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Abstract

tlSP ~tm[ HSPr iLrt~ two r(’¢’Pllt p].allllors th~tt st.,trch th,"
statt~-Sl);.’," 1tsiltg i).lt heuristic fl|n,’tiolt (’xtt’act,’,l froill
Strips cnt’tMiatgs, liSP dot’s a f(,rward s(mrch frtmt the
ialt.bd stlttt, rt:vc,tuputiltg tim Imuristic in vv(.ry static.
whih: HSPr tit)its a l’t:grt.ssit,u s(.~Lr0’h fl’cJm th(. g0,:tl t’,,ut-
puling ~t .-uitalth. r(.prv.~vtttati,)u -f th(. h,.,trim.it .nly
om.v. Bt)th plmmvrs have .sht,wn Ko, td pvrfi)rman,’o.
.ftt.n lm-lu,’ing st dutic uts that a.rt. t’()lnpot it iv(" in tim("
mM numl)vr of at:ti, ms with the s.hlti(,us fi,m,d 
Graphld~at and SAT planno.rs. HSP and HSPr. h,,wvvt.r.
ar,~ uot optimal plaonrrs. This is Imcmts(. tht. |t(.uris-
tit’ fu|,cti, m is n.t ~ulntissil,h: aml tit(. s,.arch Mg,,rithnts
arv not ,,ptintal. In this palm/we addrvss this probh.m.
’~,Vc fi)rntulatv ,t now ,tthnissiblc Iwuristlc fin’ lflanuing.
us(~ it m guido :ut IDA* s(.art:h, a|ttl ,.mpirically (.val-
uate tit," result.trig optimM plann,’r ov(.r ~, llllllll)(.r 
dt nue.hta.
Tit(’ maiu c.ntrilmti,,n is tit(. id,’a un, h.riyivg tht"
Imuristic th~Lt yivhIs n.t (tilt" 11111". i’t whuh~ fim,ily of
Imlyutmlial att,I a, huissild," houristi,’s that Ira, b. av-
t:uracy fitr (’fiici(.ncy. Tim formulation is gt’not’~d and
sheds s.me light .n the hvuristics usvd ill liSP and
Gr~qfltplan. and their rohttitm. It cxphfits tim fact,,rvd
[Strips) rc.lm’s(’ntat.i~m c~f phtmting pr.bh.nm, mapping
sh,rtcst.-imt.h probh:ms in st,,tr-space into suit~tbly (l’r--
fln,’d sl.,rt(~st-patl, pr.l,hmls in otom-.~pacv. Tim fi)r-
vmlati-n applio.s with litt.lc vari:di-n to seqm.vtlal attd
Itaxallvl l)[anning, and prtddcms will, ditll.rt.nt m:tiou
,.,,sts.

Introduction
lISP and ltSPI" are t.wo recent planners that search tilt,
state-space using an hcltristic fiulction extract¢,d from
Strips encodings (Boner & Getfner 1999). HSP do(.s
a forward search from the initial state computing tht,
heuristic in every state, while HSPr does a r(.grossion
search from the goal. computing a suitable relm,sent;t-
lion of the heuristic only once. Both plmulers have
shown goo(l l)erfl)rtnant:e, often prod|tcing st)llltit)ns
that are COmlwtitive in time mad lmmber of actitms with
tlw sollttions hmml I)y Graphl)lan and SAT plamlers
(McDermott 1998).
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HSr’ ;utd HSPr. how,.w.r, nr(. ll,)t optimal l)lotstt~ r.~. This
is I.,,’;ulst~ tilt. Iwurisri," is .ot adnlissi],h, ;ttld th,. st,arch
;tlt~,)I’:tlttLlS are not el,ritual, t Gral)ht)laxi (Bhtnt & Fllrst
1995) and BIn.<’kbox (Kautz & Sl,lllmn 19991 ar- opti-
lnal Imralh’l ldannors that g, uarantv,, a ntininl~d nunll,,,r
of timc step.~ ill tlw plans foun([. Whih, optiutaliry is
llt)t always v. main concot’n in l)lanning, tht. disrin(’tion
lt(.t.wt’t’n .l)tim;d and nml-tq~tilnal ;dgorithuuts is rt.lt.v;ull.
in practict, aim is cruci;d ill I.hc(n’y wll(,l’t, tq,tixll;d anti
al)llrt)xilniue Vt’l’Sioll.S of tht, Sallle i)rol)hqn lll;ty I)t’lollR
to dilf(’rvut conqlh’xity cla.-st,s (Gart’y & .l,hnson 1971.)).

The goal of this paper is to a, hh’,,ss this issut,. Fnr
this. wo fi)rmltlat~, ;t new (l.nmin-indelmnd<.nr ttdmis-
sihh, ht,lu’istic fi)r plmming and its,, it for cOlnlmting
el}ritual i)lmls. The new h,,uristic is sinlld,, and gon,,ral.
all(l (’till lit’ illl(lorsrootl ~ts mapping tim shnrt(,st-l)ath
(l)lanning) prol)h.nl statr-slmce int o a sui lal,ly tle -
thl¢,d shortest-llatl, l,rol,h’m in olom-spttrv. This id,’a is
inlplicit in a nuntl,t.r of r(,c,.nt lllann(,rs. ~..g.. (Bhun
&: Furst 1.q95: McDt,rtnott 1996: Bom,t. l,otTim’s. &
(h.ffn,,r 1997): here Wl, iimk(, it t,xplici! and g,,qlr, ral.
The fi)rmulation al)l)lies with litth’ vm’iatio|t l.t} iwol)-
h,ms with tliff,.rt,nt action costs ;m(l l~andh’l ~,cti,ms.
and suggests cxttqlSiOllS for other cbmst,s t)f l)rublonts
such as l,rol,lenls witl, at:ti,ns with ditf(,rt.nt durations
((,.g,.. (Smith 8z Wdd 1999)).

Thv now lleuristic is Im.sed on con|lulling adnfissibh,
estimates of the costs of achit,ving s,’t.~ <if atoms fl’om
the initial state so. Wlwn the, size (}f these sets is 1. the
heuristic is equivalent to the h,,,~, heuristic c(,usidered
in (Bouot & Geffm’r 1999). When the siz,, is 2. for lm.ml-
h I ldannin.q, the ht.uristic is equivah,l,t h) tilt’ h,.uristic
lull)licit in Gral)hplm~. The eOnll)Utat.i.n thehem’is-
tic, however, does not luliId a l~Lvt’rvd gl’aph llor dims it.
rely on "mutex t’t,l~.ti(ms’. On the other hmut. its time
anti Sl)a(’e eoznl)h’xity is itolynonfiM izt N"*, where N is
the nund)er of atoms in tim l)rtd)h,nt and nl is tile size
of the sets considor,,(l.

