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Abstract 

Current pharmaceutical research and development (R&D) is a high-risk investment which is usually faced with some 

unexpected even disastrous failures in different stages of drug discovery. One main reason for R&D failures is the 

efficacy and safety deficiencies which are related largely to absorption, distribution, metabolism and excretion (ADME) 

properties and various toxicities (T). Therefore, rapid ADMET evaluation is urgently needed to minimize failures in the 

drug discovery process. Here, we developed a web-based platform called ADMETlab for systematic ADMET evalua-

tion of chemicals based on a comprehensively collected ADMET database consisting of 288,967 entries. Four function 

modules in the platform enable users to conveniently perform six types of drug-likeness analysis (five rules and one 

prediction model), 31 ADMET endpoints prediction (basic property: 3, absorption: 6, distribution: 3, metabolism: 10, 

elimination: 2, toxicity: 7), systematic evaluation and database/similarity searching. We believe that this web platform 

will hopefully facilitate the drug discovery process by enabling early drug-likeness evaluation, rapid ADMET virtual 

screening or filtering and prioritization of chemical structures. The ADMETlab web platform is designed based on the 

Django framework in Python, and is freely accessible at http://admet .scbdd .com/.
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Background

Current pharmaceutical research and development is 

a high-risk investment that is characterized by a com-

plex process including disease selection, target iden-

tification, lead discovery and optimization, as well 

as preclinical and clinical trials. Although millions 

of active compounds have been found, the number 

of new drugs approved didn’t increase drastically in 

recent years [1–3]. Besides the non-technical issues, 

the efficacy and safety deficiencies could account for 

the main stagnation which is related largely to absorp-

tion, distribution, metabolism and excretion (ADME) 

properties and various toxicities (T). ADME covers the 

pharmacokinetic issues determining whether a drug 

molecule will get to the target protein in the body, and 

how long it will stay in the bloodstream. Parallel evalu-

ation of efficiency and biopharmaceutical properties of 

drug candidates has been standardized, and exhaustive 

studies of ADMET processes are nowadays routinely 

carried out at early stage of drug discovery to reduce 

the attrition rate. This is because the majority of clini-

cal trial failures have been due to ADMET issues, not 

from a lack of efficacy. Since this is the most costly 

point to have a failure, ADMET-related research could 

save much time and money if they can divert even 

one clinical trial failure [4, 5]. Moreover, the current 

experimental methods for ADMET evaluation are 

still costly and time-consuming, and they need a lot 

of animal testing which is usually inadequate when 

managing hundreds of compounds in the early stage 
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of drug discovery. In order to minimize failures, com-

putational strategies are sought by medicinal chemists 

to predict the fate of drugs in organism, and to early 

identify the risk of toxicity [6, 7]. ADMET-related in 

silico models are commonly used to provide a fast and 

preliminary screening of ADMET properties before 

compounds are further investigated in  vitro [8–11]. 

Currently, there are several free and commercial com-

putational tools for predicting ADMET properties. 

However, these tools are not yet very accurate. Moreo-

ver, most of existing computational tools are individual 

models which focus on specific ADMET properties 

and few can evaluate different ADMET properties 

simultaneously due to the limited data size and meth-

ods [12–14].

In order to facilitate the ADMET evaluation, we 

developed a web platform called ADMETlab based 

on a comprehensively collected database which inte-

grates the existing ADMET and basic physicochemi-

cal-related endpoints as many as possible (see Fig. 1). 

Four main modules are designed to conveniently 

assess ADMET properties: drug-likeness evaluation, 

ADMET prediction (31 endpoints assessment), sys-

tematic ADMET evaluation for single chemical and 

database/similarity searching based on ADMET data-

base with 288,967 entries. Compared with other online 

platforms, our proposed ADMETlab incorporated 

more ADMET endpoints and improved model perfor-

mance for some endpoints based on large and struc-

turally diverse data sets. These modules are deployed 

in a user-friendly, freely available web interface (http://

admet .scbdd .com/) and we recommend it as a valu-

able tool for medicinal chemists in the drug discovery 

process.

Implementation

Development environment

ADMETlab consists of two main components: “ADMET 

database” and “Web platform”. �ey share a common 

running environment. We deployed an elastic compute 

service (ECS) server of Aliyun to run the whole project. 

