a series of high-
quality models with satisfactory performance were success-
fully constructed and embedded into the webserver.
Nevertheless, we asked ourselves: can we do better? Cur-

rently, the use of deep neural networks (DNN) has be-
come popular throughout computational chemistry. Sup-
ported by many publications (39,40), it could obtain great
improvement over classical approaches using random for-
est and �ngerprints for many endpoints, such as solubil-
ity, Caco-2 permeability, log D, etc. In this work, we em-
ployed the MGA framework to develop the classi�cation
and regression predictors simultaneously for further perfor-
mance improvement. MGA operated on graph-structured
data, where the input molecule was regarded as a graph,
with atoms being the nodes and bonds the edges. The node
features were learned by propagating the features from the
neighboring nodes and learning af�ne transformations. By
learning jointly over multiple endpoints, the parameters
in the hidden layers were shared among all tasks to force
the learning of useful representation of the input molecule,
which could improve the model generalization ability and
enable tasks with fewer measures to bene�t from the chem-
ical space coverage of the larger tasks. Finally, 40 classi�ca-

tion endpoints and 13 regression endpoints were built and
evaluated in a separate test set fashion. For the classi�ca-
tion models, the AUC ranged from 0.707 to 0.983 with an
average value of 0.863. For the regression models, the R2

mainly ranged from 0.678 to 0.957 with an average value of
0.783, except for LC50DM.We also employed the XGBoost
algorithm and MOE2d descriptors to construct traditional
single-taskmodels using the same datasets. As expected, the
MGAmodels could yield better performance relative to the
corresponding XGBoost models, except for seven classi�ca-
tion and two regression endpoints. However, the superiority
of XGBoost is quite slender (about 0.012 onAUC and 0.018
on R2) and these models may also slow down the computa-
tion speed. We still provided the users with MGA models
across 53 endpoints in the web server.
Also noteworthy, the bene�t brought by new algorithms

is also re�ected in the faster computing speed. In the MGA
framework,molecules are learned in the form of graphs uni-
versally. Therefore, the laborious descriptor calculation is
no longer required. Additionally, compared with the inde-
pendent models for individual endpoint, multitask learning
enables one input withmultiple outputs, thus greatly simpli-
fying the calculation process. Currently, a typical ADMET-
lab 2.0 task for 1000 molecules requires about 84 seconds,
while the time required to run 20 molecules in the initial
version is about 1574 s.

Practical explanation and guidance

Unambiguous interpretation of predictions in ADMETlab
had been extensively acclaimed by the scienti�c community.
In this update, we maintained this battle-tested character-
istic and made further improvement. We inherited the ex-
plicit classi�cation of endpoints, which enabled the users to
quickly �nd the section of interest. For example, researchers
of central nervous system drugs would be particularly inter-
ested in the distribution parameters, especially blood-brain
barrier penetration, which determined if the medications
could have signi�cant brain exposure for therapeutic effect.
To avoid confusion, we designed different display manners.
For the regression endpoints, the concrete predictive values
are shown in the result page. For the classi�cation models,
the prediction probability values are represented with dif-
ferent symbols: 0-0.1(−−−), 0.1-0.3(−−), 0.3-0.5(−), 0.5-
0.7(+), 0.7-0.9(++), and 0.9-1.0(+++). Usually, the token
‘+++’ or ‘++’ represents the molecule is more likely to be
toxic or defective, while ‘−−’ or ‘−’ represents nontoxic or
appropriate. Here, we do not recommend trusting predic-
tive results symbolled by ‘+’ or ‘−’ (probably values in 0.3-
0.7), and corresponding molecules require further assess-
ment. Along with the predictive results, the empirical deci-
sion state of each endpoint is visually represented with dif-
ferent colored dots, green for excellent, yellow for medium,
and red for poor, whose de�nition criteria are summarized
in Supplementary Data and the website. For substructural
alerts, like PAINS and SureChEMBL, in addition to the
alert counts, the users could check the substructures con-
tained in the molecule through the DETAIL button. The
information of each endpoint is folded in the information
icon to facilitate the understanding of the predictive results,
including endpoints explanation, empirical optimal range,
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Table 3. Comparison of the main features of ADMETlab (version 1.0–2.0) with other web-based tools. Symbol ‘+’ means feature support and more ‘+’

indicate batter support

ADMETlab

Features 2.0 1.0 SwissADME admetSAR 2.0 FAF-Drugs4 pkCSM vNN-ADME

Endpoints
Physicochemical property 17 7 12 5 20 6 0
Medicinal chemistry 13 6 10 0 16 0 0
ADME 23 21 9 35 0 20 9
Toxicity 27 7 0 12 0 10 6
Toxicophore rule 8 0 0 0 4 0 0
PAINS included Yes No Yes No Yes No No
Batch evaluation +++ + + + ++ ++ ++
Explanation +++ ++ ++ + ++ ++ +
Availability Free Free Free Free Free Free Registration

required
Computation time (1000
molecules)

84 s More than 2 h 1560 s 267 s 967s 1845 s 2400 s

*Medicinal chemistry contains drug-likeness rules, chemical friendly measures, and substructural rules of frequent hitters; ADME contains absorption,
distribution, metabolism, and excretion related endpoints; Toxicity contains human toxicity, animal toxicity, environmental toxicity, and toxic pathways.
URL links:
ADMETlab: http://admet.scbdd.com/
SwissADME: http://www.swissadme.ch/
admetSAR 2.0: http://lmmd.ecust.edu.cn/admetsar2/
FAF-Drugs4: https://fafdrugs4.rpbs.univ-paris-diderot.fr/
pkCSM: http://biosig.unimelb.edu.au/pkcsm/prediction
vNN-ADMET: https://vnnadmet.bhsai.org/vnnadmet/login.xhtml

and label de�nition of binary endpoints. Generally, AD-
METlab 2.0 provides practical explanation and information
to help the users to get a wholeADMETpicture of the input
molecule.

