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Abstract

HSP amd HSPr are two recent planners that search rhe
state-space nsing an heuristic funetion extracted from
Strips cocodings. BSP does a forward scarch from the
initial state recompnting the henristic in every state.
while: HSPr does a regression scarch from the goad cour-
puting a suitable represcutation of the hearistic only
once. Both planners have shown good performanee.
often producing solutions that are competitive in time
and number of actions with the solntions found by
Graphplan and SAT planners. HSP and HSPr. however,
are not optimal planpers. This is because the heuris-
tie function is not admissible and the search algorithms
are not optimal. lu this paper we address this problem.
We formulate a new admissible heuristie for planniung,.
nse it to guide an 1DA° search, and empirically eval-
nate the resulting eptimal planner over a mmmber of
domains,

The main contrilmtion is the idea nnderlying the
henristic that yiclds not one it a whole family of
polyuomial and adioissible hearisties that trade ace-
curacy for efficiency. The formmlation is general amd
sheds some light on the henristies nsed in HSP and
Graphplan. and their relation. It exploits the factored
{Strips) representation of planuing problems., mapping
shortest-path problems in stete-space into suitably de-
fined shortest-path problems in atome-space. The for-
pmlation applies with little variation to seqnential and
parallel planning. and problems with ditferent action
costs.

Introduction

HSP and HSPr are two recent planners that search the
state-space using an heuristic function extracted from
Strips encodings (Bonet & Geftner 1999). Hsp does
a forward search from the initial state computing the
heuristic in every state. while HSPr does a regression
search from the goal, computing a suitable representa-
tion of the heuristic only once. Both planners have
shown good performance, often prodicing solutions
that are competitive in time and number of actions with
the solutions found by Graphplan and SAT planners
(MeDermott 1998).
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HsP and HSPr. however. ave not optimal planne rs. This
is hevanse the hearistie is not admissible and the search
aleorithuns are not optimal.! Graphplan (Bl & Furst,
19951 and Blackbox (Kantz & Selinan 1999) are opti-
mal parallel planners that puarantee a minimal mimber
of time steps in the plans found. While optimaliry ix
not always a main coneern in planning,. the distinetion
between optimil and non-optimal algoritluns is relevant,
in practice amd is crueial in theory where optimal and
approximate versions of the same problem may belong
to ditferent complexity classes (Garey & Johnson 1979).

The goal of this paper is to address this issue. For
this. we formmlate a new domain-independent wdmis-
sible heuristic for planning and use it for computing
optimal plans. The new heuristie is simple and general.
and ean be understood as mappiug the shortest-path
(planning) problem in state-space into a snitably de-
fined shortest-patly problem in alom-spree. This idea is
implicit in a mumber of recent. plamers. e, (Blum
& Furst 1995: MeDermott 1996: Bonet. Tocrines. &
Getfner 1997): here we make it explicit and general.
The formulation applies with little variation to prob-
lems with different action costs and prerallel actions,
ad suggests extensions for other classes of problems
such as problems with actions with ditferent. durations
(e... (Smith & Weld 1999)).

The new heuristic is based on compnting admissible
estitnates of the costs of achieving sets of atoms from
the initial state sy. When the size of these sets is 1. the
heuristic is equivalent to the by, heuristic considered
in (Bouet & Geffner 1999). When the size is 2. for pural-
Il planning. the heuristic is equivalent to the heuristic
muplicit in Graphplan. The computation of the heuris-
tic. however, does not build a layered graph nor does it
rely on ‘mntex relations”. On the other hand. its time
and space complexity is polynomial in N™, where N is
the number of atoms in the problem and m is the size
of the sets considlered.

For the experiments in this paper. we use the henris-

tic that results from sets of size i = 2 (afom pairs). To

LA heuristic is not admissible when it way overestimate
optimal costs, while a scarch algorithin is not optimal when
it does not guarantee the optitality of the solntions fouml

{Nilsson 1980: Pear] 1983).
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we take the idea from HSPr aud compute the heuris-
tic once from the initial state and use it to guide a
regression search from the goal.? The search is per-
formed nsing the optimal algorithm 1DA” (Korf 1985).
We call the resulting optimal planuer Hspr™. With the
current implementation. HSPr™ produces good results in
sequential domains like Blocks World and the 8-puzzle.
but weaker results on parallel domains like rockets or
logistics. This is in contrast with the non-optimal HSPr
planner that solves these problems very fast. We dis-
cuss these results. try to identify its canses, and draw
some conclusions.

The paper is organized as follows. We cover first
the relevant background including the heuristics used
in HSP and Graphplan (Sect. 2). Then we introduce the
new heuristic (Sect. 3). review the basic and enhanced
version of the IDA” algorithmn that we nse (Sect. 4).
and report results over a number of sequential domains
(Sect. 5). Last we consider the extensions and results
for parallel planning (Sect. 6) and close with a sununary
and discussion (Sect. 7).