�e number of CPU cores and memory are automatically 

allocated to the running instances on demand, which 

ensures the elastically stretchable computing capabil-

ity. In this project, Python was chosen as the main pro-

gramming language because of its considerable libraries 

for the scientific computation. We use Python-RDKit 

[15], Pybel to wrap molecules; [16] use Chemopy [17] 

ChemDes [18] and BioTriangle [19] to calculate molecu-

lar descriptors and fingerprints; use Scikit-learn to build 

models of different algorithms; [20] use Numpy [21], 

Pandas to wrap calculating results into numeric values 

or files [22]. Django is chosen as a high-level Python web 

framework which allows for the rapid development and 

clear design. According to its model visualization-control 

(MVC) design pattern, the whole system is divided into 

three main components: the backend calculating pro-

gram, the back-end control program and the front-end 

visualization program. At the backend, uWSGI + Nginx 

worked as the web server software, �e MySQL data-

base was used for data storage and retrieval. It should be 

noted that ‘ADMET database’ and ‘Web platform’ shared 

a common database instance. At the front end, the web-

site is designed in accordance with W3C standards based 

on HTML, CSS, and JavaScript languages.

User interface

ADMETlab provides a convenient and easy-to-use 

interface for users. The user interface of ADMETlab 

Fig. 1 An overview of ADMET properties that can be evaluated by ADMETlab

http://admet.scbdd.com/
http://admet.scbdd.com/
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consists of four main modules: “Webserver”, “Search”, 

“Documentation” and “Help”. “Webserver” is the 

main entrance for users to use “Web platform”, which 

includes three sub modules: “Druglikeness Evaluation”, 

“ADMET Prediction” and “Systematic Evaluation”. 

“Druglikeness Evaluation” module enables users to cal-

culate 5 commonly used druglikeness rules and pro-

vides a druglikeness model. This model can not only 

find out the active compounds from chemical entities 

but also distinguish the potential drug candidates from 

active compounds. “ADMET Prediction” module pro-

vides 31 models to predict 31 ADMET related proper-

ties. Users need to choose one model to obtain results 

for one or multiple molecules, which is suitable for 

screening target molecules of a specific endpoint. “Sys-

tematic Evaluation” predicts all-sided pharmacokinetic 

properties of a specific promising compound and users 

will have an overall understanding of this compound. 

“Search” module is the interface for ADMET database, 

which enables users to perform accurate search, range 

search and similarity search. “Documentation” mod-

ule provides detailed information about data, method-

ologies and results of ADMETlab. The “Help” module 

describes examples about how to use the ADMETlab 

platform.

Input/output

The Input/Output system is mainly responsible for the 

input or output of the strings, commands and files. 

ADMETlab uses the functions like file, open, write, 

getcwd and setcwd from Python I/O system to accom-

plish the file reads and writes. For “Druglikeness Eval-

uation” and “ADMET Prediction” module, SMILES and 

SDF are acceptable molecular file types. These two 

modules provide three kinds of input ways: by input-

ting SMILES, by uploading files and by drawing mol-

ecules from the JME editor. The outputs of them are 

interactive data table and CSV file. The interactive 

data table for five rules contains evaluation values for 

each point; each of the items can be expanded to see 

the detailed information and structures. Interactive 

data table for the model prediction results contains 

predicted values and structures. All the data tables 

allow for searching and ranking by the values. For 

“Systematic Evaluation” module, SMILES is accept-

able molecular format, and the output is rendered as 

HTML page which contains basic information about 

the query molecule and predicted values of all the end-

points. For “Search” module, the SMILES and related 

parameters are set for input; the output is rendered as 

HTML page which contains interactive data table of all 

satisfied items.

Methods

Data collection

�e data of ADMETlab consisted of two parts. �e first 

part was collected from peer-reviewed publications 

through manually filtering and processing. Note that this 

part will also be then used to the modeling process. �e 

second part was collected from ChEMBL [23], EPA [24] 

and DrugBank databases [25]. �e corresponding basic 

information and experimental values were collected at 

the same time. All the obtained data were checked and 

washed by molecular operating environment (MOE, ver-

sion 2016) and then divided into six classes (basic, A, D, 

M, E and T) and a series of subclasses according to their 

endpoint meanings. After the format standardization and 

combination, 288,967 entries were obtained and then 

were input into the database. More detailed descrip-

tion can be found in the “Documentation” section of the 

website.

Data set preparing

In the data collection process, we finally obtained 31 

datasets for ADMET modeling from the first part of data. 

