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Abstract
As with all drugs, the route, form, and/or dose of a substance administered or applied can play a defining role in its overall 
pharmacology and use as a therapeutic. This review will focus on these factors as they relate to the psychedelic N,N-dimeth-
yltryptamine (DMT). It will examine the positive and negative aspects of different formulations and routes of administration 
of DMT and the observed effects from such administrations in the form of ayahuasca teas; oral “pharmahuasca”; injections 
by intravenous (IV) and intramuscular (IM) routes; inhalation, insufflation; and other routes; and high-dose, low-dose, and 
“micro-dose” effects. The review will consider possible oral route of administration alternatives that would not require con-
comitant use of a monoamine oxidase inhibitor. The review will then address the current research findings for DMT from 
in vivo and in vitro studies as well as the possibility that these findings may be revealing the role of endogenous DMT in 
normal brain function.
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Introduction

The administration of psychedelics as therapeutics has begun 
to show great promise for the treatment of depression, post-
traumatic stress disorders, substance abuse and addiction, 
as well as many other often intractable maladies (Tupper 
et al., 2015; Carhart-Harris and Goodwin, 2017; Andersen 
et al., 2021). Both in vitro and in vivo studies are also show-
ing that the psychedelics possess significant neuroplasto-
genic, effects, such as reducing infarct size and enhancing 
functional recovery following brain ischemia (Nardai et al., 
2020). It is thought that their effects on neural plasticity 
may explain what appears to be the observed long-lasting 
behavioral effects related to mood and anxiety in humans.

As with all drugs, the route, form, and/or dose of a sub-
stance administered or applied can play a defining role in its 
overall pharmacology and use as a therapeutic. This review 
will focus on these factors as they relate to the psychedelic 
N,N-dimethyltryptamine (DMT, 1). It will examine the 
positive and negative aspects of different formulations and 
routes of administration of DMT and the observed effects 
from such administrations in the form of teas (ayahuasca, a 
combination of DMT and harmala alkaloids), oral “phar-
mahuasca” (DMT and a monoamine oxidase inhibitor or 
MAOI), and administration of DMT alone by intravenous 
(IV) and intramuscular (IM) injection routes, inhalation, 
insufflation, and other routes, as well as high-dose, low-
dose, and “micro-dose” effects. The review will consider 
possible oral-route-of-administration alternatives that would 
not require concomitant use of a monoamine oxidase inhibi-
tor. The review will then address the current research find-
ings for the pharmacology of DMT from in vivo and in vitro 
studies as well as the possibility that these findings may 
be revealing the role of endogenous DMT in normal brain 
function (Fig. 1).
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Administration of DMT

Ayahuasca as a source of DMT in psychedelic 
therapeutics

There has already been a significant and historical record for 
the medicinal use of DMT occurring long before the advent 
of psychedelic therapy. Like many foundational therapeu-
tics, N,N-dimethyltryptamine (DMT) literally has botanical 
roots and an archaic cultural history of use for medicine and 
religious ritual, much as does psilocybin. As a psychoactive 
ethnobotanical medicine utilized by many of the indigenous 
tribes of the Basin of South America, the DMT-containing 
tisanes or teas known collectively as yage, caapi, hoasca, or 
ayahuasca have been in use for hundreds of years in these 
cultures (Samorini 2019). Ayahuasca, a Quechua tribal term 
meaning ‘‘vine of the souls,’’ is used in the context of sha-
manistic ritual, as historically practiced among aboriginal 
peoples for curing, divination, diagnosis of the imbalances 
of the body and soul, and as a ready pharmacological path 
to the mythological supernatural.

The major active component, DMT, comes from the 
leaves of the Psychotria species, mainly P. viridis. Since 
the major metabolic route for DMT in humans involves 

conversion to indol-3-acetic acid by MAO (Barker et al., 
1981), teas made from Psychotria species alone are not 
orally active, but when combined with the harmala MAOIs 
(harmine, harmaline) of Banisteriopsis caapi, it becomes a 
potent hallucinogenic beverage (Schultes, 1957; McKenna 
et al. 1984, 1998; Andritzky, 1989).

The effects of consuming ayahuasca have been vari-
ously summarized as “… inducing changes in the percep-
tual, affective, cognitive, and somatic spheres, with a com-
bination of stimulatory and visual psychoactive effects of 
longer duration and milder intensity than those previously 
reported for intravenously administered DMT.” (Riba et al. 
2001; Riba 2003). Pharmacological studies of acute aya-
huasca administration to healthy volunteers and mental 
health assessments of long-term ayahuasca consumers 
suggest that this ethnobotanical medicine is relatively safe 
and effective (Callaway et al. 1999; dos Santos, et al. 2011, 
2016a, 2016b, 2017). However, questions remain about the 
ability to provide a consistent “batch” of ayahuasca for 
further study and therapeutic use on a larger scale.

One of several difficulties that has arisen for the use of 
ayahuasca as a clinical therapeutic involves its uniformity 
and stability. A recent study of the main ayahuasca alka-
loids (DMT, harmine, tetrahydroharmine, and harmaline) 

Fig. 1  Structures of compounds 
discussed. DMT, N,N-dimeth-
yltryptamine; d, deuterium; 5 h, 
5-hydroxy; 5 MeO, 5-methoxy

DMT:   R1 = R2 = H2; R3 = H, 1

5HDMT:   R1 =  R2 = H2; R3 = OH, 2

5MeODMT:  R1 =  R2 = H2; R3 = OCH3,  3

d4DMT: R1 = R2 = d2; R3 = H, 4

d45MeODMT:   R1 =  R2 = d2; R3 = OCH3, 5
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in brewed ayahuasca stored under three different conditions 
(1 year stored in a refrigerator either in plastic or glass con-
tainers, 7 days at 37 °C and after three freeze–thaw cycles) 
found that there was no significant degradation of DMT 
concentration over time in all tested environments. How-
ever, the harmala alkaloids all showed significant degrada-
tion under long-term storage and at elevated temperature as 
well as possible alkaloid inter-conversion. It was concluded 
by the authors that ayahuasca tea component quantification 
before administration under controlled conditions would be 
mandatory (Silveira et al. 2020). Similarly, batch-to-batch 
ayahuasca preparation variation as well as alterations in aya-
huasca alkaloid content as a function of season, location, 
soil, and climate conditions, and other variables related to 
plant growth, have been consistently observed, leading to 
wide-ranging dosing levels, and making adjustment of aya-
huasca by dilution or addition of components necessary to 
obtain a relatively consistent material for use. The use of 
large batch, freeze-dried material administered in a gelatin 
capsule can overcome some of these issues (Riba and Bar-
banoj 2005), but not all. Therapeutic use of ayahuasca sug-
gests that it can have prolonged antidepressant, anxiolytic, 
and anti-addictive effects (dos Santos et al. 2016a, 2016b), 
and is also quite safe (dos Santos et al. 2016a, 2016b; Osório 
et al. 2015; Frecska et al., 2016).