Background
HSP
HSP maps Strips planning problems into problems of
henristic search (Bonet & Geffuer 1999). A Strips prob-
lem is a tuple P = (A, 0. 1. G) where A is aset of atoms,
0 is a set of groond operators. and I C A and G C A
encode the initial and goal sitnations. The state space
determined by P is a tuple § = (S.s0.Sq. A(-). f.¢)
where
the states s € § are collections of atoms from 4
the initial state s, is [
the goal states s € Sg are such that G C s
the actions @ € A(s) are the operators op € O such
that Prec(op) C s
the transition function f maps states s into states
s' = s — Del(a) + Add(a) for a € A(3)
6. the action costs c(a) are assiuuned to be 1

Ll

(941

HSP searches this state-space. starting from s,. with an
heuristic function b derived from the Strips represen-
tation of the problem. A similar approach was nsed
before in (McDermott 1996) and (Bonet, Loerincs. &
Geffner 1997).

The heuristic b is derived as an approximation of the
optimal cost function of a relaxed” problem /*' in which
delete lists are ignored. More precisely, h(s) is obtained
by adding up the ecstimated costs g.(p) for achieving
cach of the goal atoms p from 5. These estimates are
computed for all atoms p by performing incremental
updates of the form

4s(p) := min [g.(p).1+ gu(Prec(a))] (1)
a€0(p)

2The heuristie can also be nsed in the context of Hsp.
However, the overhead of computing the henristic in every
state docs not appear to be cost-effective in general,

erwise, until the costs g,(p) do not change. In (1).
O(p) stands for the set of operators that -add’ p and
g«(Prec(a)) stands for the estimated cost of the set of
atoms in Prec(op).

I usP. the cost g.(C) of sets of atomns C is defined
as the sum of the costs g,(7) of the individual atoms r
in the set. We denote such cost as g*#(C):

gadd(c) d__o_f Z q”(,)

reC

(additive costs) (2)

The heuristic h(s) nsed in HSP. that we call h,gq(s). is
then defined as:

h'udd( ”) d:t_j' g‘.:dd( G) (3)

The definition of the cost of sets of atoms in (2) as-
siumes that *snubgoals’ are independent. This is not trie
in general and as a result the heuristic may overestimate
costs and is not admissible.

An admissible hewristic can be obtained by defining
the costs g,(C') of sets of atowms as

g5 (C) = max #«(r)  (max costs) (1)
re

The resulting ‘max heuristic” by, ... (5) = g7 (G) is ad-

missible but is not as informative as hgqq(s) and is not

nsed in HSP. In fact. while the additive” heuristie com-

bines the costs of all subgoals, the ‘max’ heuristic con-

siders the most dificult subgoals only.

In Hsp, the henristic A{s) and the aton costs g,(p)
are computed from seratch in every state s visited. This
is the main bottleneck in HsP and can take up to 85% of
the computation time. For this reason, HsP relies on a
form of hill-climbing search for getting to the goal with
as few state evaluations as possible. Surprisingly this
works quite well in many domains. In the AIPS98 Plan-
ning Contest. for example. HSP solved 20%, more proh-
lems than the Graphplan and SAT plauners (McDer-
wott 1998). In many cases. however. the hill-climbing
search finds poor solntions or no solutions at all.

HSPr

HSPr (Bonet & Getfner 1999) is a variation on HSP that.
removes the need to recompute the atom costs g.(p)
in every state s. This is achieved by computing these
costs onee from the initial state and then performing
a regression search from the goal.® In this search, the
heuristic h(s) associated with any state s is detined in
terms of the costs g(p) = ga.(p) computed frow sy as

his)= Z g(p)

J=1]

*Refanidis and Vlahavas propose a different way for
avoiding these recomputations. Rather than caleulating the
heuristics by forward propagation and using it in a back-
ward scarch. they compute the heuristic by backward prop-
agation and use it to gnide a forward search. See (Refanidis

& Vlahavas 1999).

Haslum 141



HSPr uses a more systematic search algorithm that of-
ten produces better plans than HSP in less time? For
exawuple. HSPr solves each of the 30 logistic problems in
the BLACKBOX distribution in less than 3 seconds each
(Bonet & Getfner 1999). HSPr, however. is not better
than HSP across all domains as the information resulting
from the recomputation of the henristic in certain cases
appears to pay off. In addition. the regression search
often generates states that canuot lead to any solution
as they violate basic invariants of the domain. Tu alle-
viate this probleni. HSPr identifies atoms pairs that are
unreachable from the initial state (atemporal mutexes)
and prunes the states that contain them. This is an
idea adapted from Graphplan.

Graphplan

Planning in HSPr consists of two phases. [n the first. a
forward propagation is used to compute the measures
qg(p) that estimate the cost of achivving each atom from
sg. in the second. a regression search is performed ns-
ing an henristic derived from those measures. These
two phases are in correspondence with the two phases
in Graphplan (Blum & Furst 1995). where & plan grapli
is built forward in the first phase. anld is searched back-
ward in the sccond. As argued in (Bonet & Geffner
1999). the parallel between the two planners goes fur-
ther. Graphiplan can also be inderstood as an heuristic
scarch planner based on precise heuristic function he
and a standard search algorithiun, The hearistic heg(s)
is given by the index j of the first level in the graph that
confains the atoms in s withont a mutex. aud the search
algorithin is a version of Iterative Deepening A™ (IDA”)
(Korf 1985) where the sum of the accumulated cost and
the estimated cost hg(n) is used to prune nodes n whose
cost exceed the cirrent threshold (actually Graphplan
never generates such nodes).”