For these datasets, the following pretreatments were 

carried out to guarantee the quality and reliability of 

the data: (1) removing compounds that without explicit 

description for ADME/T properties; (2) for the classifica-

tion data, reserve only one entity if there are two or more 

same compounds; (3) for the regression data, if there are 

two or more entries for a molecule, the arithmetic mean 

value of these values was adopted to reduce the random 

error when their fluctuations was in a reasonable limit, 

otherwise, this compound would be deleted; (4) Wash-

ing molecules by MOE (disconnecting groups/metals in 

simple salts, keeping the largest molecular fragment and 

add explicit hydrogen). After that, a series of high-quality 

datasets were obtained. According to the Organization 

for Economic Co-operation and Development (OECD) 

principles, not only the internal validation is needed to 

verify the reliability and predictive ability of models, but 

also the external validation [11]. �erefore, all the data-

sets were divided into training set and test set according 

to the chemical space distribution by “Diverse training 

set split” module from ChemSAR [26]. In this step, we set 

a threshold that 75% compounds were used as training 

set and the remaining 25% as test set. �e detailed infor-

mation for these datasets can be seen in Table 1.

Descriptor calculation

In this part, molecular descriptors and fingerprints were 

applied to further model building. �e molecular descrip-

tors include 11 types of widely used descriptors: con-

stitution, topology, connectivity, E-state, Kappa, basak, 

burden, autocorrelation, charge, property, MOE-type 
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descriptors and 403 descriptors in total. All the descrip-

tors were calculated by using Chemopy—a python pack-

age built by our group. �ese continuous descriptors 

were used to build regression models. �e fingerprints 

include FP2, MACCS, ECFP2, ECFP4 and ECFP6, which 

were calculated by using ChemDes [18] and BioTriangle 

[19]. �ese fingerprints were used to build classification 

models. All descriptors were firstly checked to ensure 

that the values of each descriptor are available for molec-

ular structures. �e detailed information of these men-

tioned descriptors can be seen in Table 2.

Descriptor selection

To build those regression models, we need to select 

proper descriptors. Before further descriptor selection, 

three feature pre-selection steps were performed to 

eliminate some uninformative descriptors: (1) remove 

descriptors whose variance is zero or close to zero; (2) 

remove descriptors, the percentage of whose identical 

values is larger than 95% and (3) if the correlation of two 

descriptors is large than 0.95, one of them was randomly 

removed. �e remaining descriptors were used to further 

perform descriptor selection and QSAR modeling. For 

these molecular descriptors, further descriptor selection 

need be carried out to eliminate uninformative and inter-

ferential descriptors. In this study, we utilize the internal 

descriptor importance ranking function in random forest 

(RF) to select informative descriptors [27]. �e descriptor 

selection procedure is performed as follows: Firstly, all 

descriptors were applied to build a model. �e number 

of estimators of RF was set as 1000; the mtry was set as 
√

p , the other parameters were set as defaults, and five-

fold cross-validation was used to evaluate the model. 

�ese involved descriptors were sorted according to 

Table 1 The statistical results of the datasets for modeling

Category Property Total Positive Negative Train Test

Basic physicochemical 
property

LogS 5220 – – 4116 1104

LogD7.4 1031 – – 773 258

LogP

Absorption Caco-2 1182 – – 886 296

Pgp-inhibitor 2297 1372 925 1723 574

Pgp-substrate 1252 643 609 939 313

HIA 970 818 152 728 242

F (20%) 1013 759 254 760 253

F (30%) 1013 672 341 760 253

Distribution PPB 1822 – – 1368 454

VD 544 – – 408 136

BBB 2237 540 1697 1678 559

Metabolism CYP 1A2-inhibitor 12,145 5713 6432 9145 3000

CYP 1A2-substrate 396 198 198 297 99

CYP 3A4-inhibitor 11,893 5047 6846 8893 3000

CYP 3A4-substrate 1020 510 510 765 255

CYP 2C9-inhibitor 11,720 3960 7760 8720 3000

CYP 2C9-substrate 784 278 506 626 156

CYP 2C19-inhibitor 12,272 5670 6602 9272 3000

CYP 2C19-substrate 312 156 156 234 78

CYP 2D6-inhibitor 12,726 2342 10,384 9726 3000

CYP 2D6-substrate 816 352 464 611 205

Excretion Clearance 544 – – 408 136

T1/2 544 – – 408 136

Toxicity hERG 655 451 204 392 263

H-HT 2171 1435 736 1628 543

Ames 7619 4252 3367 5714 1905

Skin sensitivity 404 274 130 323 81

Rat oral acute toxicity 7397 – – 5917 1480

DILI 475 236 239 380 95

FDAMDD 803 442 361 643 160
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their importance, and then the last two descriptors were 

removed and the rest were used to rebuild the model and 

a new descriptor order was obtained. Repeat this step 

until the last two remaining descriptors were left, and at 

last we get a series of models based on different numbers 

of descriptors. Among them, we can choose a best fea-

ture combination according to the number of descriptors 

and the error value of the model.

