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ADMISSIBLE-LEVEL sl3 MINIMAL MODELS

KAZUYA KAWASETSU, DAVID RIDOUT AND SIMON WOOD

Abstract. The first part of this work uses the algorithm recently detailed in [1] to classify the irreducible weight modules

of the minimal model vertex operator algebra Lk (sl3), when the level k is admissible. These are naturally described in

terms of families parametrised by up to two complex numbers. We also determine the action of the relevant group of

automorphisms of ŝl3 on their isomorphism classes and compute explicitly the decomposition into irreducibles when a

given family’s parameters are permitted to take certain limiting values.

Along with certain character formulae, previously established in [2], these results form the input data required by

the standard module formalism to consistently compute modular transformations and, assuming the validity of a natural

conjecture, the Grothendieck fusion coefficients of the admissible-level sl3 minimal models. The second part of this work

applies the standard module formalism to compute these explicitly when k = − 3
2 . This gives the first nontrivial test of this

formalism for a nonrational vertex operator algebra of rank greater than 1 and confirms the expectation that the methodology

developed here will apply in much greater generality.

1. Introduction

1.1. Background. Vertex operator algebras are versatile algebraic structures that have made numerous contributions

to the fields of mathematical physics, representation theory, number theory and geometry, to name but a few. They

are arguably best known as a rigorous algebraic axiomatisation of the chiral part of a two-dimensional conformal field

theory. Some of the earliest families of vertex operator algebras to be studied were those constructed from untwisted

affine Kac–Moody algebras [3]. When restricted to nonnegative-integral levels of these algebras, the associated

conformal field theories describe strings propagating on (compact, connected, simply connected) Lie groups [4, 5].

In this case, the conformal field theory is rational and the category of modules of the vertex operator algebra is a

modular tensor category. In particular, the celebrated Verlinde formula holds for the fusion multiplicities [6–9].

There are, however, many other interesting levels that one can consider such as the nonintegral admissible levels

of Kac and Wakimoto. The corresponding vertex operator algebras are no longer rational, but the characters of the

highest-weight modules span a representation of the modular group [10]. Unfortunately, the Verlinde formula gives

negative fusion multiplicities in these cases [11], an inconsistency that led some in the research community to declare

that nonintegral admissible levels might be “intrinsically sick”. Nevertheless, vertex operator algebras with these

levels are useful in studying nonunitary coset models [12] and are essential for studying W-algebras via quantum

hamiltonian reduction [13, 14].

The explanation for these negative fusion multiplicities was eventually isolated in [15] for the vertex operator

algebra L−1/2(sl2) (and later extended to all Lk (sl2) with k admissible [16, 17] and many other vertex operator

algebras [18–26]). The problem lies with the fact that the character formulae of [10] are analytic continuations of the

formal power series that encode the graded dimensions of modules. Because these continuations do not completely

distinguish irreducible modules, the Verlinde formula returns (Grothendieck) fusion multiplicities for a quotient

category of (virtual) modules. To obtain the correct (Grothendieck) fusion multiplicities, the fix [16] is to consider a

much larger category of modules and treat their characters as distributions rather than meromorphic functions. This

fix was dubbed the “standard module formalism” in [27, 28].

Whilst there is much evidence for the validity of the standard module formalism, including direct comparison of

the results with independently obtained fusion multiplicities [29–32], it has thus far been mainly tested on vertex

operator algebras that one could describe as being “rank 1”, like Lk (sl2). More precisely, the so-called standard

modules for which the formalism is named form a 1-parameter family in most examples. In the few cases where

a second parameter is needed, see for example [18, 19, 25], the additional parameter is the eigenvalue of a central

element of the mode algebra, a relatively trivial generalisation.
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In this paper, we report what we believe is the first application of the standard module formalism in a genuine

rank-2 example, this being the admissible-level affine vertex operator algebra L−3/2(sl3). We moreover set up the

general results needed to extend this application to Lk (sl3), for any admissible k, the intent being to analyse this

generalisation in the near future. In fact, we emphasise the language of parabolic subalgebras throughout so that

the reader will appreciate the means for, and difficulties inherent in, generalising to all admissible-level affine vertex

operator algebras.

1.2. Results and outlook. Let us describe our results in more detail. The first is the classification of all irreducible

weight Lk (sl3)-modules when k is admissible (Theorem 4.5). While this classification was previously obtained by

Futorny and collaborators using Gelfand–Tsetlin combinatorics [33], see also [34–36] for further recent progress,

our proof is very different. It follows from Arakawa’s celebrated highest-weight classification [37] by applying a

vertex-algebraic generalisation of Mathieu’s theory [38] of coherent families, see [1] for the details underlying this

methodology.

This classification is not our main result however. Experience with nonrational vertex operator algebras has

shown that a much finer understanding of the irreducible modules in the weight category is necessary. In particular,

one needs to know the explicit action of the invertible functors obtained by twisting with automorphisms of the

underlying vertex algebra. For Lk (sl3), these are the automorphisms of the root system of sl3 and the spectral flow

automorphisms of ŝl3. The results are quite intricate and are reported in Propositions 4.6 to 4.8.

A second point is that the nonhighest-weight irreducible Lk (sl3)-modules form continuously parametrised (gen-

eralised coherent) families. However, these parametrisations may be naturally extended to include certain reducible

Lk (sl3)-modules and it is these reducible modules that are crucial for the correct understanding of the modularity

of the weight category. In Propositions 4.9 and 4.10, we determine their composition factors explicitly. These

two refinements to the irreducible classification are new and, as already mentioned, are necessary for a serious

investigation of the further properties of the weight category.

These refinements serve as our first main result. Our second is then a serious investigation of the weight category,

specifically of its modularity. This is significantly complicated by the fact that the relevant characters, themselves

the result of highly nontrivial calculations [2], are almost never linearly independent. However, this is not the

case for precisely one (nonintegral) admissible level: k = − 3
2
. Specialising to this level, we compute the modular

S-transforms of these standard characters (Theorem 5.4) and then combine this with our first main result to calculate

the Grothendieck fusion multiplicities for all irreducible weight L−3/2(sl3)-modules (Section 5.5). This relies on

the conjectural “standard Verlinde formula” of [27,28]. These modularity investigations constitute our second main

result. The fact that the multiplicities are indeed found to be nonnegative integers is a strong endorsement of the

applicability of the standard module formalism to higher-rank nonrational vertex operator algebras.

A natural question to ask is how one can bypass the linear dependence problem for other (nonintegral) admissible

levels. An identical (and in fact closely related) issue arises with the characters of Zamolodchikov’s,3 minimal

models [39]. Whilst the modularity of these rational vertex operator algebras has been known for at least thirty

years, see [40] for example, a correct derivation of the modular S-matrix only appeared recently in work of Arakawa

and van Ekeren [41] because of the linear dependence of the irreducible,3 characters. This derivation required

the development of technology to compute with generalisations of characters called one-point functions. These

functions only differ from characters by the insertion of an additional zero-mode and, with the right zero-mode, the

one-point functions of the irreducible weight modules are indeed linearly independent [42]. Unfortunately, explicit

formulae for these functions are unknown.

This work nevertheless opens the door to exploring the modularity of weight Lk (sl3)-modules for all admissible

levels k. They key here is the inverse quantum hamiltonian reduction functors introduced by Adamović in [43], see also

[44]. These can be used to deduce remarkable character formulae for certain irreducible Lk (sl3)-modules. Indeed,

since this paper was written, it has been shown that the string functions of some of these modules are irreducible

characters of the Bershadsky–Polyakov minimal models [45]. As these Bershadsky–Polyakov characters have string

functions that were shown to be irreducible,3-characters in [46], it only remains to lift the Arakawa–van Ekeren
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one-point function modularity from,3 to Lk (sl3). Since this paper was written, the lift to the Bershadsky–Polyakov

minimal models has in fact appeared [26]. The remaining lift is however not quite as straightforward as the modules

considered in [45] may not exhaust the standard modules of Lk (sl3) in general. We hope to report on this in the

future.

A second natural question to ask concerns the obvious conjecture that Lk (sl3) admits logarithmic weight modules,

these being modules on which the Cartan zero-modes act semisimply but the Virasoro zero-mode acts nonsemisimply

with Jordan blocks of finite rank. Experience with Lk (sl2) [29,30,43,47] indicates that such modules surely do exist

and, again, since this paper was written, their existence has been confirmed [45]. Unfortunately, the structure of the

known logarithmic Lk (sl3)-modules remains mysterious — even their composition factors are unknown. However,

a companion paper to this one [48] combines the results presented here with a conjectural logarithmic Kazhdan–

Lusztig correspondence to posit not only composition factors but also complete Loewy diagrams and fusion rules

(but only in the special case k = − 3
2
).

In this context, the work reported here represents an important part of a rapidly advancing program to understand

the representation theory and modularity of higher-rank affine vertex operator algebras and W-algebras. With the

methodology being carefully selected to facilitate generalisations, we expect to uncover a beautiful general theory for

weight Lk (g)-modules at (nonintegral) admissible levels k that significantly extends that of the well known integrable

highest-weight modules that describe the spectrum when k a non-negative integer.

1.3. Outline. The paper is organised as follows. In Section 2, we fix our conventions for the (finite-dimensional)

Lie algebra sl3, summarise pertinent properties of its automorphisms and outline Mathieu’s celebrated classification

of its irreducible weight modules (with finite-dimensional weight spaces) [38]. In Section 3, we similarly fix our

conventions for the affine Kac–Moody algebra ŝl3, introduce the affine automorphisms called spectral flow and

discuss the Zhu-inductions [42] of the irreducible weight sl3-modules. We also explicitly identify the result of

applying spectral flow to such a Zhu-induced module (when the result is again positive-energy).

The simple admissible-level vertex operator algebras Lk (sl3) are then introduced in Section 4. After reviewing the

admissible weights of Kac–Wakimoto, we quote a specialisation of Arakawa’s famous classification of highest-weight

Lk (sl3)-modules [37]. This is the input required by the algorithm presented in [1] to classify the irreducible relaxed

highest-weight Lk (sl3)-modules. We present the results of this algorithm and thereby obtain explicit conditions for an

irreducible weight ŝl3-module to be an Lk (sl3)-module. This result is naturally presented in terms of vertex-algebraic

generalisations of coherent families.

After comparing this classification with the nilpotent orbits in sl3, we carefully analyse two features of the resulting

families of irreducibles. First, we identify the isomorphism class of the result of twisting any of the irreducible weight

Lk (sl3)-modules by an automorphism. We also determine the composition factors of the reducible Lk (sl3)-modules

that naturally arise when the parameters appearing in our classification take certain limiting values. Both analyses

are rather intricate, but are essential for the standard module formalism computations that follow.

Finally, Section 5 specialises to the level − 3
2
. First, we identify a set of standard modules for L−3/2(sl3) and note

that their characters are linearly independent. We compute the modular S-transforms of these standard characters and

then use the result to calculate the Grothendieck fusion multiplicities for all irreducible weight L−3/2(sl3)-modules

from the conjectural “standard Verlinde formula” of [27, 28].
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Figure 1. The roots (white) ofsl3 in (the real slice of)h∗ along with the weights of the fundamental

sl3-modules (black). Here, we set Λ3 = Λ2 − Λ1 for convenience. The coordinates _1 and _2 are

identified as Dynkin labels.

2. The finite-dimensional Lie algebra sl3 and its weight modules

In this section, we introduce our notation and conventions for the simple Lie algebra sl3, its automorphisms and

its weight modules. For convenience, we shall assume here and throughout that the definition of a weight module

requires that every weight space is finite-dimensional.

2.1. The simple Lie algebrasl3. Let�8 9 denote the 3×3 matrix whose entries are all zero save for that corresponding

to row 8 and column 9 which is instead 1. The Lie algebra sl3 is the complex vector space spanned by the traceless

matrices

43 = �13,
41 = �12, ℎ1 = �11 − �22, 5 1 = �21,

42 = �23, ℎ2 = �22 − �33, 5 2 = �32,
5 3 = �31, (2.1)

equipped with the matrix commutator as Lie bracket. We fix the Cartan subalgebra to be h = spanℂ{ℎ1, ℎ2} and

normalise the Killing form so that its only nonvanishing entries, with respect to the basis (2.1), are

^ (48 , 5 9 ) = ^ (5 8 , 4 9 ) = X8 9 , ^ (ℎ: , ℎℓ ) = �:ℓ , 8, 9 = 1, 2, 3, :, ℓ = 1, 2. (2.2)

Here, � =
(

2 −1
−1 2

)
denotes the Cartan matrix of sl3. In what follows, the pairing of the dual space h∗ with h will be

denoted by 〈−,−〉 while the bilinear form on h∗ induced from ^ will be denoted by (−,−).
With this data, we describe the root system Δ of sl3 using the following conventions:

• The simple roots, denoted by U1 and U2, correspond to the simple root vectors 41 and 42, respectively.

• The simple coroots are ℎ1 and ℎ2 while the (dual) fundamental weights are denoted by Λ1 and Λ2, respectively.

• The highest root is denoted by U3. Its root vector is 43 and its coroot is ℎ3 = ℎ1 + ℎ2.

When convenient, the element of (2.1) that defines a root vector for the root U will also be denoted by 4U . If U is a

positive root, then we will also use the notation 5 U = 4−U . We illustrate these roots and weights in Figure 1.

The weight and root lattices of sl3 will be denoted by

P = spanℤ{Λ1,Λ2} ⊂ h∗ and Q = spanℤ{U1, U2} ⊂ h∗, (2.3)

respectively. The set of dominant integral weights will be denoted by P> = spanℤ>0
{Λ1,Λ2}. The integer duals, with

respect to 〈−,−〉, of P and Q are the coroot and coweight lattices

Q∨ = spanℤ{ℎ1, ℎ2} ⊂ h and P∨ = spanℤ{b1, b2} ⊂ h, (2.4)

respectively. The fundamental coweights b1 and b2 thus satisfy 〈U8 , b 9 〉 = X8 9 .
As sl3 is a rank 2 simple Lie algebra with exponents 1 and 2, the centre of its universal enveloping algebra U(sl3)

is a polynomial ring in two generators & and �, where & is quadratic in the basis (2.1) and � is cubic. Explicit
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expressions for these generators are easily found:

& =
1

3

(
ℎ1ℎ1 + ℎ2ℎ2 + ℎ3ℎ3

)
+ ℎ1 + ℎ2 + ℎ3 + 2

(
5 141 + 5 242 + 5 343

)
, (2.5a)

� =

(
ℎ1 + 2ℎ2 + 3

) (
2ℎ1 + ℎ2 + 3

) (
ℎ1 − ℎ2

)
+ 95 141

(
ℎ1 + 2ℎ2 + 3

)
− 95 242

(
2ℎ1 + ℎ2 + 3

)
+ 95 343

(
ℎ1 − ℎ2

)
+ 275 1 5 243 + 275 34142 . (2.5b)

We remark that the factors ℎ1 + 2ℎ2 + 3, 2ℎ1 +ℎ2 + 3, and ℎ1 −ℎ2 appearing in� commute with the generators 41 and

5 1, 42 and 5 2, and 43 and 5 3, respectively.

2.2. Automorphisms of sl3. The automorphisms of Δ come in two flavours: the 6 inner automorphisms of the Weyl

group W � S3 and the 6 outer automorphisms obtained by composing a Weyl symmetry with theℤ2-symmetry of the

Dynkin diagram. Together, these automorphisms form the dihedral group D6 � S3 ×ℤ2. We denote the simple Weyl

reflections by w1 and w2. The reflection corresponding to the highest rootU3 is denoted by w3 = w1w2w1 = w2w1w2.

The actions on h and h∗ are thus

w8 (ℎ) = ℎ − ^ (ℎ,ℎ8)ℎ8 and w8 (_) = _ − 〈_,ℎ8〉U8 , 8 = 1, 2, 3, ℎ ∈ h, _ ∈ h∗ . (2.6)

Note that _8 = 〈_,ℎ8〉 is, for 8 = 1, 2, the 8-th Dynkin label of _. We also recall the shifted action of W on h∗:

w8 · _ = w8 (_ + d) − d = _ − (_8 + 1)U8, 8 = 1, 2, _ ∈ h∗ . (2.7)

Here, d = Λ1 + Λ2 denotes the Weyl vector of sl3.

The automorphism corresponding to the Dynkin symmetry is denoted by d and acts by

d(ℎ8 ) = ℎd(8) and d(Λ8) = Λd(8), (2.8)

extended to h and h∗ by linearity. Here, d acts on 8 ∈ {1, 2, 3} as the transposition (1, 2). We also have dF8 = Fd(8)d.

The automorphism c = dw3 = w3d is called the conjugation automorphism. It acts on h and h∗ as −1 times the

identity and so is central in D6: cw8 = w8c. Extending the shifted action to D6 gives

d · _ = d(_) and c · _ = −_ − 2d, _ ∈ h∗. (2.9)

Each of these root system automorphisms may be extended to an automorphism of sl3 and we shall use the same

notation for these extensions as for their restrictions to h. These extensions are not unique, but we shall fix one choice

arbitrarily for each automorphism of the root system, noting that different choices will not affect what follows. The

resulting set of sl3-automorphisms does not satisfy the defining relations of D6, in particular those corresponding

to reflections need not square to the identity. However, we still have the property that each extended automorphism

l maps the root space labelled by the root U into the root space labelled by l (U). It follows that the extended

automorphisms define a projective action of D6 on sl3.

We shall make frequent use of twisting representations of sl3 by automorphisms. This amounts to applying the

automorphism before acting with the representation morphism. As we prefer to keep representations implicit, we

implement this twisting notationally through the language of modules as follows: Given an sl3-automorphism l

and an sl3-module M, define l∗ (M) to be the image of M under an (arbitrarily chosen) isomorphism l∗ of vector

spaces. The action of sl3 on l∗(M) is then defined by

G l∗(E) = l∗(l−1(G) E), G ∈ sl3, E ∈ M. (2.10)

In other words, l (G)l∗(E) = l∗ (GE). In view of this natural property, we shall, from here on, drop the star that

distinguishes the automorphism l from the corresponding vector space isomorphism l∗.