For tim eXl)t,rinl~’nts ill /his i)al)t.r, we us(, tilt’ ht,,tris-
tic that i’(-sltlts fi’Oln sets of size ul = 2/atom pairs). 

t A l,euristic is n,,t ~ulmissibh" wl.,n it may .vort.stimah~
,q)t.lm~d c,,sts, whib. ~ strarch algorithm is m,t optimal wlton
it d.cs n.t g,tarantct" f.l,o .ptimality of tim s.l|tl.i,,ns found
(Nilss(m 1980: Pcm’l 1983).
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avoid tile reconq,utation of the heuristic in ew~ry state,
we take the idea fl’om HSPr and compute the hem’is-
tic once from the initial state and use it to guide a
regression search fi’om the goal.~ The search is per-
formed using the optimal algorithm IDA" (Korf 1985).
We c&U tit(, resulting optimal plammr HSPr’. With the
current implementation. HSPr" produces good results ill
sequential domains like Blocks WorM mid the 8-puzzle.
but weaker results on parallel domains like rockets or
logistics. This is in contrast with the non-optimal HSPr
pl,’mner that solves these problems very frost. ~Ve dis-
cuss these results, try to identify its causes, and draw
sonic COllChlsions.

The paper is orgmfized ,’m follows. We cover first
the relevant ba(’kground including the heuristics used
ill liSP and Graphpkm (Sect. 2). Then we introduce the
new heuristic (Sect. 3), review the ba.4c and enhanced
w:rsion of the IDA" algorithm that we use (Sect. ,1).
and report results over a musher of sequential domaius
(Sect. 5). Last we consider the extensions and results
fi)r parallel planlfing (Sect. 6) and close with a summm’y
and discussion (Sect. 7).

Background
HSP
HSP inaps Strips planning problems into problen,s of
heuristic search (Bonet &5 Geffner 1999}. A Strips prob-
h:m is a tuple P = (A, O. I. G) where A is a set of ate)ms,
O is a set of ground operators, aald I C_ A and G C_ A
(~ncode the initiM and goal situations. Tim state space
determined by P is a tuple S = (S, s0, S.G, A(-). f.,’)
where
1. the states s 6 S are collections of atoms from A
2. the initial state s. is I
3. the goal states s E SG m’e such that G C_ s
4. the actions a 6 A(s) are the operators op 60 such

that Prec(op) C 
5. the transition function f maps states s into states

s’ --- s - Del(a) T Add(.) for. 6 A(s)
6. the action costs c(a) are assumed to be 1
IIsp searches this state-space, starting, from st,. with an
heuristic fimction h derived from the Strips ret)rescn-
tation of the problem. A similm" approach was usq.d
heft)re in (McDermott 1996) .’rod (Beset. Loerincs.
Geffner 1997).

The heuristic h is derived as aa, approxinmtion of the
optimal cost flmction of a "relaxed" problem pr iu which
delete lists are ignored. More precisely, h(s) is obtained
by adding u1) the estimated costs .q,(p) for achieving
each of the goal atoms p from s. These (,stimaU~s axe
computed for all atoms p by performing, incremental
updates of tile form

9~(P) := rain [g.,(p),l+g.,(P’rcc(a))] (1)
ttEO(p)

ZThc heuristic c~ut also) 1.: us,’d in tl,~ 0:ovt.(,xt .f HSP.
Howcw:r, the overhead of computing tl.. l,’uristic iv every
state (h)t’s not al)l)ear 1)c(,ost-t:ff(u,tlv(, in gcn(,ral.

starting with g..(p) = 0 if p 6 s and g.(p) = x oth-
erwise, until the costs gs(P) do not change. In (1),
O(p) staa(ls fi)r the s(:t of operators that "add" p 
.q.~(Prcc(a)) stands fro" the estimated (’()st of the set of
atoms in Prev(op).

In lisP. the cost g,(C) of sets of atoms C is defined
,,-~ the sum of the costs g.,(r) of the individual atoms 

t"’~’’ld" C )"in tile set. %~re denote such cost as .is ( .-

add.--., def Zg~ t(J) .q~(r) (additiw: costs) (2}
T’~C

The heuristic h(s) used in HSP. that we call b,m,t(s), 
th(’n defined as:

h,,d, Hs) ’~[ g~dd(G) (3)

The definition of the cost of sets of atoms in (2) as-
stones that "sul)goals" are iy)dt’pe,d~))t. This is not true
ill general and m~ a result tile Imuristic may overestimate
costs and is m)t admissibh~.

An admissible heuristic can be obtaim.d by defining
tile costs .qs(C) of sets of atoms mq

g.:""’(C) = m~ .q~ir) (m~ costs) (4)
,’EC

The resulting "max heuristic" !,, ...... (s) g~’*"" (G) ixad-
missible but is not as infl)rmative a,~ h,,,ld(s) and is not
used in lISP. In fact, while tile "a(hlitiv(." heuristic com-
bines the costs of all subgoals, tile "max" heuristic con-
siders the most difficult subgoals only.

In HSP, tim heuristic It(S) and tit(, atom costs .q.~(p)
are COmlmted from scratch in every state s visited. This
is the main l)ottlem.ck in HSP and (’all take up t() 8,5t~ 

the coml)utation time. For this reason, HSP relies on 
foHn of hill-climbing search for getting to the goal with
a.q few state evaluations as possible. Surprisingly this
works quite well in many domains. In the AIPS98 Plan-
ning Contest. for examph:. HSP solved 2()’/u more prob-
lems than the Gral,hplm* aud SAT plalmers (McD(’r-
molt 1998). In many cases, how(~ver, tile hill-(:liml,ing
search finds poor solutions or no solutions at all.

ttSPr
lIsPr {Boner & Geffm.r 1999) ix a variation on HSP that
removes the need to recompute the atoln costs gs(P)
in every state s. This is achi(~ved by computing these
costs o..re fl’om the initial state and then performing
a rvgressio., search fl’om th(’ goal.3 In this search, the
heuristic h(s) ~L~so(:iaUM with any state s ix defim’d in
terlns of the costs g(p) = 9.o(P) computed front s,) as

= ~ !lip)It(s)
I )~ 

aR, ffa,,idis ~ut(l Vhdtava.s l)rr,pos(̄  a diff(.r,.nt way ft.’
aw)iding these r,.~:c,mputati,)ns. Rath(’r than (:alculating)h,:
h,mristiq:s by f,,rwm’d l,roi)agati~)n ~md ushtg it in a back-
ward s(:arch, tlmy (’Oml)utc tl,[" h,.lristi(" i)y l)m:kw~Lrd pr,)i)-
agation and use it t,) guide a forward s(:axch. So,’ (R.c:faatidis
& Vl)&av&u 1999).
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Since no)de evaluation in tIspr is fastrr than iu HSP.
HSPr us(’s a more systematic srar(’h algm’ithm that of_
ten produces better plans thml HSP ill less tillltt. 4 For
exmnp]e. HsI,r solves Pach of the 30 logistic l)robh,ms ilt
the BLACKBOX distributiou in 1Pss than 3 seconds each
(Bolwt & Geffller 1999}. HSPr, howevrr, is not better
than HSP across all 01ont;dns as the information resulting
fl’om the rreomlmtation of tit(" lwm’ist.ic in crrtain cases
aplw;trs to p;Lv off. Ill addition, the rt,gression search
oftell g¢,nel’ates states that t’allll.t)t i(,atl to ally solutioll
as they violate ba.~ic invarianrs of the domain. To Mle-
viat.c this prol,leln. H.~Pr identifies atoms l)airs that are
unroat’hablP front th*~ initial state (atemporal nmtexes)
aaltl ln’Unt"s the states flint cont:dn them. Tiffs is rut
idea. aclal)tr,d fi’om Graphplan.

