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Abstract. The minimal model osp(1|2) vertex operator superalgebras are the simple
quotients of affine vertex operator superalgebras constructed from the affine Lie super
algebra ôsp(1|2) at certain rational values of the level k. We classify all isomorphism
classes of Z2-graded simple relaxed highest weight modules over the minimal model
osp(1|2) vertex operator superalgebras in both the Neveu–Schwarz and Ramond sectors.
To this end, we combine free field realisations, screening operators and the theory of
symmetric functions in the Jack basis to compute explicit presentations for the Zhu
algebras in both the Neveu–Schwarz and Ramond sectors. Two different free field realisa-
tions are used depending on the level. For k < −1, the free field realisation resembles
the Wakimoto free field realisation of affine sl(2) and is originally due to Bershadsky and
Ooguri. It involves 1 free boson (or rank 1 Heisenberg vertex algebra), one βγ bosonic
ghost system and one bc fermionic ghost system. For k > −1, the argument presented
here requires the bosonisation of the βγ system by embedding it into an indefinite rank
2 lattice vertex algebra.

Introduction

The orthosymplectic Lie superalgebra osp(1|2) is the Lie superalgebra of endo-
morphisms of the vector superspace C1|2 that preserves the standard supersym-
metric bilinear form on C1|2. It is arguably the easiest example of a finite-dimensio-
nal simple complex Lie superalgebra in Kac’s classification [1]. The purpose of this
article is to classify the simple relaxed highest weight modules over the minimal
model osp(1|2) vertex operator superalgebras, that is, the simple quotient ver-
tex operator superalgebras constructed from the affinisation of osp(1|2) at certain
rational levels, called admissible levels.

Let u, v be integers satisfying u ≥ 2, v ≥ 1, u−v ∈ 2Z and gcd(u, (u− v)/2) = 1
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and let

ku,v =
u− 3v

2v
, λi,j =

i− 1

2
− 1 + (−1)i+j

4
− u

2v
j,

si,j =
i

2
− u

2v
j, qi,j =

(uj − vi)2 − 4v2

8v2
,

where i and j are integers. We denote the simple relaxed highest weight ôsp(1|2)
modules as follows (see Section 2 for the precise definitions):
• In the Neveu–Schwarz sector, Z2-graded simple relaxed highest weight ôsp(1|2)

modules at level k ∈ C are characterised by the simple osp(1|2) weight module
formed by the vectors of least conformal weight. Let α denote the simple root of
osp(1|2).

(1) Aλ, λ ∈ Z≥0, denotes the simple module whose space of vectors of least con-
formal weight is a finite-dimensional highest (and lowest) weight osp(1|2)
module of highest weight λα with a highest weight vector of even parity.

(2) B+
λ , λ ∈ C\Z≥0, denotes the simple module whose space of vectors of least

conformal weight is an infinite-dimensional highest weight osp(1|2) module
of highest weight λα with a highest weight vector of even parity.

(3) B−λ , λ ∈ C\Z≤0, denotes the simple module whose space of vectors of least
conformal weight is an infinite-dimensional lowest-weight osp(1|2) module
of lowest-weight λα with a lowest-weight vector of even parity.

(4) C[λ],s, [λ] ∈ C/2Z, s ∈ C satisfying s2 6=
(
µ+ 1

2

)2
for all µ ∈ [λ] ∪ [λ+ 1],

denotes the simple module whose space of vectors of least conformal weight
is a dense osp(1|2) module, which is characterised by its weight support
and the action of the osp(1|2) super-Casimir operator. The weight support
of even vectors is [λ]α, while the weight support of odd vectors is [λ+ 1]α.
The super-Casimir acts as multiplication by s on even vectors and −s on
odd vectors.

• In the Ramond sector, Z2-graded simple relaxed highest weight ôsp(1|2) mo-
dules at level k ∈ C are characterised by the simple sl(2) weight module formed
by the vectors of least conformal weight. Since the even subalgebra of osp(1|2) is
isomorphic to sl(2), the simple root of this subalgebra is 2α (equivalently, α is the
fundamental weight).

(5) Fλ, λ ∈ Z≥0, denotes the simple module whose space of vectors of least
conformal weight is even and is the finite-dimensional highest (and lowest)
weight sl(2) module of highest weight λα.

(6) D+
λ , λ ∈ C\Z≥0, denotes the simple module whose space of vectors of least

conformal weight is even and is an infinite-dimensional highest weight sl(2)
module of highest weight λα.