To understand the potential of ayahuasca to contribute 
to modern medicine and its use in psychedelic therapeu-
tics, it must be more thoroughly examined in the labora-
tory and in controlled clinical trials and medicinal studies 
(Kuypers et al., 2016; Palhano-Fontes et al., 2019). None-
theless, an approach to its therapeutic use has been outlined 
and described (McKenna 2004). While ayahuasca obviously 
holds promise in many social, cultural, and therapeutic para-
digms, including treatment of addiction, anxiety, and depres-
sion in psychiatry and many other possible applications, it 
is, nonetheless, a complex mixture of perhaps thousands of 
compounds. A further complication in its use in therapeu-
tics and research is that the potent MAOI activity of the 
harmala alkaloids not only protects DMT from metabolic 
degradation but also suppresses the metabolism of other 
neurotransmitters and MAO-sensitive compounds in the 
brain and periphery. These compounds also have their own 
unique pharmacology. Thus, it is difficult to know exactly 
which of the compounds or combination of compounds plays 
a role in what observed effect (Ona et al., 2020), making it 
difficult to compare to studies conducted using DMT alone.

2. Administration of DMT with and without a MAOI: 
doses, routes, and effects

Oral administration of DMT alone is rendered neuro-
chemically inactive by MAO during first-pass metabolism. 
Thus, other routes for the administration of DMT have 

been designed to avoid or mitigate this fate. These have 
predominantly required intravenous (IV) or intramuscular 
(IM) administration, inhalation (smoking or sublimation) or 
insufflation (nasal sprays, snuffs), and use of transdermal, 
sublingual, or buccal absorption. Other routes have been 
attempted with little reported success. It is of interest to note 
that intranasal free-base DMT is inactive (0.07–0.28 mg/kg; 
Turner and Merlis 1959) as is DMT administered rectally 
(De Smet 1983).

Szára (1956, 1961) reported that the effects of intramus-
cular DMT (0.7 mg/kg) were like mescaline and LSD (vis-
ual illusions and hallucinations, distortion of body image, 
speech disturbances, mood changes, and euphoria or anxi-
ety). Other studies using either IV or IM administrations 
(Turner and Merlis 1959; Rosenberg et al. 1964; Gillin et al. 
1976; Strassman et al. 1994a, 1994b) have observed similar 
results. The intramuscular effects of DMT (0.2–1 mg/kg; 
Szára 2007) generally had a rapid onset (2–5 min) and lasted 
30–60 min. The IM effects were considered less intense 
than the IV route. As a comparison, the subjective effects 
of DMT from ayahuasca administration (0.6–0.85 mg/kg 
DMT; Riba et al. 2003) usually appear within 60 min, peak 
at 90 min, and can last for approximately 4 h (Cakic et al. 
2010), due, in part, to the MAOI effects of the constituent 
harmala alkaloids. Riba et al. (2015) have reported the com-
parative effects of oral and vaporized DMT. Oral ingestion 
of pure DMT produced no psychotropic effects, as expected. 
Vaporized DMT was found to be a highly psychoactive route 
of administration, however. Doses for vaporized or inhaled 
free-base DMT are typically 40–50 mg, although larger 
doses have been reported (100 mg; Shulgin and Shulgin 
1997). Pallavicini et al. (2021) have reported that vapori-
zation of approximately 40 mg of DMT, administered in a 
natural setting, produced potential electroencephalographic 
markers of mystical-type experiences in 35 volunteers. The 
onset of effects for inhaled DMT is rapid, similar to that of 
IV administration, but lasts less than 30 min (Riba et al. 
2015; Davis et al. 2020). However, smoked, vaporized, or 
insufflated DMT can often be harsh and is not always well-
tolerated. Thus, these routes may not be the most consistent 
and suitable choices for therapy.

Strassman et  al. (1994a, 1994b) have reported 
dose–response data for intravenously administered DMT 
fumarate in a group of experienced hallucinogen users (n = 11). 
DMT was administered IV at doses of 0.05, 0.1, 0.2, and 
0.4 mg/kg and showed peak DMT blood levels and subjec-
tive effects within 2 min after drug administration, becoming 
negligible at 30 min. IV DMT was also shown to elevate blood 
pressure, heart rate, pupil diameter, and rectal temperature, 
in addition to elevating blood concentrations of β-endorphin, 
corticotropin, and cortisol in a dose-dependent manner, with 
prolactin and growth hormone levels rising equally, regardless 
of dose. The lowest dose that produced statistically significant 
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effects relative to placebo and that was also hallucinogenic 
was 0.2 mg/kg (Strassman 1991, 1996, 2001; Strassman et al. 
1996). For exogenously administered DMT, we know plasma 
concentrations between 12 and 90 ng/ml (Callaway et al. 1999; 
Yritia et al. 2002; Riba et al. 2003) must be attained to produce 
hallucinogenic effects. However, the concentrations attained in 
whole brain or in specific brain cells or areas that are required 
to produce hallucinogenic effects from such administrations in 
humans remains unknown.

The use of a simple mixture of DMT and harmaline and/
or harmine or other MAOIs, a so-called “pharmahuasca” 
(Ott 1999; Brierley and Davidson 2012), has been proposed 
as a “cleaner,” orally administered substitute for ayahuasca 
itself or of greater use in conducting ayahuasca research as a 
pharmaceutical version of the entheogenic brew. For admin-
istration of pharmahuasca, 50 mg DMT:100 mg harmaline 
is usually the recommended dosage. However, combinations 
of 50 mg harmaline:50 mg harmine and 50 mg DMT have 
been tested with success. The harmalas and DMT are typi-
cally put into separate gelatin capsules, with the harmaline/
harmine being taken first and the DMT being taken 15 to 
20 min later. The use of moclobemide, a reversible inhibitor 
of MAO-A, has also been reported in DMT “pharmahuasca” 
studies (Kaasik et al. 2020; Ruffell et al. 2020).