While Graphiplan and uspr can both be nnderstood
as heuristic search planners they differ in the heuristic
and algorithms they use. In addition. HSPr is concerned
with {non-optimal) sequential planning while Graph-
plan is concerned with (optinal) parallel plauning,

A new admissible heuristic

HSP and HSPr can be used to find good plans fast hut not
provable aptimal plans. This is because they are based
on non-admissible henristics and non-optimal scarch
algorithms, For finding optimal plans. an admissible

*The search algorithin in HsPr is complete but is not op-
timal. Optimal algorithis such as A” are not used becanse
they take more time and space. and sinee the heuristic is
not adwmissible they still dou’t gnarantee optimality.

* Without memoization., the search algorithm in Graph-
plan is standard IDA". With memoization. the scarch algo-
rithin is a wemory-extended version of IDA” (Sen & Bagehi
1989: Reinfeld & Marsland 1994) where the heuristic of a
node is npdated and stored in a hash-table after the search
beueath its chilidren completes withont a solution (given the
eurrent threshold).
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space is needed.

The non-admissible heuristic by used in HSP is de-
rivedl as an approrimation of the optimal cost funection
of a relured problem where deletes lists are ignored.
This formulation raises two problems, First. the wp-
prorimalion is not very good as it ignores the positioe
interactions among subgoals that can make one goal
simpler after a second oue Lias been achieved (this re-
sults in the heuristic being non-admissible).  Secowd,
the relaration is not good as it ignores the negative
interactions aong subgoals that are lost when delete
lists are discarded. These two problems have been ad-
dressed receutly in the heuristic proposed by Refanidis
and Vlahavas (99). The proposed heuristic is more ac-
curate but it is still non-admissible and largely ad-hoc.
Here we aimn to formulate an heuristic that addresses
these limitatious but which can he given a clear justi-
fication. The idea is simply to approximate the cost of
achieving any set of atoms /A from sy in terms of the es-
timated costs of achieving sets of atoms £ of & suitable
small size m. When m = L. we approximate the cost of
any set of atoms in terins of the estimated cost of the
atoms in the sef. When m = 2, we approximate the
cost of any et of atoms in terms of the estimaked cost,
of the atom pairs in the set. and so on. Tn the first case
we will obtain the henristic h,,,.: in the second, the
Graphplan henristic. cte. We make these ideas precise
below,

The new lLenristic is defined in terms of a relaxed
problem, but the -original” and -relaxed” problems are
fornutlated in a slightly different way than hefore. The
original problen is seen now as a single-source shortest-
path problem. [Bertsekas 1905 Ahuja. Magnanti. & Or-
lin 1993). In a single-sonrce shortest path problem one
ix interested in finding the shortest paths from a given
sonrce node to every other node in a graph. In our
graph. the nodes are the states s. the (directed) links
are the actions o that map oue state into another, and
the link costs are given by the action costs e(a) > 0.
The source node is the initial state sy, and the (di-
rected) paths that connect sg with a state s correspond
to the plans that achieve s fromn s,.

A way to solve this shortest-path problem is by find-
ing the optiwal cost function V= over the nodes s. where
V" (s) expresses the cost of the optimal path that con-
nects 8g to 5. This function ¥ can be cliaracterized as
the solution of the Bellman equation:®

Vi (s)= min [c(a) + V"(5")] (51

{al.a)=R(4)

where V™(s9) = 0 and R(s) stands for the state-action
pairs {8’ a) sueh that ¢ maps s’ into s (Le.. a € Als')
and s = fla.s")).

For V* to be well-defined when some states are not
reachable from sy, 1t snffices to assume “dummy” actions
with infinite costs that connect s, with each state s,
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solved by a number of algorithms resulting in a heuris-
tic function V™ that perfectly estimates the distance of
any state s from sy. Of course, there are two problems
with this idea: first. the solution of (5) is polynomial
in | S| but exponential in the munber of atoms: and sec-
ond, the function V= caunot be usaed (directly) to guide
a regression search from the goal. This is hecanse the
goal G does not denote a single state but a set of states
sg such that G C sg. Thus for gniding a regression
search from the goal. a cost function mmst be defined
over sets of ntoms A understood as representing the set
of atates that make A true.

So we turn to a slightly different shortest-path for-
mnlation defined over seis of aloms and let G™ stand
for the optimal cost function in that space. For a set of
atoms A. G(A) stands for the optinal cost of achieving
the set of atoms A from sy or alternatively. the optimal
cost of achieving a state s where A holds. The equation
characterizing the function G™ is

Grid) = .;B..l.!,\glll?f.u[('(a) + B (6)
where G*(A) = 0if A C sy and R(A) refers to the set
of pairs (B.a) such that B is the result of regressing
A through a. Formnally. this set is given by the pairs
(B.a) such that AN Add(a) # 0. AN Del(a) = 0. and
B = A — Add(a) + Prer(a). We call such set. R(A) the
regression. set of A.

In the new shortest-path problem the nodes are the
possible sets of atoms A and each pair (B.a) in R(A)
stands for a directed link B — A in the graph with cost
e(a). Such links can be understood as expressing that A
can be achieved by the action o from any state s where
B holds. This shortest-path problem is not simpler than
the problem {3) bnt has two benefits: first the function
G can be used effectively to gnide a regression search.
and second. admissible approrimations of G* can be
easily defined.