The extensions of the root system automorphisms therefore define autoequivalences on the category � of weight

sl3-modules. However, it is not clear if these functors may be chosen to give an action of D6 on this category because

the extensions do not satisfy all the defining relations of D6. Nevertheless, we have a well defined D6-action on

the set of isomorphism classes of weight sl3-modules. As we are mostly concerned with identifying modules up
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Figure 2. The weight support of a generic irreducible highest-weight module L` (left), a generic

irreducible semidense module S_[` ] (middle) and a generic irreducible dense module R_[` ] (right)

for sl3. In each case, we indicate a weight `, noting that the coset in the semidense and dense cases

is [`] = ` +ℤU1 and [`] = ` + Q, respectively.

to isomorphism, this will suffice for what follows. We remark that this action is obviously structure-preserving. In

particular, it preserves irreducibility.

2.3. Irreducible weight sl3-modules. Recall that a parabolic subalgebra is one that contains a Borel subalgebra.

Every irreducible weight module over a simple (finite-dimensional complex) Lie algebra g is isomorphic to a module

obtained by the following procedure [49]:

• Choose a parabolic subalgebra p of g and an irreducible dense module D over the Levi factor l of p.

• Extend D to a p-module by letting the nilradical u of p act trivially.

• Take the irreducible quotient of the induced g-module Ind
g
p D.

Here, a dense module is a weight module whose weight support (its set of weights) coincides with a coset of h∗/Q,

where Q is the root lattice of g. Such weight supports are clearly maximal among those of all indecomposable weight

modules. We mention that irreducible dense modules are also called cuspidal and torsion-free in the literature.

Irreducible dense modules are known to only exist in types A and C [49].

For sl3, there are four distinct parabolic subalgebras, up to twisting by W � S3:

• The Borel subalgebra b = spanℂ{41, 42, 43, ℎ1, ℎ2} with Levi h and nilradical spanℂ{41, 42, 43}.
• The subalgebrap = spanℂ{41, 42, 43, ℎ1, ℎ2, 5 1} with Levi l = spanℂ{41, ℎ1, ℎ2, 5 1} � sl2 ⊕ gl1 � gl2 and nilradical

u = spanℂ{42, 43}.
• The subalgebra d(p) = spanℂ{41, 42, 43, ℎ1, ℎ2, 5 2} with Levi d(l) = spanℂ{42, ℎ1, ℎ2, 5 2} � sl2 ⊕ gl1 � gl2 and

nilradical d(u) = spanℂ{41, 43}.
• The entire algebra sl3 whose Levi is also sl3 and whose nilradical is 0.

When the parabolic is b, the procedure above starts from an irreducible dense h-module. As this is one-dimensional,

the result is an irreducible highest-weight sl3-module, classified up to isomorphism by its highest weight ` ∈ h∗. We

shall therefore denote it by L` . The weight support of a generic L` is illustrated in Figure 2 (left). This irreducible

may be twisted by an automorphism (autoequivalence) l . In general, this results in an irreducible highest-weight

module with respect to a different choice of Borel, namely l (b). We remark however that d preserves the standard

Borel b, so d(L`) � Ld(`) . Moreover, we have w8 (L` ) � L` , for 8 = 1, 2, if and only if `8 ∈ ℤ>0.

When the parabolic is p, the procedure instead starts from an irreducible dense l-module, l � gl2, that is the

tensor product of an irreducible dense sl2-module and a one-dimensional gl1-module. In [38], Mathieu classified

the irreducible dense modules over a general reductive Lie algebra g, with Cartan subalgebra h, by showing that each

may be uniquely realised as a direct summand of an irreducible semisimple coherent family

C =
⊕
[` ]

C[` ] . (2.11)
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Here, the sum is over cosets of the weight support of C modulo the root lattice of g. A coherent family of g-modules

is defined to satisfy the following conditions:

• The dimension of the weight space C(`) is independent of the weight ` ∈ h∗.

• The trace of the action on C(`) of every* in the centraliser of the Cartan, U(g)h, is a polynomial in `.

We recall that U(g)h is the subalgebra of U(g) consisting of all weight-0 elements. The direct summands C[` ] are

always dense and, in fact, are irreducible for all but finitely many [`]. A coherent family C is said to be irreducible,

if some C[` ] is irreducible, and semisimple, if every C[` ] is completely reducible.

For g = l � sl2 ⊕ gl1, it is easy to show that U(l)h is a polynomial algebra in the Cartan basis elements and the

quadratic Casimir. It follows that an irreducible dense l-module has 1-dimensional weight spaces, hence so do the

corresponding coherent families. Let U denote the simple root of sl2 and let 4 and 5 be the corresponding positive

and negative root vectors, respectively. Then, 5 4 ∈ U(l)h acts as a (nonconstant) polynomial in ` on the C(`), hence

it acts on some C(`) as zero. It therefore follows that this C(`) is either spanned by a highest-weight vector or

C(` + U) is spanned by a lowest-weight vector. We may choose, among the ` satisfying this property, one whose

sl2 Dynkin index has minimal real part. Denote this weight by _. It then follows that every coherent family of l-

modules possesses a reducible direct summand C[_] with a composition factor isomorphic to an infinite-dimensional

highest-weight module with highest weight _.

Conversely, every irreducible infinite-dimensional highest-weight l-module yields, via the twisted localisation

functors introduced in [38], an irreducible coherent family with the highest-weight module as a composition factor.

This may then be semisimplified if an irreducible semisimple coherent family is desired. Moreover, two irreducible

infinite-dimensional highest-weight modules yield isomorphic (irreducible semisimple) coherent families of l-

modules if and only if their highest weights, _ and _′ say, satisfy _ = _′ or _ = w1 · _′.1
It follows that irreducible semisimple coherent families of l-modules (and hence dense l-modules) are classified

by irreducible infinite-dimensional highest-weight l-modules (modulo the shifted action of the Weyl group of l). We

shall therefore denote an irreducible semisimple coherent family of l-modules by C
_ , where _ is the highest weight of

one of its infinite-dimensional highest-weight composition factors, noting again that _ is only determined uniquely

up to the shifted action of the Weyl group. We also note that the direct summand C_[` ] is reducible if and only if

[`] = [_] or [w1 · _].
Returning now to the construction of irreducible sl3-modules corresponding to the parabolic p, note that the

weight support of the irreducible semisimple coherent family C_ of l-modules is the coset _ + ℂU1 ∈ h∗/ℂU1. That

of the irreducible dense l-module C_[` ] then coincides with some coset [`] ∈ h∗/ℤU1, where ` ∈ _ + ℂU1. In other

words, we have [`] ∈ (_ + ℂU1)/ℤU1. The weight support of the irreducible quotient of the sl3-module induced

from C_[` ] then coincides with

` +ℤU1 − ℤ>0U2 = {` +<U1 − =U2 :< ∈ ℤ, = ∈ ℤ>0}. (2.12)

We shall refer to this irreducible quotient as a semidense sl3-module, denoting it by S_[` ] . The weight support of a

generic S_[` ] is illustrated in Figure 2 (middle).

Twisting S_[` ] by an automorphisml again results in a new irreducible semidense module corresponding to l (p).
In particular, we obtain all the irreducible semidense modules for the parabolic d(p) in this fashion. Note also that

twisting S_[` ] by w1 results in the semidense module S_[w1 (`) ] , because w1(p) = p.

It therefore only remains to consider the case in which the parabolic is all of sl3, hence the corresponding

irreducible modules are dense. In this case, the irreducible semisimple coherent families of sl3-modules again have

irreducible infinite-dimensional highest-weight submodules. But as the weight multiplicities of a coherent family

are uniformly bounded, the same must be true for these submodules. A weight sl3-module is said to be bounded if it

is infinite-dimensional and its weight multiplicities are uniformly bounded. Mathieu’s work [38] then classifies the

irreducible semisimple coherent families C_ of sl3-modules in terms of the highest weight _ ∈ h∗ of any one of their

1If we were considering coherent families of d(l)-modules instead of l-modules, then the Weyl reflection appearing here would be w2.



8 K KAWASETSU, D RIDOUT AND S WOOD

(necessarily irreducible) bounded highest-weight sl3-submodules. Again, _ is only unique up to the shifted action

of W.

We shall therefore denote an irreducible dense sl3-module by R_[` ] , where [`] ∈ h∗/Q is the weight support and

_ ∈ h∗ specifies the unique (up to isomorphism) irreducible semisimple coherent family C
_ of sl3-modules with

C_[` ] � R_[` ] . The weight support of a generic R_[` ] is illustrated in Figure 2 (right). It turns out that every W-twist of

a semisimple coherent family results in an isomorphic semisimple coherent family [38]. However, twists by d (and

hence c) need not preserve the isomorphism class. An easy way to see this is to note from (2.5b) that c, which acts

on the defining representation (2.1) of sl3 as � ↦→ −�) , sends the cubic Casimir � to −�.

3. The affine Kac–Moody algebra ŝl3 and its weight modules

The focus of this section is the affine Kac–Moody algebra ŝl3, its associated affine vertex algebras and their

(smooth) weight modules. We assume that a weight ŝl3-module has finite-dimensional weight spaces, where a

weight space is defined to be the intersection of a simultaneous eigenspace of h ⊕ ℂ ↩→ ŝl3, where  denotes the

central element, and a generalised eigenspace of the Virasoro zero mode (derivation) !0.

3.1. The affine Kac–Moody algebra ŝl3 and its associated vertex algebras. The affinisation of sl3, with respect

to the normalised Killing form (2.2), is

ŝl3 = sl3 ⊗ ℂ[C, C−1] ⊕ ℂ , (3.1)

where the Lie bracket is defined by

[G ⊗ C<, ~ ⊗ C=] = [G,~] ⊗ C<+= +<^ (G,~)X<+=,0 , [G ⊗ C<,  ] = 0, G,~ ∈ sl3, <,= ∈ ℤ. (3.2)

We shall usually follow standard practice in abbreviating G ⊗ C< as G< .

There is an obvious decomposition of this affinisation into subalgebras:

ŝl3 = ŝl>3 ⊕ ŝl03 ⊕ ŝl<3 ;

ŝl>3 = spanℂ{G= : G ∈ sl3, = ∈ ℤ>0}, ŝl03 = spanℂ{G0,  : G ∈ sl3}, ŝl<3 = spanℂ{G= : G ∈ sl3, = ∈ ℤ<0}.
(3.3)

With this generalised triangular decomposition, we may extend an arbitrary sl3-module to an (ŝl>
3
⊕ ŝl0

3
)-module by

letting  act as some multiple k ∈ ℂ of the identity and ŝl>
3

act trivially. This may then be induced to an ŝl3-module.

The resulting ŝl3-module is called the level-k affinisation of the original sl3-module.

If we affinise the trivial sl3-module in this fashion, then we obtain a parabolic Verma module of highest weight

kΛ̂0, where Λ̂8 denotes the 8-th fundamental weight of ŝl3. It is well known [3] that this module admits the structure

of a vertex algebra with strong generators and (operator product expansion) relations given by

G (I) =
∑
=∈ℤ

G=I
−=−1, G (I)~(F) ∼ ^ (G,~)k1

(I −F)2
+ [G,~] (F)

I −F , G,~ ∈ sl3, (3.4)

where 1 denotes the identity field. For k ≠ −3, the Sugawara construction gives a conformal structure for which the

G (I) with G ∈ sl3 are Virasoro primary fields of conformal weight 1. Recalling that ℎ3 = ℎ1 + ℎ2, we have

) (I) = 1

2(k + 3)

[
1

3

(
:ℎ1 (I)ℎ1 (I) : + :ℎ2 (I)ℎ2 (I) : + :ℎ3 (I)ℎ3 (I) :

)

−mℎ1(I) − mℎ2(I) − mℎ3 (I) + 2
(
:41(I) 5 1 (I) : + :42 (I) 5 2(I) : + :43 (I) 5 3(I) :

)]
(3.5)

and the Virasoro modes defined by) (I) = ∑
=∈ℤ !=I

−=−2 have central charge

c =
8k

k + 3
. (3.6)

The vertex operator algebra constructed on this level-k parabolic Verma module is said to be universal. We shall

denote this universal affine vertex operator algebra by Vk (sl3). It is simple unless the level k ≠ −3 has the following
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form [50]:

k + 3 =
u

v
, u ∈ ℤ>2, v ∈ ℤ>1, gcd{u, v} = 1. (3.7)

If u ∈ ℤ>3 in (3.7), then k is said to be an admissible level [10]. When k satisfies (3.7), we shall denote the (unique)

simple quotient of Vk (sl3) by A2 (u, v) and refer to it as an sl3 minimal model.

3.2. Automorphisms of ŝl3. The automorphisms l ∈ D6 of the root system Δ of sl3 all lift to automorphisms of

ŝl3 that act trivially on ℂ[C, C−1],  and !0. We shall use the same symbols to denote these lifts as in the previous

section. Apart from these lifts, there is another important family of automorphisms of ŝl3 known as the spectral flow

automorphismsfb , parametrised by elements b of the coweight lattice P∨ ⊂ h. More precisely, these automorphisms

represent the translations in the extended affine Weyl group W̃ = W ⋉ P∨ and act on ŝl3 and the Virasoro modes

explicitly as follows:

fb (4U= ) = 4U=−〈U,b 〉, fb (ℎ=) = ℎ= − ^ (b,ℎ)X=,0 ,

fb ( ) =  , fb (!=) = != − b= + 1
2
^ (b, b)X=,0 ,

b ∈ P∨, U ∈ Δ, ℎ ∈ h, = ∈ ℤ. (3.8)

Here, b= = b ⊗ C= is the =-th mode of the affine field b (I) corresponding to b ∈ P∨ ⊂ h, as per (3.4). We note that

the root system automorphisms l ∈ D6 and the spectral flow automorphisms fb , b ∈ P∨, satisfy

fbfb
′
= fb+b

′
and lfbl−1 = fl (b ) , (3.9)

where the action of D6 on P∨ ⊂ h is the usual one given in (2.6) and (2.8).

All of these ŝl3-automorphisms define automorphisms of the level-k vertex algebras corresponding to Vk (sl3)
and their simple quotients A2(u, v), though spectral flow does not preserve the conformal structure, hence does

not give automorphisms of the vertex operator algebras themselves. Consequently, these automorphisms induce

autoequivalences of the category �̂k of weight Vk (sl3)-modules, which we identify with the category of smooth

weight ŝl3-modules, and the full subcategory �̂u,v of weight A2(u, v)-modules (when k satisfies (3.7)). We shall

again use the same symbols to denote an automorphism and the associated autoequivalence. As in Section 2.2, the

induced action of these automorphisms on the set of isomorphism classes of modules in �̂k or �̂u,v satisfies (3.9).

We record, for future convenience, how weights and conformal weights change under spectral flow. Let E be

a weight vector in some level-k ŝl3-module. If its weight is a and its conformal weight is Δ, then the weight and

conformal weight of fb (E) are

a + kb∗ and Δ + 〈a, b〉 + 1

2
^ (b, b)k, (3.10)

respectively, where b∗ = ^ (b,−) ∈ h∗. The weight follows from

ℎ0f
b (E) = fb (f−b (ℎ0)E) = fb ((ℎ0 + ^ (b,ℎ) )E) = 〈a + kb∗, ℎ〉 fb (E) (3.11)

and a similar computation gives the conformal weight.

3.3. Irreducible weight ŝl3-modules. We can construct many families of smooth level-k weight ŝl3-modules, hence

Vk (sl3)-modules, by affinising the sl3-modules introduced in Section 2. Moreover, the affinisation of an irreducible

sl3-module will have a unique irreducible quotient. We shall indicate this irreducible quotient with a hat: M̂ is the

irreducible quotient of the level-k affinisation of M. In this way, we arrive at irreducible smooth level-k ŝl3-modules

denoted by L̂` , Ŝ
_
[` ] and R̂_[` ] . We shall refer to these as highest-weight modules, semirelaxed highest-weight

modules and relaxed highest-weight modules, respectively.2 We emphasise that the weights _ and ` appearing in

this notation are sl3-weights: _, ` ∈ h∗. They, of course, completely determine their affine counterparts _̂ and ̂̀
because the latter are fixed to have level k.

Given any ŝl3-module N̂, the vectors of minimal conformal weight (should any exist) are relaxed highest-weight

vectors in the sense that they would be genuine highest-weight vectors except that the requirement to be annihilated

by the 48
0
, 8 = 1, 2, 3, has been relaxed, in other words removed. Such vectors are also known as ground states. If N̂

2We remark that under the general definition in [51], all of these modules would be examples of relaxed highest-weight modules. However, in

this case the nomenclature introduced here is convenient and so we shall adopt it, hoping that no confusion will arise.
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is a quotient of the affinisation of an irreducible sl3-module M, then its space of ground states is called the top space

of N̂. It is, moreover, isomorphic to M as an sl3-module. The conformal weight of the ground states of L̂_ , Ŝ
_
[` ] and

R̂
_
[` ] is

Δ_ =
(_, _ + 2d)
2(k + 3) . (3.12)

The action of an sl3-automorphism l ∈ D6 on the modules L̂` , Ŝ
_
[` ] and R̂_[` ] of �̂k is easily deduced from the

action on their respective top spaces L` , S
_
[` ] and R

_
[` ] , discussed in Section 2.3. The action of the spectral flow

functors is more interesting because, in general, fb maps an irreducible weight module whose conformal weights

are bounded below to an irreducible weight module whose conformal weights are not bounded below.