Modeling algorithms

In this study, six different modeling algorithms were 

applied to develop QSAR regression or classification 

models for ADME/T related properties: random forests 

(RF), support vector machine (SVM), recursive parti-

tioning regression (RP), partial least square (PLS), naïve 

Bayes (NB) and decision tree (DT).

RF is an ensemble of unpruned classification or regres-

sion trees created by using bootstrap samples of the 

training data and random feature selection in tree induc-

tion, which was firstly proposed by Breiman in 2001 [28, 

29]. SVM is an algorithm based on the structural risk 

minimization principle from statistical learning theory. 

Although developed for classification problems, SVM can 

also be applied to the case of regression [30]. RP has been 

developed since the 1980s and it is a statistical method 

for multivariable analysis. RP creates a decision tree that 

strives to correctly classify members of the population by 

splitting it into sub-populations based on several dichot-

omous independent variables. �e process is termed 

recursive because each sub-population may in turn be 

split an indefinite number of times until the splitting 

process terminates after a particular stopping criterion 

is reached [31]. PLS is a recently developed generaliza-

tion of multiple linear regression (MLR), it is of particu-

lar interest because, unlike MLR, it can analyze data with 

strongly collinear, noisy, and numerous X-variables, and 

also simultaneously model several response variables [32, 

33]. NB is a simple learning algorithm that utilizes Bayes 

rule together with a strong assumption that the attributes 

are conditionally independent, given the class. Coupled 

with its computational efficiency and many other desir-

able features, NB has been widely applied in practice 

[34]. DT is a non-parametric supervised learning method 

used for classification and regression. �e goal is to cre-

ate a model that predicts the value of a target variable by 

learning simple decision rules inferred from the data fea-

tures [35]. Among these six methods, the RF, SVM, RP 

and PLS were used for regression model building; the RF, 

SVM, NB and DT were applied to build those classifica-

tion models. Before the modeling building, all related 

parameters of some algorithms should be optimized. 

�ey are (estimators, mtry) for RF, (Sigma, C) for SVM 

(rbf) and (n_components) for PLS separately. �e cross 

validation method based on grid search was adopted to 

obtain optimized parameter sets. Specifically, for RF we 

tried the estimators of 500 and 1000; the mtry was opti-

mized through two stages: firstly, use 20 as the step length 

and (1, n_features) as the range, and then use 2 as the 

step length and (mtryʹ − 50, mtryʹ + 50) as the range while 

mtryʹ − 50 > 0 and mtryʹ + 50 ≤ n_features. �e mtryʹ was 

the result of stage 1. Similarly, for SVM (rbf) two stages 

were applied to optimize the parameter sets. Firstly, the 

coarse grid-search process used: C = {start: 2^(− 5), end: 

2^(15), step: 2^(2)} and Sigma = {start: 2^(− 15), end: 

2^(3), step: 2^(2)}. Secondly, the finer grid-search process 

used 2^(0.25) as the step length to optimize the results 

from stage 1. For PLS, the best n_components was opti-

mized from 1 to 100.

For some unbalanced datasets, the obtained mod-

els may be biased if general modeling processes were 

applied. To obtain some more balanced classification 

models, we proposed two new methods to achieve this 

goal: (1) Samplesize parameter in RF. When this param-

eter is set to 100, it means that 100 positive compounds 

and 100 negative compounds were randomly selected to 

build a tree in each modeling process and this process 

repeated many times to guarantee that every compound 

in the training set could be used in the final RF model. 

�e use of this method guarantees that the number of 

Table 2 The molecular descriptors that  were used 

in modeling process

Descriptor type Description Number

Constitution Constitutional descriptors 30

Topology Topological descriptors 35

Connectivity Connectivity indices 44

E-state E-state descriptors 79

Kappa Kappa shape descriptors 7

Basak Basak information indices 21

Burden Burden descriptors 64

Autocorrelation Morgan autocorrelation 32

Charge Charge descriptors 25

Property Molecular property 6

FP2 A path-based fingerprint which indexes 
small molecule fragments based on linear 
segments of up to 7 atoms

2048

MACCS MACCS keys 167

ECFP2 An ECFP feature represents a circular 
substructure around a center atom with 
diameter is 1

2048

ECFP4 An ECFP feature represents a circular 
substructure around a center atom with 
diameter is 2

2048

ECFP6 An ECFP feature represents a circular 
substructure around a center atom with 
diameter is 3

2048
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positive samples and negative samples is relatively bal-

anced in each bootstrap sampling process. (2) �e ran-

dom sampling method was applied for the positive 

compounds (if positive samples are much more than 

negative samples) in each modeling process and this pro-

cess was repeated 10 times. Finally, a consensus model 

was obtained for further application based on these 10 

classification models. Besides, �e Cohen’s kappa coef-

ficient can be used as a performance metric to evaluate 

the results of models based on unbalanced dataset. Here 

we calculated the coefficient for the 7 unbalanced models 

(see the “Documentation”). Considering the barely satis-

factory results of some properties such as VD, CL,  T1/2 

and  LD50 of acute toxicity, the percentage of compounds 

predicted within different fold errors (Folds) was applied 

to assess model performance. �ey are defined as follows: 

fold = 1 + |Ypred − Ytrue|/Ytrue. A prediction method with 

an average-fold error < 2 was considered successful.