Let G stand for a function with the same domain
as G- and let’s write G < G~ if for any set of ators
A, G(A) < G (A). It’s simple to check that if G is
the optimal cost function of a moditied shortest path
problem obtained by the addition of “links’, G < G~
must hold. Likewise. G < G~ umst hold if links B — A
are replaced by links B’ — A of the sane cost where
B’ is such that G™(B') < G*{B). We can regard both
modifications as ‘relaxations’ that yield cost functions
G that are lower bounds on G*.

With these considerations in mind. let’s consider the
relaxation of the shortest-path problemn (6) where the
links B — A for "large’ sets of atoms B. i.e., sets with
size |B| > m for xome positive integer m. are replaced
by links B’ = A where B' is a subsct of B with size
|B') = m. Since B’ C B implies G*(B') < G{B). it
follows from the arguments above that the optimal cost
function G™ of the resulting problem must be a lower
bound on G™.

This lower bound funection G™ is characterized by the

G™(A) =0 if AC sq (1)
G"(A)= (B.li]'.)leufl?(A)[C(n.) + G™(B)] (8)
if |A|<m & A€ sy. and

G"A)= max G™(B) if|A|>m (9)

BCA.|Bj=m

For any positive integer m, the complexity of com-
puting G™ is a low polynomial in the munber of nodes
(the number of atom sets A with size |A| equal to or
smaller than m) (Bertsekas 1995: Almja. Magnanti. &
Orlin 1993). G™ is thus a polynomial and admissible
approximation of the optimal cost function G*. The
approximation is based on defining the cost of -large’
sets of atoms A in Equation 9. in teris of the costs
of its "smaller’ parts. Equations 7 and 8. on the other
hand. are conmon to both G™ and G~.

For any positive integer m, we define the heuristics
h™ as

™ (4) ¥ Gm(A) (10)

The heuristics ™, for m = 1.2.... are all admissible,
and they represent different tradeoffs between accuracy
and efficiency. Higher-order henristics are more accu-
rate but are harder to compute. For any fixed value of
m. the compntation of the henristic 2™ is « low polyno-
mial in N™_ where N is the number of atoms. Below we
consider the concrete form of these heuristics form =1
and m = 2. In both cases, we use the Strips representa-
tion of actions to characterize the regression set R(A)
in equation {8) whirh is the key equation defining the
functions G,

The Max-atom heuristic

For m = 1. the hewristic A" redueces to the hewristic
Bopar cousidered above. Indeed, for sets A = {p} of
size 1. the regression set R{{p}} is given by the pairs
(Prec(a).a) for o € O(p). where Op) stands for the
set. of actions that "add’ p. As a result, equation (8) for
G™ becomes

G'({p}) = win [¢(a) + G} (Preci{a))]
asip)

The resulting shortest-path problem can be solved
by a number of label-correcting algorithms (Bertsekas
1995: Almja. Magnanti. & Orlin 1993). in which esti-
mates g'({p}) are updated incrementally as

7 ({p}) := 111i11_Lr]1({11}) . e(a) + g*(Prec(a)))
a€ip)

until they do not change. starting with g'({p}) = 0
if p € s and g'({p}) = x otherwise. Following (7)
and (9). g(0) is set to 0 and ¢*(A) for |A4] > 1 is
set to max,ca ¢'({p}). When the updates terminate,
the estimates g' can be shown to represent the func-
tion G! that solves equations (7-9) (Bertsekas 1995:
Almja. Magnanti. & Orlin 1993). The complexity of
these algorithins varies according to the order in which
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nomial in the number of nodes {atoms sets A with size
|A| < m).

The computation of the henristic h,,q. described
above corresponds to this procedure. and thus Ay, =
hi. In other words. b, is the henristic obtained by
approximating the cost of sets of aloms by the cost of
the most costly atom in the set. The heuaristic is ad-
missible but is not sutliciently informative. The choice
in HSP amd HSPr was to approximate the cost of sels of
atoms in a different way as the swn of the costs of the
atoms in the sect. This approximation yiehls an heuris-
tic that is more informative but is not admissible. The
option now is to consider the heuristics A" for higher
values of m.

The Max-pair heuristic

If we let O(pdeq) refer to the set of actions that add
both p and . and O(p|q) to the set of actions that adil
p but do not adil or delete g, the equation (8) forwm =2
and A = {p.q} becomes

min  [e(a) + Gz(Pl'f'l‘(fL))]Z

a Qi pley)

min [e(e) + G*(Prec(a)U {qh)]:
ae:O{ply)

min  [e{a) + G*(Prec{a)U {rh}

aZO{g ny

P({p.qh) = min {

while the equation for A = {p} becomes

G*({ph = mgn [} + G*( Prec(a)))
as0(w)

Ax before these equations can be converted into updates
for computing the value of the function G? over all sets
of atows with size less than or equal to 2. This compu-
tation remains polynomial in the mnmber of atoms amd
actions. amd can be computed reasonably fast in most
of the domains we have considered. We call the henpis-
tic A2 = G2. the mar-pairs heuristic to distinguish it
from the mas-atorn heuristic bl

The cousideration of atom. pairs for the computation
of the heuristic h? is closely related to the consideration
of muter pairs in the computation of the henristic hg
inn Graphplan. A distinction between A2 and hg is that
the former is defined for arbitrary action. costs and se-
quential planning. while the latter is defined for unitary
rosts and parallel planning. Later ou. we will introdnee
a definition analogons to h® for parallel planning that
is equivalent to Graphplan hg.