Graphplan

Planning in HSPr consi.,ts of two l.h;mes. In tim first, a.
forward l)l’Ol),tg;Ltion is ttsed to COlnpttte the mt,asHres

[I(P) that estimate the cost of addeving each atom from
¯ ’~0- ill. I,lt(’ se(’Oltd, a regl’essioll search is porforllled ||s-
ing an hem’istir derived fronl those lltl*;~,Slll’(’s. Tlwsr
two phases are ill (’orresl)Olldt,ll(’p with the |,we pll;L,;ps
ill Graphl)lan (Bhnn &:Furst 1995). wlwl’e a plall gral)h
is built forward in the first l)[t;e~e, alld is st’aa’chrd I)a(’k-
ward in the secoltd. As argued ill (Bt)ll(’t ~.~ Ge~fller
1999). the l):~rallrl betw~’ru tht’ two l)lamwrs g()F,s 
|her. Gral)hl)lmt can also be mlch,rstood as all. lwuristic
st:arch 1)lammr I)ased on l)recise heuristic fum’titm he;
alld & stall.dal’d st,at’ell, algorithtn. The hetu’istit" hG(.’~)
is given hy tit.(, index j of the first level ill tit(" graph th;tt
contains tile atoms ill .~ without a mutex, alttl the search
algol’it.hnl is a version of It.erative Deet)(,ning A" (IDA’)
(Korf 19851 where tilt’ nu.m of the at’(’llllllllat(:~tt COSt and
the estilnated cost b.G ( n. ) is ttsed to prUllt, hi)des n whoso
cost. excee(l the current threshold (actually Graphl)lau
llt:v(,r Ot,ll.(,l’att~s Sllcll. llt)(lq,s).5

Wllile Gral)hl)lan alld IISPF t’&ll both l)r undt’rst.ootl
as heuristic st,arch l)lannrrs thry (liII’(,r ill thr. heuristic
ancl algorithms they use. In addition. HsPr is concertle(1
with (non-ol)tinlal) setlu(,ntial l)lamfing whih, Graph-
l)lau is conrrrn(’d with (optimal) t)arallt,l plamfing.

A new admissible heuristic
HSP alld HSPr (’flit b(, tlS(~(’l tO find good l)lans fast I)ttt not
prow|hie opt.hnal plans. This is beca.ttse they art’ I);u,~(,(I
Oil noll.=atllllissil)le hetlristics alld llOll=optilll.al st’arch
algorithnls. For finding optimal l)bUls, an athnissible

4The srm’(:h )dg(,ritltm in HSPr is con,ph’t(" lint is Ol)-
tilll.a]. (.)[)titl.tal algorithms suvh A" art’ tlc )t its (~d I)t,(’alts(:
they ta.k,, Ill(|re. t.il|i{~ and Sl)at’e, l-kttd sitl.(’c tim h(,tl.risti(: 
ltt)t vuh|tissihle they still (h)it’t gtt;.tI’ttntv(’ optiuzality.

:’ Wifhouf tll(:iuttizatillll., tit(. som’vh tdg, trithln in (~raph-
ill,t| is st;.)at|lard IDA’. W’ith mt.’moization, the s|mrrh algo-
rithln is a uu,mory=(.xt(,n(h~(l version .f IDA* (St?It & Bag(:hi
1989: Rein|’(rhl & M~trsland 1994} wh|!re tlw heuristic of ~t
node is Ul)(lated and stor(,d iu a ll.~,sh-tal)le ’Mter tlt(, search
|)em,ath its (:l,ihh’(,u c.uq)leh,s with(rot a s.lntiou (giwm 
(’urrt,nt tl,rcsl.)hl).
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heuristic that ,:all stffely prune large t)arts t)f the soarl:h
space is needed.

Tile non-athnissil,h, heuristic I).,,a,L usetl in llsp is tte-

rive|i as an appro.rimation of the optimal cost function
of a rela:r.rd l,roblem where deletes lists are ignored.
Tiffs fc)rlllltlation raises two problelllS. First. the ,.p-
proximation is not very good ,x, it iguores the positit,r
interactions among subgoals that ran make one goal
simpler after a s|,coml ore’ has beeu a(’hieved (this n,-
suits ill thr heuristic being non-admissil)le). Sr|’ond,
the rvla.ratioa is not good as it ignores the ncgativt:
interactions attmug sul)goals that are lost when (leletr
lists are discarded. Thrse two l)rol)lems have I)e|,n 
(h’essrd recrutly in the h0,uristic prol)osed by Refanitlis
anti Vlahavas (99). The l)roposed heuristic is more 
curate but it is still nou-admissible and larg(,ly ad-hoc.
H(,re wt, ;tim to formulate an heuristic that mhlrrsses
th#,se limita;ious lint which (’an be given a cle;tr justi-
fication. The, idea is simply to al)l)roxitttate the cost 
achieving any set of atoms 21 fro|l.l. .st) il). terms t)f the 
dm;aed costs of ac’hi|~ving sets of atoms/3 of a suit.able
small size n).. When "m = 1. w(’ al)l)roximate th|, cost 
ally s*:t t)f &|,|)Ills ill t,|~l’ltlS of Flit’ estilll;ttv|l (’()st til e
a.ttJms in t.h- set. Whcll ))t .== 2. w(, al)l)roximate 
rout of ally .’,,’t of ;ttolns ill |’Frills of tilt, estinlate(l cost

of the atom lmirs in the s|,t. and so on. In the first case
we will obtain the hem’istic h ...... .: in the .~econd, the
Gralfltplan hem’i.~tic, rtc. ’We mak|, these idea.~ l)rrcise
below.

The new h,,m’isl.i(: is <h’finrd it| terms of a r|,l+Lxed
I)r|)bh’nt, but t.lt(~ "original" and "r(daxrd" prol)h,nls 
fi)rntulated it|. a slightly (liffer(,nt way than heft,re. The
original l)ro])h’nt is Slq’:ll |lOW as a ,q~’ll.(Jlf’-,qol~rf’f." shortest-
path lm)blrm (Brrtseka.,~ 1995: Ahu.ia. Magn;mti. & ()r-
lin 1993). ill a single-sotlrce shortest path l)robh,nt oue
is int.rrested in finding th|, shortest paths fl’om a given
soHr|~e node to ew,ry other node ill a graph. Ill Ollr

gral|h, thr nodes are, the states s. the (dire(’t,,d) links
are the actious a that nlap olie state lille an|)ther, and
the link costs are given by the action costs r(a) > (I.
The source n|,(h, is the initial state so, and the (|li-
re(’trd) paths that connect so with a sl,:~te s correspond
to the l,/an.~ chat achieve s frolll SlI.

A way to solve this shortest-path l)roblem is by find-
ing th(: el)ritual cost flmcti|m V" over the nocles 8. where
V’(.s) eXl)ressos the cost of the optimal l)ath that COll-
nrcts su to s. This flmrtion V" can be chm’acterized as
the sohltion of the Bellman e|plation:°

V’(.~) = rain [,’(~0 + V’(.4)] (5)
(s’.a)~= R(.~)

where V’(so) --= 0 anti R(s) stands h)r the state-actitm
i)airs (s’.a) sm’h |.hat a maps s~ into .s (i.e.. a ~ A(s~)

and s = f(a. s’)).