Performance evaluation

To ensure the obtained QSAR model has good generali-

zation ability for a new chemical entity, fivefold cross-

validation and a test set were applied for this purpose. 

For fivefold cross-validation, the whole training set was 

split into five roughly equal-sized parts firstly. �en 

the model was built with four parts of the data and the 

prediction error of the other one part was calculated. 

�e process was repeated five times so that every part 

could be used as a validation set. For these regression 

models, six commonly used parameters were applied 

to evaluate their quality: the square correlation coef-

ficients of fitting (RF
2); the root mean squared error of 

fitting  (RMSEF); the square correlation coefficients of 

cross-validation  (Q2); the root mean squared error of 

cross validation  (RMSEcv), the square correlation coef-

ficients of test set (RT
2); the root mean squared error of 

test set  (RMSET). As to these classification models, four 

parameters were proposed for their evaluation: accu-

racy (ACC); specificity (SP); sensitivity (SE); the area 

under the ROC curve (AUC). �eir statistic definitions 

are as follows:

R2

F = 1 −

∑
(

ŷi − yi
)2

∑

(yi − ȳ)2

RMSEF =

√

√

√

√

1

N

N
∑

1=1

(

yi − ŷi
)2

Q2
= 1 −

∑
(

ŷ(v)i − yi
)2

∑

(yi − ȳ)2

where ŷi and yi are the predicted and experimental values 

of the ith sample in the data set; ȳ is the mean value of 

all the experimental values in the training set; ŷ(v)i is the 

predicted value of ith sample for cross validation; N is the 

number of samples in the training set. TP, FP, TN and FN 

represent true positive, false positive, true negative and 

false negative, respectively.

Results and discussion

Drug-likeness analysis

�is drug-likeness analysis module is designed for users 

to filter those chemical compounds that are not likely to 

be leads or drugs. �e module includes five commonly 

used drug-likeness rules (Lipinski, Ghose, Oprea, Veber, 

and Varma) and one well-performed classification model 

[36–40]. �e classification model consisting of 6731 

positive samples from DrugBank and 6769 negative sam-

ples from ChEMBL with IC50 or Ki values < 10 μm was 

constructed based on the random forest method and 

MACCS fingerprint, with classification accuracy of 0.800 

and AUC score of 0.867 by external test set. By means of 

drug-likeness analysis, users can preliminarily screen out 

some promising compounds that are likely to be leads or 

drugs in the early stage of drug discovery.

RMSEcv =

√

√

√

√

1

N

N
∑

1=1

(

yi − ŷ(v)i

)2

R2

T = 1 −

∑
(

ŷi − yi
)2

∑

(yi − ȳ)2

RMSET =

√

√

√

√

1

N

N
∑

1=1

(

yi − ŷi
)2

ACC =
TP + TN

TP + TN + FP + FN

SP =
TN

TN + FP

SE =
TP

TP + FN
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ADMET prediction

To quickly evaluate various ADMET properties, a series 

of high-quality prediction models were generated and 

validated. Totally, there are 9 regression models (LogP 

was from RDKit directly) and 22 classification models 

with improved performance in this platform (basic prop-

erty: 3, absorption: 6, distribution: 3, metabolism: 10, 

elimination: 2, toxicity: 7). Different methods, different 

representations and large datasets, to our best knowl-

edge, were applied to obtain these optimal models (see 

Additional file  1). For some unbalanced datasets (e.g., 

HIA, CYP2C9-Substrate, CYP2D6-Substrate) or hard-to-

predict endpoints (e.g., CL, T1/2, acute toxicity), several 

useful strategies were proposed to improve prediction 

ability of models (see Additional file 1). For example, res-

ampling strategy and ensemble techniques are applied to 

cope with those unbalanced data. �e parameter adjust-

ing class balance in the random forest algorithm is opti-

mized to obtain balanced models. For each property, the 

detailed explanation and corresponding suggestion are 

provided for users to give a meaningful understanding of 

prediction results. �is module allows the batch predic-

tion and users can realize rapid ADMET screening or fil-

tering based on these specific prediction models.