Higher Order Heuristics

Equations 7 10 define a family of henristies h™ = G™
for m > 1. For each value of m, the resulting heuris-
tic is admissible and polynomial. but the complexity of
the sequence of heuristics A™ grows exponentially with
m. The experiments we have performed are limited to
hA™ with m = 2. Certainly. it should be possible to
constrnet domains where higher-order heuristics would
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lar situation exists in Graphplan with the computation
of higher-order nmtexes {Blum & Furst 1995). Higher-
order heuristics may prove effective in complex domains
like the 15-puzzle. Rubik, and Hanoi where subgoals in-
teract i complex ways. The challenge is to compite
s1ich heuristics efficiently and use them wich little over-
head at run tine.

Algorithins

Below we use the henristic A2 in the context of an DA~
search (Korf 1985). The IDA™ algorithin consists of a se-
qiience of depth-first scarches extended with an hearis-
tie funetion b and an upper bound parameter UB. Dur-
ing the search. nodes n tor which the sum of the acen-
mulated cost g(n) and predicted cost h{n) exeeed the
upper bonnd UB are pruncd. Initially, UB is set to the
henristie valie of the root node. and after o failed trial
UB is set to the cost g(n) + h(n) of the least-cost node
that was pruned in that trial.

IDA™ is guarant ced to find optimal solitious when the
henristic A is admissible. but nulike A™ it is a linear-
memory algorithin, Memory-enhaneced versious of IDA”
have been defined for saving time snch as those relying
on transposition tables (Reinfeld & Marsland 1994). [n
the experiments helow we report the resnlts of 1DA”
with and withiout transposition tables.

The performance of 1DA” is often sensible to the orilder
in whicih the children of a node are selected for expan-
sion (this affects the last iteration of IDA™). In some
of the experiments we nse an arbirrary node ordering
while in others we choose the ordering determined hy
the additive heuristic h g from HsP.

Commutativity Pruning

In planning problems. it is conunon for ditferent action
sequences to lead to the same states. Liuear-memory
algorithms like IDA™ do not detect this and may end
up exploring the same fragieuts of the search space a
number of times. This problem can often he alleviated
by exploifing certain symmetries.

Let's say that two operators a and o' are commauta-
tive if neither one deletes atoms in the precondition or
add list of the other. and that a set of actions is com-
nutative when all the actions in the sef are pairwise
comumtative, Commmtative actions thus correspond to
the actions that can be doue in parallel in Graphplan or
Blackbox. and can be recognized efficiently at compile
titne,

Clearly the order in which a set of commutative ac-
tions is applied is ivrelevant to the resulting outcowe.
A simple way to eliminate the consideration of all or-
derings except one. is by imposing a fixed ordering <
on all actions (e.g., see (Korf 1998)). A bhranch con-
taining a contignous sequence of commutative actions
1. g, . ... a, is then accepted when it complies with
this ordering (i.c.. when a; < a0 < -+ < a,) and is
rejected otherwise. This means that a branch in the
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quence of two consecutive commmutative actions a;. a4
such that a; > a;1,. We refer to this form of pruning
as commutativity pruning.

Results

We call the planner obtained hy combining the h®
hewristic with the IDA™ algorithm, HSPr*. HSPr™ is an
optimal sequential planner. The current implementa-
tion is in C. The results below were obtained on a Sun
Ultra 10 running at 440 Mhz with 256 RAM. In the
first experiments. we consider a number of (1mostly) se-
quential domains and compare HSPr* with two state-
of-the-art planners: STAN 3.0 (Long & Fox 1999) and
BLACKBOX 3.6 (Kautz & Selman 1999). Both of these
plauners are optimal parallel planners. so they mini-
mize the number of time steps but not necessarily the
number of actions.

Table 1 shows results over instances from the blocks
world, 8-puzzle. grid. and gripper domains. The for-
mulation of the blocks-world is the one with the three
‘move’ actions. The notation blocks-i denotes an in-
stance with i blocks. The 8-puzzle is a familiar domain
(Nilsson 1980: Pearl 1983). The maximum distance be-
tween any two (reachable) configurations is 31. The
grid and gripper instances correspond to those nsed in
the AIPS Planning Contest (McDermott 1998).

In the table. #S and #A4 stand for the number of
time steps and the number of actions in the plan. For
sequential planners we report the number of actions
while for parallel planners we report both.