The further study of “pharmahuasca,” as well as more 
research on low-dose ayahuasca, may prove to be reward-
ing for their use as psychedelic therapeutics. However, as 
with ayahuasca, the concomitant use of an MAOI remains 
a drawback.

3. Micro‑dosing or low‑dosing of non‑hallucinogenic 
amounts of DMT

More recently, data and anecdotal reports concerning the 
physiological effects of administration of psychedelics in 
very low doses, or micro-dosing, have gained significant 
public attention. Micro-dosing of psychedelics refers to the 
ingestion of low to very low doses (5 and 10% of a standard 
hallucinogenic dose) on an established schedule (every other 
day) with the intention of avoiding hallucinogenic or short-
term debilitating effects (Fadiman and Korb, 2019; Kuypers 
et al. 2019; Kuypers, 2020; Liechti 2019, Bershad et al. 2019 
Cameron et al. 2020). However, regardless of the identity of 
the psychedelic, there are no scientifically established dose 
ranges that have been accepted for micro-doses of these sub-
stances (Kuypers et al. 2019; Passie 2019; Lea et al. 2020). 
In its popular practice, micro-dosing is said to enhance pro-
ductivity, focus, and creative problem solving (Dean 2017; 
Glatter 2015; Cameron et al. 2020) and as a self-regulated 
treatment for depression, anxiety, and other perceived mental 
disorders (Waldman 2017; Hutten et al. 2019). Recent ran-
domized controlled trials, mainly with LSD or psilocybin, 
have reported changes in time perception (LSD; Yanakieva 

et al. 2019), dose-related increases in ratings of “vigor” (psilo-
cybin; Bershad et al. 2019), and improved performance on 
problem-solving tasks (psilocybin mushrooms; Prochazkova 
et al. 2018). However, the number of such studies is currently 
too small to draw any scientifically significant conclusions.

Similarly, there are but a handful of such DMT micro- 
or low-dosing studies, conducted in species other than 
humans (predominantly the rat), published in the scientific 
literature. However, the translational aspect of a low dose 
in rats and a micro-dose in a human is not yet established 
and no scientifically sound conclusions can yet be drawn. 
Nonetheless, Ly et al. (2018) observed that a low dose of 
DMT caused changes in the frequency and amplitude of 
spontaneous excitatory postsynaptic currents (EPSCs) in 
the prefrontal cortex (PFC) of rats that lasted long after the 
drug had been cleared from the body. Cameron et al. (2019) 
examined these observations further by subjecting male and 
female Sprague–Dawley (SD) rats to behavioral testing fol-
lowing the chronic, intermittent administration of low doses 
of DMT (approximately for 2 months, every third day, 1 mg/
kg, IP). The behavioral and cellular effects observed were 
distinct from those induced following a single high dose 
of DMT (10 mg/kg IP), producing an antidepressant-like 
phenotype and enhanced fear-extinction-learning without 
impacting working memory or social interaction. At this 
low dose, DMT showed a distinct lack of anxiogenic effects, 
a striking difference between low dose and a single high 
dose of DMT, which is known to produce intense initial 
anxiogenic effects in several animal behavioral tests and in 
humans. A similar phenomenon was observed by Strass-
man et al. (1994b) wherein a single 0.1 mg/kg dose of DMT 
administered IV to humans, which was sub-hallucinogenic, 
produced an apparent anxiolytic effect.

Tested in rats in other behavioral paradigms (foot shock; 
cued fear learning) low-dose DMT showed no difference 
from placebo, whereas a single high dose of DMT signifi-
cantly increased freezing levels immediately following foot 
shocks (Cameron et al. 2019). When the cued memory test 
was repeated, the low-dose DMT-treated animals froze sig-
nificantly less than the vehicle controls (p = 0.03), suggest-
ing that chronic, intermittent, low doses of DMT facilitate 
fear-extinction learning. In the forced swim behavioral test, 
however, both low-dose intermittent DMT and single high-
dose DMT elicited an antidepressant-like effect, consistent 
with anecdotal reports from human use. Chronic, intermit-
tent, low doses of DMT had no effect on working/short-term 
memory or social interaction, seemingly in contradiction to 
the beneficial effects of psychedelic micro-dosing reported 
by humans (Cameron et al. 2019).

A previous study had shown that a single intraperitoneal 
(IP) high dose of DMT (10 mg/kg IP) in rats increases den-
dritic spine density in the prefrontal cortex (Cameron et al. 
2018). However, Cameron et al. (2019) showed no such 
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effect from low-dose intermittent IP administration of DMT 
in male SD rats. Rather, they reported a significant decrease 
in dendritic spine density in females under these conditions 
when compared to placebo controls (p = 0.03). The expres-
sion of several key prefrontal cortex genes (egr1, egr2, arc, 
and fos) associated with neuronal plasticity was also exam-
ined following low-dose intermittent administration, as acute 
doses of psychedelics are known to increase their expression 
(Martin and Nichols 2017). However, low doses of DMT 
did not alter the expression of any of these genes nor did it 
increase the expression of BDNF, which is increased in rat 
cortex following both acute (Vaidya et al., 1997; administra-
tion of DOI: 4-iodo-2,5-dimethoxyphenylisopropylamine) 
and chronic administration (Martin et al. 2014: administra-
tion of LSD) of high doses of psychedelics. An interest-
ing finding was that 5HT2A receptor gene expression was 
unchanged despite chronic exposure of the 5HT2A receptor 
to DMT for nearly 2 months. These data suggest that psy-
chedelic micro- or low dosing with DMT may be effective 
in treating symptoms of mood and anxiety disorders, though 
much further investigation is clearly required. However, they 
also suggest the possibility that two pharmacologies are at 
work: one for high dose and one for low dose. The work 
of Cameron et al. (2018, 2019) is thus informative in this 
regard and, perhaps, a warning for those who choose micro-
dose or low-dose experimentation without first knowing the 
data or before scientifically controlled research and safety 
studies have been conducted.

How do we best administer therapeutic 
or research doses of DMT?