(7) D−λ , λ ∈ C\Z≤0, denotes the simple module whose space of vectors of least
conformal weight is even and is an infinite-dimensional lowest-weight sl(2)
module of lowest-weight λα.

(8) E[λ],q, [λ] ∈ C/2Z, q ∈ C satisfying q 6= µ(µ+ 2) for all µ ∈ [λ], denotes
the simple module whose space of vectors of least conformal weight is even
and is a dense sl(2) module, which is characterised by its weight support
and the action of the sl(2) quadratic Casimir operator. Its weight support
is [λ]α and the sl(2) Casimir operator acts as multiplication by q.
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We denote the simple quotient of the universal vertex operator superalgebra
constructed from osp(1|2) at level ku,v by B0|1(u, v). The main result of this paper
can then be stated as follows.

Theorem. Every Z2-graded simple relaxed highest weight module over the minimal
model osp(1|2) vertex operator superalgebra, B0|1(u, v), at level ku,v is isomorphic
to one of the following or their parity reversals.

In the Neveu–Schwarz sector:

(1) Aλi,0 , where 1 ≤ i ≤ u− 1 and i is odd.

(2) B+
λi,j

, where 1 ≤ i ≤ u− 1, 1 ≤ j ≤ v − 1 and i+ j is odd.

(3) B−−λi,j , where 1 ≤ i ≤ u− 1, 1 ≤ j ≤ v − 1 and i+ j is odd.

(4) C[λ],si,j , where [λ] ∈ C/2Z, 1 ≤ i ≤ u− 1, 1 ≤ j ≤ v − 1 and i+ j is odd.

In the Ramond sector:

(5) Fλi,0 , where 1 ≤ i ≤ u− 1 and i is even.

(6) D+
λi,j

, where 1 ≤ i ≤ u− 1, 1 ≤ j ≤ v − 1 and i+ j is even.

(7) D−−λi,j , where 1 ≤ i ≤ u− 1, 1 ≤ j ≤ v − 1 and i+ j is even.

(8) E[λ],qi,j , where [λ] ∈ C/2Z, 1 ≤ i ≤ u− 1, 1 ≤ j ≤ v − 1 and i+ j is even.

For the special case of u = 2 and v = 4, the above classification was proved in [2].
The (non-rigorous) classification of simple highest weight B0|1(u, v) modules, that
is, those listed as items (1), (2), (5) and (6) in the theorem above, has already been
established in the physics literature by Fan and Yu, and Ennes and Ramallo [3], [4].

In the mathematics literature, the simple modules over B0|1(u, 1) in the Neveu–
Schwarz sector were classified by Kac and Wang in [5] and those in the Ramond
sector were later classified by Creutzig, Frohlich and Kanade [6]. In this case
all simple modules are of the type listed in part 1 of the above classification
theorem. For general u, v, the Neveu–Schwarz sector admissible simple highest
weight ôsp(1|2) modules (modules whose span of analytic continuations of charac-
ters admit a closed action of the modular group) were classified by Kac and
Wakimoto [7] and this classification matches the modules of points 1 and 2.
However, as far as the author is aware, this is the first rigorous classification of
simple relaxed highest weight Z2-graded B0|1(u, v) modules for general u, v.

The module classification presented above could now be combined with a num-
ber of recent developments. For example, recent results on character formulae for
relaxed highest weight modules [8] applied to the classification could be used to
repeat the Verlinde formula calculations of [2] using the standard module formalism
[9]–[11]. An alternative approach to computing fusion rules and Verlinde formulae,
realising the osp(1|2) minimal models as an extension of the tensor product of
the Virasoro and sl(2) minimal modules has also recently been completed [12]. A
further application could be the classification of simple Whittaker ôsp(1|2) modules
in analogy to the sl(2) classification [13].