The numbers in Table 1 show that over these donains
the performance of HSPr™ is comparable with STAN and
slightly hetter than BLACKBOX. These numbers, how-
ever, are just an illustration as the planners can be run
with a mmmher of different. options (STAN was run with
the defanlt options; BLACKBOX was runt with the com-
pact simplifier and the SATZ solver). An important dif-
ference hetween the three planners is the use of memory.
STAN and BLACKBOX use of a lot of memory. and when
they fail, most often is due to memory. In HSPr*, mem-
ory does not appear to be such a problem. In grid-2.
for example. HSPr™ ran for almost ecight hours until it
finally found an optimal solution. This is not good time
performance. but illustrates the advantages of using lin-
ear memory. STAN proved superior to both HSPr™ and
BLACKBOX in the gripper domain where it apparently
exploits some of the symmetries in the domain (Fox &
Long 1999).

The results for HSPr™ in these experiments were oh-
tained using the three enhancements of IDA™ discussed
in the previons section: commutativity prining . a
transposition table with 10° entries. and node-ordering
given hy the henristic hyqq. These are general enhance-
ments and most often they speed up the search. For
testing this, we ran some experiments on the blocks
world problems with all possible combinations of these
enhancements. The results are shown in Table 2, where
the number of nodes expanded (#N) and total time (T)

ments make no difference, in the larger problem they
do. However, the payoffs do not always add up: for ex-
ample. commutative prining (Com) cuts the run time
significantly when used in isolation but makes little dif-
ference when node-ordering (Ord) and a transposition
table (TT) are used.

Table 3 displays the quality of the heuristic A% in com-
parison with the optimal cost of the problem, and the
time taken by the search with respect to the total time
(that also includes the computation of the heuristic).
It can be scen that the heuristic provides reasonable
bounds in the block-world problems but poorer honnds
in the other domains. In the 8-puzzle. the heuristic
seewns to he weaker than the domain-dependent. Man-
hattan distance heuristic but we haven’t made a de-
tailed comparison. In most domains, the time for com-
puting the henristic is small when compared with the
scarch time. The exception is the grid demnain where
the computation of the heuristic takes most of the time.

We have tried to run HSPr™ over standard parallel
domains like logistics and rockets but after many hours
we didn’t obtain any results. The most important canse
for this is that for those donains the heuristic A%, which
estitnates serial cost, is a poor estimator. In parallel
domains, there are many independent subgoals. and in
that case the additive heuristic hggy produces better
estimates. Indeed, the nov-optimal Hspr planner that
nses the hgygq heuristic solves these problems very fast
(Bonet & Getfuer 1999).7 The admissible heuristics i
defined in Sect. 3. however, can be maoditied so that they
estimate parallel rather than serinl cost. In that case,
the estimates are tighter and can be used to compute
optimal parallel plans.

Optimal Parallel Planning
Heuristics for Parallel Planning

The definition of the henristics A™ can be modified
to estimate parallel rather than serinl costs by simply
changing the interpretation of the regression set R{A)
appearing in the equation (8). This equation charac-
terizes the cost function G™(A) for the sets A € s, and
[A] <€ m and is reproduced here

GMA) = mi () +GB) (1D

Recall that R( A) contains the pairs (B. a) such that B is
the result of regressing A through action . For making
h™ = G an estimator of parallel cost. all we need to
do is to let @ range over the set of parallel actions. where
a parallel action stands for a set of pairwise compatible
(comumutative) actions.

We illustrate the result of this change for m = 2.
We denote by G the cost function associated with the

"The reason for this. however, is not ouly the henristic
but also the search algorithm, The non-optimal search algo-
rithm in HSPr can reach the goal by evalnating much fewer
nodes than 1IDA'.
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HSPr~

Tustance Time #S #A  Time #S #A Tine #A
blocks-9 0.4 4 10 1.0 4 11 0.45 6
blocks-11 2.0 5 14 6.9 5 15 1.29 9
blocks-15  102.7 8 25 136.46 14
eizht-1 809 31 31 63.53 31
eighi-2 62.0 31 31 67.23 31
eight-3 05 20 20 89.00 20 20 0.51 2(1)
arid-1 L5 14 14 142 14 14 8.44 14

arid-2

7:55h 20

gripper-1 0.0 3 3 0.0 3 3 0.07 3
gripper-2 0.0 T 0 0.3 7 9 0.11 0
aripper-3 0.1 12 15 55.2 11 15 30.17 15
aripper-4 2.1 17 21 * * * * *

Table 1: Performance comparison over sequential domains. A loug dash (

) indicates that the planner exhanstoed

the available memory and a star (%) indicates that no selution was found after 12 hours. All times are in seconds.

Options blocks-11 blocks-15 Instance | Opt.  hiroot) Nodes  Tihme Search

Ord TT Com #N  Tine #N Thne blocks-9 6 5 9 0.45 0.02
off off off 1068 6.44 134680 3158.96 blocks-11 9 T 87 1.29 0.42
off  off wn 640 3.65 30145  566.50 blocks-15 14 11 6630 136,46 132.45
off  on  off 480 3.17 20831  876.27 eight-1 31 15 172334 63.53  63.34
of on  on 166 295 L1255 236.50 eiglt-2 31 15 182195  67.23  GT.06
on off off 137 1.17 51241  128().82 cight-3 20 12 564 0.51 0.20
on off on 96 0.93 30069  5H91.73 arid-1 14 14 14 8.44 0.08
on on  off 03 0.98 6280  165.25 sripper-1 3 3 3 0.07 0.00
on on  ou 87 0.93 7680 159.12 arippoer-2 9 4 275 0.11 0.02
aripper-3 15 4 371664  30.17  30.06