A weight module (with finite-dimensional weight spaces) whose conformal weights are bounded below is said

to be positive-energy. Thus, the full subcategories of positive-energy modules in �̂k and �̂u,v , respectively, are

preserved by the action of l , but not by spectral flow.3 Spectral flow does, however, map smooth weight modules to

smooth weight modules, so �̂k and �̂u,v are closed under this action. We can therefore obtain many new irreducible

weight Vk (sl3)- or A2(u, v)-modules by applying spectral flow to the positive-energy ones already identified.

It is almost always the case that the result of applying spectral flow to a positive-energy module is a module that is

not positive-energy. However, it will be useful for what follows to know the (isomorphism class of the) result when

it is positive-energy. Let {b1, b2} denote the basis of P∨ dual to the simple root basis {U1, U2} of Q.

Proposition 3.1.

(i) The spectral flows fb1 (L̂`) and fb2 (L̂` ) are positive-energy if and only if ` ∈ P>. In fact,

fb1 (L̂` ) � L̂kΛ1+w1w2 (`) � d(L̂kΛ2−w1 (`))

and fb2 (L̂` ) � L̂kΛ2+w2w1 (`) � d(L̂kΛ1−w2 (`))
(` ∈ P>). (3.13)

(ii) The spectral flows fb1−b2 (L̂` ) and fb2−b1 (L̂` ) are positive-energy if and only if `1 ∈ ℤ>0 and `2 ∈ ℤ>0,

respectively. Moreover,

fb1−b2 (L̂`) � w2(L̂kΛ2+w2w1 (`)) � dw1(L̂kΛ1−w2 (`)) (`1 ∈ ℤ>0)

and fb2−b1 (L̂`) � w1(L̂kΛ1+w1w2 (`)) � dw2(L̂kΛ2−w1 (`)) (`2 ∈ ℤ>0).
(3.14)

(iii) The spectral flows f−b1 (L̂` ) and f−b2 (L̂` ) are always positive-energy:

f−b1 (L̂` ) � w1w2(L̂kΛ2+w2w1 (`)) � cw2 (L̂kΛ1−w2 (`) )

and f−b2 (L̂` ) � w2w1(L̂kΛ1+w1w2 (`)) � cw1 (L̂kΛ2−w1 (`) ).
(3.15)

(iv) The spectral flow fb (Ŝ_[` ]) is positive-energy if and only if b = 0 or b = −b2. Indeed,

f−b2 (Ŝ_[` ]) � cw1(ŜkΛ2−w1 (_)
[kΛ2−w1 (`) ]). (3.16)

(v) The spectral flow fb (R̂_[` ]) is positive-energy if and only if b = 0.

Proof. We start with (v). The top space of R̂_[` ] is an irreducible dense sl3-module with weight support ` + Q.

A ground state E ∈ R̂_[` ] then has weight ` +<1U1 +<2U2, for some <1,<2 ∈ ℤ, and its conformal weight is Δ,

independent of <1 and <2. By (3.10), the conformal weight of fb (E) is then Δ
′ +<1〈U1, b〉 +<2〈U2, b〉, where

Δ
′ = Δ + 〈`, b〉 + 1

2
^ (b, b)k. This is unbounded below as<1 and<2 range over ℤ unless 〈U1, b〉 = 〈U2, b〉 = 0.

The proof of (iv)starts out similarly, but because a weight of the top space of Ŝ_[` ] again has the form `+<1U1+<2U2

with <1 ∈ ℤ, but now with <2 ∈ ℤ60, the conformal weights of the spectral flow of the top space are unbounded

below unless 〈U1, b〉 = 0 and 〈U2, b〉 6 0, that is unless b = −?b2 for some ? ∈ ℤ>0.

3There is a well known exception to this statement when u > 3 and v = 1, so k ∈ ℤ>0. Then, the positive energy category coincides with �̂u,1

and the category of integrable highest-weight ŝl3-modules; the latter is of course preserved by spectral flow.
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Take b = −b2 and let E<1,<2
∈ Ŝ_[` ] denote a state of minimal conformal weight among those whose weight is

` +<1U1 +<2U2, where<1,<2 ∈ ℤ. For<2 6 0, these are the ground states and we denote their common conformal

weight by Δ. The conformal weight of f−b2 (E<1,<2
),<2 6 0, is then Δ

′ −<2, where Δ
′ = Δ − 〈`, b2〉 + 1

2
^ (b2, b2)k.

This is obviously minimised when<2 = 0. Of all the ground states of Ŝ_[` ] , only the E<1,0 have spectral flow images

that might be ground states in f−b2 (Ŝ_[` ]).
Consider next the state E<1,<2

, where <1 ∈ ℤ and <2 ∈ ℤ>0. This is not a ground state of Ŝ_[` ] , hence its

conformal weight is Δ + =, for some = > 0. In fact, we have = > <2 because E<1,<2
can only be obtained from the

E<1,0 by acting with modes that include at least<2 of the 42
−A or 43

−B , A , B > 0. The conformal weight of f−b2 (E<1,<2
) is

then Δ
′ + = −<2. As this is bounded below by the conformal weight Δ′ of the f−b2 (E<1,0), it follows that f−b2 (Ŝ_[` ])

is positive-energy and the f−b2 (E<1,0) are indeed ground states.

For<2 > 0, E<1,<2
also maps to a ground state in f−b2 (Ŝ_[` ]) if and only if = = <2. However, the ground states

must form an irreducible sl3-module, so combining the results thus far with the classification in Section 2.3 forces

the E<1,<2
to map to ground states, hence each has = =<2, for all<1 ∈ ℤ and<2 ∈ ℤ>0. The top space of f−b2 (Ŝ_[` ])

therefore has weight support ` +ℤU1 +ℤ>0U2. To get a standard semidense weight support, we must either conjugate

or conjugate and twist by w1. The latter is more convenient, as we shall see, so we conclude that

w1cf−b2 (Ŝ_[` ]) � Ŝ
_′

[`′ ] , (3.17)

for some _′ ∈ h∗ and [`′] ∈ (_′ + ℂU1)/ℤU1.

To compute [`′], we note that the above identification of ground states implies that it is obtained from [`] and

(3.10) as follows:

[`′] = [w1c(` − kb∗2)] = [w1 (kΛ2 − `)] = [kΛ2 − w1(`)] . (3.18)

To determine _′, note that _ is the highest weight of a highest-weight submodule of the irreducible semisimple

coherent family of gl2-modules from which S_[` ] was constructed. It follows that there is a vector E of weight _ in

Ŝ_[_] that is annihilated by 41
0
. Spectral flow, conjugating and twisting by w1 give

41
0w1cf−b2 (E) ∝ w15

1
0 cf−b2 (E) ∝ w1c41

0f
−b2 (E) = w1cf−b2 (41

0E) = 0 (3.19)

(note that w1 (41
0
) and c(41

0
) are proportional, but not necessarily equal, to 5 1

0
). It follows that w1cf−b2 (E) generates

an infinite-dimensional highest-weight gl2-submodule of Ŝ_
′

[_′ ] . We may therefore identify _′ with its highest weight:

_′ = kΛ2 − w1(_). (3.20)

It is easy to check that `′ ∈ _′ + ℂU1 because ` ∈ _ + ℂU1. Note that if we had omitted the w1-twist in (3.17), then

applying spectral flow and conjugation would have resulted in an infinite-dimensional lowest-weight submodule.

Finally, take b = −?b2 with ? ∈ ℤ>1. As we have established above that = = <2 whenever <2 > 0, the

f−?b2 (E<1,<2
) with<2 > 0 have conformal weights Δ′ − (? − 1)<2. This is unbounded below as<2 → ∞, hence

f−?b2 (Ŝ_[` ]) is not positive-energy. This completes the proof of (iv).

The highest-weight cases (i)–(iii) follow similarly, so we only outline the steps. The setup for these cases is

d-invariant, so we only need discuss one identification each. First, conformal weight considerations show that

f−b1 (L̂` ) is always positive-energy and explicit calculation shows that the image of the highest-weight vector of L̂`

under w2w1f
−b1 is a highest-weight vector. One therefore just needs to calculate its weight. On the other hand, the

same conformal weight considerations require `1 ∈ ℤ>0 when b = b1 − b2. This time, the highest-weight condition

is preserved by w2f
b1−b2w1. Finally, fb1 (L̂` ) is positive-energy if and only if ` ∈ P> and fb1w1w2 allows us to

identify the new highest weight.

As we shall see, one may need to iterate the identifications given above for the spectral flows of the L̂` in order to

find all cases in which the spectral flow of an irreducible highest-weight ŝl3-module is again positive-energy.
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4. Admissible-level sl3 minimal models A2(u, v)

As noted in Section 3.1, the level k of a vertex algebra associated with sl3 is said to be admissible if it has the

form (3.7) with u > 3. In this section, we review the classification of highest-weight A2 (u, v)-modules, when k is

admissible, and extend it to all relaxed and semirelaxed highest-weight A2(u, v)-modules.

4.1. Irreducible highest-weight A2 (u, v)-modules. For each ℓ ∈ ℤ>0, let P̂ℓ
>

denote the set of dominant-integral

level-ℓ weights of ŝl3, that is the set of weights _̂ whose Dynkin labels satisfy _8 ∈ ℤ>0 and _0 + _1 + _2 = ℓ.4 In

what follows, we shall sometimes identify _̂ with its triple (_0, _1, _2) of Dynkin labels when convenient. Given an

affine weight _̂, we write _ for its projection onto h∗, so _ is obtained from _̂ by setting _0 to 0. Of course, once a

level has been fixed, _̂ is completely determined by _.

In [10], Kac and Wakimoto introduced a finite set �u,v of admissible weights for each admissible level k. For ŝl3,

an equivalent characterisation [52] of these weights involves writing them in the form

_̂ = w ·
(
_̂� − u

v
_̂�,w

)
, (4.1)

where w ∈ {1,w1} ⊂ W, _̂� ∈ P̂u−3
>

is the integral part of _̂, _̂�,w ∈ P̂v−1
>

is the fractional part of _̂, and _̂�,w1 has

Dynkin label _�,w1

1
≠ 0. We will describe an admissible weight _̂ as being of either w = 1 or w = w1 type, according

as to which w is used in (4.1). The sets, �1
u,v and �

w1
u,v, of w = 1 and w = w1 type admissible weights, respectively,

are disjoint [52]: �u,v = �1
u,v ⊔ �w1

u,v.

The classification of admissible-level highest-weightA2(u, v)-modules is a special case of a general highest-weight

classification result of Arakawa.

Theorem 4.1 ([37, Main Thm.]). When k is admissible, the irreducible level-k highest-weight ŝl3-module L̂_ is an

A2(u, v)-module if and only if _̂ ∈ �u,v. Moreover, every highest-weight A2(u, v)-module is irreducible.

It follows that there are
���u,v

�� = 1
2
(u − 1) (u − 2)v2 irreducible highest-weight A2(u, v)-modules, up to isomorphism.

When u > 3 and v = 1, so k ∈ ℤ>0, the admissibility conditions above reduce to _̂� ∈ P̂u−3
>

and _̂�,w = 0,

hence �1

u,1
= P̂k

>
and �

w1

u,1
= ∅. In this case, Arakawa’s classification reproduces the well known result [3, 5] that

the irreducible modules over the rational Wess–Zumino–Witten vertex operator algebra A2(u, 1) are the integrable

highest-weight ones. We will therefore be chiefly interested in the case v > 2 in what follows.

Note that the Dynkin labels of a weight _̂ ∈ �1
u,v have the form

_8 = _
�
8 −

u

v
_�,18 , 8 = 0, 1, 2. (4.2a)

Since gcd{u, v} = 1 and 0 6 _�,18 6 v − 1, it follows for w = 1 type admissible weights that _8 ∈ ℤ>0 if and only if

_�,18 = 0. Similarly, the Dynkin labels of _̂ ∈ �w1
u,v have the form

_0 = u− 2− _�2 −
u

v

(
v − 1 − _�,w1

2

)
, _1 = u− 2− _�1 −

u

v

(
v − _�,w1

1

)
, _2 = u− 2− _�0 −

u

v

(
v − 1 − _�,w1

0

)
. (4.2b)

Since 1 6 _
�,w1

1
6 v−1 and 0 6 _

�,w1

0
, _
�,w1

2
6 v−2, a w = w1 admissible weight never has an integral Dynkin label.

Proposition 4.2. When k is admissible, the A2 (u, v)-module L̂_ has a finite-dimensional top space if and only if

_̂ ∈ �1
u,v and _

�,1
1

= _�,1
2

= 0.

There are therefore 1
2
(u − 1) (u− 2) irreducible highest-weight A2(u, v)-modules with finite-dimensional top spaces,

up to isomorphism.

4We shall generally drop the hat from affine Dynkin labels, trusting that this will not cause confusion.
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4.2. Irreducible semirelaxed highest-weight A2(u, v)-modules. For each u > 3 and v > 2, we shall show that

A2(u, v) admits semirelaxed highest-weight modules. This will follow from the algorithm, recently detailed and

illustrated in [1], for classifying the (semi)relaxed highest-weight modules of a general affine vertex operator algebra,

given the highest-weight classification. Here, we determine the result of this algorithm under the assumption that

the parabolic is p. The analogous classification for the parabolic d(p) follows immediately.

Since semirelaxed highest-weight modules have semidense top spaces, we project each of the weights _ ∈ h∗

corresponding to _̂ ∈ �u,v onto the weight space of the simple ideal s � sl2 of the Levi factor l � gl2. If the result

c (_) is the highest weight of an infinite-dimensional irreducible highest-weight s-module, then it determines an

irreducible semisimple coherent family of s-modules as in Section 2.3. Tensoring with the irreducible gl1-module of

weight _ − c (_), we obtain an irreducible semisimple coherent family C_ of l-modules. When the direct summand

C_[` ] , ` ∈ _ + ℂU1, is irreducible, inducing and taking irreducible quotients results in the irreducible semidense sl3-

module S_[` ] (Section 2.3). The irreducible quotients Ŝ_[` ] of the affinisations then exhaust the irreducible semirelaxed

highest-weight A2(u, v)-modules for the parabolic p (up to isomorphism) [1]. However, one still has to determine

when C_[` ] is irreducible.

As the subalgebra l ⊂ sl3 has positive root vector 41, the orthogonal projection is given by

c (_) = (_, U1)
‖U1‖2

U1 = _1
1

2
U1 . (4.3)

This then defines an infinite-dimensional irreducible highest-weights-module, hence a family of semirelaxed highest-

weight A2(u, v)-modules, if and only if _1 ∉ ℤ>0. Comparing with (4.2), we learn that the _̂ ∈ �1
u,v define semirelaxed

modules if and only if _�,1
1

≠ 0 and the _̂ ∈ �w1
u,v always define semirelaxed modules. We shall set

�1
u,v =

{
_̂ ∈ �1

u,v : _�,1
1

≠ 0
}

and �u,v = �1
u,v ⊔�w1

u,v, (4.4)

noting also that �u,1 = ∅.

We may therefore label the semirelaxed highest-weight A2(u, v)-modules by weights _ ∈ h∗, corresponding to

_̂ ∈ �u,v, and cosets [`] ∈ h∗/ℤU1, ` ∈ _ + ℂU1. However, this labelling is redundant because different _ may

correspond to the same irreducible semisimple coherent family of l-modules. As the relevant s-weights c (_) are

never integral, there are always two such _ and they are related by the shifted action of the Weyl reflection of s.

In particular, if _̂ ∈ �1
u,v , then it corresponds to the same semirelaxed modules as w1 · _̂ ∈ �w1

u,v. Since w1· gives a

bĳection between �1
u,v and �

w1
u,v, we may thus restrict attention to the former set.

Finally, recall that Ŝ_[` ] is irreducible if and only if the direct summandC_[` ] of the coherent family C_ of l-modules

is irreducible. As this family is semisimple, C_[` ] being reducible is equivalent to it having an infinite-dimensional

highest-weight submodule. By the above, we must then have [`] = [_] or [`] = [w1 · _]. We emphasise that [_]
and [w1 · _] are distinct cosets because _̂ ∈ �u,v implies that _1 ∉ ℤ.

We have therefore arrived at the classification of irreducible semirelaxed highest-weight A2(u, v)-modules.

Proposition 4.3. When k is admissible, every irreducible semirelaxed highest-weight A2(u, v)-module is isomorphic
to one, and only one, of the form Ŝ

_
[` ] , where _̂ ∈ �1

u,v and ` ∈ _ + ℂU1 satisfies [`] ≠ [_], [w1 · _].

It follows that A2 (u, v) admits |�1
u,v | = 1

4
(u − 1) (u − 2)v(v − 1) families of semirelaxed highest-weight modules.

These families correspond to the parabolic p that distinguishes U1. To obtain the analogous classification for d(p),
which distinguishes U2, we need only apply d to the modules of Proposition 4.3.

4.3. Irreducible relaxed highest-weight A2 (u, v)-modules. It is straightforward to use the algorithm of [1] to

generalise the preceding analysis to relaxed highest-weight modules. Again, we shall show the existence of families

of such A2(u, v)-modules for all u > 3 and v > 2.

Relaxed highest-weight modules have dense top spaces, so the appropriate Levi factor in this case is sl3 itself

and no projection is required. We thus check, for each _̂ ∈ �u,v, if the irreducible highest-weight sl3-module L_ is

bounded (Section 2.3). If so, then it is a submodule of an irreducible semisimple coherent family C_ of sl3-modules.
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When irreducible, the direct summand C_[` ] , [`] ∈ h∗/Q, may be identified with the irreducible dense sl3-module

R_[` ] . Moreover, the simple quotients of the affinisations R̂_[` ] of these irreducibles exhaust the irreducible relaxed

highest-weight A2 (u, v)-modules [1]. Again, one still needs to determine which C
_
[` ] are irreducible.