The minimal model osp(1|2) vertex operator superalgebra B0|1(u, v) is a simple
quotient of the universal osp(1|2) vertex operator superalgebra by an ideal gene-
rated by a singular vector. A natural strategy for classifying simple modules over
B0|1(u, v) is, therefore, to identify modules over the universal vertex operator
superalgebra on which the ideal acts trivially. This annihilating ideals approach
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to module classification was first applied by Feigin, Nakanishi and Ooguri [14]
to certain Virasoro minimal models. In the context of osp(1|2) this strategy was
first used by Kac and Wang [5], as an application of their generalisation of Zhu
algebras [15] to vertex operator superalgebras, to classify simple Neveu–Schwarz
modules when v = 1. These kinds of calculations require explicit formulae for the
singular vector generating the ideal. Unfortunately, for v > 1, the only known
general formulae are formal expressions involving non-integer powers of affine
osp(1|2) generators [3, 16] resembling those of Malikov, Feigin and Fuks [17] for
affine Lie algebra singular vectors. Converting these formulae into expressions with
non-negative integer powers is prohibitively laborious, so instead of using these
formulae, the proof of the above classification theorem presented in this paper
exploits a deep connection between free field realisations and symmetric functions
to derive expressions which are more tractable. The use of free field realisations
to study submodule structures goes all the way back to Feigin and Fuchs’ analysis
of Fock modules over the Virasoro algebra [18] and later to Wakimoto’s free
field realisation of sl(2); see [19]. The connections to symmetric functions rely on
screening operators, which were originally conceived by Dotsenko and Fateev [20]
and later formalised by Tsuchiya and Kanie [21]. Finding tractable singular vector
formulae in terms of symmetric functions has a similarly long history starting with
the Virasoro algebra [22], [23] with later generalisations to other algebras, such as
affine sl(2) (see [24], [25]), the N = 1 super Virasoro algebra [26]–[28] and the
WN -algebras [29], [30]. The presence of fermions (or odd fields) in vertex operator
superalgebras necessitates the consideration of skew-symmetric functions as well
as symmetric functions. Fortunately, this skew symmetry can be compensated for,
so that symmetric function methods can still be applied after considering certain
ideals, first considered by Feigin, Jimbo, Miwa and Mukhin [31], spanned by Jack
symmetric polynomials whose parameter is negative rational.

The methods presented in this article were developed for and applied to the
classification of simple modules of the triplet algebras [32], the Virasoro minimal
models [33], the affine sl(2) minimal models [25] and the N = 1 superconformal
minimal models [34]. In particular, [33], [25], [34] form a series aimed at systema-
tising the classification of modules over vertex operator superalgebras which are
nontrivial simple quotients of universal vertex operator superalgebras. A conveni-
ent property of these methods is that they work in essentially the same way not only
in both the Neveu–Schwarz and Ramond sectors of a given algebra, but also across
all examples of vertex operator superalgebras considered. Since all the algebras
considered so far are rank 1, it will be interesting to see if these methods can be
generalised to higher ranks as was recently done for the singular vector formulae
of the WN -algebras [30].

This article is organised as follows. In Section 1, we give a brief overview of
osp(1|2), its affinisation ôsp(1|2) and modules over both of these algebras. The
section concludes with the construction of the universal osp(1|2) vertex operator
superalgebra Vk at level k and the minimal model vertex operator superalgebra
B0|1(u, v) as a simple quotient of Vk at certain rational levels, termed admissible. In
Section 2, we state explicit presentations of the untwisted and twisted Zhu algebras
of B0|1(u, v), that is, the Zhu algebras in the Neveu–Schwarz and Ramond sectors.
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The proof of these presentations is postponed to Section 4. These presentations
are then used to prove the main result of the article, Theorem 11, that is, the
classification of Z2-graded simple relaxed highest weight modules over B0|1(u, v)
and the rationality of B0|1(u, v) in category O. In Section 3, we define the free
field algebras and screening operators necessary for the free field realisation of
Vk, and derive identities for correlation functions in preparation for proving the
presentations of the untwisted and twisted Zhu algebras. In Section 4, the presenta-
tions of the Zhu algebras are proved by evaluating the action of the zero modes of
singular vectors of Vku,v on candidate relaxed highest weight vectors. This action of
the zero modes depends polynomially on free field weights and, with the methods
used here, can only be evaluated indirectly by determining certain zeros in the
free field weights and showing that the zeros found saturate certain bounds. This
necessitates splitting the calculation into two cases depending on whether k < −1
or k > −1 in order to assure that these bounds are indeed saturated.

Acknowledgements. The author would like to thank the following people for
interesting discussions: Andreas Aaserud on polynomial rings, Tomoyuki Arakawa
on universal enveloping algebras, Pierre Mathieu and Jorgen Rasmussen on fractio-
nal powers of screening operators and bosonising βγ systems, and John Snadden
on super-Casimir operators. Additionally, the author would like to thank David
Ridout for interesting discussions on too many topics to list, and for the careful
reading of a previous version of this article and giving helpful feedback. The
author’s research is supported by the Australian Research Council Discovery Early
Career Researcher Award DE140101825 and the Discovery Project DP160101520.