Table 2: Effects of IDA™ enhancements in the munber
of nodes expanded and time taken by Hspre. Time in
seconds.

parallel problem. and let O(p.q) stand for the set of
coutpatible pairs of actions ¢ and a’ such that p and ¢
belong to Add{n) U Add(n’). We assiume now that all
primitive and parallel actions have uniform cost ~{a) =
1.8 The definition of G’;“’, then takes the foru:

Gi({p. q}) = min { min [l + G?,(Prr:r(a'))]:

al (N pley)
min 1+ G;",(_P'I'H-(n.) J Pree(n))]:

{a.’ } e py)

min 1+ G} (Precta)U {gh)]}

a& O ply)

min [1 4+ G Prec(a) U {p})]}
aZOlgp)
where the only change from the definition of serial G*
is in the second line: the parallel action adza’ is al-
lowedl to establish the pair of atoms p&qg at the cost of a
primitive action. The equations for G;'!,(A) for sets with
size |A] # 2 remain the same as hefore. The resulting
heuristic b3 = G3. unlike the hewristic h%. is admissible

*It's not elear what the cost of a parallel action should
be when primitive actions have different costs,
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Table 3: Results for sequential problems displaying op-
timal and estimated costs. expanded nodes, and Lotal
vs, search time. Time in seconds.

for parallel planning. Actually hi can be shown fo be
equivalent to the heuristic g used in Graphpliu where
hei(s) stands for the first layer in the plan graph that
inclides the atoms in s without a mutex. For prov-
ing this. it is suflicient to show that hg complies with
the equations for Gi. and this can be done indnctively
starting with layer 0.

State Space for Parallel Planning

The siinplest way to nse the heuristic h.12J tu find opti-
mal parallel plans is by performing a regression search
from the goal with an algorithm like IDA™ but replacing
the primitive actions with the possible paralle! actions.
The probletn with this idea. however. is that it does not.
scale np; indeed, if the branching factor of the original
problem is b. the branching factor of the ‘parallel’ prob-
len: may be 2%, While the solution length in the parallel
space will be sialler. the growth in the branching factor
makes the scheme impractical.

A second approach is to retain the branching strie-
ture from the serial setting but change the cost struc-
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wally uniform. In the parallel setting. it can be defined
in terms of the preceding actions. The result is that
total cost will measure time steps rather than action
occurrences. This can be achieved by setting the cost
of an actiou to §) when the action is compatible with the
‘last” actions in the search tree. and to 1 otherwise (the
‘last” actions defined in a suitable way). The problem
with this space is that it makes the heuristic 23 not ad-
missible. Admissibility can be restored by suf:t-racting
1 from the value of the heuristic yet this transformation
makes the heuristic nmch less powerful.

We have thus settled on a third alternative for find-
ing optimal parallel plans that follows the scheme 1sed
in Graphplan. The resulting search space can be char-
acterized as follows:

States: the states are triples (Old. New. Acts),
where Old and New are sets of atoms. and Acts is a
set of pairwise compatible primitive actions.

Branching: the children of a state (Old. New, Acts)
are obtained by applying all the primitive ac-
tions @ that add the first atom p in (Nd and
are cowmpatible with all the actions in  Aects.
For cach such action, the resulting state is
(Old — A{a), New + P(n). Acts + {a}). where Pla)
and A(a) stand for the precondition and add list of
a respectively.

No-Ops: actions No_Op(p) with precondition and
add list equal to p are asswmed for each atom p

Costs: a dumuy action that is the sole action ap-
plicable in the states (@. A. Aets) is assumed. Such
action has cost 1 and leads to the state (A, (3. 0). All
other actions have cost ().

Heuristic: the heuristic of a state {(Old, New., Acts)
is given by hf,(."\"v'w). which is non-overestimating,.
Init and Goal: the initial state of the regression
is (0. G.0). where G is the goal. and the goal states
are (0. A, Acts) for A C sy. where s¢ is the initial
sitnation.

In relation to Graphplan. the set of atoms Old in
the state (Old, New. Aets) can be thought as the list of
atoms iu layer 7 that haven’t been regressed yot, New
stands for the atoms in layer + — 1 that have been ob-
tained from the regression so far. and Acts encodes the
actions that have been used to obtain those atoms.

We will refer to the planner that results from the
use of the IDA™ search over this space. perallel HSPr™ or
HSPr(p)~. Below we report results of this planner over
some standard parallel domains and compare it with
two state-of-the-art parallel plauners and the original
version of Graphplan.

HSPr(p)™ has three main aspects in common with
Graphplan: the heuristic, the search space, and the
search algorithm. On the other hand. HSPr(p)™ does
not wse a plan graph. The plan graph plays two roles
in Graphplan. First. and most important. it encodes

h;’, heuristic in HSPr(p)~. However. the plan graph also
stores information that makes the IDA™ search more ef-
ficient: it makes regressions faster, it never generates
nodes that will be pruned. ete. Indeed, the IDA™ scarch
in Graphplan takes the form of a “solution extraction’
algorithm in the plan graph. This second rol of the plan
graph is not captured in BHsPr(p)~. On the positive side,
HSPr(p)” requires less memory and can easily be modi-
ficd to nse other search algorithins such as A™ or wipa*
(Korf 1993). Such changes can be accommodated in
Graphplan but provided the plan graph is used mainly
for representing and computing the heuristic and not
for solntion extraction.