Mathieu has classified bounded highest-weight modules for all simple Lie algebras [38]. For sl3, it turns out that

L_ is bounded if and only if at least one of the following three conditions are met:

_1 ∈ ℤ>0 and _2 ∉ ℤ>0, (4.5a)

_1 ∉ ℤ>0 and _2 ∈ ℤ>0, (4.5b)

_1, _2 ∉ ℤ>0 and _1 + _2 ∈ ℤ>−1. (4.5c)

For _̂ ∈ �1
u,v, (4.2a) implies that L_ is bounded if and only if _�,1

1
= 0 and _�,1

2
≠ 0, by (4.5a), or _�,1

1
≠ 0 and

_�,1
2

= 0, by (4.5b). The fact that (4.5c) is never satisfied is easy to check: _�,1
1
, _�,1

2
≠ 0 means _�,1

0
≠ v − 1, hence

_1 + _2 = u − 3 − _�0 −
u

v

(
v − 1 − _�,1

0

)
∉ ℤ. (4.6)

For _̂ ∈ �
w1
u,v, a similar analysis using (4.2b) concludes that (4.5a) and (4.5b) are never satisfied, while (4.5c) is

satisfied if and only if _
�,w1

2
= 0.

There are therefore three disjoint subsets of�u,v which correspond to irreducible semisimple coherent families of

sl3-modules. We let �u,v = �1
u,v ⊔�2

u,v ⊔�3
u,v, with

�1
u,v =

{
_̂ ∈ �1

u,v : _�,1
1

= 0 and _�,1
2

≠ 0
}
, �2

u,v =

{
_̂ ∈ �1

u,v : _�,1
1

≠ 0 and _�,1
2

= 0
}

and �3
u,v =

{
_̂ ∈ �w1

u,v : _
�,w1

2
= 0

}
,

(4.7)

noting again that �u,1 = ∅. As in the previous section, this description is redundant. None of the sl3-weights

associated with these subsets are integral, hence the map from weights to coherent families is 3 to 1 [38]. Moreover,

weights giving isomorphic coherent families are once again related by the shifted action of the Weyl group. In

particular, applying w1· to a weight _̂ ∈ �2
u,v results in a weight in �3

u,v and applying w2· to the result moreover gives

a weight in �1
u,v.

We may therefore restrict _̂ to the subset�2
u,v.5 This gives us a classification of families of relaxed highest-weight

A2(u, v)-modules. It only remains to determine when these modules are irreducible; equivalently, to determine when

C_[` ] is irreducible. This latter problem was also solved quite generally by Mathieu [38]. His result states that C_[` ]
is irreducible for all [`] ∈ (h∗/Q) \ sing(_), where sing(_) is the image of a union of certain codimension-1 affine

subspaces in h∗. For sl3, sing(_) is thus a union of curves and they may be identified as follows:

• Determine the image in h∗/Q of the shifted Weyl orbit of _. We take _̂ ∈ �2
u,v, so this image is easily checked to

be
{
[_], [w1 · _], [w2w1 · _]

}
.

• For each element [`] in this image, determine the positive roots U such that 〈`, U∨〉 ∉ ℤ. For [_], this is U1 and

U3; for [w1 · _], this is U1 and U2; while for [w2w1 · _], this is U2 and U3.

• Given all such [`] and U , sing(_) is the union of all the [` + ℂU]. This appears to be the union of six curves, but

in fact each curve appears twice in this description. We end up with

sing(_) = [_ + ℂU1] ∪ [w1 · _ + ℂU2] ∪ [_ + ℂU3] . (4.8)

This then completes the classification of irreducible relaxed highest-weight A2(u, v)-modules.

Proposition 4.4. When k is admissible, every irreducible relaxed highest-weight A2(u, v)-module is isomorphic to
one, and only one, of the form R̂_[` ] , where _̂ ∈ �2

u,v and [`] ∈ (h∗/Q) \ sing(_).

This particular characterisation of these relaxed modules also appears in [2, Thm. 1.1(a)]. It follows that A2(u, v)
admits |�2

u,v | = 1
4
(u − 1) (u − 2) (v − 1) families of relaxed highest-weight modules.

5As we shall see, this arbitrary choice is convenient because the subsets of admissible weights classifying the relaxed, semirelaxed and highest-

weight A2 (u, v)-modules then satisfy �2
u,v ⊆ �1

u,v ⊂ �u,v .
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_�,w
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u,v

w=1

�
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u,v

w=w1
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u,v

w=w1

�u,v
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u,v

�2
u,v

w=1

�3
u,v
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Figure 3. The fractional parts _̂�,w ∈ P̂v−1
>

of the admissible weights, projected onto the real slice

of h∗, that define highest-weight A2(u, v)-modules (left), semirelaxed highest-weight A2(u, v)-
modules for the parabolic p (centre top) and d(p) (centre bottom), and relaxed highest-weight

A2(u, v)-modules (right).

4.4. Classification summary. We summarise the classification results thus far for convenience and note some

relevant information about the twists of the irreducible modules being classified (Section 2.3). Recall the definitions

of the sets �u,v, �u,v,�u,v and sing(_) given above. We illustrate the first three schematically in Figure 3.

Theorem 4.5. For k admissible, every irreducible positive-energy weight A2(u, v)-module, with finite-dimensional

weight spaces, is isomorphic to a W-twist of one from the following list of mutually inequivalent modules:

• The highest-weight modules L̂_ , with _̂ ∈ �u,v.

• The semirelaxed highest-weight modules Ŝ_[` ] , with _̂ ∈ �1
u,v and [`] ∈ (_ + ℂU1)/ℤU1 satisfying [`] ≠ [_] and

[`] ≠ [w1 · _].
• The d-twists of the semirelaxed highest-weight modules Ŝ_[` ] classified above.

• The relaxed highest-weight modules R̂_[` ] , with _̂ ∈ �2
u,v and [`] ∈ (h∗/Q) \ sing(_).

The classification of admissible-level positive-energy weight A2(u, v)-modules was originally reported in [33], where

the results are described in the language of generalised Gelfand–Tsetlin modules.

Note that the top space of Ŝ_[` ] , _̂ ∈ �1
u,v, is a semidense sl3-module whose weight support is `+ℤU1 −ℤ>0U2. The

weights in ` +ℤU1 all have multiplicity 1, as this is the multiplicity of the weights of an irreducible coherent family

of sl2-modules. The top space multiplicities are moreover uniformly bounded when _̂ ∈ �2
u,v and are unbounded

when _̂ ∈ �1
u,v \�2

u,v.

On the other hand, the top space of R̂_[` ] , _̂ ∈ �2
u,v, is a dense sl3-module whose weight support is ` + Q. The

(constant) multiplicity of the weights coincides with the maximal multiplicity of the weights of the irreducible

highest-weight sl3-module L_ . But, the latter is easily determined as _ is dominant regular (this is true for all

admissible weights). Indeed, Kazhdan–Lusztig theory realises L_ as the quotient of the corresponding Verma

module by Lw2 ·_ . A straightforward basis computation now shows that the desired multiplicity is _�
2
+ 1.
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One of the deep insights behind Arakawa’s proof of Theorem 4.1 is that the set of highest weights of the

admissible-level highest-weight A2 (u, v)-modules is naturally partitioned by the three nilpotent orbits of sl3:

�0 = SU3 ·
©
«
0 0 0

0 0 0

0 0 0

ª®®¬
, �min. = SU3 ·

©
«
0 1 0

0 0 0

0 0 0

ª®®¬
, �pr. = SU3 ·

©
«
0 1 0

0 0 1

0 0 0

ª®®¬
. (4.9)

More precisely, for each _̂ ∈ �u,v, the associated variety of the annihilator (in U(sl3)) of L_ is the closure of some

nilpotent orbit [53]. We compare this partition with our classification results:

• If _ parametrises families of relaxed highest-weight A2(u, v)-modules, hence _̂ ∈ �u,v, then _ belongs to the

minimal nilpotent orbit partition: _ ∈ �min.. (This is a restatement of a general result of Mathieu [38].)

• If _ parametrises families of semirelaxed highest-weight A2 (u, v)-modules (but not relaxed families), hence

_̂ ∈
(
�u,v ∪ d(�u,v)

)
\�u,v, then _ belongs to the principal nilpotent orbit partition: _ ∈ �pr..

• If _ only labels a single highest-weight A2(u, v)-module (and does not parametrise families of (semi)relaxed

modules), hence _̂ ∈ �u,v \
(
�u,v ∪ d(�u,v)

)
, then _ belongs to the zero nilpotent orbit partition: _ ∈ �0.

The question of whether _ naturally defines a single highest-weight module, a family of semirelaxed modules or a

family of relaxed modules is thus answered by nilpotent orbits. It would be very interesting to see how this generalises

beyond sl3 and A2(u, v).
Returning to Theorem 4.5, this classification list consists of mutually inequivalent irreducible modules. However,

their W-twists are occasionally isomorphic to another module in the list.

Proposition 4.6. The isomorphisms among the W-twists of the list of irreducible A2(u, v)-modules in Theorem 4.5

are as follows:

• If _ is integral, so _̂ ∈ �1
u,v with _̂

�,1 = 0, then we have w(L̂_) � L̂_ for all w ∈ W.

• If _1 ∈ ℤ>0 and _2 ∉ ℤ>0 (_1 ∉ ℤ>0 and _2 ∈ ℤ>0), so _̂ ∈ �1
u,v with _�,1

1
= 0 and _�,1

2
≠ 0 (_�,1

1
≠ 0 and

_�,1
2

= 0), then w1 (L̂_) � L̂_ (w2 (L̂_) � L̂_) while twisting by representatives of the other cosets of W/
〈
w1

〉
(W/

〈
w2

〉
) results in modules whose top spaces are highest-weight with respect to a different Borel than b.

• If _1, _2 ∉ ℤ>0, so _̂ ∈ �w1
u,v or _̂ ∈ �1

u,v with _
�,1
1
, _�,1

2
≠ 0, then w(L̂_) is highest-weight with respect to a different

Borel than b, for each w ≠ 1.

• We have w1(Ŝ_[` ]) � Ŝ_[w1 (`) ] , while twisting by representatives of other cosets of W/
〈
w1

〉
results in modules

whose top spaces are semirelaxed highest-weight with respect to a different parabolic than p. These are also

distinct from the W-twists of d(Ŝ_[` ]) for which we note that w2d(Ŝ_[` ]) � dw1(Ŝ_[` ]) � d(Ŝ_[w1 (`) ]).
• We have w(R̂_[` ]) � R̂_[w (`) ] for all w ∈ W.

We remark that the isomorphisms of Proposition 4.6 are either well known or follow easily from the general fact [38]

that a coherent family is invariant under the action of the Weyl group.

Proposition 4.7.

• The d-twist of an irreducible highest-weight module is again irreducible and highest-weight: d(L̂_) � L̂d(_) .

• The d-twist of a relaxed highest-weight A2(u, v)-module is likewise given by

d(R̂_[` ]) � R̂
w1w2d·_
[d(`) ] � R̂

cw2 ·_
[d(`) ] (_̂ ∈ �2

u,v). (4.10)

Proof. The identification of highest-weight d-twists is well known. The relaxed identification follows by noting that

while d acts on the integral and fractional parts of _̂ ∈ �1
u,v by swapping the first and second Dynkin labels, the action

on �
w1
u,v is somewhat different:

_̂ ∈ �1

u,v : d(_̂)� = (_�0, _�2, _�1), d(_̂)�,1 = (_�,1
0
, _�,1

2
, _�,1

1
),

_̂ ∈ �w1
u,v : d(_̂)� = (_�1, _

�
0, _

�
2), d(_̂)�,w1 = (_�,w1

1
− 1, _

�,w1

0
+ 1, _

�,w1

2
).

(4.11)
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These formulae make it clear that �1
u,v, �

w1
u,v and �3

u,v are all preserved by d while �1
u,v and �2

u,v are exchanged. The

latter is relevant to the identification of the d-twist of R̂_[` ] as _ ∈ �2
u,v implies that d(_) ∈ �1

u,v. The weight in �2
u,v

specifying the same coherent family of sl3-modules as d(_) is then w1w2 · d(_), as per the discussion after (4.7).

Finally, we study the action of spectral flow on the irreducible positive-energy weight A2(u, v)-modules. For this,

we first note the following identifications, easily checked using (4.2):

• The level-k affine weight corresponding to kΛ1−w2(_) has Dynkin labels (_1, _0, _2). This permutation of Dynkin

labels preserves �1
u,v and �

w1
u,v.

• The level-k affine weight corresponding to kΛ2−w1(_) has Dynkin labels (_2, _1, _0). This permutation of Dynkin

labels preserves �1
u,v, �

w1
u,v and �1

u,v.

The spectral flow action now follows from Proposition 3.1. Here and below, we shall somewhat abuse notation by

equating a label ` ∈ h with the Dynkin indices (`0, `1, `2) of ̂̀ (to emphasise the symmetry).

Proposition 4.8.

• For every ̂̀ ∈ �u,v with ` ∈ P>, hence ̂̀ ∈ �1
u,v and `

�,1
1

= `�,1
2

= 0, we have

fb1 (L̂` ) � L̂(`2,`0,`1) and fb2 (L̂` ) � L̂(`1,`2,`0) . (4.12a)

For all other ̂̀ ∈ �u,v, these spectral flows are not positive-energy.

• For every ̂̀ ∈ �u,v with `1 ∈ ℤ>0 or `2 ∈ ℤ>0, hence ̂̀ ∈ �1
u,v and `

�,1
1

= 0 or `�,1
2

= 0, we have

fb1−b2 (L̂` ) � w2(L̂(`1,`2,`0
)) or fb2−b1 (L̂` ) � w1 (L̂(`2,`0,`1) ), (4.12b)

respectively. For all other ̂̀ ∈ �u,v, these spectral flows are not positive-energy.

• For every ̂̀ ∈ �u,v, we have

f−b1 (L̂`) � w1w2 (L̂(`1,`2,`0) ) and f−b2 (L̂`) � w2w1 (L̂(`2,`0,`1) ). (4.12c)

• For every _̂ ∈ �1
u,v and [`] ∈ (_ + ℂU1)/ℤU1, we have

f−b2 (Ŝ_[` ]) � cw1 (Ŝ(_2,_1,_0)
[ (`2,`1,`0) ]) � c(Ŝ(_2,_1,_0)

[kΛ2−` ] ). (4.12d)

All other (nontrivial) spectral flows are not positive-energy.

By iterating these identifications, we can visualise the spectral flow orbits on the set of isomorphism classes of

irreducible highest-weight A2(u, v)-modules. In Figure 4, we illustrate the parts of these orbits that correspond to

positive-energy modules. This depends only on the number of nonnegative integer Dynkin labels.

4.5. Degenerations. We have classified the irreducible (semi)relaxed highest-weight A2(u, v)-modules for general

admissible levels. They form families that mirror the coherent families of sl3-modules from which they were

constructed. However, the members of the latter families are only generically irreducible, hence the same is true

for their (semi)relaxed counterparts. It is therefore interesting, and useful for what follows, to determine explicit

decomposition formulae when the A2(u, v)-modules constructed in this way are reducible. We refer to these

decompositions as the degenerations of a given family of (semi)relaxed highest-weight modules.

We first consider the degenerations of the family of semirelaxed highest-weight modules Ŝ_[` ] corresponding to a

given _̂ ∈ �1
u,v . According to Proposition 4.9, these occur when the coset [`] in (_ + ℂU1)/ℤU1 takes the value [_]

or [w1 · _]. Since the Ŝ_[` ] were constructed from an irreducible semisimple coherent family of l-modules, it follows

that Ŝ_[_] has an irreducible submodule isomorphic to L̂_ . Its complement is likewise an irreducible highest-weight

module, with highest weight _ + U1, but with respect to the Borel w1 (b) spanned by h, 42, 43 and 5 1. It is therefore

isomorphic to the twist w1(L̂w1 ·_). The analysis for [`] = [w1 · _] is similar.

We thereby arrive at our first degeneration result.
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b1

b2

# = 0

w1w2(L̂(`1,`2,`0) )

L̂(`0,`1,`2)

w2w1(L̂(`2,`0,`1) )

# = 1 (`0 ∈ ℤ>0)

w1w2(L̂(`1,`2,`0) )

L̂(`0,`1,`2)

w2w1(L̂(`2,`0,`1) )

w3 (L̂(`0,`1,`2) )

# = 2 (`0 ∉ ℤ>0)

L̂(`0,`1,`2)

L̂(`2,`0,`1)

L̂(`1,`2,`0)

w1 (L̂(`2,`0,`1) )

w2 (L̂(`1,`2,`0) )w1w2(L̂(`1,`2,`0) )

w2w1(L̂(`2,`0,`1) )

# = 3 (̂̀ ∈ P̂k
>
)

L̂(`0,`1,`2)

L̂(`2,`0,`1)

L̂(`1,`2,`0)

L̂(`2,`0,`1)

L̂(`1,`2,`0)L̂(`1,`2,`0)

L̂(`2,`0,`1)

· · ·

··
·

···

···

···

· · ·

Figure 4. Illustrations of the part of the spectral flow orbit through L̂` , ̂̀ ∈ �u,v, corresponding to

positive-energy modules. Here, # ∈ {0, 1, 2, 3} denotes the number of Dynkin labels of ̂̀ that lie

in ℤ>0. Arrows indicate the spectral flow fb , where b ∈ {±b1,±b2,±(b1 − b2)}. (Note that # = 3

requires k ∈ ℤ>0, hence v = 1. Spectral flow is Q∨-periodic in this case.)