While the use of a pharmahuasca formulation could serve 
to standardize ayahuasca administrations, lower the dose 
needed to obtain desired outcomes, avoid many side effects 
observed from the use of ayahuasca itself, and provide a 
convenient oral route for its use as a therapeutic; it suffers 
from one of the same problems as ayahuasca—the necessary, 
general, system-wide inhibition of MAO, producing a mixed 
pharmacology that will be difficult to scientifically untangle 
even while simplifying some therapeutic applications.

Indeed, there seems to be no ideal or “conveniently 
unobtrusive” route for routine administration of DMT for 
general or common therapeutic use, although this may 
depend on whether an acute or prolonged dosing regimen 
is required. Any administration route using IV or IM routes, 
or inhalation or insufflation will be useful for conducting 
acute exposures where prescribed and rendered tolerable. 
One may assume that formulations for possible dosing by 
sublingual or buccal administrations could be developed 
that overcome their individual issues and difficulties (taste, 

salivary clearance, adsorption rates) while avoiding first-
pass metabolism. New developments in “patch” dermal 
delivery systems as well as drug delivery “pumps” may also 
be applicable for time-release DMT administration. Metered 
dosing of an aerosolized solution of DMT using an inhaler-
type device has also been suggested (Arnold et al. 2021) 
and “vaping” is already a popular, though anecdotal, route 
of use. However, a simple orally administered pill is often 
the most desirable for pharmaceutical use for most therapeu-
tics, especially if repeated dosing and longer term therapy is 
found to be successful. The pill need not be simple, however. 
Newer technology in delayed release, sustained release, and 
complex excipient combinations may also prove to have their 
place for DMT as well as other psychedelic therapies for 
routine low- or high-level dosing.

The need to provide an orally administered DMT that 
resists metabolism, without necessitating an add-on MAOI, 
that still retains potency and efficacy for a desired treatment, 
for which it may eventually be deemed appropriate, can be 
accomplished by slight modifications of the structure of the 
DMT molecule. These modifications mainly involve altering 
the ability of MAO to bind and cleave the DMT molecule 
at the side chain carbon-alpha to the nitrogen, which is the 
mechanism of action of MAO (Vianello et al. 2012) in the 
process of converting ethylamine indolic side chains to the 
corresponding indole acetic acid.

Another approach commonly used in medicinal chemistry 
is to change the dimethyl groups on the side chain nitrogen 
to larger and/or branched alkyl substituents to again limit 
the ability of MAO to bind and metabolize the molecule. A 
combination of both may prove successful as well. Literally 
locking the side chain into a ring, as is seen in lysergic acid 
dimethylamide (LSD), also has its advantages. The compli-
cating factors in these modifications may be that, while they 
inhibit DMT’s metabolism and clearance, such alterations 
may cause them to fail to properly bind, altering the binding 
characteristics at, for example, the 5HT2a receptor, or may 
produce an overall differing pharmacology or toxicology. 
They could also prove to be more effective.

However, two studies have shown that alteration of the 
alpha and beta hydrogens on the side chain of DMT and its 
structural relative, 5MeODMT (3) may protect the molecule 
from MAO metabolism, elevate the brain and circulating 
levels of an administered dose, and prolong the effects of 
these molecules without altering the measured parameters 
for DMT pharmacology. In administrations of DMT and 
α,α,β,β-d4-DMT (4) at doses of 2.5, 5.0, and 10.0 mg/kg to 
rats by a subcutaneous route (SC; Barker et al. 1982), result-
ing analyses (GC/MS) of brain levels of the parent com-
pounds showed that d4DMT (4) attained concentrations 2–3 
times greater than DMT itself at the same dose and remained 
at higher levels as a function of time, remaining detecta-
ble in brain at least two times longer. A follow-on study 
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(Beaton et al. 1982) showed that d4DMT (2.5 and 5.0 mg/
kg SC) had a shorter time to onset, a greater level of dis-
ruption in a food reward behavioral paradigm and a greater 
duration of action than an equal dose of proteo-DMT. In a 
similar study, Halberstadt (Halberstadt et al. 2012) exam-
ined 5-methoxy-α,α,β,β-d4-DMT (d45MeODMT, 5) versus 
proteo-5MeODMT and 5MeODMT in combination with the 
MAO inhibitor pargyline in a behavioral paradigm meas-
uring locomotor activity and patterning. Halberstadt et al. 
(2008) had previously observed that 1.0 mg/kg 5MeODMT 
(SC) had biphasic effects on locomotor activity in rats 
pretreated with a behaviorally inactive dose of the MAOI 
pargyline (10 mg/kg). Regardless of dose (1.0 mg/kg SC 
or greater), administration of 5MeODMT alone produced 
only reductions in locomotor activity, a possible sedative or 
anxiolytic effect. Although low doses of d45MeODMT (5; 
0.3 and 1.0 mg/kg, SC) produced only hypoactivity as well, 
a dose of 3.0 mg/kg caused a biphasic locomotor profile 
like that produced by the combination of 5MeODMT and 
pargyline, a potent MAO-A inhibitor. However, a further 
contribution of the study was that receptor binding experi-
ments showed that deuterium substitution had little meas-
urable effect on the binding affinity of d45MeODMT for a 
wide variety of neurotransmitter binding sites.

Taken together, these two studies take advantage of 
the deuterium kinetic isotope effect (Barker et al. 1982; 
Halberstadt et al. 2008) to render DMT and 5-MeODMT 
partially resistant to metabolism by MAO, increase their 
potency and duration of action while maintaining binding 
affinity and behavioral effects, creating, essentially, the 
same pharmacology as seen with the co-administration of 
these compounds with a MAOI, but without the unwanted 
additional effects of such a drug on other MAO-sensitive 
bio-compounds. Thus, the use of deuterium essentially 
creates a single compound ayahuasca or “pharmahuasca” 
and could be expected to perform in the same manner, as 
this “deuterhuasca.” One might also expect that the deu-
terated analogs of these drugs may also be orally active. 
However, the oral bioavailability of these compounds has, 
unfortunately, not yet been examined/published, although 
there should be every expectation that this will be the case. 
Nonetheless, “deuterhuasca” could still be administered 
by any of the other routes as well. Thus, a dxDMT thera-
peutic could possibly be derived that can be administered 
orally, or by IM, IV or other routes, require a lower dose 
for effect, provide a longer duration of action, and avoid 
the unwanted effects on other systems by not requiring the 
co-administration of an MAOI. It is also anticipated that 
d4DMT is resistant to not only MAO-A but also MAO-
B. Other deuterated analogs of d4DMT would also be 
expected to exhibit some of these same characteristics. 
Research has shown that the beta position deuteration has 
little to no effect in slowing metabolism by MAO (Boulton 