Results for Parallel Planning

Table 4 shows results over some standard parallel do-
mains. Oun the ‘rocket’ problems, HSPr(p)* appears to
be slightly better than Graphplan, while in the logis-
tics” problems. Graphplan is definitely superior. These
differences are likely due to the use of the plan graph.
As the columns for STAN and BLACKBOX show. neither
Graphplan or HSPr(p)™ are state-of-the-art over these
domains. Nonetheless. STAN is a Graphplan-based plan-
ner that solves the logistics problems quite fast.?

To further compare the speed of HSPr(p)™ and Graph-
plan we gencrated approximately 45 medium-sized, ran-
dom logistics iustances solvable by both HsPr(p)™ and
Graphplan. For the reasons above, we didn’t expect
HSPr(p)” to approach the speed of Graphplan but we
did expect HSPr(p)” to remain within an order of mag-
nitude, In 30 of the problems. that was the case. How-
ever. in 12 problems we found HSPr(p)~ to be from 10 to
75 times slower than Graphplan. and in 3 problems we
found HsPr(p)” to he between 75 and 200 times slower.
These differences in speed are probably not only dne to
the use of the planning graph in the search but also to
the node ordering used in both planners. Graphplan.
for example, tries No-Op actions hrst. while HsPr(p)”
tries them last. Similarly, in HSPr(p)® we have found
it convenient to order the atoms in Old in the state
(Old. N, Acts) by increasing value of the additive
heuristic hygq. While these choices help in a number
of examples, they also hurt in others. and thus poten-
tially amplify the differences in performance over some
of the instances.

Discussion

In this paper we have formulated a framework for deriv-
ing polynomial admissible heuristics for sequential and
parallel plauning, and have evaluated the performance
of the optimal planner that results from using one of
these heuristics with the DA algorithm. The work
sheds light on the heuristics used in HsP and Graph-
plan, and provides a more solid basis for pursuing the

?For some reason, STAN didn't sulve the rocket probles.
Apparently. this is @ bug that will be fixed,
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Problem  HSPr(p)" GRAPHPLN STAN | BBOX
rocket.a 0.5 100.0 1.8
rocket.b 68.6 310.0 2.3
log.a 3:12:20 0:20:35 0.4 2.1
log.h * (:9:390 201 104
log.c * 0:21:01 47.0

Table 4: Time cowmparison over parallel domains. A
long dash { ) indicates that the planner exhiansted the
available inemory and a star (*) indicates that no soli-
tion was found after 12 hours. In the notation b : ;s
h. m and s stand for hours. minutes. and =econds re-
spectively. Otherwise. times are in seconds.

‘planning as henristic search” approach. Below we dis-
enss briefly related work and sowme open problems.

Graphplan: In (Bonet & Geftner 1999). Graphplan
was deseribed as an heuristic search planner based
on an IDA" scarch and a hewristic hg(s) given by
the first layer in the plan graph that contains rhe
atoms in s without a mutex. In this paper. we have
taken this view further. providing an explanation and
a generalization of that henristie, and evaluating a
pure IDA" planuer with respeet to Graphplan. In
Graphplan, the plan graph plays two roles: it's 1nsed
for compnting and representing the henristic. and for
making the IDA™ scarch more efficient.  These uses
explain the efficiency of Graphplan in comparison to
previous planners. On the othe hand, it’s not clear
whether the plan graph will be snitable for compnting
and representing higher order heuristies (A™. for m >
21 and searching with other algorithis.

Heuristics: higher-order heuristics may prove effec-
tive in domains like the 15-puzzle. Hanoi. Rubik, ete.
where subgoals mteract in complex ways. The chal-
lenge is to compute such heuristics fast enough and
to use them with little overhead at run-time. Higlier-
order (1nax) henristics as defined in this paper are
related to the heuristics based on pattern dotabases
defined in (Cudberson & Schaeffer 1998). Korf and
Taylor {96) discnss ways for generating hybrid heuris-
tics involving both ‘max’ and -additive’ operations
that may also prove useful in planniug,.
Algorithms: the henristics defined in this paper
have been used in the confext of the IDA" algorithm.
In a number of domains. however. a best-first, search
may prove more convenient. When optimality is not
an issne., variations of A™ and 1DA” where the heuristie
is multiplied by a coustant W > 1 may speed up the
search considerably (Korf 1993), making the resulting
planner competitive with the HSP and HSPr planners
over domains like Hanoi and Tire-world. where the
additive heuristic is not adequate.

Branching: in highly parallel domains like rockets
and logistics, SAT approaches appear to do best. This
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nen 1998)). In SAT fornmlations. the space is exploved
by setting the value of any variable at any time point.,
and then considering each of the resulting state par-
titions separately. In heuristic search approaches, the
splitting is comumonly done by applying all possible
actions. Alternative branching sehemes. however. are
conupot in henristic branch-and-bhound seareh proce-
dires (Lawler & Rinnooy-Kan 1985). and they may
prove relevant in planning.

We hope to explore some of these ideas in the future.
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