�e performances of the models are shown in Tables 3, 

4 and 5. From the results we can see: (1) Most of the 

models obtained a good performance; LogS,  LogD7.4 and 

Caco-2 got a  Q2 > 0.84; 86% of the classification models 

got accuracy > 0.7; 50% of the classification models got 

accuracy > 0.8. All the models had a better or compara-

ble performance compared with previous works in peer-

reviewed publications, which was discussed in detail in 

the Additional file 1. (2) �ere were still few models got a 

low  Q2 or accuracy like PPB, VD, F20 and F30, while these 

models have been also improved by using larger data-

set or good modeling strategies compared with previous 

published ones. (3) For obvious unbalanced datasets: F20, 

F30, CYP2C9-Substrate and CYP2D6-Substrate, their 

best performance models were not the same with those 

in Table 5. From the results in Additional file 1 we found 

that the SE was about twice as much as SP, which led to 

an ineffective classifier. �is phenomenon was caused 

by the unbalanced datasets. After it was processed with 

the strategies mentioned above, the SE and SP became 

very close. To F20, the SE/SP of the best model was opti-

mized to 0.731/0.647 (RF + MACCS) from 0.907/0.450 

(SVM + MACCS). �e F30, CYP2C9-Substrate and 

CYP2D6-Substrate were also improved by this way. From 

the results of Cohen’s kappa coefficient, we can see that 

after the processing using our strategies, the consistency 

is quite acceptable. 4) RF method showed a best ability 

to build regression models of datasets in Tables 3 and 4; 

SVM and RF methods combined with ECFP4 performed 

best in most cases in datasets of Table 5.

Systematic ADMET evaluation

For a specific compound, this module provides a con-

venient tool for systematic ADMET evaluation by pre-

dicting all-sided pharmacokinetic properties and thus 

users will have an overall understanding of ADMET 

properties of this compound. By inputting a molecule, 

“Predicted values”, “Probability”, “Suggestion”, “Meaning 

& Preference” and “Reference” will be shown according 

to different endpoints. For regression models the “Pre-

dicted values” is shown as numeric values with com-

monly used units. For classification models the number 

of “+” or “−” were used to represent the “Predicted val-

ues” according to the “Probability”. �is will give a more 

clear and intuitive representation instead of a numeric 

character. For each endpoint, the reasonable recom-

mendation (“Suggestion”) for ADMET is also provided. 

According to these given suggestion, users can extract 

some rational compounds with multiple reasonable 

profiles and further optimize their chemical structures 

in a purposeful way to make them more potential to be 

Table 3 The best regression models for some ADMET related properties (Part 1)

Property Method mtry R2 Q2 RT
2 RMSEF RMSECV RMSET

LogS RF 10 0.980 0.860 0.979 0.095 0.698 0.712

LogD7.4 RF 14 0.983 0.877 0.874 0.228 0.614 0.605

Caco-2 RF 14 0.973 0.845 0.824 0.121 0.289 0.290

PPB RF 8 0.954 0.691 0.682 7.124 18.443 18.044

VD RF 10 0.950 0.634 0.556 0.281 0.762 0.948

Table 4 The best regression models for  some ADMET 

related properties (Part 2)

Property Method Features mtry Twofold rate 
(CV/test)

Threefold 
rate (CV/
test)

CL RF 2D 10 0.760/0.816 0.877/0.897

T1/2 RF 2D 12 0.762/0.699 0.897/0.824

LD50 RF 2D 5 0.986/0.987 0.998/0.997
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drugs. Besides, the “Meaning & Preference” summa-

rizes the key points of knowledge-based rules for each 

endpoint and category standards from the “Reference”. 

�is strongly assists researchers to evaluate ADMET of 

the specific compound in a systematic way.

Database searching

Based on the comprehensive ADMET database, the data-

base searching and similarity searching were provided 

for users. With an input of molecular structures or phar-

macokinetic properties, the matched compounds in the 

database can be listed in the result table. For the basic 

searching, two approaches are provided: accurate search-

ing by SMILES, CAS registry number or IUPAC name; 

range searching via the range of molecular weight, AlogP, 

hydrogen bond acceptor or hydrogen bond donor. For 

similarity searching, different structural similarity crite-

rions can be chosen to search similar compounds to the 

input structure. Here, we provide five kinds of finger-

prints to represent molecular information and two kinds 

of similarity metrics for similarity search. According to 

these results, users can not only evaluate ADMET prop-

erties for a new compound but also obtain some useful 

hints about its structure optimization.