and Yu, 1981), suggesting that an alpha, alpha-dideutero 
analog could be just as effective. Several deuterated spe-
cies of DMT have been synthesized and have been sug-
gested for use as biochemical probes for understanding 
the role different positions play in transport, metabolism, 
binding, and clearance (Morris and Chiao 1993). In this 
regard, one would also expect that alpha deuteration of 
other psychedelic DMT-related therapeutics, such as psilo-
cybin, would also make the drug more orally bioavailable, 
potent, and longer lasting without otherwise altering its 
pharmacology. In fact, Rands et al. (2020) have submitted 
a patent application that follows this scenario. The inven-
tion relates to compositions comprising DMT, deuterated 
DMT, and/or partially deuterated DMT or a combination 
of DMT and 2% or more by weight of one or more deuter-
ated N,N- dimethyltryptamine compounds selected from 
α,α-dideutero-DMT and α,α,β,β-tetradeutero-DMT. Addi-
tional and alternative compositions include a combina-
tion of DMT and 2% or more by weight of one or more 
partially deuterated DMT compound selected from α,β,β-
trideutero-DMT, α,β-dideutero-DMT, and α-deutero-
DMT. Methods of synthesizing compositions and methods 
of use of described compositions in treating psychiatric 
or psychocognitive disorders, such as major depressive 
disorder, are also provided (Rands et al. 2020).

Another approach to resisting the metabolism of DMT 
by MAO is to alter the alpha hydrogen(s) by adding a 
methyl or other small functional group(s), such as fluorine. 
As noted, selected alterations of the alkyl groups added 
to the side chain terminal nitrogen, such as diethyl and 
diisopropyl, lead to compounds with 5HT2a and related 
pharmacological activity, as does the addition of select 
functional groups to the aromatic ring of the indole mol-
ecule. The number of compounds in this class are legion 
(Shulgin and Shulgin 1997) and medicinal chemistry labs 
and pharmaceutical houses have been making them for 
years, examining structure–activity relationships (SARs) 
mainly related to their hallucinogenic potency. The selec-
tion of the most appropriate structures for use as a thera-
peutic can be readily made from the available literature 
with each requiring, as does DMT, much further research 
into safety, efficacy, and appropriateness of use for particu-
lar therapeutic outcomes.

It has been suggested that a given compound’s ability 
to produce hallucinations may prove unnecessary (Olson, 
2021) to produce enduring therapeutic effects. There is, 
however, conflicting evidence and opinion in this regard 
(Yaden and Griffiths, 2021). In many cases, the choice of 
compound structure, route of administration, and dose will 
come down to these needed results and the desired applica-
tion, of which most have yet to be defined. For example, 
Dunlap et al. (2020) have demonstrated that DMT can be 
engineered to lack hallucinogenic potential while retaining 
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the ability to promote neural plasticity, identifying key 
features of the “psychoplastogenic pharmacophore” to 
develop psychoplastogens that are easier to make, have 
improved physicochemical properties (stability, metabolic 
profiles), and show a reduced or absent hallucinogenic 
potential compared to DMT. This would most likely also 
be the case for other psychedelics as well. Given the new 
discoveries regarding psychoplastogenic properties of the 
psychedelics and the possibility to attain therapeutic effect 
without hallucinogenesis, several side-lined chemical ana-
logues of the psychedelics, which showed no hallucino-
genic activity, may have newfound success in the medici-
nal laboratory as psycho- or neuro-plastogens. Would this 
not be one of the many possible futures and successes of 
psychedelic therapeutics?

The in vivo and in vitro effects of exogenous 
DMT

Regardless of route of administration, binding of DMT 
and related psychedelics to the 5-HT2A receptor is 
thought to be involved in production of its more dramatic 
and well-studied subjective hallucinogenic effects. How-
ever, there are other non-hallucinogenic substances that 
exhibit the same binding characteristics. Indeed, 5-HT2C 
and 5-HT1A receptors may also play a role (see reviews 
by Nichols 2004, 2016; Halberstadt 2015; Carbonaro 
and Gatch 2016) as well as other known and, perhaps, 
unknown receptors or compounds yet to be identified in 
what may be a far more complex system than we know. 
How psychedelic compounds modulate the 5-HT receptor 
family is not well understood.

We also know from in vitro and in vivo studies that 
DMT interacts with not just serotonin receptors but other 
receptors as well (Cumming et al. 2021), such as iono-
tropic and metabotropic glutamate receptors, dopamine, 
acetylcholine, trace amine-associated receptors (TAAR) 
(Carbonaro and Gatch, 2016), opioid receptors (Ruffing 
et al. 1979; Ruffing and Domino 1981, 1983; Nichols, 
2004, 2016; Carbonaro and Gatch 2016), and neuroen-
docrine system functions (Schindler et al., 2018), and is 
the only known endogenous ligand agonist of sigma-1 
receptors (Fontanilla et al., 2009; Su et al. 2009; Car-
bonaro and Gatch 2016). Indeed, Mavlyutov et al. (2012) 
have reported the presence of the sigma-1 receptor in 
c-terminals of motoneurons and its colocalization with 
the N,N-dimethyltryptamine forming enzyme, indole-N-
methyl transferase (INMT). Setting aside for the moment 
our reasonable historical fascination with the psychedelic 
state, research into the overall non-hallucinogenic phar-
macology of DMT, especially regarding sigma-1 recep-
tors, has yielded fascinating results and what appear to 

be real potential contributions to the field of therapeutics 
in general.