CFor V* t() bp w(,ll-d(,fin(:d wll~ll S()ll).(~ st~tt(’s are not
reacl,~d)le fr()m .st). it suflicrs t,) assure(’ "|lum|uy" a|’ti()ns
with infinite ,’,)sts that (’t)m|ect st) with (.ach stat(" s.
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The shortest-path probh’nl defiued by (5} can be
solved by a number of algorit.hnm resulting ill a hem’is-
tic function V~ that perfertly estimates the distance of
any state s from so. Of course, there are two problems
with this idea: first, the solution of (5) is polynonfial
in [S[ but exponential in the number of atoms: and sec-
ond, the fimrtion V" Callnot I)e use(l (directly) to guith:
a regressiou search from tim go~d. This is because the
goal G does not denote a single state but a set of states
SG such that G C_C_ so. Thus fi)r guiding a regression
search from the goal. a cost time(ion must 1)e defined
over s~.ts of atoms A understood ;is representirlg the set
of states that make A true.

So we turn to a slightly different shoru:st-path for-
mulet.ion defined over sets of atoms and h’t G~ strand
for the optimal cost fimction in that space. For a set. of
atoms A. G’(A) stands for the optim~d cost of adfieving
the set. ,ff atoms A from so or alternatively, th., optimal
cost of achieving a state s where A hohls. The equat.ion
characterizing the function G" is

G’(A) = nfin [c(a) + G’(B)] (6)

where G~(A} = 0 if A C s. and R(A) refers to the set
of pairs (/3. a) such that B is the result of regressing
A through a. Fonn~,lly. this set is given by the pairs
(B.a) such that A f3 Add(a) O,A f 3 Did(a) = Oaml
B = A - Add(a} + P.rer(a). We call such set R(A) the
regwssion set of A.

In tht’ new shortest-l)~tth I)roblent the nodes are tim
l)ossible sets of atoms A and each pair (/3,a) in R(A)
stam|s for a directed link B -) A in the gral)h with cost
c(a). Such links can be understood as expressing that 
ran be arhiew~tl by the action, from any state s where
B holds. This shortest-path problem is not simph,r t, hml
the l,robh’nl (5) but has two benefits: first, the fimction
G" can tm used effectively to guide a regression search,
and se,’ond, admissibh, aplJrO;rimation.s of (7," can be
e;L~ily defined.

Lot G stand for a function with the saaue domain
as G" and let’s write G < G" if for any set of atonts
A, G(A) < G’{A}. It’s simph, to check that if G is
the optinlal cost time(ion tff a lnodified shortest path
prolflem obtained by the addition of "links’, G < G"
must hohl. Likewise. G < G" must hohl if links B ~ A
are replaced by links /3~ -r A of the santo cost where
B* is such that G’(/3’) G’(B). Wecanregard I)ot
modifications as "relaxations" that yiehl cost time(ions
G that are lower bounds on G’.

With these considerations in miml. let’s consider the
relaxation of the shortest-path prohh, m (6} where the
links/3 ~ A for "large" sets of atoms B, i.e., sets with
size [B[ > m. for some positive integer m, arc replaced
by links B’ ~ A where B’ is a subset of/3 with size
[B’[ = m. Since B’ C B in,plies G’(B’) < G’{B}. it
follows fl’om the arguments al)ove that the optinaM cost
function G’" of the resulting ln’ol)lem must be a lower
bmmd on G’.

This lower bound function G" is (’hm’acterize(I I)y tilt,

following equations:

G"(A) = 0 if A C s,, (7)

G’"(A) = rain [c(a) G’"(B)] (8)
(B,a)EB(A)

if ]A[ < m &: A ~= so. and

G’"(A) = max G’"(B) if ]A] > (9)
BCA.IB]=.t

For any positive integer m, the cmnph,xity of (:om-
puting Gm is a low polynomial in the number of nodes
(the number of atom sets A with size ]A] ecoal to or
smaller than m) (BertseL~s 1995: Ahuja. Magnanti. 
()rlin 1993). G’" is thus a polynomial and admissible
approximation of the optimal cost function G’. The
approximation is based on defining the cost of "large’
sets of atoms A in E(pmtion 9. in terms of the costs
of its "smaller" parts. Equations 7 and 8. on the otlvw
hand. are conmmn to both G"’ and G’.

For m,y positive, integer m, we define the heuristics
lff #t as

h"’(A) ~’ G’"(A) (10)

The heuristics It", fi,r m = 1.2 .... are all admissible,
and they represent different tradeoffs between accuracy
and efficiency. Higher-order hem’istics are more accu-
rate but are: hartler to compute. For arty fixed value of
m. the colnputation of the hem’ist.ic h’’~ is ~, low polyno-
mial i*l Nm, where N is the tmntber of atoms. Below we.
consider the concrete fi~rm of these heurist, ics fi~r m = 1
~ul(l .m. = 2. In both (’~,-~es, we use the Strips representa-
tion of a(’tions to characterize the regression set R(A)
in equation (8) which is the key e, pmtion defining th(,
flmctions G’".

The Max-atom heuristic

For m = 1, the heuristic h’" reduces to tim heuristi,’
h ...... considered above. Indeed, for sets A = {p} of
size 1. the regression set R({p}) is give** by the pairs
(Prer(a).a) for a E O(p). where O(p) stands for the
set of actions that "mid" p. As ares, dt, equation (8) fi)r
G~tt [)eco111es

G~({I,}) = rain [,:(..) G~(P’rec(.))]
aEO(p|

The resulting shortest-path l)roblem Call be solved
by a number of label-corre(’ting algorithms (Bertsekas
1995; Ahuja. Magnanti. & ()rlin 1993). in which esti-
mates gl({p}) art. update(l incrementally as

gt({p~) := rain [q~({p~), e(a)+g~(Pr,:r(a))]
u60[p)

until tht,y do not (:hange. starting with 91({p}) 
if p E so and gl({p}) = z¢ otherwise, Following (7)
and (9)..q(0) is set to 0 gl(A) tbr ]AI > 1 is
set to max~,EA 9*({P}). When the updates terminate,
the estimates g1 can be shown to represent the f, mc-
(ion l t hat solw~s e, p lations ( 7-9) ( Bertsekas 1995:
Ahuja, Magnm,ti. & Orlin 1993). The COlnplexity of
these algorithms varies according to the order in which

Haslum 143

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



the updates are perfi)rnlPd, yet it’s always a low poly-
nomial in the mmd)er of n(,(h~s {atoms sets A with size
IAI <_ ’").

The computation of tilt: heuristic h.,,,,,,, descrihed
abovP corresponds to this procedure, and thus h.,,,,,,. =
ht. In othvr words, h ...... ix the hvuristic obtained by
al)proxinmting tlw cost of svt.~ of atoms I)y thr cost of
the most rostly atom i,. the set. The heuristic is ad-
missible but is not sufficiently infin’matiw,. The choico
in HSP an,l HSPr w,~. to apl~roximatc thr cost of sets of
atoms in a diffen,nt way as the sam fg the costs rg tier
atoms in the set. This aplwoximation yiol,ls an bern’is-
tit" that is moro infl)rmative but ix not a, hnissilfle. Tlu,
option now is to considvr tlw hem’istirs h."’ fi)r highor
vahws of m.