Proposition 4.9. For k admissible, the reducible semirelaxed highest-weightA2 (u, v)-modules decompose as follows:

Ŝ
_
[_] � L̂_ ⊕ w1(L̂w1 ·_) and Ŝ

_
[w1 ·_] � L̂w1 ·_ ⊕ w1 (L̂_) (_̂ ∈ �1

u,v). (4.13)

This implies similar degenerations for the reducible semirelaxed highest-weight modules obtained by D6-twists.

The degenerations of the relaxed highest-weight modules R̂_[` ] , _̂ ∈ �2
u,v, require more work. By Proposition 4.10,

they occur when [`] ∈ h∗/Q takes values in sing(_), defined in (4.8). We shall assume first that

[`] ∈ [_ + ℂU1] ⊂ sing(_) (4.14)

so that we may choose a representative ` ∈ _ + ℂU1 of [`]. As before, R̂_[` ] decomposes as a direct sum of

irreducible submodules. Because �2
u,v ⊆ �1

u,v, it is clear that one direct summand must be (isomorphic to) Ŝ_[` ] ,

where now [`] ∈ (_ + ℂU1)/ℤU1, and its complement must be (isomorphic to) c(Ŝ_′[`′ ]), for some _′ ∈ �1
u,v and

[`′] ∈ (_′ + ℂU1)/ℤU1:

R̂
_
[` ] � Ŝ

_
[` ] ⊕ c(Ŝ_′[`′ ]) (` ∈ _ + ℂU1). (4.15)

As Q ∩ ℂU1 = ℤU1, this decomposition is independent of the choice of `.

To identify _′ and [`′], note that (4.15) implies that

c(Ŝ_[` ]) ⊕ Ŝ
_′

[`′ ] � c(R̂_[` ]) = dw3(R̂_[` ]) � d(R̂_[w3 (`) ]) � R̂
cw2 ·_
[c(`) ], (4.16)
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by Proposition 4.6 and Equation (4.10). Comparing with (4.15), this identifies _′ as cw2 · _. To determine [`′], we

need to find a representative `′ ∈ _′ + ℂU1 of [c(`)] ∈ h∗/Q. Since _̂ ∈ �2
u,v, we compute that

c(`) − _′ = _ − ` + 2U1 − (_�2 − 1)U2, (4.17)

hence we may take `′ = c(`) + (_�
2
− 1)U2 (since _ − ` + 2U1 ∈ ℂU1). Indeed, this choice gives

R̂
_′

[`′ ] = R̂
cw2 ·_
[c(`) ] � Ŝ

_′

[`′ ] ⊕ c(Ŝ_[` ]) (`′ ∈ _′ + ℂU1), (4.18)

which is (4.15) with _ ↔ _′ and ` ↔ `′. We conclude that the explicit degeneration in this case is

R̂
_
[` ] � Ŝ

_
[` ] ⊕ c(Ŝcw2 ·_

[c(`)+(_�
2
−1)U2 ]

) (` ∈ _ + ℂU1). (4.19)

We still have to repeat this analysis for the other curves in sing(_): [w1 · _ + ℂU2] and [_ + ℂU3]. However, the

degenerations for these curves may be deduced from (4.19) by W-twisting. Indeed, for _̂ ∈ �2
u,v and ` ∈ _ + ℂU3, we

may twist R̂_[` ] by w2 to obtain (using Proposition 4.6)

w2 (R̂_[` ]) � R̂
_
[w2 (`) ] = R̂

_

[w2 (`)+_�2U2 ]
and w2 (`) + _�2U2 ∈ _ + ℂU1. (4.20)

Thus, w2 maps degenerate relaxed highest-weight modules with [`] ∈ [_ + ℂU3] to those with [_ + ℂU1] (and vice

versa). Similarly, when ` ∈ w1 · _ + ℂU2, twisting by w1 gives

w1(R̂_[` ]) � R̂
_
[w1 (`) ] = R̂

_
[w1 ·` ] and w1 · ` ∈ _ + ℂU3, (4.21)

so w1 exchanges the degenerations for [`] ∈ [_ + ℂU3] with those for [`] ∈ [w1 · _ + ℂU2]. Combining these

identifications with the known degeneration (4.19) then completes the analysis of the relaxed degenerations.

Proposition 4.10. For k admissible, the reducible relaxed highest-weight A2(u, v)-modules decompose as follows:

R̂
_
[` ] �




Ŝ_[` ] ⊕ c(Ŝcw2 ·_
[c(`)+(_�

2
−1)U2 ]

) if ` ∈ _ + ℂU1,

w1w2 (Ŝ_[w2w1 (`)+(_�2−1)U2 ]
) ⊕ cw1w2(Ŝcw2 ·_

[cw2w1 (`) ]) if ` ∈ w1 · _ + ℂU2,

w2(Ŝ_[w2 (`)+_�2U2 ]
) ⊕ cw2(Ŝcw2 ·_

[cw2 ·` ]) if ` ∈ _ + ℂU3.

(4.22)

We emphasise here that the conditions on the right-hand side have to be interpreted as requiring that the coset

[`] ∈ h∗/Q on the left-hand side has a representative ` ∈ h∗ in the set given.

Of course, one can combine the information in Propositions 4.9 and 4.10 to determine what happens to the

degenerate R̂_[` ] when their semirelaxed direct summands also degenerate. This happens if and only if [`] belongs to

the intersection of two of the three curves comprising sing(_),6 these intersections being [_], [w1 ·_] and [w2w1 ·_].
For example, [_] belongs to both [_ + ℂU1] and [_ + ℂU3], so Propositions 4.9 and 4.10 give both

R̂
_
[_] � Ŝ

_
[_] ⊕ c(Ŝcw2 ·_

[cw2 ·_]) � L̂_ ⊕ w1(L̂w1 ·_) ⊕ c(L̂cw2 ·_) ⊕ cw1 (L̂w1cw2 ·_)

= L̂_ ⊕ w1(L̂w1 ·_) ⊕ c(L̂cw2 ·_) ⊕ w2w1 (L̂w1 ·_) (4.23a)

(where we note that cw1 = w1w3d = w2w1d and w1cw2 = dw3w1w2 = dw1, then apply Proposition 4.7) and

R̂
_
[_] � w2(Ŝ_[_] ) ⊕ cw2 (Ŝcw2 ·_

[cw2 ·_]) � w2(L̂_) ⊕ w2w1(L̂w1 ·_) ⊕ cw2(L̂cw2 ·_) ⊕ cw2w1 (L̂w1cw2 ·_)

= w2 (L̂_) ⊕ w2w1(L̂w1 ·_) ⊕ cw2 (L̂cw2 ·_) ⊕ w1(L̂w1 ·_) (4.23b)

(which follows similarly). The fact that these two decompositions agree relies on the fact that _̂ ∈ �2
u,v implies that

_2 = _�
2
∈ ℤ>0, hence w2(L̂_) � L̂_ by Proposition 4.6, and (cw2 · _)2 = _�2 ∈ ℤ>0, hence cw2(L̂cw2 ·_) � c(L̂cw2 ·_).

The checks for [`] = [w1 · _] ∈ [_ + ℂU1] ∩ [w1 · _ + ℂU2] and [`] = [w2w1 · _] ∈ [w1 · _ + ℂU2] ∩ [_ + ℂU3] are

very similar and are left to the reader.

6It is easy to check that _̂ ∈ �2
u,v implies that there are no triple intersections.
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Assuming, as always, that k is admissible, the degeneration picture for positive-energy A2 (u, v)-modules may then

be summarised as follows (up to D6-twists):

• For _̂ ∈ �u,v \ �u,v, there is only an irreducible highest-weight module L̂_ .

• For _̂ ∈ �1
u,v \ �2

u,v, the semirelaxed highest-weight modules Ŝ_[` ] , [`] ∈ (_ + ℂU1)/ℤU1, are irreducible for all

cosets [`] but two. At these two cosets, the Ŝ_[` ] decompose into the direct sum of two irreducible highest-weight

modules as per Proposition 4.9.

• For _̂ ∈ �2
u,v, the relaxed highest-weight modules R̂_[` ] , [`] ∈ h∗/Q, are irreducible for all cosets [`] except those

belonging to the union of three curves. On these three curves, the R̂_[` ] decompose into the direct sum of two

semirelaxed highest-weight modules as per Proposition 4.10. If [`] belongs to exactly one of these curves, then

these semirelaxed modules are irreducible. Otherwise, they are reducible and R̂_[` ] decomposes into the direct

sum of four irreducible highest-weight modules.

5. The minimal model A2 (3, 2)

The previous section gives a complete account of the irreducible positive-energy modules of the sl3 minimal

models. Together with their spectral flow orbits, we expect that these modules will form the building blocks of an

associated sl3 minimal model conformal field theory. To test this, we shall explore the modularity of the characters

and check if the Grothendieck fusion coefficients, as computed by the standard Verlinde formula of [27, 28], are

nonnegative integers.

As we shall explain, technical reasons will restrict the present exploration to u = 3 and v = 2. This exploration is

by no means trivial, nor is it without independent interest. In fact, the sl3 minimal model A2 (3, 2) is closely related

to several other interesting logarithmic vertex operator algebras including the # = 4 superconformal minimal model

with 2 = −9 [54], the Feigin–Tipunin algebra, 0
�2
(2) [55] and Semikhatov’s octuplet algebra,�2

(2) [56]. Further

details concerning these relations may be found in the companion paper [48].

5.1. Characters and linear independence. The character of a weight ŝl3-module M̂ is defined to be the following

formal power series in y, z and q:

ch
[
M̂

] (
y; z; q

)
= tr

M̂
y zℎ0 q!0−c/24. (5.1)

Here, we do not fix a choice of ℎ ∈ h, but instead leave it unspecified — the eigenvalue of zℎ0 on a weight vector of

sl3-weight _ is then, formally, z_ . We shall also introduce new variables \ ∈ ℂ, Z ∈ h and g ∈ ℍ, where ℍ ⊂ ℂ is

the upper-half plane, satisfying

y = e2c i\ , zℎ0 = e2c iZ and q = e2c ig . (5.2)

In these variables, the generic expression for the character takes the form

ch
[
M̂
]
(\Z g) = tr

M̂
exp

[
2c i( \ + Z0 + (!0 − c/24)g)

]
. (5.3)

If l is an automorphism of ŝl3, then the character of l (M̂) is obtained from (5.3) by inserting l−1 into the

argument of the exponential. In particular, the characters of the D6-twists and spectral flows of M̂ are given by

ch
[
l (M̂)

]
(\Z g) = ch

[
M̂

] (
\
l−1(Z )g

)
, l ∈ D6,

and ch
[
fb (M̂)

]
(\Z g) = ch

[
M̂

] (
\ + ^ (Z , b) + 1

2
^ (b, b)gZ + gbg

)
, b ∈ P∨.

(5.4)

When k is admissible, the character of a given irreducible highest-weight A2 (u, v)-module is explicitly known

[10] as a holomorphic function converging on a certain subdomain of (\, Z , g) ∈ ℂ × h × ℍ. This character may

also be analytically continued to a meromorphic function on ℂ × h ×ℍ and the result has nice modular properties.

Unfortunately, the modular transforms do not respect the actual convergence regions of the highest-weight characters

and using them to compute fusion coefficients via Verlinde’s formula yields unacceptable results [11, 57], namely

negative multiplicities.

As was pointed out in [15], the root cause of this failure of modularity is the fact that the meromorphic extensions

identify characters of inequivalent A2 (u, v)-modules, in particular those of the irreducible highest-weight modules
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with certain of their spectral flows. This lack of linear independence motivated the development of the standard

module formalism of [27, 28] in which characters are treated as formal power series (or distributions) in z and Z

whose coefficients are meromorphic functions on (\, g) ∈ ℂ ×ℍ. This minor change of viewpoint often allows one

to identify a collection of standard modules whose characters form a topological basis for the space spanned by all

relevant characters.

For the sl3 minimal models A2(u, v) with k admissible and v > 1, we expect that a set of standard modules will be

provided by the relaxed highest-weight modules, some (possibly none) of the semirelaxed highest-weight modules

and their spectral flows. The standard characters can then be deduced from those of the highest-weight modules

by generalising the technology developed in [58] or by lifting Mathieu’s twisted localisation functors to the affine

setting, see [2]. The following result is, in particular, germane.

Theorem 5.1 ([2, Thm. 1.1(b)]). For k admissible, the relaxed characters of A2 (u, v) take the form

ch
[
R̂
_
[` ]

] (
y; z; q

)
= yk

ch
[
� 0

min.
(L̂_)

]
(q)

[ (q)4

∑
a ∈[` ]

za , _̂ ∈ �2
u,v, [`] ∈ h∗/Q. (5.5)

Here, � 0
min.

(L̂_) denotes a “−-type” minimal quantum hamiltonian reduction of L̂_ .7 We refer to [60] for details,

only noting here that � 0
min.

(L̂_) is nonzero because _̂ ∈ �2
u,v implies that _1 and _1 + _2 + 1 are not nonnegative

integers [60, Thm. 5.7.1]. (This distinguishes the reduction from the usual “+-type” minimal reduction of [14, 61]

because in this case the reduction would be nonzero if and only if _0 is not a nonnegative integer [62, Thm. 6.7.4].)

An easy application of Propositions 4.6 and 4.7 shows that the module conjugate to R̂_[` ] , _ ∈ �2
u,v and [`] ∈ h∗/Q,

is R̂_
′

[−` ] , where _̂′ = (_1 + u
v
, _0 − u

v
, _2) ∈ �2

u,v. Combining this with (5.4) and (5.5) thus gives

yk
ch

[
� 0

min.
(L̂_)

]
(q)

[ (q)4

∑
a ∈[` ]

z−a = ch
[
c(R̂_[` ])

]
= ch

[
R̂
_′

[−` ]
]
= yk

ch
[
� 0

min.
(L̂_′)

]
(q)

[ (q)4

∑
a ∈[−` ]

za , (5.6)

from which we conclude that � 0
min.

(L̂_) and � 0
min.

(L̂_′) have the same q-character. However, it now follows that

ch
[
R̂
_
[` ]

] (
y; z; q

)
= ch

[
R̂
_′

[` ]
] (

y; z; q
)
, (5.7)

which gives an undesired linear dependence of characters unless _ = _′. We can therefore only save linear

independence if _′
0
� = _�

1
and _′

0
�,1 = _�,1

1
− 1 for all _̂ ∈ �2

u,v. Since _̂� ∈ P̂u−3
>

and _̂�,1 ∈ P̂v−1
>

satisfies _�,1
1

≠ 0,

linear independence of the relaxed characters thus requires u = 3 and v = 2.

Corollary 5.2. Let k be admissible with v > 1 (so that relaxed highest-weight A2(u, v)-modules exist). Then, the

characters of the R̂_[` ] , with _̂ ∈ �2
u,v and [`] ∈ h∗/Q, are linearly dependent unless u = 3 and v = 2.

Of course, when k is admissible with v = 1 (so k ∈ ℤ>0), the irreducible A2(u, v)-modules are all highest-weight and

their characters are well known to be linearly independent.

As the standard module approach to modularity and fusion assumes that the standard modules have linearly

independent characters, it is therefore restricted by Corollary 5.2 to A2(3, 2) (and the rational Wess–Zumino–Witten

models A2(u, 1), u > 3). The problem here is that the definition (5.1) of characters cannot distinguish R̂_[` ] from

R̂_
′

[` ] because the eigenvalues of ℎ0 and !0 do not even distinguish their top spaces R_[` ] and R_
′

[` ] . Indeed, they share

the same sl3-weights and eigenvalue of the quadratic Casimir. However, the eigenvalue of the cubic Casimir of sl3

may be different, a possibility to which (5.1) is blind.

7We recall that the “−-type” quantum hamiltonian reduction was introduced by Frenkel, Kac and Wakimoto in [40] for regular (principal) nilpotent

elements. It differs from the usual “+-type” regular reduction in that it gauges the negative root vectors instead of the positive ones. Although

both reductions give isomorphic W-algebras, the corresponding functors on modules are different. The reduction functor used in Theorem 5.1 is

a generalisation of this −-type functor to all nilpotents due to Kac–Wakimoto [59] and Arakawa [60].
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In the absence of a better definition of character, the obvious fix is to lift characters to 1-point functions on the

torus [42].8 We shall not pursue this here, leaving it for a sequel, and here just note that this lift was recently worked

out for the logarithmic Bershadsky–Polyakov minimal models in [26] by relating the relevant 1-point functions to

those of the rational,3 minimal models, for which linear independence is generically guaranteed by a theorem of

Zhu [42]. We expect that combining this method with the recent results of [41,45,63] will allow us to tackle general

sl3 minimal models and hope to return to this in the near future.

In what follows, we shall continue with the analysis of the sl3 minimal model A2 (3, 2) whose relaxed highest-

weight modules have linearly independent characters. Along with their spectral flows, these will furnish us with a

collection of standard modules on which to test modularity and nonnegativity of fusion coefficients.

5.2. A2(3, 2): a summary. For convenience, we collect here some of the many general results obtained above,

specialised to the case u = 3 and v = 2. The level is thus k = − 3
2

and the central charge is c = −8. The minimal

model A2 (3, 2) has already been considered in several prior works including [64–67]. However, we believe that the

modularity study reported below is new.

An admissible weight _̂ ∈ �3,2 has _̂� = 0 and _̂�,1 ∈ P̂1
>

or _̂�,w1 = Λ1. Similarly, _̂ ∈ �1
3,2

= �2
3,2

implies

that _̂� = 0 and _̂�,1 = Λ1. Up to D6-twists, the isomorphism classes of the irreducible positive-energy weight

A2(3, 2)-modules are therefore represented by:

• Four highest-weight modules L̂0, L̂−3Λ1/2, L̂−3Λ2/2 and L̂−d/2. These were originally classified in [64]. Their

ground states have conformal weight 0, − 1
2
, − 1

2
and − 1

2
, respectively.

