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ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING 
FINITE POPULATIONS. II 

BY V. M. JOSHI' 

University of North Carolina 

1. Introduction. In Part I of this paper the admissibility was investigated 
primarily for the class of unbiased estimates of the population total. In particular 
the Horvitz-Thomson estimate was shown to be admissible in the class of all 
unbiased estimates, (cf. Theorem 4.1 of Part I). In the following, the investiga- 
tion is extended by removing the restriction of unbiasedness, with the corre- 
sponding modification of the definition of admissibility: Now some other estimate 
is shown to remain admissible for all sampling designs. The result appears to 
have implications concerning the basic logic of sampling with varying prob- 
abilities. These however are not discussed here. 

2. Notation. The notation used here is the same as that formulated in the 
Section 2 of the Part I of this paper and is not restated here. The definitions and 
preliminaries, as given in that section, also apply in the following discussion. In 
addition for convenience of discussion, here we assume that the units u of the 
population U are numbered, that is U = (Ui, . , UN), N being the total num- 
ber of units u in U. As a result a sample s (Definition 2.2, Part I) can now be 
specified by the set of integers namely the serial numbers of the units u - s. 
Thus for Ur I s now we write r - s. Further, the variate value X(Ur) associated 
with the unit Ur would be denoted simply by Xr, r = 1, *.. , N. And we have x = 
(xi, ... , XN), a point in Euclidean N-space RN. Now the problem is to find 
an estimate (Definition 2.6, Part I), of the population total 

(1) Tx- r=l Xr 

by observing those Xr for which r - s, the sample s being drawn according to a 
given sampling design (Definition 2.3, Part I). We extend the Definition 2.8, in 
Part I, of an admissible estimate by removing the restriction of unbiasedness as 
follows: 

DEFINITION. Given a sampling design d = (S, p), an estimate e(s, x) is said 
to be admissible for T in (1), if and only if there does not exist any other estimate 
e'(s, x) such that 

(2) EsEsp(s) (e'(s, x) - IT(x) )2 < E p(s)e(s, x) - T(x) )2 

for all x E RN, strict inequality holding true for at least one x. 

3. Admissibility of an estimate. We now prove the following 
THEOREM. The estimate e*(s, x) given by 

(3) e*(s, x) = (N/n(s)))Zre Xr 
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where n(s) is the sample size (Definition 2.4, Part I), is admissible for T accord- 
ing to the Definition in the preceding section, for any sampling design. 

REMARK. e*(s, x) can also be shown to be admissible on any subset of RN 

given by x: c1 ? Xr ? c2, r = 1, * * *, N, cl, c2 being some arbitrary constants 
with a slight obvious modification of the proof below. 

PROOF. If e* in (3), is not admissible, then by (2) there exists an estimate 
e'(s, x) such that, for all x E RN, 

(4) 8esp(s)(e'(s, x) - T(x))2 
< E8esp(s)(e*(s, x) - T(x))2. 

We put 

(5) g(s, x) - (N - n(s) )'(e'(s, x) - EreSXr), 

g*(s, x) = (N - n(s))-l(e*(s, x) - 
Erer Xr), 

n(s) being the sample size (Definition 2.4, Part I) of s. Now assuming n(s) = 

N -, p(s) = 0, and putting for such s, g = g* = c in (5), we have from (4) 

(6) E8eSp(s)[(N - n(s))g(s, x) - Er08Xr]2 

< E.es p(s) [(N - n(s))g*(s, x) - 
r08 Xr]2. 

(Even without this assumption, the proof needs only a slight modification. 
For, obviously it is enough to consider in (4) estimates e' such that e' = T, 
for sample s for which n(s) = N.) Now taking the expectations of both sides of 
(6) wrt a probability distribution of RN such that xl, * * *, XN are independently 
and identically distributed, with a common finite discrete frequency function w, 
common mean 0(w) and common variance o2(w), we have 

E8Csp(s) (N - n(s) )2Ew[(g(s, x) - 0(w)) + (8(w) 

(7) - (N - n(s))-l'rO Xr)]2 _ Zes p(s) (N-n(s) Ew 
[(g *(s, x) - (w)) + (0(w) - (N - n(s) Eroa Xr)] . 