Sigma-1 receptors are inter-organelle signaling mol-
ecules which have been implicated in synaptic plastic-
ity primarily by enhancing the function of N-methyl-D-
aspartate receptors (NMDAR) (Pabba and Sibille 2015) 
as well as many other cellular functions. Sigma-1 recep-
tor agonists are potentially neuroprotective (Frecska et al. 
2013; Nguyen et al. 2017; Ryskamp et al., 2019; Zhao 
et al. 2019; Szabo et al. 2021) and DMT has been shown to 
reduce brain inflammation via the sigma-1 receptor (Szabo 
et al. 2014, 2016; Szabo 2015; Szabo and Frecska 2016). 
DMT can also induce neuronal plasticity, a longer dura-
tion brain recuperative and repair process (Tsai et al. 2009; 
Ruscher et al. 2011; Kourrich et al. 2012; Ly et al. 2018; 
Olson 2018, 2021). DMT has been shown to reduce infarct 
size and improve functional recovery following transient 
focal brain ischemia in rats (Nardai et al. 2020), suggesting 
possible efficacy in post-ischemia and in stroke treatment 
or prevention and to prevent renal ischemia–reperfusion 
injury in a rat model as well (Peto et al., 2018; Nemes et al. 
2019). Sigma-1 receptors can also regulate cell survival 
and proliferation (Collina et al. 2013; Frecska et al. 2013). 
Regulation of intracellular calcium overload, a pro-apop-
totic gene expression occurring via sigma-1 receptors and 
NMDAR, can result in neuroprotection during and after 
ischemia and acidosis (Pabba and Sibille 2015). Further 
benefit could occur through sigma-1 receptor–dependent 
plasticity changes (Tsai et al. 2009; Ruscher et al. 2011; 
Kourrich et al. 2012; Frecska et al. 2013). It has also been 
shown that administered DMT’s ability to effect early gene 
stimulation through second messenger systems affects the 
rate of transcription, such that DMT activates the tran-
scription factors c-fos (Frankel and Cunningham 2002), 
egr-1, and egr-2, all associated with synaptic plasticity 
(O’Donovan et al. 1999; González-Maeso et al., 2007).

DMT may also be involved in fetal brain and/or other 
organ ontogeny. INMT activity in rabbit lung is relatively 
high in the fetus, increasing rapidly after birth and peaking at 
15 days of age. It then declines to mature levels and remains 
constant through life (Lin et al. 1974). These data are quite 
similar to those observed by Beaton and Morris (1984) for 
DMT in rat pups where peak levels were attained in whole 
brain at 17 days and declined over time in developing rat 
pups. The possible linkage of these findings suggests that 
DMT-mediated sigma-1 receptor activity may induce neu-
ronal plasticity changes that are seen in newborns. Selective 
sigma-1 receptor agonists, such as DMT, have also been 
shown to be protective against excitotoxic perinatal brain 
injury (Griesmaier et al. 2012) and ischemic neurodegen-
eration in neonatal striatum (Yang et al. 2010). Expression 
of INMT also seems to be important for pregnancy success 
(Nuno-Ayala et al. 2012). Thus, the use of DMT and other 

1755Psychopharmacology (2022) 239:1749–1763



1 3

psychedelics, with or without modifications, may also prove 
of use in neonatal and pediatric medicine for the treatment 
of brain developmental issues.

Brain-derived neurotrophic factor (BDNF) is associ-
ated with synaptic plasticity and increases in its expression 
have been observed following DMT administration. BDNF 
(O’Donovan et al. 1999; Olson, 2018; Almeida et al. 2019) 
is also involved in cognitive processes such as memory 
(Jones et al. 2001; Bekinschtein et al. 2008, 2014; Notaras 
and Buuse, 2020), attention (DeSteno and Schmauss 2008; 
Shim et al. 2008), and modulation of efficacy and plasticity of 
synapses (Soulé et al. 2006; Lu et al. 2014; Leal et al. 2015). 
Frecska et al. (2013) have further suggested that DMT may 
be protective during cardiac arrest, beneficial during perina-
tal development, immunoregulation, and may aid in reducing 
cancer progression. It has also been proposed (Frecska et al. 
2013) that DMT is part of a biological recuperative-defense 
mechanism serving a universal regulatory role in oxidative 
stress-induced changes at the endoplasmic reticulum–mito-
chondrial interface, all suggesting that understanding DMT 
pharmacology may have vast ramifications and applications 
in medicine and therapeutics. Indeed, such physiological func-
tions could provide needed physiological adaptations in cases 
of general hypoxia and in local anoxia (myocardial infarct or 
stroke). Morales-Garcia et al. (2020) have reported that the 
N,N-dimethyltryptamine in ayahuasca regulates adult neuro-
genesis in vitro and in vivo, implicating a possible pharmaceu-
tical target for treatment of stroke, dementia, Alzheimer’s, and 
other forms of brain cell disease, damage, and injury. There 
will, no doubt, be further findings of significance in this field.

Endogenous DMT and its possible 
relationship to recent research findings 
from in vitro and in vivo studies

Since the proposal that the symptomology for the syndrome 
known as schizophrenia could be ascribed to the formation 
of endogenous hallucinogens related to mescaline, and then 
extended to the possible formation of psychedelic N,N-
dimethyltryptamines (DMTs; Benington et al. 1965), the 
transmethylation hypothesis (Osmond and Smythies 1952) 
has been thoroughly debated and researched. Though its 
basic premise remains unproven, research on this hypoth-
esis did, in part, lead to the discovery of an enzyme that 
methylates tryptamines, an indole-N-methyltransferase 
(INMT). This enzyme biosynthesizes known hallucino-
genic DMTs from tryptamine (TA) or serotonin (5-HT) and 
S-adenosylmethionine (SAM), acting as the methyl donor, 
forming N,N-dimethyltryptamine (DMT, 1), 5-hydroxy-
DMT (bufotenine; 5HDMT, 2), and/or 5-methoxy-DMT 
(5MeODMT, 3). INMT has been detected and character-
ized in numerous tissues in the mammalian periphery 

(Rosengarten and Friedhoff 1976; Barker et  al. 1981; 
Thompson and Weinshilboum 1998; Thompson et al. 1999; 
Carbonaro and Gatch 2016; Barker 2018a; Rodrigues et al., 
2019) and, as of late, in the brain and central nervous system 
tissues of rat (Dean et al. 2019), primate (Cozzi et al. 2011), 
and human species (Dean 2018; Dean et al. 2019).