• A single family of semirelaxed highest-weight modules Ŝ
−3Λ1/2
[` ] , for all [`] ∈ (− 3

2
Λ1 + ℂU1)/ℤU1 except for

[`] = [− 3
2
Λ1] and [`] = [− 1

2
d]. These were classified in [1, 33]. Their ground states always have conformal

weight − 1
2
.

• A single family of relaxed highest-weight modules R̂
−3Λ1/2
[` ] , for all [`] ∈ (h∗/Q) \ sing(− 3

2
Λ1). Here,

sing(− 3
2
Λ1) = [− 3

2
Λ1 + ℂU1] ∪ [− 1

2
d + ℂU2] ∪ [− 3

2
Λ1 + ℂU3] . (5.8)

These were first constructed in [66] and shown to be a complete set in [1]. Their ground states also always have

conformal weight − 1
2
.

By virtue of the fact that |�3,2 | = |�3,2 | = 1, we shall from here on drop the superscript label _ on the Ŝ_[` ] and R̂_[` ] ,

for brevity.

The common multiplicity of the weights of the top space of the R̂[` ] is _�
2
+ 1 = 1. In fact, the same is true for

the Ŝ[` ] and L̂` . This follows easily from the degenerations (5.11) below, but also follows from the fact that the

image of U(sl3)h, the centraliser of the Cartan subalgebra, in the Zhu algebra of A2 (3, 2) is commutative, itself a

straightforward consequence of the results of [64].

Twisting an irreducible in the above list by a (nontrivial) D6-automorphism generally results in a new irreducible,

meaning one not already listed above. However, there are exceptions:

w(L̂0) � L̂0, w1(L̂−3Λ2/2) � L̂−3Λ2/2, w2(L̂−3Λ1/2) � L̂−3Λ1/2,

w1 (Ŝ[` ]) � Ŝ[w1 (`) ], w(R̂[` ]) � R̂[w (`) ]

(w ∈ W), (5.9a)

d(L̂0) � L̂0, d(L̂−3Λ1/2) � L̂−3Λ2/2, d(L̂−d/2) � L̂−d/2, d(R̂[` ]) � R̂[d(`) ] . (5.9b)

8We remark that this name, while quite standard, may be a little misleading. It does not refer to a 1-point correlation function of genus 1 in

an appropriate conformal field theory, but rather to a chiral version where the trace is taken over a fixed module. In other words, this concept

generalises the definition (5.1) of a character by inserting some fixed zero mode (usually unexponentiated!) inside the trace.
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There are similar exceptions when the automorphism is a (nontrivial) spectral flow. With the layout as defined in

Figure 4, these exceptions may be represented as follows:

L̂0

L̂−3Λ1/2

L̂−3Λ2/2

w1(L̂−3Λ1/2)

w2(L̂−3Λ2/2)w1w2(L̂−3Λ2/2)

w2w1(L̂−3Λ1/2)

w1w2(L̂−d/2)

L̂−d/2

w2w1(L̂−d/2)

w3(L̂−d/2)

w2(L̂−d/2)

w1(L̂−d/2)

Ŝ[` ]

c(Ŝ[−`−3Λ2/2])

(5.9c)

For what follows, it will be important to know how the reducible (semi)relaxed highest-weight A2(3, 2)-modules

decompose. The degenerations of the semirelaxed family take the form

Ŝ[−3Λ1/2] � L̂−3Λ1/2 ⊕ w1 (L̂−d/2) and Ŝ[−d/2] � L̂−d/2 ⊕ w1(L̂−3Λ1/2). (5.10)

Similarly, the degenerations of the relaxed family for [`] in sing(− 3
2
Λ1) take the forms

R̂[` ] �




Ŝ[` ] ⊕ c(Ŝ[−`−U2 ]) if ` ∈ − 3
2
Λ1 + ℂU1,

w1w2(Ŝ[w2 ·w1 (`) ]) ⊕ w2d(Ŝ[dw2 ·` ]) if ` ∈ − 1
2
d + ℂU2,

w2 (Ŝ[w2 (`) ]) ⊕ cw2(Ŝ[cw2 ·` ]) if ` ∈ − 3
2
Λ1 + ℂU3.

(5.11)

We emphasise that one must always pick a representative ` from [`] ∈ h∗/Q that satisfies the indicated condition. For

example, when [`] = [− 3
2
Λ2], we may take ` = − 3

2
Λ2 in the second degeneration of (5.11) as − 3

2
Λ2 = − 1

2
d − 1

2
U2.

However, we should instead take ` = − 3
2
Λ2 + U2 in the third degeneration as − 3

2
Λ2 + U2 = − 3

2
Λ1 + 1

2
U3.

Finally, for certain [`] ∈ h∗/Q, the relaxed modules further degenerate into highest-weight modules:

R̂[−3Λ1/2] � L̂−3Λ1/2 ⊕ c(L̂−3Λ1/2) ⊕ w1(L̂−d/2) ⊕ cw1(L̂−d/2),

R̂[−d/2] � L̂−d/2 ⊕ c(L̂−d/2) ⊕ w1(L̂−3Λ1/2) ⊕ w2 (L̂−3Λ2/2),

R̂[−3Λ2/2] � L̂−3Λ2/2 ⊕ c(L̂−3Λ2/2) ⊕ w2(L̂−d/2) ⊕ cw2(L̂−d/2).

(5.12)

All of these degenerations are illustrated, for convenience, in Figure 5. In the language of the standard module

formalism of [27, 28], the relaxed highest-weight modules of (5.12) are atypical of degree 2, as are their direct

summands. The direct summands of the relaxed highest-weight modules of (5.11), excluding those of (5.12), are

then atypical of degree 1 and the irreducible relaxed highest-weight modules are typical (or atypical of degree 0).

5.3. Standard characters and modularity. The minimal quantum hamiltonian reduction of A2 (3, 2) is the trivial

Bershadsky–Polyakov minimal model BP(3, 2) of central charge 0 [62]. It then follows from [60] that

� 0
min. (L̂−3Λ1/2) � ℂ, hence ch

[
� 0

min. (L̂−3Λ1/2)
]
(q) = 1. (5.13)

By Theorem 5.1, the characters of the relaxed highest-weight A2(3, 2)-modules are thus

ch
[
R̂[` ]

] (
y; z; q

)
=

y−3/2

[ (q)4

∑
a ∈[` ]

za =
e2c i

(
−3\/2+〈`,Z 〉

)
[ (g)4

∑
U ∈Q

e2c i 〈U,Z 〉, [`] ∈ h∗/Q. (5.14)

We can manipulate the sum in this character formula by decomposing U as a linear combination of simple roots:

∑
U ∈Q

e2c i 〈U,Z 〉 =
∑

<1,<2 ∈ℤ
e2c i

(
〈U1,Z 〉<1+〈U2,Z 〉<2

)
=

2∏
8=1

∑
<8 ∈ℤ

e2c i 〈U8 ,Z 〉<8 =

2∏
8=1

∑
=1∈ℤ

X
(
〈U8 , Z 〉 − =8

)
. (5.15)
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Ŝ[−3Λ1/2]

− 3
2
Λ1

L̂−3Λ1/2

− 3
2
Λ1+U1

w1 (L̂−d/2)

Ŝ[−d/2]

− 1
2
d+U1

w1 (L̂−3Λ1/2)

− 1
2
d

L̂−d/2

R̂[` ] (` ∈ − 3
2
Λ1 + ℂU1)

− 3
2
Λ1

`

Ŝ[` ]

`+U2

c(Ŝ[−`−U2 ])

R̂[` ] (` ∈ − 1
2
d + ℂU2)

− 1
2
d

`

w2d(Ŝ[dw2 ·` ])

`+U3

w1w2(Ŝ[w2 ·w1 (`) ])

R̂[` ] (` ∈ − 3
2
Λ1 + ℂU3)

− 3
2
Λ1

`

w2 (Ŝ[w2 (`) ])

`+U1

cw2 (Ŝ[cw2 ·` ])

R̂[−d/2]

− 1
2
d+U1

w1 (L̂−3Λ1/2)

− 1
2
d

L̂−d/2

− 3
2
Λ1

w2 (L̂−3Λ2/2)

− 1
2
d

c(L̂−d/2)

R̂[−3Λ1/2]

− 3
2
Λ1

L̂−3Λ1/2

− 3
2
Λ1+U1

w1 (L̂−d/2)

3
2
Λ1

c(L̂−3Λ1/2)

− 3
2
Λ1+U1

cw1 (L̂−d/2)

R̂[−3Λ2/2]

− 3
2
Λ2

L̂−3Λ2/2

− 3
2
Λ2+U2w2 (L̂−d/2)

3
2
Λ2

c(L̂−3Λ2/2)

− 3
2
Λ2+U3 cw2 (L̂−d/2)

Figure 5. The degenerations (5.10) of the semirelaxed A2(3, 2)-modules (top), the generic degen-

erations (5.11) of the relaxed A2 (3, 2)-modules R̂[` ] , ` ∈ sing(− 3
2
Λ1), (middle) and the special

degenerations (5.12) of the relaxed A2(3, 2)-modules (bottom). In each case, the degeneration

is illustrated by the (convex hulls of the) weights of the direct summands and the black circles

indicate representative weights of the summands.
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Defining the Dirac delta function on h by

X (Z ) =
2∏
8=1

X
(
〈U8 , Z 〉

)
, Z ∈ h, (5.16)

the sum takes the compact form

∑
U ∈Q

e2c i 〈U,Z 〉 =
∑

=1,=2∈ℤ

2∏
8=1

X
(
〈U8 , Z − =8b8〉

)
=

∑
b ∈P∨

X (Z − b), (5.17)

which we recognise as a Dirac comb supported on the coweight lattice.

We remark that this derivation immediately generalises to give∑
U ∈L

e2c i 〈U,Z 〉 =
∑
W ∈L∨

X (Z − W), (5.18)

where L is any lattice, Z ∈ L ⊗ℤ ℂ and L∨ its integer dual. In particular, the characterisation of lattice Dirac combs

derived in (5.17) continues to hold when we exchange the roles of Q and P∨.

The spectral flows of the relaxed highest-weight A2(3, 2)-modules R̂[` ] , with [`] ∈ h∗
ℝ
/Q, are our candidate

standard modules, where h∗
ℝ

denotes the subset of h∗ consisting of real weights. Substituting this back into (5.14)

and applying (5.4), their characters are as follows.

Proposition 5.3. The character of the spectrally flowed relaxed highest-weight A2(3, 2)-module fb (R̂[` ]), for any
b ∈ P∨ and [`] ∈ h∗/Q, is

ch
[
fb (R̂[` ])

]
(\Z g) = e−3c i\e−3c i^ (b,Z+gb/2)e2c i 〈`,Z+gb 〉

[ (g)4

∑
b ′∈P∨

X (Z + gb − b ′). (5.19)

To confirm our choice of standard modules, we must show that the span of their characters carries a representation

of the modular group SL(2;ℤ) = 〈S, T : S4 = 1 and (ST)3 = S2〉 and that their characters form a topological basis

for the space of all characters of modules of �̂3,2.

The modularity is the subject of our next result. First, we propose the following action of S and T on the

coordinates (\Z g) ∈ ℂ × h ×ℍ:

S : (\Z g) ↦→
(
\ − ^ (Z , Z )

2g
− 2 arg(g) − arg(−1)

3c


Z

g

−
1

g

)
,

T : (\Z g) ↦→
(
\ − arg(−1)

9c

Z
g + 1

)
.

(5.20)

Here, arg denotes any choice of complex argument, for example the principal one. It is easy to check, using

arg(− 1
g ) = arg(−1) − arg(g), that this does indeed satisfy the defining relations of SL(2;ℤ).9

Theorem 5.4. The modular S-transform of the standard A2(3, 2)-module character (5.19) is given by

S

{
ch

[
fb (R̂[` ])

]}
=

∑
b ′∈P∨

∫
h∗
ℝ
/Q

S
b,b ′

[` ],[`′] ch
[
fb

′ (R̂[`′ ])
]

d[`′], (5.21a)

where b ∈ P∨, [`] ∈ h∗
ℝ
/Q and

S
b,b ′

[` ],[`′] = e2c i
(
3^ (b,b ′)/2−〈`,b ′〉−〈`′,b 〉

)
. (5.21b)

9The reader will no doubt recognise the action of S and T on \ as a somewhat strange-looking generalisation of the usual formulae familiar from

rational models. The terms involving complex arguments seem to be necessary to deal with the unusual automorphy factor that results from

transforming Dirac combs.
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Proof. We begin by simplifying the left-hand side of (5.21a), using S{[ (g)} =
√
−ig[ (g) and X (Z /g) = |g |2X (Z ):10

S

{
ch

[
fb (R̂[` ])

] }
= e−3c i

(
\−^ (Z ,Z )/2g

)
ei
(
2 arg(g)−arg(−1)

)
−g2[ (g)4

e−3c i^ (b,Z−b/2)/ge2c i 〈`,Z−b 〉/g
∑
b ′∈P∨

X

(
Z − b − b ′g

g

)

=
e−3c i\ |g |2ei

(
2 arg(g)−arg(−1)

)
−g2[ (g)4

∑
b ′∈P∨

e3c i
(
^ (Z ,Z /2)−^ (b,Z−b/2)

)
/ge2c i 〈`,Z−b 〉/gX (Z + b ′g − b). (5.22)

Using the delta function to replace Z everywhere in the exponentials by b − b ′g , we arrive at

S

{
ch

[
fb (R̂[` ])

] }
=

e−3c i\

[ (g)4

∑
b ′∈P∨

e3c i^ (b ′,b ′)g/2e−2c i 〈`,b ′〉X (Z + b ′g − b). (5.23)

Given the easily derived identity ∫
h∗
ℝ
/Q

e2c i 〈`,b 〉 d[`] = Xb,0, b ∈ P∨, (5.24)

the right-hand side of (5.21a) likewise simplifies:∑
b ′∈P∨

∫
h∗
ℝ
/Q

S
b,b ′

[` ],[`′] ch
[
fb

′ (R̂[`′ ])
]

d[`′]

=
∑
b ′∈P∨

e2c i
(
3^ (b,b ′)/2−〈`,b ′〉

)
e−3c i\e−3c i^ (b ′,Z+b ′g/2)

[ (g)4

∑
b ′′∈P∨

∫
h∗
ℝ
/Q

e2c i 〈`′,Z+b ′g−b 〉 d[`′] X (Z + b ′g − b ′′)

=
e−3c i\

[ (g)4

∑
b ′∈P∨

e3c i^ (b,b ′)e−2c i 〈`,b ′〉e−3c i^ (b ′,Z+b ′g/2)X (Z + b ′g − b). (5.25)

Replacing Z in the exponential by b − b ′g , this reproduces (5.23).

The corresponding explicit formula for the T-transform of the standard characters is easy to derive. As we shall not

need it, we omit this result.

Note that the “S-matrix” (5.21b) is manifestly symmetric under exchanging primed and unprimed labels. It is

also unitary: ∑
b ′′∈P∨

∫
h∗
ℝ
/Q

S
b,b ′′

[` ],[`′′]S
b ′′,b ′

[`′′ ],[`′] d[`′′] = Xb,b ′X ( [`] − [`′]). (5.26)

Finally, its square picks out the conjugation automorphism c at the level of the standard module labels:∑
b ′′∈P∨

∫
h∗
ℝ
/Q

S
b,b ′′

[` ],[`′′]S
b ′′,b ′

[`′′],[`′ ] d[`′′] = Xb,−b ′X ( [`] + [`′]). (5.27)

The properties generalise those from the familiar case of rational (and�2-cofinite) vertex operator algebras. This is,

in a sense, the hallmark of the standard module formalism. In particular, it suggests that Verlinde computations will

give meaningful answers for the (Grothendieck) fusion coefficients.

5.4. Modularity of atypical characters. Our next task is to demonstrate that the characters of the remaining

irreducible A2(3, 2)-modules in �̂3,2 may be expressed as infinite-linear combinations of standard characters. This

is achieved by constructing resolutions for the irreducibles in terms of the standard modules and applying the

Euler–Poincaré principle to deduce the required character formulae and their modular transformations.

As we have chosen the standard modules to be completely reducible, we may actually skip the resolutions entirely

and instead work directly with character formulae deduced from the degeneration formulae (5.10)–(5.12). For

example, combining the spectral flow identifications (5.9c) with the degenerations (5.11) for ` ∈ − 3
2
Λ1 + ℂU1 gives

R̂[` ] � Ŝ[` ] ⊕ c(Ŝ[−`−U2 ]) � Ŝ[` ] ⊕ f
−b2 (Ŝ[`+U2−3Λ2/2]) = Ŝ[` ] ⊕ f

−b2 (Ŝ[`−U1/2]). (5.28)

10This second identity is well known for delta functions with real arguments. Here, as in many other applications of the standard module

formalism, we assume that it may be extended to complex arguments. We expect that this formula can be established rigorously by finding the

correct space of test functions to pair with and hope to pursue this in future work.
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The corresponding character identity is thus

ch
[
Ŝ[` ]

]
= ch

[
R̂[` ]

]
− ch

[
f−b2 (Ŝ[`−U1/2])

]
. (5.29)

Of course, we may replace ` by `− 1
2
U1 in (5.28) and then apply the exact functor f−b2 to obtain the character identity

ch
[
f−b2 (Ŝ[`−U1/2])

]
= ch

[
f−b2 (R̂[`−U1/2])

]
− ch

[
f−2b2 (Ŝ[` ])

]
. (5.30)

By substituting back and iterating this process, we arrive at the following formula expressing the semirelaxed

characters as an infinite-linear combination of the standard ones.