APPLICATION CASE

To further demonstrate the reliability ofADMETlab 2.0, we
selected olaparib as the input molecule to predict its AD-
MET parameters and to discuss the results in detail. ola-
parib is a poly (ADP-ribose) polymerase inhibitor devel-
oped by AstraZeneca for the treatment of BRCAmutation-
positive ovarian cancer (41). As a globally approved anti-
tumor drug, some ADMET-related parameters have been
reported in several studies. The results page of Olaparib is
provided in Supplementary Figure S2.
It can be seen from the radar plot that all the physico-

chemical properties are in the proper scope except solubil-
ity (logS). Poor solubility also affects the Fsp3 score, barely
0.33 with a red empirical decision state. In reality, its poor
solubility has troubled the pharmacist for a long time and
many advanced drug research techniques have been pro-
posed to ensure its bioavailability (42). In the absorption
section, olaparib is predicted as P-glycoprotein (Pgp) sub-
strate and inhibitor with high possibility, which is consis-
tent with the publication demonstrating that increased Pgp
drug ef�ux transporter expression enables an intrinsic re-
sistance of olaparib in metaplastic breast carcinoma (43).
For metabolism, it is predicted that olaparib does not in-
hibit CYP 1A2 and CYP 2D6, and causes inhibition of
CYP3A4 and CYP 2C9, which is consistent with the re-
sults of the in vitro cytochrome P450 evaluation reported
by AstraZeneca (44). For toxicology, olaparib may have a
high risk of human hepatotoxicity and liver injury, which is
a common side effect of antitumor drugs and has been re-

ported in a case study (45). Moreover, olaparib is predicted
active for the ARE toxicological pathway with high pos-
sibility, although this characteristic has not been reported
in any publication. Actually, antioxidant capacity has been
recognized as a potential mechanism of tumor malignancy
(46), and it is possible that the antitumor action of olaparib
is partly contributed from the interference with the Keap1-
Nrf2-ARE signaling pathway. In summary, the predictive
results of ADMETlab 2.0 basically correspond to the re-
ported experimental data, highlighting the reliability of this
server tool.

Comparison with other web-based tools

Currently, there are many online prediction servers for
the evaluation of certain ADMET parameters, such as
SuperCYPsPred (47) for cytochrome activity prediction,
eMolTox (48) for potential toxicity prediction, ChemAGG
(49) for colloidal aggregators identi�cation, etc. Mean-
while, several excellent online platforms have been pro-
posed for more systematic and convenient ADMET pre-
dictions, including SwissADME (14), admetSAR 2.0 (13),
FAF-Drugs4 (12), pkCSM (16) and vNN-ADMET (50).
Here, we compared these tools and ADMETlab 2.0, as well
as its previous version, with details summarized in Table 3.

Speci�cally, admetSAR, pkCSM and vNN-ADMET
were designed to assist researchers in understanding the
ADMET characteristics of chemicals. Thereinto, admet-
SAR 2.0 included the most diverse metabolism properties,
while the available predictions in vNN-ADMETb were rel-
atively limited. FAF-Drugs4 and Swiss-ADME performed
outstandingly in physicochemical and medicinal chemistry
properties. FAF-Drugs4 made the �rst attempt to add toxi-
cophore rules into ADMET evaluation, and Swiss-ADME
could provide multiple calculation approaches for logP and
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logS and various drug-likeness rules. However, their phar-
macokinetics predictions were inferior to other tools. In
comparison, ADMETlab 2.0 is available for the prediction
of every important aspect of molecular quality, covering
major endpoints that medicinal chemists would be inter-
ested in. Some toxicophore rules, toxicity pathways, and
some medicinal chemistry measures of our platform are
unique among the tools of this kind. Backed up by the
robust QSPR models trained by the MGA framework, it
now can provide more reliable predictions relative to other
tools based on traditional machine learning algorithms.
Moreover, the updated version could provide more user-
friendly design and ef�cient service, re�ected in diverse in-
put approaches, practical explanation and high computa-
tion speed. Collectively, ADMETlab 2.0 provides medici-
nal chemists a comprehensive, accurate, ef�cient, and user-
friendly service for ADMET evaluation.

CONCLUSIONS

Here, we have introduced ADMETlab 2.0 which signi�-
cantly enhanced the functionality of its predecessor. The
new webserver provides the users easy access to compre-
hensive, accurate and ef�cient prediction of the ADMET
pro�les for chemicals, including absorption, distribution,
metabolism, excretion and toxicity properties, as well as
some important physicochemical and medicinal chemistry
properties. In this update, the available ADMET pro�le
is extended to 88 related characteristics, roughly twice the
number of its predecessor. Meanwhile, the advanced MGA
framework was employed to construct robust and accurate
models as the foundation of our platform. Module restruc-
ture and batch computation support were implemented to
improve usability and user experience. Optimized results ex-
planation enables non-expert users to understand the hints
behind the predicted values, thereby guiding the medicinal
chemistry decision-making.We believe thatADMETlab 2.0
will prove useful in accelerating the process of drug R&D.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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