As part of the early research of the transmethylation 
hypothesis, and following the discovery of DMT in human 
cerebrospinal fluid, Christian et al. (1976) published evi-
dence that DMT possessed all the necessary properties 
to be considered a neurotransmitter in mammalian brain. 
Additional research on DMT since that time has added 
proof to this hypothesis (Christian et al. 1977; Barker et al. 
1981; Berge et al. 1983; Whipple et al. 1983; Barker et al. 
1984; Nagai et al. 2007; Cozzi et al. 2009; Frecska et al. 
2013; Barker et al., 2013; Blough et al. 2014; Carbonaro 
and Gatch 2016; Barker 2018a; Dean, 2018, Dean et al., 
2019; Rodrigues et al., 2019). There have also been some 
70 published studies conducted that reported the detection 
and/or quantitation of DMT in human blood and urine 
(Barker et al. 2012). However, only a handful of studies 
have attempted to detect endogenous DMT in human brain, 
and that in an indirect manner through evaluation of cer-
ebrospinal fluid (Christian et al. 1975; Corbett et al. 1978; 
Smythies et al. 1979). There have been a few attempts 
at detecting and/or quantitating DMT using whole brain 
from rodents (Beaton and Morris 1984; Karkkainen et al. 
2005) with widely differing results (Beaton and Morris 
1984; pooled whole brain (2 g) of 17-day-old rats at an 
average of 17.5 ± 4.18 ng/g and in older rats in the range of 
undetected to 1–2 ng/g or as high as 11.0 ng/g; Karkkainen 
et al. 2005; 10 and 15 pg/g). However, it has long been 
thought that sequestered DMT is lost in the processing of 
the tissues from whole-brain homogenates (Barker, unpub-
lished observations; Karkkainen et al. 2005; Burchett and 
Hicks, 2006) and may explain the differences and difficul-
ties so far observed. Nonetheless, these results have led to 
speculation that DMT is only a “trace” amine in the brain 
(Nichols, 2018a, 2018b). But is that true?

In 2013, Barker et  al. (2013; Barker 2018a, 2018b) 
reported the presence of DMT in pineal gland/cerebral/vis-
ual cortex micro-dialysis perfusates of live, freely moving 
rats but did not provide quantitative results. In a follow-on 
study, however, Dean et al. (2019) reported that normal rat 
brain extracellular micro-dialysis perfusates from the cer-
ebral cortex contain DMT at concentrations ranging from 
0.05–1.8 nM, with an average of 0.56 nM. It was also deter-
mined that removal of the pineal gland (pinealectomy) gave 
concentrations of DMT ranging from 0.25–2.2 nM with an 
average of 1.02 nM. Although appearing higher, due to vari-
ability and small sample size, there was no statistical signifi-
cance between these levels with or without the presence of 
the pineal gland, suggesting DMT was either not formed in 
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the pineal or that there was compensatory total biosynthesis 
producing a higher average level of DMT arising from other 
perfused brain areas (Dean et al., 2019).

DMT was also monitored in rat brain micro-dialysis perfu-
sates from the cerebral cortex several hours prior to and then 
during induction of cardiac arrest. It was observed that DMT 
concentrations following cardiac arrest increased signifi-
cantly over baseline in both brains of the pineal-intact group 
(p = 0.00027) and the pinealectomized group (p = 0.034). 
Under similar conditions, following induction of cardiac 
arrest, a dramatic elevation of other neurotransmitters has 
also been observed (Borjigin et al. 2013; Li et al., 2015) in 
pineal-intact animals. Since several neurotransmitter systems 
are also elevated at the time of death, the precise role of DMT 
in this event is still unclear and the theories behind it, specu-
lative (Strassman 2001; Nichols and Nichols 2020).

To probe the relative abundance of extracellular DMT 
to 5-HT in cortical dialysates from the same rats, Dean 
et al. (2019) quantified brain 5-HT and DMT in the ani-
mals without the pineal gland. Mean extracellular concen-
tration of 5-HT was 2.10 ± 1.67 nM and basal DMT levels 
were 1.02 ± 0.63 nM from the same cortical dialysate sam-
ples (Dean et al. 2019). These findings for DMT are well 
within the concentration range accepted for 5-HT (mean 
of 0.87 nM, range 0.12–3.4 nM), norepinephrine (mean 
1.77 nM, range 0.19–4.4 nM), and dopamine (mean 1.5 nM, 
range 0.07–4.9 nM) (Fitzgerald 2009). This places the “nor-
mal” concentration of DMT in the rat brain at the same range 
as the other canonical neurotransmitters.

A further finding by Dean et al. (2019) was that the enzymes 
necessary for the biosynthesis of DMT from tryptamine, 
formed by aromatic amino acid decarboxylase (AADC) metab-
olism of tryptophan to tryptamine, and indole-N-methyltrans-
ferase (INMT) were co-localized in the brain, in specific brain 
areas, in both rat and human brain tissue slices. INMT mRNA 
expression was defined in human cerebral cortex, choroid 
plexus, and pineal tissues, suggesting that such DMT biosyn-
thesis may similarly occur in the human brain. The punctate 
and robust co-localized levels of INMT and AADC in pin-
eal suggest that DMT is indeed capable of being synthesized 
in this gland and that its removal may induce compensatory 
homeostatic biosynthesis from other brain areas in response, 
such as from the cerebral cortex or choroid plexus.

These data and the previously cited studies regarding 
DMT’s characterization as a neurotransmitter show that the 
biosynthesis and measured levels of DMT in rat brain are 
significant and, as with any transmitter substance, will be 
further concentrated into vesicles and released at the synap-
tic cleft, along with possible mechanisms for its reuptake, 
which would permit elevated concentrations of DMT to exist 
in specific cells/brain areas. These concentrations may be 
sufficient, under altered physiological conditions, to elicit its 
known pharmacological actions as a psychedelic but could 

certainly be present at concentrations necessary to carry out 
what may be its homeostatic effects as a putative neurotrans-
mitter, part of its apparent non-hallucinogenic pharmacol-
ogy. As shown by Dean et al. (2019), it may also be the 
case that brain DMT biosynthesis is inducible in response to 
specific physiological effects, causing an increase in concen-
tration in specific cell types and areas in response. Finding 
rat brain concentrations of DMT comparable to those of the 
canonical neurotransmitters and the significant increase of 
DMT concentrations in rat brain following induced cardiac 
arrest (Dean et al. 2019), all provide additional evidence 
for DMT’s possible role and function as a neuroregula-
tory/neurotransmitter substance, as do many recent studies 
that have examined DMT’s non-hallucinogenic, non-5-HT 
(5-hydroxytryptamine) receptor pharmacology.