The existence of Ew in (7) follows from the finite discreteness of the frequency 
function w. Now noting that the expectations of the product terms on both sides 
of (7) vanish due to the independence of x1, * * *, x.v and cancelling out the com- 
mon term 28eS p(s)(N - n(s))2o2(w) on both sides of (7), we get 

(8) E8esp(s) (N -n(s) )2Ew(g(s, x) - O(w) )2 

< E8esp(S)(N - n(s))2Ew(g*(s, x) - (w) )2. 

Since Xr, r =1, ** , N are distributed independently and identically we replace 
in h(s, x) and h*(s, x) in (8) the variates xr, re s, in some order by xi, x2, 

x *, Xm respectively, and let 

(9) h(s, x) and h*(s, x) denote the resulting 

values of g(s, x) and g*(s, x), respectively. 
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Next putting in (7), 

(10) Esesm p(s)h(s, x) = Pm4Om(x) 

where Sm is the set of all samples s with fixed size m, i.e. n(s) = m and Pm = 
se p(s), we have 

Z8esp(s)(N - n(s))2Ew(h(s, x) - O(w))2 

(11) = Ejjm=l (N- m)2EsesNm p(s)Ew(h(s, x) - 

+ Em=l (N-m)2PmEw(ctm(x) - 0(w))2. 
Now if in (10) h(s, x) is replaced by h*(s, x) in (5) and 4m(x) by 4m*(x), 
then from (3), we get 

(12) h*(s, x) = 4,m*(X) = Z;r-l Xr/ln(s). 

Hence from (11) and (12) 

(13) EZs8p(s) (N - n(s) )2Ew(h*(s, x) -@(w))2 

E= =l MPm(N - )2(cIm*(X) - 0(w))2. 

And further from (8), (11) and (13) we get 

Zm=i (N -m)2Z8Esmp(s)Ew(h(s, x) - 

(14) + ZN=l (N - m)2PmEw(Om(x)-) (W))2 

< = (N - m)2PmEw(cIm*(x) - O(w))2. 

That is 

(15) :N=l (N - m)2PmEw(4m(x) - O(w))2 

<- N=l (N -m)2PmEw(4,m*(x) - 0(w))2. 

Now from (15) and Lemma 1 in the next section we get if Pm $6 0, 

(16) ctm(x) = 4m*(X) 

for all x E RN. Further, substituting (16) in (14) we have 

(17) Ew(h(s, x) - 4.m*(X))2 = 0 

for all samples s having p(s) $ 0. Next from (17) and Lemma 2, in the next 
section, we have 

(18) h(s, x) = 4m*(x) 

for all s having p(s) $ 0 and all x. Further from (5), (12), (18) and (19) 
follows the result 

(19) e'(s, x) = e*(s, x). 
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Now (4) and (19) imply the Theorem stated at the beginning of this section. 
It is interesting to note that using a result due to Hodges and Lehmann (1951) 

establishing the admissibility of sample mean, wrt squared error as loss, for the 
mean of a normal population with unit variance, we can from (15) straightaway 
deduce, that a.e. in Rm. 

(20) Omm(X) = 9m *(X) 

for a fixed sample size design (i.e. p(s) = 0 if n(s) =i m). Note here we have not 
used Lemma 1. Apart from the restriction of fixed sample size design in (20), it 
is important that 4.(x) = tm*(x) in (20) is established for almost all points in 
Rm ; while what we need for establishing our ultimate result is bm(x) = 4m*(x) 
for all points in Rm, which is achieved in (16) with the help of Lemma 1. 

It is also worth while to note that Aggarwal (1959) has already investigated 
the minimaxity of the estimate e * (s, x) in (3), on a certain subset of RN. How- 
ever he restricts himself to simple random sampling without replacementwith 
fixed number of draws. In contrast, we establish the admissibility of the es- 
timate e* for any sampling design (Definition 2.3, Part I) what so ever. Further 
the subset of RN considered by Aggarwal is given by x = (xl, **, XN) 

Er-, (x- T(x)/N)2 < const. while our Remark following the Theorem in this 
section establishes the admissibility of e*(s, x) on a practically much more 
realistic subset of RN as explained in Section 3 of Part I of this paper. 