The Max-pair heuristic

If wr let ()(’p&q) refer to tim set of actions that ad, l
both p an(i q. mid O(plq) it> tlw set of actiotLS that ~dd
~’J 1)ut do not a(hl or ,h,leto q. llw equation (8) fltn" m 
alHL A : {p.q} becomes

G:(lP.q}) = ,,fi,~ { ,hi,, [,.(,) + C,-~(Pr,.,.(o))]:
*z~.¢.)(l,,~q}

mi,, [,,(.) C;’(t’,’,.,.(.)u {q})]:
r~:t)(pIql

rain [e(a) G2(P,’,:,’(a) 0 {l ’t)]}
fL;5()lq p}

wlfih’ the equ.ati,.m for A : {Pt 1.,.c,.m.,s

G’({p}) = mi.. [,’(,’,.) + G21P.,’,,"d..))]
o,~5 f)(pl

As beti~re tliesr eqlmt.iollS (’all 1)~’ t’OllV¢’l’t¢~d illto updates
for computing the val,m of the flul(’l, iolI G2 over all s,,ts
of at.ottls with size less t.hmt or equal t.o 2. This t’Omlm-
tat.ion remains imIynondal in the Itllll|I)(’r of atoms and
actions, and can be conlpHted rea.~omd)ly fast. in most
of tile (]onl;tillS "~,’o have’ vonsidev’,,,I. We ,’all tlw hPIIl’iS-

tic h2 = G2. the m.ax-pair.s hem’istic to distinguish it
from the ma.r.-atom hruristic h.1.

The cousideration of atom. ludr.s for the computation
of thr heuristic h2 is closoly relat.ed to th,. consideration
of mute.r, pairs in the computation of thr hem’istic ha
in Graphplan. A distinction betwren h~- and ho is that
the former ix defined for arbitrary action, ro.ds and m’-
quvntial plann.i,.g, while the latt(,r is dofinod for u.n.it.ary
rosts mid parallel plaunin.ff. Later on. we will introdu(’e
a definition amdogous t.o h: fi~r Im~nlh’l plmming that
is equiwflent to Gnqthplan ha.

Higher Order Heuristics

Equations 7 10 define a fanfily of heuristics h" = G’’~
for m. _> 1. For each value of m. the l’esulting hem’is-
tie is a, hnissible and polynomial, lint the coml)lexity of
the sequence of heuristics hT" grows exponentially with
m. The experiments we have perfl)rmed are limited to
h." with m = 2. Certainly. it shouM be possiifle to
ronstruct domains where higher-order hem’istics wouM
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be rost-(,ffective, hut we havrn’t explor,,d that. A simi-
lar situation exists in Gral)hl)lan with the romlmtatiou
of lligher-order nmt(,xes IBlmn & Fro’st 1995). Higher-
,)rd(.r iwm’isti(’s may l,rove effectivr Colnplox domains
like the 15-tmzzle. Rulfik, ;rod Hanoi wherr subgoals in-
tera,ct ill comiflex ways. The chalh,ngr is to (’Omlmt, 
such lwurist.ics efficirutly and uso thrm with litth, owu’-
lmad at run time.

Algorithms
Below we usr the lleuristi(’ h" in l.he contrxt of an IDA"
search (Korf 1985 }. Thr IDA" algorithm consists of a sr-
qm’nce of del)th-lirst s(.arclws extended with an h,,nris-
tit" flm(’tion tt and ;m upper bomM l~aram(,ter UB. Dur-
in~ the search, nodes n for which the stun of the accu-
mulatud cost g(n) aml predirt.rd cost h.(,) ex(’rrd 
ttlqJrr bOnlul UB are Imtn[~d. hdtially. UB ix s,,t t.o the
ILem’istir wdue of the root node. and after it faih,d trial
t;l3 is svt t,) tlw cost .q(~’t)+ h(n.} of t.he lrast-rosl, llodf~

that wax pruned in that trial.
IDA" is gum’aul eed to find optim;d sohtt, iotls when t.lw

hem’istic h is admissibh,, but mdikv A" it. ix a lim,ar-
lllq’lllOl’y algol’it hlll. Memor.v-enhan,’t.d ’,’Ol’siolts of IDA"

hav[t I’J~’Oll ,h’fim"d for saving vim,’ sm’h as tlnose relying
on transposition tabh,s (Rriufi’hl ,(: Marsland L99.II. 
thr experimrnts below we rvport the rrsults of IDA"
with and without transposition t.abh.s.

’rh,, lwrformancr of IDA" is oftell sensil)le to the or0 h’r
in whi,’il tlw children of a node are seh’(’trd for ,,Xlmal-
sion (this aff,,ct.s the la.~t iter:tli,n of IDA’). hi S¢)IIII’
of tllp oxpel’illlPllts wo i1se ;tit al’l)itl’ary llo~h, ol’di.l’illg

whih, in others wr rhoos~ the ordrring ,h"trrmivn,d by
the. :~dditive lletu’istic h.add fl’olil liSP.

Commutativity Pruning

In pla.mfing lwolde.ms, it ix conlnton for ditfrr,,ut actiou
St’qll¢~lltN-’S to h,ad to the Sallll~ stati’s, [,illq’;tF-llll’illOl’y

algorithms like IDA* (It, ltol" dett’t’t this and illay end

up vxploring the same fl’agment.s of th(’ svarch spaco 
nmnber of times. This prol)lem rau often b,, all,,vi;~t.rd
by vxploiting certain symuwtries.

Let’s say that two operators a and at are vom~n.ttto-
tir¢ if nrither one (h,h,tes atoms in the prrcomlition err
add list of the othrr, mad that am’t of art.ions ix c(m|-
mutatiw, when all the actions in the set ;u’e pairwise
COmlllHtatiw’. C.OllLntHtatiw’ a¢’tiollS l.htts COl’l’pSlntltd to

tlw actions that ran I)r done in l~aralh,! in Gralflqdan or
Bla(’klmx. aaul can be rerognizod ~lticiPntly at rompih’
time.

Ch,~,.rly thv order in whid~ ~ srt of commutative a(’-
tions is applied is irrelevant to the resulting outcol.ue.
A sinq)lv way to elimim~te the consideration of aLl or-
derings except one. is by imposing; a fixed onh,ring "-~"
on all art.ions (o.g,., see (Korf 19981). A branch con-
taiuing a rontiguous sequence of ronmmtatiw, actions
ax. a.2 ..... a,, is then arcepted when it (’Omltlivs with
this ordering (i.e.. when ai -~ a2 -< "" -< a,) and is
rejected otherwise. This means that a I)ranch in tilt,
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s(:axch tree (:all be pruned a.u soon as it contains a se-
quen(:e of two consecutive connnutative ;~tiollS al. ai+l
such that al ~- ai+l. We refer to this fm’m of pruning
as commutativity pruning.

Results
We call the plaamer obtained by (’onlbining the 2

heuristic with the IDA" algorithm, HSPr’. HSPr" is an

optimal sequeuti;fl plammr. The current implementa-
tion is in C. The results below were ol)taiued on a Sun
Ultra 10 running at 440 Mhz with 256 RAM. In the
tirst experiments, we consider a nunfl)er of (mostly) 
quential ¢lomains and compare HSPr" with two state-
of-the-art planners: STAN 3.0 (Long & Fox 1999) aald
BLACKBOX 3.6 (Kautz $t Sehnaal 1999). Both of these
plaamers are optimal parallel planners, so they mini-
mizc the numl)er of time steps but not m:cessarily tim
number of actions.