Lemma 5.5. The character of the semirelaxed highest-weight A2 (3, 2)-module Ŝ[` ] , [`] ∈ − 3
2
Λ1 + ℂU1, satisfies

ch
[
Ŝ[` ]

]
=

∞∑
==0

(
ch

[
f−2=b2 (R̂[` ])

]
− ch

[
f−(2=+1)b2 (R̂[`−U1/2])

] )
. (5.31)

Of course, we could have instead replaced ` by ` + 1
2
U1 in (5.28) and applied fb2 to get

ch
[
Ŝ[` ]

]
= ch

[
fb2 (R̂[`+U1/2])

]
− ch

[
fb2 (Ŝ[`+U1/2])

]
. (5.32)

Substituting and iterating, as above, then results in an expression for the semirelaxed characters as a different

infinite-linear combination of standard characters, this time involving spectral flows with positive multiples of b2:

ch
[
Ŝ[` ]

]
=

∞∑
==1

(
ch

[
f (2=−1)b2 (R̂[`+U1/2])

]
− ch

[
f2=b2 (R̂[` ])

])
. (5.33)

This difference should be interpreted as corresponding to a different topological completion of the vector space

spanned by the standard characters.

More precisely, the completion implicit in (5.31) allows for infinitely many terms with spectral flows by negative

multiples of the coweight b2, but only finitely many terms with positive multiples. On the other hand, the completion

implicit in (5.33) allows for infinitely many terms with positive multiples of b2 but only finitely negative multiples.

This is akin to power series completions of Laurent polynomials where one allows the exponent of the variable to be

unbounded either above or below, but not both. A geometric interpretation is that we have completed along a ray in

either the −b2 or the b2 direction, respectively.

Proposition 5.6. The modular S-transforms of the spectral flows of the semirelaxed A2(3, 2)-module characters are
given by

S

{
ch

[
fb (Ŝ[` ])

] }
=

∑
b ′∈P∨

∫
h∗
ℝ
/Q

S
b,b ′

[` ],[`′ ] ch
[
fb

′ (R̂[`′ ])
]

d[`′], (5.34a)

where b ∈ P∨, [`] ∈ (− 3
2
Λ1 + ℝU1)/ℤU1 and

S
b,b ′

[` ],[`′] =
e−c i 〈`

′,b2 〉

2 cos
(
c 〈`′, b2〉

) S
b,b ′

[` ],[`′] . (5.34b)

Here, the semirelaxed S-matrix entry (5.34b) is to be expanded as a geometric series in either e2c i 〈`′,b2 〉 or e−2c i 〈`′,b2 〉,

depending on whether (5.31) or (5.33), respectively, is used.

Proof. Substituting (5.21a) into the fb -spectral flow of (5.31) gives (5.34a), with

S
b,b ′

[` ],[`′] =
∞∑
==0

(
S
b−2=b2,b

′

[` ],[`′] − S
b−(2=+1)b2,b

′

[`−U1/2],[`′ ]

)
. (5.35)

Substituting (5.21b) now gives

S
b,b ′

[` ],[`′] = S
b,b ′

[` ],[`′]

∞∑
==0

e2c i=
(
−3^ (b2,b

′)+2〈`′,b2 〉
)
·
(
1 − e2c i

(
−3^ (b2,b

′)/2+〈U1,b
′ 〉/2+〈`′,b2 〉

) )
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= S
b,b ′

[` ],[`′]

∞∑
==0

e2c i= 〈`′,2b2 〉 ·
(
1 − e2c i 〈`′,b2 〉

)
, (5.36)

which simplifies to (5.34b) upon summing the geometric series in e2c i 〈`′,b2 〉. Here, it is useful to note that

^ (3b2, b
′) = 〈3Λ2, b

′〉 ∈ ℤ, since 3Λ2 = U1 + 2U2 ∈ Q, and

− 3
2
^ (b2, b

′) + 1
2
〈U1, b

′〉 = 〈− 3
2
Λ2 + U1, b

′〉 = 〈−U2, b
′〉 ∈ ℤ. (5.37)

It is easy to check that using the spectral flow of (5.33) instead of (5.31) gives the same result after summing a

geometric series in e−2c i 〈`′,b2 〉 .

Unlike the situation for the relaxed modules, there are other semirelaxed highest-weight A2 (3, 2)-modules that

may be obtained from the Ŝ[` ] through twisting by an automorphism of D6. This is however easily accommodated.

Theorem 5.7. The modular S-transforms of the twists of the semirelaxed A2(3, 2)-module characters are given by

S

{
ch

[
fbl (Ŝ[` ])

]}
=

∑
b ′∈P∨

∫
h∗
ℝ
/Q

S
b,b ′;l
[` ],[`′] ch

[
fb

′ (R̂[`′ ])
]

d[`′], (5.38a)

where b ∈ P∨, l ∈ D6, [`] ∈ (− 3
2
Λ1 +ℝU1)/ℤU1 and

S
b,b ′;l
[` ],[`′] =

e−c i 〈`
′,l (b2) 〉

2 cos
(
c 〈`′, l (b2)〉

) S
b,b ′

[l (`) ],[`′] . (5.38b)

Proof. The character of l (Ŝ[` ]) is simply

ch
[
l (Ŝ[` ])

]
=

∞∑
==0

(
ch

[
lf−2=b2 (R̂[` ])

]
− ch

[
lf−(2=+1)b2 (R̂[`−U1/2])

] )

=

∞∑
==0

(
ch

[
f−2=l (b2)l (R̂[` ])

]
− ch

[
f−(2=+1)l (b2)l (R̂[`−U1/2])

] )

=

∞∑
==0

(
ch

[
f−2=l (b2) (R̂[l (`) ])

]
− ch

[
f−(2=+1)l (b2) (R̂[l (`)−l (U1)/2])

] )
, (5.39)

by Propositions 4.6 and 4.7 and Lemma 5.5. Applying fb , we can use Proposition 5.6 with [`] ↦→ [l (`)],
b2 ↦→ l (b2) and U1 ↦→ l (U1) (the simplifications in the proof continue to hold because l preserves Q).

Obviously, the result would remain unchanged if we had started with the character formula (5.33) instead.

It therefore only remains to determine character formulae and S-transforms for the highest-weight A2 (3, 2)-
modules. Unlike the semirelaxed case, in which there were two choices for the spectral flow “direction” in the

character formulae (−b2 in (5.31) and b2 in (5.33)), there are now many choices. We shall only consider a single

choice for simplicity, omitting the check that other choices reproduce the same S-transformation formulae (up to

expanding geometric series in different domains).

Lemma 5.8. We have the following highest-weight A2(3, 2)-character formula:

ch
[
L̂−3Λ1/2

]
=

∞∑
==0

(
ch

[
f−2=b1w2(Ŝ[−3Λ1/2])

]
− ch

[
f−2=b1−b2 (Ŝ[−d/2])

])
. (5.40)

Proof. We start with the degenerations of (5.10), applying w2 to the first:

w2(Ŝ[−3Λ1/2]) � w2 (L̂−3Λ1/2) ⊕ w2w1 (L̂−d/2) � L̂−3Λ1/2 ⊕ f−b2 (L̂−d/2), (5.41a)

Ŝ−d/2 � L̂−d/2 ⊕ w1(L̂−3Λ1/2) � L̂−d/2 ⊕ f−2b1+b2 (L̂−3Λ1/2). (5.41b)

Apply f−b2 to (5.41b), take its character and substitute into the character of (5.41a). The result is

ch
[
L̂−3Λ1/2

]
= ch

[
w2(Ŝ[−3Λ1/2])

]
− ch

[
f−b2 (Ŝ−d/2)

]
+ ch

[
f−2b1 (L̂−3Λ1/2)

]
. (5.42)
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Iterating this gives (5.40).

As both L̂0 and L̂−3Λ2/2 may be obtained from L̂−3Λ1/2 by twisting, their characters may be expressed as an

infinite-linear combination of standard characters. The same is true for L̂−d/2, as (5.41) makes clear, hence it is true

for the character of every module in �̂3,2. Along with the modularity result Theorem 5.4, this confirms our choice

of the fb (R̂[` ]), with b ∈ P∨ and [`] ∈ h∗
ℝ
/Q, as the standard modules of A2 (3, 2).

Notice that, as with the character formula of Lemma 5.5, we have chosen a completion of the vector space spanned

by the standard characters to obtain (5.40), specifically that all but finitely many spectral flow coweights must lie

in the cone spanned by −b2 and b2 − b1. (Observe that w2 reflects the coweight −b2 coming from the semidense

module in the first summand of (5.40) to b2 − b1). Therefore, every simple module admits a character formula with

all but finitely many spectral flow indices in this cone. A different choice of completion would have resulted in a

different cone. Specifically the choices of completions are in bĳection with the cones spanned by any of the six pairs

of coweights in the set {±b1,±b2,±(b1 − b2)} whose relative angle is 2c/3.

Theorem 5.9. The modular S-transforms of the spectral flows of the highest-weight A2(3, 2)-module characters are
given by

S

{
ch

[
fb (L̂`)

] }
=

∑
b ′∈P∨

∫
h∗
ℝ
/Q

S
b,b ′

`,[`′] ch
[
fb

′ (R̂[`′ ])
]

d[`′], (5.43a)

where b ∈ P∨ and ` ∈ {0,− 3
2
Λ1,− 3

2
Λ2,− 1

2
d}. In particular, we have

S
b,b ′

−3Λ1/2,[`′ ] =
e2c i

(
3^ (b+b1,b

′)/2−〈`′,b+b1 〉
)

2
(
1 + cos

(
2c 〈`′, b1〉

)
+ cos

(
2c 〈`′, b2〉

)
+ cos

(
2c 〈`′, b1 − b2〉

) ) . (5.43b)

Proof. These calculations are similar to the proof of Proposition 5.6. First, note that (5.38b) and (5.40) give

S
b,b ′

−3Λ1/2,[`′ ] =
∞∑
==0

(
S
b−2=b1,b

′;w2

[−3Λ1/2],[`′ ] − S
b−2=b1−b2,b

′

[−d/2],[`′]

)

=
e−c i 〈`

′,b1−b2 〉

2 cos
(
c 〈`′, b1 − b2〉

) ∞∑
==0

S
b−2=b1,b

′

[−3Λ1/2],[`′ ] −
e−c i 〈`

′,b2 〉

2 cos
(
c 〈`′, b2〉

) ∞∑
==0

S
b−2=b1−b2,b

′

[−d/2],[`′ ] . (5.44)

Substituting (5.21b) and summing the geometric series now gives

S
b,b ′

−3Λ1/2,[`′ ] =
e2c i

(
3〈b+b1,b

′〉/2−〈`′,b 〉
)

1 − e2c i 〈`′,2b1 〉

[
e−c i 〈`

′,b1−b2 〉

2 cos
(
c 〈`′, b1 − b2〉

) − e+c i 〈`
′,b2 〉

2 cos
(
c 〈`′, b2〉

) ] , (5.45)

after simplifying appropriately. The rest is trigonometric identities.

This can of course be generalised to include D6-twists. We leave this detail as an exercise. Setting b = −b1 in

Theorem 5.9 gives us the S-transform of the vacuum character.

Corollary 5.10. The modular S-transform of the character of the vacuum module L̂0 of A2(3, 2) is given by (5.43a),

where

S
0,b ′

0,[`′ ] =
1

2
(
1 + cos

(
2c 〈`′, b1〉

)
+ cos

(
2c 〈`′, b2〉

)
+ cos

(
2c 〈`′, b1 − b2〉

) ) . (5.46)

5.5. Grothendieck fusion rules. We have identified a set of standard modules for the sl3 minimal model A2 (3, 2),
computed their characters and modular S-transforms and determined explicit formulae that express the character of

any module in �̂3,2 in the basis of standard characters. To test the consistency of our results, we shall apply the

standard Verlinde formula of [27, 28] to determine the multiplicities of the Grothendieck fusion rules of A2 (3, 2).
A highly nontrivial check of this consistency is whether these multiplicities are indeed nonnegative integers. We

remark that the standard module formalism involves ideas and manipulations which may be unfamiliar to those

versed in the modularity of rational vertex operator algebras. In our opinion, this is an unavoidable consequence of
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the existence of modules that are not completely reducible and we refer to the original articles for further discussion

and motivations.

In point of fact, we can only conjecture that the numbers computed by the standard Verlinde formula are actually

the multiplicities appearing in the Grothendieck fusion rules. The minimal model A2(3, 2) is neither rational nor

�2-cofinite and its standard modules are not even �1-cofinite. It is therefore not clear that the fusion multiplicities

need be finite. Nor is it even clear that the fusion product × induces a well defined product ⊠ on the Grothendieck

group of �̂3,2 (we do not know if fusing with a given module defines an exact functor on �̂3,2).

We nevertheless expect that all these technical objections can somehow be overcome. Let �̂′
3,2

denote the full

subcategory of �̂3,2 whose objects are A2(3, 2)-modules with real weights. We conjecture that �̂ ′
3,2

is a rigid braided

tensor category, hence that the Grothendieck fusion ring is well defined.11 We shall additionally conjecture that

the structure constants of this ring, the Grothendieck fusion multiplicities, are indeed computed by the standard

Verlinde formula. These conjectures are understood to be in force for the remainder of this section. (Because of

these conjectures, we will not state the results in this section as theorems.)

With this understanding, the standard Verlinde formula amounts to the following statement. The Grothendieck

fusion rules of the modules of �̂′
3,2

take the form

[
M

]
⊠
[
N
]
=

∑
b ′′∈P∨

∫
h∗
ℝ
/Q

〈
fb

′′ (R̂[`′′ ])
M N

〉 [
fb

′′ (R̂[`′′ ])
]

d[`′′], (5.47a)

where
[
M

]
denotes the image of the A2(3, 2)-module M in the Grothendieck ring and the Grothendieck fusion

coefficients are given by

〈
fb

′′ (R̂[`′′])
M N

〉
=

∑
b ′′′∈P∨

∫
h∗
ℝ
/Q

S
[
M, fb

′′ (R̂[`′′ ])
]
S
[
N, fb

′′ (R̂[`′′])
] (

S
b ′′,b ′′′

[`′′ ],[`′′′]

)∗
S

0,b ′′′

0,[`′′′ ]

d[`′′′] . (5.47b)

Here, (−)∗ denotes complex conjugation and the S-matrix entries involving M and N have to be interpreted as those

appropriate to their atypicality degrees.

Before we start applying the standard Verlinde formula, there are two simplifications to note. Consider first the

effect of a D6-twist l on the standard Grothendieck fusion coefficients. Using the explicit formulae (5.21b) and

(5.46) for the standard and vacuum S-matrix entries, as well as the fact that P∨ and Q are D6-invariant, we see that

〈 lfb
′′ (R̂[`′′])

lfb (R̂[` ]) lfb
′ (R̂[`′ ])

〉
=

〈 fl (b ′′) (R̂[l (`′′) ])

fl (b ) (R̂[l (`) ]) fl (b ′) (R̂[l (`′) ])

〉

=
∑
b ′′′∈P∨

∫
h∗
ℝ
/Q

S
l (b ),b ′′′
[l (`) ],[`′′′]S

l (b ′),b ′′′
[l (`′) ],[`′′′]

(
S
l (b ′′),b ′′′
[l (`′′) ],[`′′′]

)∗
S

0,b ′′′

0,[`′′′ ]

d[`′′′]

=
∑
b ′′′∈P∨

∫
h∗
ℝ
/Q

S
b,l−1 (b ′′′)
[` ],[l−1 (`′′′) ]S

b ′,l−1 (b ′′′)
[`′ ],[l−1 (`′′′) ]

(
S
b ′′,l−1 (b ′′′)
[`′′],[l−1 (`′′′) ]

)∗
S

0,l−1 (b ′′′)
0,[l−1 (`′′′) ]

d[`′′′]

=
∑
b ′′′∈P∨

∫
h∗
ℝ
/Q

S
b,b ′′′

[` ],[`′′′]S
b ′,b ′′′

[`′ ],[`′′′]

(
S
b ′′,b ′′′

[`′′],[`′′′]

)∗
S

0,b ′′′

0,[`′′′ ]

d[`′′′]

=

〈 fb
′′ (R̂[`′′ ])

fb (R̂[` ]) fb
′ (R̂[`′ ])

〉
. (5.48)

Because the standard characters form a basis for the space spanned by the characters of the modules of �̂′
3,2

, this D6-

invariance also holds for general Grothendieck fusion coefficients. The Grothendieck fusion rules (5.47a) therefore

11This rigidity conjecture is very natural as all rational vertex operator algebras are known to produce rigid module categories (modular tensor

categories even) [8] and a growing number of nonrational vertex operator algebras are also known to admit rigid module categories [32, 68–72].

There is, however, a known counterexample [73]. A modified Grothendieck fusion ring for this counterexample was studied in detail in [74].
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remain true if one applies l to each module (on both sides):

[
l (M)

]
⊠
[
l (N)

]
=

∑
b ′′∈P∨

∫
h∗
ℝ
/Q

〈
fb

′′ (R̂[`′′])
M N

〉 [
l (fb ′′ (R̂[`′′ ]))

]
d[`′′] . (5.49)

The upshot of this is that, if desired, one may restrict to Grothendieck fusion rules in which only one of the two

A2(3, 2)-modules being fused is D6-twisted. We note that this D6-invariance of Grothendieck fusion rules is expected

because genuine fusion rules are known to satisfy a similar invariance property [31].