The formation of an endogenous compound with psy-
chedelic potential such as DMT in brain tissues and its sub-
sequent characterization as a neurotransmitter have always 
been of great interest, if not controversy, especially given 
the fact that the mechanisms of action for administered 
psychedelics, which are best known for their production of 
profound hallucinatory experiences, are not fully understood 
(Swanson 2018). In this regard, there is even less known 
about the possible roles and functions of endogenous DMT 
in brain tissues. Certainly, its primary homeostatic role and 
function does not involve routine creation of the profound 
psychedelic phenomena that occur from its exogenous 
administration. Concern over this lack of knowledge has 
been made even more relevant and acute by our not know-
ing what role(s) or regulatory functions DMT may possibly 
be playing, not only in normal brain function, but also in the 
results being observed in the burgeoning field of psyche-
delic therapeutics and psychedelic research. There has yet 
to be any study examining the possibility that the positive 
findings thus far obtained from psychedelic administration 
therapy are, in part, acting on, by enhancing or otherwise 
altering, the same pathways involved for the endogenous hal-
lucinogen’s normal functions. Indeed, it was proposed some 
40 years ago (Barker et al., 1981) that there exists an endog-
enous hallucinogen neuronal system that, itself, may be 
acted upon by certain common therapeutic pharmaceuticals 
but also by the various classes of the known hallucinogens, 
acting as agonists, antagonists, or otherwise modulating this 
system and its normal function. Given the effects seen from 
DMT administrations and from in vitro DMT research, con-
sideration of such a possibility is reasonable.

Conclusions

Psychedelic therapy offers new ways for treating depres-
sion, substance abuse, post-traumatic stress disorders 
(PTSD) and addiction, and other maladies currently being 
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or not yet examined. It is obvious that a new understand-
ing of the biochemistry, of the causes and results from any 
successful therapy, is needed. Several placebo-controlled 
trials for psychedelic-assisted therapies have already been 
published and support the efficacy of psychedelic therapy 
across at least five mental health conditions: post-trau-
matic stress disorder (PTSD), anxiety/depression associ-
ated with a life-threatening illness, unipolar depression, 
addiction and social anxiety among autistic adults (dos 
Santos et al. 2018; Muttoni et al. 2019; Luoma et al. 2020; 
Inserra et al., 2020; Aday et al. 2021), and we can expect 
this list to continue to expand. There is no doubt that the 
scientific study of psychedelics as therapeutics has entered 
a new age. This explosion in interest is also reflected in 
potential positive changes in the laws regarding psych-
edelics’ access and the public perception of psychedelics, 
as well as the number of prestigious Universities open-
ing well-funded psychedelic research units throughout the 
world. And there are, without doubt, many more yet to 
come as “Big Pharma” eventually lurches into the field.

In the pursuit of the use of DMT in psychedelic research 
and therapy, several various forms and routes of adminis-
tration are being used. While all may eventually have their 
place and usefulness, it will be difficult to separate and 
compare the results from ayahuasca studies or from phar-
mahuasca studies and results from routes such as inhala-
tion sufflation from IV or IM administrations. Clearly, the 
complications created from concomitant use of a MAOI 
that also effects many other neurotransmitters and those 
observed from other routes of administration are some-
what insurmountable. Similarly, the methods of inhalation, 
sufflation, or snuffing will have to be made more toler-
able before they could be accepted as routine therapeutic 
techniques. While IV, infusion, or IM administrations can 
readily be performed, it involves another layer of medical 
intervention that is also not always ideal. As suggested, a 
modified DMT, such as a deuterhuasca, that may be orally 
active and can be taken as a pill, obviates many of these 
issues and could also be used for other routes of adminis-
tration as well. For one, it may allow a more useful com-
parison of study results between researchers and a better 
ability to apply in vitro results to therapeutic measures.

While psychedelic research and therapeutics are show-
ing highly desirable results, we still lack the molecular 
and foundational knowledge to understand how this is 
being accomplished. During this developmental stage of 
the science, I am of the opinion that gaining an under-
standing of the brain distribution and role(s) of DMT at 
“normal,” endogenous concentrations needs to be better 
understood so as to prescribe and apply the use of psyche-
delic therapeutics more appropriately and, perhaps, effec-
tively. Given that DMT is an endogenous compound, a 
potential neurotransmitter with significant sigma-1, 5-HT, 

and other receptor interactions, we must be curious enough 
to consider if the overall pharmacology thus far observed 
for DMT, and perhaps other psychedelics, is indicative 
of what constitutes the normal homeostatic functions 
for DMT. The effects observed and the biochemical and 
physiological parameters measured in any of these studies, 
whether high or low or micro-dose, should be viewed as an 
opportunity to add needed insight into the role and func-
tion of endogenous DMT and even of its possible involve-
ment in the mode of action of the hallucinogens in general. 
Of all of the known psychedelics currently being tested for 
therapeutic effect DMT and 5MeODMT are the only ones 
known to naturally occur in humans.

Indeed, if we consider the totality of DMT’s pharma-
cology, we see, perhaps, the brain’s use of DMT as its 
physiological and biochemical response for neuroprotec-
tion (Frecska et al., 2013). More recent in vitro and in vivo 
data are suggesting that endogenous DMT may also play 
an even more substantive role in the development, growth, 
maintenance, and repair of the brain, and similar data are 
being seen for many of the other known psychedelics.

Psychedelics could become “common” therapeutic med-
ications, administered several times daily at home (Noorani 
2020; dos Santos et al. 2021). While there are many pos-
sible routes of administration and compounds to be exam-
ined, there remains much further research to be conducted 
into low-dose treatments and more studies to examine the 
safety and efficacy of their use (Strassman 1984; Tittarelli 
et al. 2015; Gardner et al., 2019). Regardless of the dose 
regimen selected, until we better understand the overall 
mechanisms involved in what is being discovered, we may 
well miss several therapeutic opportunities. Evidence sug-
gests that treatments at lower doses, not producing hallu-
cinations, and higher doses that do, may well be one of the 
many possible futures of psychedelic therapeutic research 
(Yaden and Griffiths 2021; Olson 2021). The same is true 
of chemically modified structures and the intelligent design 
modifications of known hallucinogens (Dunlap et al. 2020) 
that enhance certain aspects of psychedelic pharmacology, 
or even eliminate parts of it.
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