4. Lemmas. Now we would prove the lemmas referred to in the last section. 
LEMMA 1. If 
(a) X1, X2, ** X XN are independently and identically distributed real random 

variates, 
(b) for every m = 1, , N, 0km(X) is a real function of xi, X2, , Xm, 

(c) for everym= 1,* ,N, m = (1/m) Zm= xix, 
(d) for every common finite discrete frequency function w of xl, ** *, XN, 

EN= A 2EW(4m(X) -0(W))2 < ENA,2E W(xm -_ (W))2, 

Ew denoting the expectation, 0(w) the common mean of xi, * , XN and Am, 
m = 1, * * , N being arbitrary real constants, then for every x = (xi, x2, XN), x) 
C RN, 4.m(X) = tm for all m, m = 1, * - *, N for which Am $- 0. 

PROOF. Let Bk c RNbe such that if x = (xi, X * * Xr X * * XN) ? Bk then 
xr X r = 1, ... , N contain k or less distinct values. Now by the condition (d) 
of the Lemma 1, considering the discrete frequency function w which is zero 
every where except at one point, we have, for all x c B1, 

(1*) Om(x) = Xm for all m = 1, *. , N such that Am. 0. 

Further in the next paragraph, we prove that if (1 *) holds for x ? Bki1 then it also 
holds for all x ? Bk, which would mean (1*) holds for all x - BN = RN, proving 
the Lemma 1. 

Let the common frequency function of xl, X N, XN, referred to in the condi- 
tion (d) of the Lemma 1, be zero except at k specified distinct values namely, 
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w(ti) = Pi, pi > 0, i = 1, , * and Eki pi = 1. This frequency function 
clearly gives positive probability only to those points x = (xi . , xr . * XN) 

for which xr, r = 1,**, N is one of the values t1, , k. Let these points x 
constitute the set Bk(tl . , tk). Then Bk(tl, t , *k) C Bk defined in the 
beginning of this proof. 

Throughout the remainder of the proof, summations over all x c Bk(tl, tk), 

x(m) E Dmk(tl, * * *, tk) and x(m) E Dmk(ti, t l * tk) will be indicated by EBki 

Z Dmk and ZDmn, respectively. 
Now writing 

(2*) Om(X) = fm + hm(x), 

we have from (d) 

(3*) Ef i Am Bk hm(x) (m -)J7Jk pi < 0, 

g(ti, x) denoting for each x = (xi, .. ., X r . , XN) the total number of those 

Xr , r = 1, , N, which are equal to t . Note, for all x eBk(tl , tk), 

E i=1 g (ti , x) = N, g(ti , x) > O and 

(4*) 0= E ji piti 

Now let Dmk(tl . , tk) C Im the m-space of the points x(m) = (xi, x n), 

the first m coordinates of x = (xi, . , XN), such that 

(5*) x(m) E Dmk(tl , 
, 

* tk) if and only if x E Bk(ti , tk). 

Since hm(x) and tm are defined on Rm , by summing in (3*) for all x E Bk(tl , 
*. *, tk) with a common x(m), we have, 

(6*) EN= Am 2Dmk hm(x) (Xm - 0)li 1 pig(ti,x(m)) < 07 

where g(ti, x(m)) is the total number of co-ordinates in x(m) = (xi, * **, xm) 

which are equal to ti, i = 1, *, k. Note that for every x(m) e Dmk(ti tk), 

g(ti Xx(m)) _0,i= 1, , k, i g(ti x(m)) =m, and 

(7*) (1/m) EL ti(ti, x(m)) = Xm. 

Now in (6*) let 

(8*) Dmk (tl * *tk) = Dmk(tl * 1tk) + D 2k(tl * * *tk), 

where x(m) = (xi, , xm) Drmk(ti, ,tk) if and only if xi, * *, xm con- 
tain all the distinct values ti, , 

- * tk. Now we assume that (1*) holds for 

x E Bk-1 . Since this assumption obviously means Am 5# O =0 hm(x) = 0 if the 

coordinates of x(m) contain less than k distinct values, we have for m = 1, , N, 

(9*) if Am 5 0 in (8*) for all x(m) E Dmk(1i, tk), hm(x) = 0. 