Features

Currently, there have been several tools that contribute 

to ADMET analysis in different ways. However, ADMET-

lab has some unique and good features: (1) Providing a 

largest database containing direct ADMET data val-

ues. �e database collected 288,967 entries from dif-

ferent data sources, each of which not only records the 

“ADMET values”, “Class”, “Subclass” and “Structure” but 

also 18 annotations like “IUPACName”, “Description” 

and “Reference”. (2) Comparative large datasets of most 

properties. For modeling of each property, the datasets 

was manually collected and integrated from reliable peer-

reviewed publications and databases as many as possible. 

�is guarantees a large and structurally diverse dataset 

and the broader application domain than other ones. (3) 

Better and robust SAR/QSAR models. For each endpoint, 

we employed different algorithms combined with differ-

ent representations and obtained comparable or better 

models than other tools which have been discussed in the 

Additional file  1. (4) Providing systematic analysis and 

comparison. It should be noted that not just one prop-

erty affects the behavior of drugs in body. Usually we are 

looking for molecules that possess relatively good per-

formance through every stage of ADME/T. ADMETlab 

Table 5 The best classi�cation models for some ADME/T related properties

Property Method Features Fivefold cross validation External validation dataset

Sensitivity Speci�city Accuracy AUC Sensitivity Speci�city Accuracy AUC 

HIA RF MACCS 0.820 0.743 0.782 0.846 0.801 0.743 0.773 0.831

F (20%) RF MACCS 0.731 0.647 0.689 0.759 0.680 0.663 0.671 0.746

F (30%) RF ECFP6 0.743 0.605 0.669 0.715 0.751 0.601 0.667 0.718

BBB SVM ECFP2 0.962 0.813 0.926 0.948 0.993 0.854 0.962 0.975

Pgp-inhibitor SVM ECFP4 0.887 0.789 0.848 0.908 0.863 0.802 0.838 0.913

Pgp-substrate SVM ECFP4 0.839 0.807 0.824 0.899 0.826 0.854 0.840 0.905

CYP1A2-inhibitor SVM ECFP4 0.833 0.864 0.849 0.928 0.853 0.880 0.867 0.939

CYP1A2-substrate RF ECFP4 0.768 0.636 0.702 0.801 0.768 0.637 0.702 0.802

CYP3A4-inhibitor SVM ECFP4 0.759 0.858 0.817 0.901 0.788 0.860 0.829 0.909

CYP3A4-substrate RF ECFP4 0.798 0.716 0.757 0.835 0.819 0.679 0.749 0.835

CYP2C19-inhibitor SVM ECFP2 0.826 0.819 0.822 0.893 0.812 0.825 0.819 0.899

CYP2C19-substrate RF ECFP2 0.735 0.744 0.740 0.816 0.871 0.667 0.769 0.853

CYP2C9-inhibitor SVM ECFP4 0.719 0.898 0.837 0.900 0.730 0.882 0.830 0.894

CYP2C9-substrate RF ECFP4 0.746 0.709 0.728 0.819 0.746 0.709 0.734 0.824

CYP2D6-inhibitor RF ECFP4 0.770 0.811 0.793 0.868 0.771 0.812 0.795 0.882

CYP2D6-substrate RF ECFP4 0.765 0.73 0.748 0.823 0.792 0.73 0.76 0.833

hERG RF 2D 0.908 0.700 0.844 0.879 0.888 0.762 0.848 0.873

H-HT RF 2D 0.780 0.520 0.689 0.710 0.785 0.487 0.681 0.683

Ames RF MACCS 0.800 0.841 0.820 0.890 0.848 0.816 0.834 0.897

SkinSen RF MACCS 0.685 0.727 0.706 0.760 0.715 0.727 0.731 0.774

DILI RF MACCS 0.866 0.813 0.840 0.904 0.830 0.857 0.843 0.910

FDAMDD RF ECFP4 0.848 0.812 0.832 0.904 0.853 0.782 0.821 0.892
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allows users to evaluate most aspects of ADME/T process 

of one specific molecule, which gives users a full impres-

sion and leads to constructive suggestions of molecular 

optimization. (4) Supporting diverse similarity searching 

approaches. (5) Supporting batch computation. Calculat-

ing the properties for a single molecule is of little use for 

a chem- or bio-informatician who is dealing with ample 

data especially in virtual screening. ADMETlab supports 

the batch computation by uploading files. (6) Providing a 

convenient user-friendly interface. �e rich prompts and 

robust verification systems in ADMETlab ensure a good 

user experience.

In order to give a more clear comparison we have listed 

all related web tools as possible as we know in Table  6. 