Table 1 shows results over instances fl’om the blocks
world, 8-1mzzh:. grid, aal(l gripper domains. The for-
mulation of the blocks-world is the one with the three
¯ move" actions. The notation blocks-± denotes an in-
st,’m(:e with i blocks. The 8-puzzle is a familiar domain
(Nilsson 1980: Pearl 1983). The lna,ximunl distance be-
tween at’ty two (re,’~:habh,) configttratiotm is 31. The
grid mad gripper instmwes correspond to those used ill
the AIPS Planning Contest (McDermott 1998).

In the tabh,, #S and ~:A stand for the mlml)er of
time steps ,’ul(I the nmnber of ~tions in the plazL For
sequential planners we report the mmaber of actions
while fi)r parallel planners we report both.

Tile numbers in Table 1 show that ow,r these domains
the perforntance of HSPr" is conq)arable with STAN and
slightly lmtter thaal 13LACKBOX. These numbers, how-
ever, are just an ilhtstration as th(: iflanm,rs ¢:ml I)e run
with a mmff..r of different options (STAN was run with
the default options; BLACKBOX was rllll with the com-
pact simlllifier and the SATZ solver). An important dif
feren(’e between the three planners is the use of memory.
STAN and BLACKB()X Iise of a lot of memory, and when
they fail, most often is due to memory. Ill HSPr=, lneln-
ory does not appeal" to be such a prol)lem. Ill grid-2.
for example. HSPr" rml fi)r almost eight hours mltil it
finally found an optimal solution. This is not good time
performance, I)ut illustrates the advantages of using lin-
ear memory. STAN proved superior to both HsPr" told
BLACKBOX ill the gripper domain where it apparently
exploits some of the synunetries in the domain {Fox &
Long 1999).

Tile r~sults for HSPr" ill these experiments were ob-
tained using the three enhancements of IDA" discussed
in the previous section: commutativity pruning . a
transposition table with 10~ entries, and noth~-orderiug
given by the heuristic h,~,ld. These are general enhance-
ments and most often they speed up the search. For
testing this, wc raal some experiments on the blocks
world problems with all possible combinations of these
enhancements. The results axe shown in Table 2. where
the numh(~r of nodes exp,’mde(l (#N) and total time 

are reported. While in the small problem, the enhance-
ments make no difference, in the l,’u’ger l)robh,ln they
do. Howew.~r, the payoffs do not always add up: for ex-
aanple, commutative pruning (Corn) cuts the run time
significantly when used in isolation but makes little (lif-
ference when node-ordering (Ord) aatd a transposition
tabh: (TT) are used.

Table 3 displays the quality of the heuristic h.~" ill (’onl-
parison with the optimal cost of tlm problem, and tim
time tak(,n by the search with respect to the total time
(that also includes tile coml)utation of the heuristic}.
It can be seen that the heuristic provides reasonable
bounds in the block-world problems but poorer bounds
in the other domains. In the 8-puzzle. the heuristic
seems to be weaker than the donlain-delmmlent Man-
hattan distance heuristic but we hav(,n’t lnadc a de-
tailed comparison. In most domains, the time for com-
l)uting the heuristic is small when c, unpm’ed with the
seaa’ch time. The exception is the grid (tomain wlmre
the computation of the heuristic takvs most of flu, time.

We have tried to run HSPr= over standard parallel
domains like logistics ;ul(l rockets but after lnany hours
we didn’t obtain any results. The most ilnportant cause
for this is that for those domains the heuristic It’, whi,-h
estimates serial cost, is a poor rstimator. In parallel
domains, there are maaly indel)endent subgoals, and in
that cm~c the additive laeuristi,: h,,,za l)ro(hwes better
estimates. Imh~rd, the nou-optimal HSPr ldamler that
uses the h,,aa heuristic solves these l)r(d)lems very fa.¢t
(Boner & Geffner 1999).7 The admissibh, heuristics b"’
detined in Sect,. 3. however, can be modified so that the.y
estimate paralh:l rather thaal m:rial cost. Ill that case,
the estimates are tighter and can be used to ¢:Omlmte
optim~d paralh.’l plans.

Optimal Parallel Planning

Heuristics for Parallel Planning

The dcfiuitiou of the heuristics It’" can be modified
to estimate panlllel rather than serial costs by simply
,:hanging the interpretation of the regression set R(A}
appearing iu the equation (8). This equation chm’ac-
terizes the (’,)st fim(:tion G"(A) for the sets A g s. and
[A[ _< m and is reprodu(’ed here

G"(A) = rain [c(a) G"’(B)] 1111
( B,t,::’C:.RI 

Recall that R{A) contains the pairs (B. a) such that B 
tim result of regressing A through action a. For malting
IV" = G’" ml estimator of l,arallel cost. all we need to
do is to let a range over the set of parallel actions, wh(:re
a lma’allel action stands fi)r a set of pairwise compatible
((’onunutative) actions.

We illustrate the result of this chrmge fi)r m = 2.
We denote by G~’ the cost function asso(’iat(~(l with 

rTh.: r(mstnt for this. howcv(,r, is not only tit,., h,:nristi."
but "Ms() th4~ scaxvh alI~t)rithm. Tit(: u,t~-¢)l)tim.M s~’m’(’ll 
rlthm in ttsPr can r(:m’h tile, goal l)y i~valuatlug much [trw(:r
m)&,s than IDA’.
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STAN BLACKB()X HSPr"

Timo #S #A Time #S #A[ Time #A
11.4 4 I0 1.0 4 11 0.45 6
2.0 5 14 6.9 5 15 1.29 9

102.7 8 25 136.,16 14
89.9 31 31 63.53 31
62.0 31 31 67.23 31
0.5 20 20 89.0 0.51 20
1.5 14 14 14.2 8.4.1 1-1

7:55h 26
0.07 3
0.11 9

30.17 15
* *

blocks-9
1)locks- t l
I)locks- 15
ci)411t- 1
,’i~ht-2
eight-3
gri,t- l
grid-2
grippor- 1
gripper-2
grit)per-3
gripper-4

20 20
14 14

0.0 3 3 0.0 3 3
0.0 7 9 0.3 7 9
0.1 12 15 55.2 11 15

* * *2.1 17 21 i__

Tabh, h P(~rfl)rnmn(’,, ,’mnl,arison ovvr s,:quential dora;rills. A long dash ( ) in, li,-at.es that the t,latu,’r exhaustetl
the awdlal,h, memory mul a star (’1 in, licar,,s that n,) s,,l,tti,m w;m found after 12 hours. All times are in seconds.