From (6*) and (9*) 

(10*) ~M=1 Am 2Dmk hm(x)(4m - ) J?i0 pi < . 
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We note that in (10*), 

(11*) g (t , x(m)) > 1, ... 1,* k. 

Next we substitute (4*) and (7*) in the left hand side of (10*) and multiply 
it by 1/f1k= pi . The resulting expression (note here (11*)) is further integrated 
over the domain 

Q = [pl, :, Pkpi > 0, = 1 k * , *X and Ek=l pi = 1]. 

We then have 

ENAm 
2 
mDmk fQ hm(X)(Xm - )Hk= pig(tix(m))-lJ7kJ1 dpi 

(12*) = vm=lAm EDmk hm(x) f Q (=l, (g(tj , x(m))/m - pj)tj) 

- ]Lk pig(tix(m)) r]ji_1 dpi 

= 0, 

as for every j, 

fIQ tj(g(tj , x(m) )/n - pJ) Jk 1 pI(tig,x(m))-lf1k-1 dp= 0. 

[Note that: 

,JfQ fJk=p PfilTPjj dpi = [r( ,= nj)]K1TI r(ni) for ni _ 1, i = 1, k, k 
Now because of (10*) the integrand in (12*) ? 0 and is also continuous in 
p = (pl, * , pk) for all p E Q. Therefore from (12*), we have 

(13*) = A - f1)H*A1piu(ekh(rn = 0 

for all p E Q. Next the condition (d) of the Lemma also gives in place of (3*), 
the stronger relation 

(14*) EM> l AmEBk [hm2(X) + 2hm(x)Gxm - Z)]fl pi < 0. 
Then proceeding exactly as from (3*) to (10*) and lastly dividing by J1=J pi, 
from ( 14*), we have for all p E Q, 

(15*) =l Am2ED'k[hm2(X) + 2hm(x)(xm - 0)]fl=, p*(tix(m))1 < 0. 

Further from (13*) and (15*) we get 

(16 *) N=1 Am2 hD hm 2(X) j pig(ti,x(m))-1 < 0 

for all p e Q. Next considering the inequality (16*) for a point p = 
(pl, ,pk)eQ,we have 

(17*) Am 5 O =0 hm(x) = 0 for all x(m) EDmk (tl X tk). 

Thus from (8*), (9*) and (17*) we have, for m = 1, , N, 

(18*) Am 5$ O =0 hm(x) = 0 for all x(m) E Dmk(tl X * tk), 
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But since hm(x) is a function of xi, . , x. we have from (5*), (18*) 

(19*) Am $? O =0 hm(x) = 0 for all x -Bk(tl, tk,). 

Further since the set Bk as defined in the beginning of this proof satisfies Bk = 

Utl,---,tkBk(tl, , tk), we have from (19*), for m = 1, ... , N, A. O 
hm(x) = 0 for all x E Bk, which along with (2*) means that, for m = 1, , N, 

(20*) Am $? O4 => m(x) = xm for all x Bk . 

Thus as stated in the first paragraph of this proof, the Lemma 1 is proved by 
induction. 

LEMMA 2. If 
(a) xl, ... , xm are independently and identically distributed real randm 

variates, 
(b) G(x) and H(x) be realfunctions of x = (xi , Xxm) C Rm. 
(c) for every common discrete frequency function w of xi x. Xxm Ew(g(x) 

H (x) )'= 0, 
then G(x) = H(x) for all x = (x, . , xm) eRm. 

PROOF. Let the common frequency function w in the condition (c) of this 
Lemma be zero, except at in specified values, namely w(ti) = pi, pi > 0, 

i = 1, *, m and D== pt = 1. This frequency function clearly gives positive 
probability say P(x) only to those points x = (xl, ... Xr , - , Xm) for which 
XrT r = 1, , m is one of the values ti, ... tm . Let these points x, constitute 
the set B(tl, ... , tin). So that in condition (c) of this Lemma, 

Ew(G(x) - H(x))2 = ZZeB(t,l,..,tk) P(x)(G(x) - H(x))2 = 0, 

which implies G(x) = H(x) for all x C B(t X * * * , ti) and as ti, , . tm are 
arbitrary, the result G(x) = H(x) for all x C Rm follows. 
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