In the table we described their advantages/shortcomings 

and compared them with ADMETlab: (1) �e “Similar-

ity searching”, “Druglikeness model” and “Suggestion” 

functionalities are unique features of ADMETlab. (2) It 

seems that some tools are similar with ADMElab. �ere 

is no doubt that all of them contribute to ADMET prop-

erties prediction; however, they are quite different from 

ADMETlab both in methods and functionalities. Take 

admetSAR for example, the admetSAR built 22 classifica-

tion models and 5 regression models with SVM methods, 

Table 6 Web tools related with ADMET prediction

*The “B, A, D, M, E, T” refers the contents in the “Documentation” section of our website. A tool that marked “A” means it covers some endpoints of class “A”, not all 

endpoints of class “A”

Tools Availability Batch 
computation

Endpoints Database Druglikeness 
rules

Druglikeness 
model

Systematic 
evaluation

Suggestions

ADMETlab Free Yes Number: 31
Contents: B, A, 

D, M, E, T*

Yes
(288,967 entries; 

5 similarity 
searching 
strategies)

Yes
(5 rules)

Yes Yes Yes

lazar [41] Free No Number: 3
Contents: T: 

Acute toxicity; 
BBB; Carcino-
genicity

No No No No No

admetSAR [42] Free No Number: 27
Contents: B, A, 

D, M, E, T

Yes
(210,000 

entries)

No No Yes No

PreADMET [43] Free or com-
mercial

No Number: 19
Contents: B, A, 

D, M, T

No Yes No No No

FAF-Drugs4 [44] Free Yes Mainly filtering 
compounds 
by their 
descriptors 
and basic 
properties

No Yes No No No

pkCSM [12] Free Yes Number: 30
Contents: B, A, 

D, M, E, T

No No No Yes No

SwissADME [45] Free Yes Number: 19
Contents: B, A, 

D, M

No Yes No Yes No

VCCLAB [46] Free Yes Number: 14
Contents: B (Dif-

ferent LogP, 
LogS and pKa 
from different

theories)

No No No No No

Molinspiration 
[47]

Free No 5 bioactivities, 
miLogP and 
8 molecular 
descriptors

No No No No No

vNN-ADMET 
[48]

Registration 
required

No Number: 14
Contents: A, D, 

M, T

No No No No No
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while ADMETlab systematically compared different 

methods (SVM, RF, NB, RP, PLS, DT) to get a proper 

method for each endpoint. In admetSAR, all compounds 

were represented using MACCS keys while ADMETlab 

systematically compared different descriptors and fin-

gerprints (11 descriptor groups and 5 kinds of finger-

prints) to get a more proper representation. It should 

be noted that the regression models based on SVM and 

MACCS keys are usually not very reliable in predicting 

continuous endpoints such as logS, logD, Caco-2 etc. 

Besides, ADMET combined larger datasets for most 

of the endpoints which represented broader chemical 

space. Moreover, ADMETlab provided batch computa-

tion which enables to screen libraries for qualified mol-

ecules. Another example is SwissADME, and it calculates 

19 endpoints; however, it doesn’t calculate five kinds of 

CYP450 substrates, bioavailability, Clearance, T1/2, VD, 

Pgp-inhibitor, Caco-2, HIA, PPB and any toxicity end-

points. So, ADMETlab is very different from these tools 

and can be used as a new systematic ADMET evaluation 

platform owing to these unique features.

Conclusion

ADMETlab provides a user-friendly, freely available web 

platform for systematic ADMET evaluation of chemicals 

based on a comprehensively collected database consist-

ing of 288,967 entries. In this study, a series of well-per-

formed prediction models were constructed based on 

different representation patterns and different modeling 

methods. With the assessment results, users can give 

an overall understanding of ADMET space, realize vir-

tual screening or filtering and even obtain some hints 

about structure optimization. Additionally, some high-

quality ADMET-related datasets are provided as bench-

mark datasets to improve the ADMET prediction. In the 

future, we will continue to improve the server as follows: 

(1) More practical models for new ADMET properties 

should be added, such as cytotoxicity and renal toxic-

ity models. (2) Some hard-to-predict models should be 

further optimized, such as CL and T1/2 models. (3) �e 

database should be updated regularly. (4) Integrated anal-

ysis based on ADMET profiles should be added to per-

form ADMET space analysis. In conclusion, we believe 

that this web platform will hopefully facilitate the drug 

discovery process by enabling the early evaluation, rapid 

ADMET virtual screening or filtering and prioritization 

of chemical structures.

Additional �le

Additional �le 1. The detailed modeling process and results of the 

ADMET properties.
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