()l’tit’ns ])locks- 11 I)lovks- 
()r,l TT C, om #N Time #N Tim,’

h,stanc(~ Opl.. h.(.ro,,t) Nodes Tinio S,,aa’(’h
I,I,)cks-9

off off off 11168 6.44 134680 3-t58.96 blocks-ll
off off on 640 3.65 30145 566.50 i)h,cks-15
,,ff on off -1811 3.17 29831 876.27 eight- t
,,ff on ()It -1{i6 2.95 11255 236.56 eight-2
,m off ,dr 137 1.17 51241 1280.82 eight-3
on off <,u 96 0.93 301169 591.73 gri.l-t
on on off 93 11.98 6280 165.25 gril)l-’l’- I
on on on 87 0.93 7580 159.12 gripl)er-2

gril,p(’r-3

Tal)h, 2: Effects of IDA" (mhancenu,nts in tit(, numl,er
of nodes expmuh.,d and time taken by HsPr’. Time ill
s(~#’ollds.

l,ar,.llcl problem, and h:t ()(l’.q) stm,d fOl’ the set o[
compatible pair.~ of actions a and aI such that p anti q
I)elong to Add(,) U Add(,.’). We, asmtum now that MI
t)rimitivv and parallel actions luwe unifln’m (’ost c(a) 
1.a The definition of G~, then takes tim forth:

G~,({I,.,11) = rain { rain [I + G,2,(P,’e,’(a))]:
¢*’:: f )( P&:’l 

,nix, [1 + G~,(Pre,’(,)0 l’re,’(d))]:
(a t’161911, q)

,,ti,, [t + c ,,( p,., ,.t ,, ) {q})l}
r,g()(t"1’1)

min [1 ’",,,:,,,,,,,,) + cJT, t u {i,})11

where the only chanu;e from the definition of .~eria.l G~"

is in the second liue: the p,.mllvl action a&a’ is M-
h,w,,,l to establish the pair of a, tOlllS p&q at the (’(,st of 
prindtiw, action. The equations for G~,(A) for sets with
size [A[ 5£ 2 relnain the same ;m I)efi)re. Th," resldting
heuristic h.~’, = 67,. unlike the heuristic ha. is a.dm.is.~ibh..

Slt.’s not oh’m" what tlm (:,,st. uf a l,arMh:l m:tiou sh, mhl
1)(: wit,’,, l)rimitiw" actions lmv(. dith.rent (’oats.

6 5 9 0.45 0.02
9 7 87 t.29 0.42

14 11 6630 136.46 132.45
31 15 172334 63.53 63.34
31 15 182195 67.23 67.116
211 12 564 0.51 0.211
14 14 14 8.,t4 0.08
3 3 3 0.07 0.011
9 .1 275 0.11 0.02

15 .1 37166,t 30.17 30.06

Tal,l(. 3: Results fin" Seqll(:ll| i;d l)l’oblems disl)laying Ol,-
t.imal ~,ttt(] estilnate(l costs, exl)muled nodes, an(l l,otal
VS. s(,al’(’h tilll(-:. Winte ill s(,t:on(]s.

for parallel l)la.nning. Actually h~, can I)(, shown U, 
eqlfivalent to the helu’isti," hG used in Gral)hl)hut wimre
hc;[s) st;rods for tho first 1;Lver in the l,bm gr)q)h that
iuvlmles the atoms in s without a lnutex. For prov-
tug this. it is sui-ticieut to show that h.c. complies with
the equations fc)r G~,, and this (:an l)c done iI,hwtively
st arting with layer 0.

State Space for Parallel Planning

The siuq)l(’st way to ,tse tim heuristic h.~, It) find ,)l)ti-
real l)aralh,l l)l;uls is I,y performing a regressiou search
frolll the goal with aat algorithm like IDA" lint replacing
the primitivv actions with the possible parallel actions.
The l)robleIu with this idt.a, however, is that it does not
scale up; indeed, if the branching factor (if the original
l)roblem is b. the I,rmlclling factor of the "parallel" prob-
lem may I,, 2t’. While the sohtti(m length tit tim l)ar’,dlei
Sl)aCe will I)(.’ stnalh:r, the growth thebrmt,:hivg fat:tor
nlakes the scheme iml)ractical.

A second apprt)ach is to retain the I)randting struc-
ture from the serial setting b,t eh;mge tl,e cost sirra’-
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ture. Tile cost of an action a in tilt: scrim setting is uor-
really uniform. In the parallel setting, it ,’aa1 be defined
in terms of the pre(:~Ming actions. Tile result is that
total cost will mea.~ure time steps rather than action
occurrences. This can be achieved lly setting tile cost
of aal action to 0 when the action is conlpatible with the
¯ last" actions in the search tree. and to 1 otherwise {the
¯ last" actions detlned in a suitabh: way). The problem
with this space in that it makes the heuristic h.~, not ad-
missible. Admissibility can be restored by suf~tracting
1 fi’onl the value of the heuristic yet this transformation
makes the heuristic much less powerfid.

We have thus settled on a third alternative for fiml-
ing optimal parallel plmls that follows the scheme used
in Graphplata. The resulting search space can I)e char-
a(:terized m~ follows:

States: the states are triples (Old. Neu..Aets),
where Old and New are sets of atonls, mul Acts in a
set of pairwise compatilfle l)rimitive actions.

Branching: the chihlren of a state (Old. New, Acts)
are. obtained by apl)lying all the primitive ac-
tions a that add the first atoln p in Old attd
~a’e (’onqmtible with all the a,:tious in Act.s.
For each such action, the resulting state is
(Old - A(a), New + P(a). A,’ts {a}), wh ere Pia)
an,l A(a) stmul for the ln’ecomliti, m and ;uhl list 
a respectively.

No-Ops: actions No_Op(p) with i,recondition mld
add list equal to p are assmned for each atonl p

Costs: a dummy action that is the sole action ap-
plicable in the states (O.A. Acts) is a.~sumed. Such
action has cost 1 and leads to the state (A, O, O). All
other ~wtions have cost I).

Heuristic: the heuristic of a state (O/eL New, Actn)
ris giw:n 1)y h7,(2% e’w), which in non-overestimating.

Init and Goal: the initial state of the regression
is (0, G, O). where G is the goal. and the goal skates
are (@.A, Acts) fi~r A C s,. where So is the initial
situation.

Ill relation to Graphplal,. the set ,ff atoms Ohl in
the state (Old, Nrw. Acts) ,’an be thought as the list of
atoms iu layer i that haven’t been regressed yet, New
staauls fi)r the atoms in layer i - 1 that have been ob-
tained from the regression so far. and Acts encodes the
a,’tions that have I)eeu used to obtain those atoms.

We will refer to the planner that results from the
use of t, he IDA" search ow:r this space, parallel HSPr" or
IISPr(p)’. Below we report results of this planner over
some stmtdaa’d pm’allel domains aald compare it with
two state-of-the-,’u’t parallel planners and the original
version ,)f Graphplan.

HSPr(p)" lla.~ three main a.~l)e(’ts in common 
Gral~hplan: the heuristic, the search space, mid the
search ,algorithm. On the other hand, Ilser(p)" does
not use a plan graph. The l)lan graph plays two roles
in Graphl)lan. First. a~ld most important., it encodes

the heuristic. This aspect is captured by the use of the
h~, heuristic in nsPr(p)’. However. the plan graph also
stores information that nlakes the IDA" search more ef-
ficient: it makes regressions fa.~ter, it nev(:r generates
nodes that will be pruned, etc. Indeed, the IDA" search
in Gz’al~hplan takes the form of a "solution extraction"
algorithm ill the plan graph. This second rol of the illaaa
graph is not captured in HsPr(p)’. On the positiw~ side,
liSPr(p)" re, plires less memory att(1 can easily 1)e modi-
fied to use other search algorithms such as A" or WIDA*

(Korf 1993). Such chmlges (’ml be accommodated 
Graphplan but provided the plml graph is used nminly
for representing and computing the heuristi(: and not
for solution extraction.