There is a slightly different invariance formula for Grothendieck fusion rules and spectral flow, again expected

because of the known version for genuine fusion rules [75]. To deduce it, note that (5.21b) gives

S
b,b ′′′

[` ],[`′′′] = e2c i
(
3^ (b,b ′′′)/2−〈`′′′,b 〉

)
S

0,b ′′′

[` ],[`′′′] . (5.50)

In the formula for the standard Grothendieck fusion coefficients, we can extract these phases from the unprimed and

singly primed S-matrix elements and then absorb them into the doubly primed one. The result is

〈 fb
′′ (R̂[`′′ ])

fb (R̂[` ]) fb
′ (R̂[`′ ])

〉
=

〈fb ′′−b ′−b (R̂[`′′])

R̂[` ] R̂[`′ ]

〉
, (5.51)

where the minus signs arise because of complex conjugation. As above, this implies that the Grothendieck fusion

rules (5.47a) continue to hold upon applying spectral flow, as long as the product of the spectral flows on the left-hand

side matches that on the right-hand side. Thus,

[
fb (M)

]
⊠
[
fb

′ (N)
]
=

∑
b ′′∈P∨

∫
h∗
ℝ
/Q

〈
fb

′′ (R̂[`′′])
M N

〉 [
fb+b

′+b ′′ (R̂[`′′ ])
]

d[`′′] . (5.52)

If desired, one may therefore restrict to Grothendieck fusion rules in which there are no explicit spectral flow twists

on the left-hand side.

Let us now take M and N to be relaxed highest-weight A2(3, 2)-modules (with real weights). The Grothendieck

fusion coefficients are relatively straightforward to compute:

〈 fb ′′ (R̂[`′′ ])

R̂[` ] R̂[`′ ]

〉
=

∑
b ′′′∈P∨

∫
h∗
ℝ
/Q

S
0,b ′′′

[` ],[`′′′]S
0,b ′′′

[`′ ],[`′′′]

(
S
b ′′,b ′′′

[`′′ ],[`′′′]

)∗
S

0,b ′′′

0,[`′′′]

d[`′′′]

=
∑
b ′′′∈P∨

e2c i 〈−3(b ′′)∗/2−`−`′+`′′,b ′′′〉

·
∫
h∗
ℝ
/Q

e2c i 〈`′′′,b ′′〉 2
(
1 + cos

(
2c 〈`′′′, b1〉

)
+ cos

(
2c 〈`′′′, b2〉

)
+ cos

(
2c 〈`′′′, b1 − b2〉

) )
d[`′′′]

= X
(
[`′′ − `′ − ` − 3

2
(b ′′)∗]

) (
2Xb ′′,0 + Xb ′′,b1

+ Xb ′′,−b1
+ Xb ′′,b2

+ Xb ′′,−b2
+ Xb ′′,b3

+ Xb ′′,−b3

)
. (5.53)

Here, we have set b3 = b2 − b1 for brevity. If we similarly set Λ3 = Λ2 −Λ1, then the relaxed-by-relaxedGrothendieck

fusion rule takes the form

[
R̂[` ]

]
⊠
[
R̂[`′ ]

]
= 2

[
R̂[`+`′]

]
[
R̂

(b1)
[`+`′+3Λ1/2]

]

[
R̂

(−b1)
[`+`′+3Λ1/2]

]

[
R̂

(b2)
[`+`′+3Λ2/2]

]

[
R̂

(−b2)
[`+`′+3Λ2/2]

]

[
R̂

(b3)
[`+`′+3Λ3/2]

]

[
R̂

(−b3)
[`+`′+3Λ3/2]

]
, (5.54)

where we have introduced a slightly more compact notation R̂
(b )
[` ] = fb (R̂[` ]) (the parentheses in the superscript

are meant to distinguish this notation from R̂_[` ]), arranged the summands on the right-hand side according to their
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spectral flow coweights and noted that 3Λ8 ∈ Q, 8 = 1, 2, 3. Applying (5.52) now gives the standard Grothendieck

fusion rules for A2 (3, 2).
This convention for arranging summands makes it natural to ask if the appearance of the weights of the adjoint

module of sl3 in (5.54) is meaningful. A similar phenomenon occurs for the relaxed-by-relaxed Grothendieck fusion

rules for the sl2 minimal model A1(2, 3) of level − 4
3
, see [16, Eq. (5.21)]. For these minimal models, the general

rules [17] show that other levels do not reproduce the adjoint weights, so we expect that A2 (3, 2) is likewise the only

sl3 minimal model with this property.

Nevertheless, the appearance of these weights is striking and we conjecture that this is in fact a “low-rank

coincidence” resulting from the fact that A1(2, 3) and A2(3, 2) coincide with two of the vertex operator algebras

�& (?) introduced in [76, 77]. Here, & is an ADE-type root lattice and ? ∈ ℤ>2. In fact, one has A1 (2, 3) � ��1
(3)

[76] and A2(3, 2) � ��2
(2) [54]. These�& (?)-algebras are related to (higher-rank) singlet algebras by a parafermionic

coset construction [55, 76] and thence to triplet algebras. (This is discussed in more detail in the companion paper

[48].) We mention that the automorphism groups of the corresponding triplet algebras are PSL2 (ℂ) and PSL3 (ℂ),
respectively, which may be ultimately responsible for the appearance of adjoint weights in (5.54).12

Next, we consider the semirelaxed-by-relaxed Grothendieck fusion rules. As the D6-twist can be chosen to act on

the relaxed module (and thereby absorbed), we may restrict to the untwisted result. Instead of applying the standard

Verlinde formula (5.47) directly, we will compute the Grothendieck fusion rule directly by combining the rules (5.54)

with [
Ŝ[` ]

]
=

∞∑
==0

([
R̂

(−2=b2)
[` ]

]
−
[
R̂

(−(2=+1)b2)
[`−U1/2]

] )
, (5.55)

the latter being a consequence of Lemma 5.5 and the fact that standard characters are linearly independent. The

result benefits from many cancellations:

[
Ŝ[` ]

]
⊠
[
R̂[`′ ]

]
=

∞∑
==0

©
«

2
[
R̂

(−2=b2)
[`+`′ ]

]
[
R̂

(b1−2=b2)
[`+`′+3Λ1/2]

]

[
R̂

(−b1−2=b2)
[`+`′+3Λ1/2]

]

[
R̂

(−(2=−1)b2)
[`+`′+3Λ2/2]

]

[
R̂

(−(2=+1)b2)
[`+`′+3Λ2/2]

]

[
R̂

(b3−2=b2)
[`+`′+3Λ3/2]

]

[
R̂

(−b3−2=b2)
[`+`′+3Λ3/2]

]
− 2

[
R̂

(−(2=+1)b2)
[`+`′+3Λ2/2]

]
[
R̂

(−b3−2=b2)
[`+`′+3Λ3/2]

]

[
R̂

(b3−2(=+1)b2)
[`+`′+3Λ3/2]

]

[
R̂

(−2=b2)
[`+`′]

]

[
R̂

(−2(=+1)b2)
[`+`′]

]

[
R̂

(−b1−2=b2)
[`+`′+3Λ1/2]

]

[
R̂

(b1−2(=+1)b2)
[`+`′+3Λ1/2]

]

ª®®®®®®®®®®®®®®®®¬

=

[
R̂[`+`′]

]
[
R̂

(b1)
[`+`′+3Λ1/2]

]
[
R̂

(b2)
[`+`′+3Λ2/2]

]
[
R̂

(b3)
[`+`′+3Λ3/2]

]
. (5.56)

The highest-weight-by-relaxed rules follow similarly, though the only interesting rule is the one involving L̂−d/2

(since L̂−3Λ1/2 and L̂−3Λ2/2 are spectral flows of the vacuum module L̂0).13 The Grothendieck version of (5.41b)

gives [
L̂−d/2

]
=
[
Ŝ[−d/2]

]
−
[
L̂

(−2b1+b2)
−3Λ1/2

]
=
[
Ŝ[−d/2]

]
−
[
L̂

(b3)
0

]
, (5.57)

from which we obtain[
L̂−d/2

]
⊠
[
R̂[`′ ]

]
=
[
Ŝ[−d/2]

]
⊠
[
R̂[`′ ]

]
−
[
L̂

(b3)
0

]
⊠
[
R̂[`′ ]

]
=
[
Ŝ[−d/2]

]
⊠
[
R̂[`′ ]

]
−
[
R̂

(b3)
[`′ ]

]

12We thank an anonymous referee for this suggestion.

13That L̂0 is the Grothendieck fusion unit follows directly from the standard Verlinde formula and the fact that the standard S-matrix is unitary.
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=

[
R̂[`′+3Λ3/2]

]
[
R̂

(b1)
[`′+3Λ2/2]

]
[
R̂

(b2)
[`′+3Λ1/2]

]
=

[
R̂[`′+U3/2]

]
[
R̂

(b1)
[`′+U1/2]

]
[
R̂

(b2)
[`′+U2/2]

]
. (5.58)

Here, we have used (5.56) and noted that − 1
2
d = 3

2
Λ3 mod Q, while 3

2
Λ8 =

1
2
Ud(8) for 8 = 1, 2, 3.

The semirelaxed-by-semirelaxed rules require one further insight. Combining (5.55) and (5.56) gives[
Ŝ[` ]

]
⊠
[
Ŝ[`′ ]

]

=

∞∑
==0

©«
[
R̂

(−2=b )
[`+`′ ]

]
[
R̂

(b1−2=b )
[`+`′+3Λ1/2]

]
[
R̂

(−(2=−1)b2)
[`+`′+3Λ2/2]

]
[
R̂

(b3−2=b )
[`+`′+3Λ3/2]

] −

[
R̂

(−(2=+1)b2)
[`+`′+3Λ2/2]

]
[
R̂

(b1−(2=+1)b2)
[`+`′+3Λ1/2−U1/2]

]
[
R̂

(−2=b2)
[`+`′]

]
[
R̂

(b3−(2=+1)b2)
[`+`′+3Λ3/2−U1/2]

]
ª®®®®®®®®
¬
, (5.59)

where we recall that 3
2
Λ2 = 1

2
U1 mod Q. The bottom terms on the left cancel with the top terms on the right and a

similar near-cancellation of the top-left and bottom-right terms leaves only
[
R̂

(b2)
[`+`′+3Λ2/2]

]
. Since

`, `′ ∈ − 3
2
Λ1 +ℝU1 ⇒ ` + `′ + 3

2
Λ2 + U ∉ − 3

2
Λ1 +ℝU1, (5.60)

for any U ∈ Q, this standard module does not degenerate. The remaining terms however combine to give spectral

flows of semirelaxed modules because ` + `′ + 3
2
Λ1 and ` + `′ + 3

2
Λ3 do belong to − 3

2
Λ1 + ℝU1. The Grothendieck

fusion rule is thus

[
Ŝ[` ]

]
⊠
[
Ŝ[`′ ]

]
= [

Ŝ
(b1)
[`+`′+3Λ1/2]

]
[
R̂

(b2)
[`+`′+3Λ2/2]

]
[
Ŝ
(b3)
[`+`′+3Λ3/2]

] . (5.61)

The highest-weight-by-semirelaxed rule is now easily deduced from (5.57) and (5.61):

[
L̂−d/2

]
⊠
[
Ŝ[`′ ]

]
= [

Ŝ
(b1)
[`′+U1/2]

]
[
R̂

(b2)
[`′+U2/2]

]
. (5.62)

This, along with the spectral flow identifications (5.9c) and the degeneration formulae (5.10) and (5.12), implies the

highest-weight-by-highest-weight rule:[
L̂−d/2

]
⊠
[
L̂−d/2

]
=
[
L̂−d/2

]
⊠
[
Ŝ−d/2

]
−
[
L̂

(b3)
d/2

]
=
[
Ŝ
(b1)
−3Λ1/2

]
+
[
R̂

(b2)
−3Λ2/2

]
−
[
L̂

(b3)
d/2

]
=
[
fb2 (L̂−3Λ2/2)

]
+
[
fb2c(L̂−3Λ2/2)

]
+
[
fb2w2 (L̂−d/2)

]
+
[
fb2cw2(L̂−d/2)

]
+
[
fb1 (L̂−3Λ1/2)

]
+
[
fb1w2(L̂−d/2)

]
−
[
L̂

(b3)
d/2

]
=
[
L̂

(b2)
−3Λ2/2

]
+
[
L̂0

]
+
[
L̂

(b1)
−3Λ1/2

]
+
[
fb1w1(L̂−d/2)

]
+
[
fb2w2 (L̂−d/2)

]
. (5.63)

Arranging the summands by spectral flow (with conjugation corresponding to negation) and simplifying, the

Grothendieck fusion rule is

[
L̂−d/2

]
⊠
[
L̂−d/2

]
=

[
L̂0

]

[
L̂

(2b1)
0

]

[
L̂

(2b2)
0

]
2
[
c(L̂(−b1−b2)

−d/2 )
]

. (5.64)
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The Grothendieck fusion rules presented above are not quite complete because there is no relaxed module on the

left-hand side of (5.61), (5.62) or (5.64) to absorb a D6-twist. As per (5.49), one of the modules in the semirelaxed-

by-semirelaxed rule (5.61) should be twisted by l ∈ D6. However, w1-twists are dealt with by (5.9a) and c-twists by

(5.9c), leaving only w2 and w1w2. Using (5.39) and (5.56), we deduce that[
Ŝ[` ]

]
⊠
[
w2 (Ŝ[`′ ])

]
=
[
R̂[`+w2 (`′) ]

]
+
[
R̂

(b1)
[`+w2 (`′)+3Λ1/2]

]
,[

Ŝ[` ]
]
⊠
[
w1w2 (Ŝ[`′ ])

]
=
[
R̂[`+w1w2 (`′) ]

]
+
[
R̂

(b3)
[`+w1w2 (`′)+3Λ3/2]

]
.

(5.65)

The highest-weight-by-semirelaxed rule (5.62) is actually sufficiently general because (5.9) implies that

w2 (L̂−d/2) � fb1w3 (L̂−d/2) � fb1c(L̂−d/2) � cf−b1 (L̂−d/2), (5.66)

hence (5.49) and (5.52) give[
L̂−d/2

]
⊠
[
w2(Ŝ[`′ ])

]
= w2(

[
w2(L̂−d/2)

]
⊠
[
Ŝ[`′ ]

]
) = w2c(

[
f−b1 (L̂−d/2)

]
⊠
[
c(Ŝ[`′ ])

]
)

= w2cf−b1−b2 (
[
L̂−d/2

]
⊠
[
Ŝ[−`′−3Λ2/2]

]
) (5.67)

(and a similar computation gives the result when w2 is replaced by w1w2).

It remains to generalise the highest-weight-by-highest-weight Grothendieck fusion rule (5.64) by adding a twist.

In this case, it is easy to see from (5.9c) that it suffices to give the result when the twist is any one of the reflections

in D6 except d. We shall therefore compute[
L̂−d/2

]
⊠
[
c(L̂−d/2)

]
=
[
L̂−d/2

]
⊠
[
c(Ŝ[−d/2])

]
−
[
L̂−d/2

]
⊠
[
cfb3 (L̂0)

]
=
[
L̂−d/2

]
⊠
[
Ŝ
(−b2)
[−3Λ1/2]

]
−
[
L̂

(−b3)
−d/2

]
=
[
R̂[0]

]
+
[
Ŝ
(−b3)
[−d/2]

]
−
[
L̂

(−b3)
−d/2

]
=
[
R̂[0]

]
+
[
f−b3w1(L̂−3Λ1/2)

]
=
[
R̂[0]

]
+
[
L̂0

]
, (5.68)

noting with some satisfaction that the vacuum module indeed appears in the Grothendieck fusion rule for this

irreducible and its conjugate, as expected.

For completeness, we present the Grothendieck fusion rules for the other irreducibles by their conjugates. The

semirelaxed rule is easily seen to be[
Ŝ[` ]

]
⊠
[
c(Ŝ[` ])

]
=
[
R̂[0]

]
+ 2

[
L̂0

]
+
[
L̂

(−b3)
−d/2

]
+
[
c(L̂(−b3)

−d/2 )
]
. (5.69)

Its relaxed counterpart is unsurprisingly more complicated:[
R̂[` ]

]
⊠
[
c(R̂[` ])

]
= 2

[
R̂[0]

]
+ 6

[
L̂0

]
+
[
L̂

(2b1)
0

]
+
[
L̂

(−2b1)
0

]
+
[
L̂

(2b2)
0

]
+
[
L̂

(−2b2)
0

]
+
[
L̂

(2b3)
0

]
+
[
L̂

(−2b3)
0

]
+ 2

([
L̂

(b1−b2)
−d/2

]
+
[
L̂

(b2−b1)
−d/2

]
+
[
L̂

(−b1−b2)
−d/2

] )
+ 2c

([
L̂

(b1−b2)
−d/2

]
+
[
L̂

(b2−b1)
−d/2

]
+
[
L̂

(−b1−b2)
−d/2

] )
. (5.70)

In both cases, the vacuum module appears with multiplicity greater than 1. This indicates that the corresponding

genuine fusion products (meaning not the Grothendieck ones) are not completely reducible.

We shall not pursue the structures of these reducible but indecomposable A2(3, 2)-module here, though their

existence is clear. Instead, we refer to a companion paper [48] in which conjectures for these structures are presented.

These indecomposables also include modules that we conjecture are the projective covers and injective hulls of the

irreducible modules in �̂3,2. The composition factors of all these indecomposables are of course determined by the

Grothendieck fusion rules calculated here.

A closely related remark is that the Grothendieck fusion ring presented here has a one-dimensional representation

which is constant on the D6- and spectral flow orbits, but otherwise takes the values[
R̂[` ]

]
↦→ 8,

[
Ŝ[` ]

]
↦→ 4,

[
L̂−d/2

]
↦→ 3 and

[
L̂0

]
↦→ 1. (5.71)

This is also addressed in the companion paper [48] where the existence of a Kazhdan–Lusztig-type correspondence

is discussed. This correspondence takes the form of a (conjectural) tensor equivalence between the category �̂3,2 of

weight A2 (3, 2)-modules (with finite-dimensional weight spaces) and an appropriate modification of the category of
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finite-dimensional modules over a certain quantum group*�
@ (sl3) at @ = i. The values of the above representation

are then just the dimensions of the corresponding irreducible quantum group modules.
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