Results for Parallel Planning

Table 4 shows results over some standard paxallel do-
mains. On the "rocket’ problems, HSPr(p)~ appears to
be slightly better than Graphplan. while in the "logis-
tics" problems. Graphplan is detinitely superior. These
diiferences are likely due to the use of the pl,’m graph.
As the cohmms for STAN and BLACKBOX show. neither
Graphpl,’m or HSPr(p)" ar¢: state-of-the-m’t over these
domMns. Nonetheless. STAN iS a Graphplan-ba,~ed plml-
ner that solves the logistics prol)lems quite fa,~t.9

To fiu’ther (’ompare the speed of HSPr(p 1" and Graph-
plmt we gem’rated al)proximately 45 lnediuln-sized, ran-
dom logistics instances solvable by both HSl,r(p)~ and
Gral)hplan. For the reasons above, we didn’t exl,ect
riser(p)" to approach the speed of Graphplml lint 
did expect Hsr’r(p)" to renlain within an order of mag-
nitude. In 30 of the problems, that was the case. How-
ever. in 12 problents w~ found HSer(p)" to be fl’om l{I 
75 times slower than Graphplaal. and in 3 l~robhmls we
found nSPr(p)" to be between 75 mid 200 times slower.
These differences in speed are llrobably not only due to
the use of the planning graph in the. search but also to
the node ordering used in both planners. Graphl)lml.
for example, tries No-Op actions first, while ltsPr(p)"
tries them last. Similarly, in tIsPr(pJ ~ we have found
it convenient to order the atoms in Old ill tile state
(Old. N,:w, Acts) by increasing value of the mhlitive
heuristic h,,d,v While these choices help ill a mtmber
of examph:s, they also hurt in others, and thus poten-
tially amplify the differen(:es in performance over some
of the instances.

Discussion
In this paper we have formulated a framework for deriv-
ing polynomial adlnissible heuristi,:s for sequential and
parallel plmming, and have evaluated the performance
of dm Ol)t, imal lflanner that results from using one of
these heuristics with the IDA" algoritlnll. The. work
sheds light Oil tile heuristics used in HSP all(l Graph-
plan, and provides a more solid b,x~is fi)r pursuing the

°For St|lilt’ I’¢~I.S1111, STAN di,lu’t solw~ t|ll: rc,,’kvt probl,.ms.
Aplmrcmtly. this is it ling thltt will he fixed.
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Probleln HSPr(1))" GRAPHPLN STAN BB()X

rocket.a 9(I.5 100.0
rocket.l) 68.6 31[).0
h)g.a 3:12:20 0:20:35 0.4
log.I, * 0:9:39 2.0
log.c * (1:215) 

1.8
2.3
2.l

l(I.4
47.[)

Table 4: Time (:ouq)arison over l,arallel &)mains. 
hmg dash ( ) imlicatrs that thv plamwr Pxhanstpd tim
availrd)h, memory and a StaL" {*J indicates thra no soln-
lion w;m folttttl after 12 h, ntrs. ht the notation h. : m : s.
h.. m. and s stand fla’ hours, minutes, and seconds re-
Sl)rctively. Otherwise. times are in srcon, ls.

¯ pl;uming as lu,m’istic s,,ar(’h" al)lWOadL B~l,)w w,, dis-
cnss bri-lly related work and s(mw open imdflems.

Graphplan: In (Boner &: Gvfl’ner 1999). Gral)hl)lall
was d,,s(’ril)ed a.,+ mt henrist.ic sean:h plantwr l)a.,~,.,l
Oil ;UI IDA" .~carch and a hem’istic hc;(s) giv<,n by
thv first Layer in the plan graph that cont;dns tlw
atoms in .,+ without a nuttex. In this paper, we haw,
taken this view fnrther, providing an explanation and
a genoralizati, m of that he, u’istic, and +,valuating a
ptu’e IDA" ]flanner with resprct to (;raldH)lan. [tt
Graphplan, the plan graph plays two roh,s: ir.’s nsed
tot" COlnlmt.ing and reln’esenting tiLe heuristic. ;uu/for
making the IDA" search ,herr (,fl’h’ient. These usvs
rxpbfin thr efficiency of Graphplan in cumparison to
lm,vions planners. ()n the oth,, hand. it’s not clrar
wh(.ther the plan gr;q)h will l)e suitable, for (’Oml),tt.ing
and rt,l)r,,senting higher order h,,nristirs (h."*. for t)) 
2) and searching with otlwr algorithms.

Heuristics: higher-onler heuristics may prove etf(.<’-
tire in domains like the 15-1mzzle. Hanoi. Rnl)ik, etc.
where subgoals interact in comph:x ways. Th(. chal-
lenge is to compute mtcla houristi(’s f~mt. eno,tgh and
to us(’ I,h(,m with little overhefttl at. rutt-t.inm. Higher-
order (max) henristics as (letin(,d in this pal)(’r 
related to the henristi(-s 1):).sed patteru databases
(h,fined in (Cnll)(,rson & Schaeffer 1998}. Korf 
Tayh)r (96) disvnss ways fi)r gq:nerating hybrid hrnris-
tics involving both "max" and "additive" operations
that may also i)rov( , usefld in plamfing.

Algorithlns: the heuristics defined in this paper
have been used in the context of the IDA" algorithm.
In a mttnber of domains, how(:ver, a I)(,st-lirst, see’oh
may [)rowP more convenient. Whrn Ol)l.imality is not
all ismw. variations of A" and IDA" wll+’I’(’ tilt’ hf’m’isti,"
is multil)lie<l I)y :~ constant W ) I may sl)eed ttl) 
search considerably (Korf 1993), making th(, r(,sulting
planner competitive with tlm lISP a,ll(l HSPr planners
over domains like Hanoi and Tire-world. where the
ad<litive lmuristiv is not ad(’quate.

Branching: in highly par:dlel <tonmins like rockets
and logistics, SAT approadws appear to do best. This
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lllay ])e 1t11(’. tO th(: I)randfing so.heel, ;ts(,(J (se(, (Rinta-
nen 1998)). In SAT fi)rnmlations, the spat(, is <,xl)loretl
by setting l,lw vahm of mty varial)h, al. any tim+. point,
and then (:onsi(lering each of the resulting st at.(’ [)ar-
tit.imls so()ar+d(,ly. In lt+,uristic m,ar(’h al)proa(’hrs, 
splitting is c:otutnonly don(. ])y ;.l)l)lyit.g all l)<)ssil)l(:
a(’tiOliS. Alternativ(, I)l’alwhillg scht,lll(~S, ht)wever, 

(’o,nnmu in henristic branch-an(l-l)ou,td s(,arch l)ro(’o-
<[m’,,s (Lawler & Ritmooy-Kan 1985). mid l:h,.y m+Ly
i)rt)v(~ relevant in phuming.

We hor)e to explore some of these i(h:a.~ in the fntnre.
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