1. The osp(1|2) vertex operator superalgebra

In this section we settle notation regarding the Lie superalgebra osp(1|2), its
affinisation and its associated vertex operator superalgebra, and recall known
results. Since this article studies Lie superalgebras and vertex operator super-
algebras, all vector spaces will be assumed to be complex vector superspaces, that
is, graded by Z2. For any vector superspace V , we denote the subspace of even
vectors by V0, the subspace of odd vectors by V1 and the parity reversal of V by
ΠV . When considering vector spaces without any obvious superspace structure,
then the grading will be assumed to be trivial unless stated otherwise, that is,
the entire vector space will be assumed to be even (examples include ŝl(2) or the
βγ ghost vertex algebra considered below). We refer readers unfamiliar with Lie
superalgebras to [35] for an exhaustive discussion of the subject and to [2, Sect.
2.1] for a summary of osp(1|2) beyond that given below.

1. The finite-dimensional simple Lie superalgebra osp(1|2)

The orthosymplectic Lie superalgebra osp(1|2) is the Lie superalgebra preserving
the standard supersymmetric bilinear form of C1|2, where supersymmetric means
that the bilinear form is symmetric on the even subspace and skew-symmetric
on the odd subspace. This Lie superalgebra is 5-dimensional and we choose the
following basis: {e, x, h, y, f}, where span{e, h, f} = osp(1|2)0 and span{x, y} =
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osp(1|2)1. The non-vanishing (anti-) commutation relations in this basis are

[h, e] = 2e, [e, f ] = h, [h, f ] = −2f,

[e, y] = −x, [h, x] = x, [h, y] = −y, [f, x] = −y, (1)

{x, x} = 2e, {x, y} = h, {y, y} = −2f.

In their standard normalisation, the non-vanishing pairings of the invariant bilinear
form on osp(1|2) are

κ
(
h, h

)
= 2, κ

(
e, f
)

= κ
(
f, e
)

= 1, κ
(
x, y
)

= −κ
(
y, x
)

= 2. (2)

The (anti-)commutation relations (1) imply that the even subspace of osp(1|2)
is isomorphic to sl(2) and that h spans a choice of Cartan subalgebra for both
osp(1|2) and sl(2). We denote by α the simple root corresponding to the root

vector x, whose length with respect to the norm induced from (2) is ‖α‖2 = 1/2.
Note that, for the copy of sl(2) sitting inside osp(1|2), the simple root is 2α and
thus α is the fundamental weight of sl(2).

Definition 1. A weight module over a Lie superalgebra is a module over that
algebra which decomposes into a direct sum of simultaneous eigenspaces of the
Cartan subalgebra. The weight support of a weight module is the set of all weights
for which the corresponding weight space is non-trivial.

In this article we shall focus exclusively on weight modules and hence the
subalgebras of the universal enveloping algebras of osp(1|2) and sl(2) which pre-
serve weight spaces will prove vital. These subalgebras are just the centralisers of
the Cartan subalgebra.

Lemma 1. Let g be a Lie superalgebra with choice of Cartan subalgebra h and let

C(h, g) = {w ∈ U(g) : [h,w] = 0, ∀h ∈ h}

be the centraliser of h in the universal enveloping algebra of g.

(1) As an associative algebra

C(h, osp(1|2)) ∼= C[h,Σ],

where Σ = xy − yx+ 1/2 is the super-Casimir of osp(1|2).
(2) As an associative algebra

C(h, sl(2)) ∼= C[h,Q],

where Q = h2/2 + ef + fe is the quadratic Casimir of sl(2).

Part 2 of the above lemma is well known and part 1 is an immediate consequence
of Pinczon’s work [36] on the universal enveloping algebra of osp(1|2) and Leśni-
ewski’s discovery [37] of the super-Casimir of osp(1|2). While part 1 is surely also
known, the author was not able to find a source and so a proof has been given for
completeness.
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Proof. It was shown in [36] that the centre of the universal enveloping algebra is
isomorphic to C[Qosp(1|2)], where

Qosp(1|2) =
1

2
h2 + ef + fe− 1

2
xy +

1

2
yx =

1

2
Σ2 − 1

8

is the quadratic Casimir of osp(1|2). Further, it was shown in [37] that the super-
Casimir Σ commutes with all even elements of osp(1|2) and anticommutes with all
odd ones.

To prove the proposition, fix any Poincaré–Birkhoff–Witt ordering of the bases
of osp(1|2) and sl(2) and note that since x2 = e and y2 = −f , the exponents
of x and y in an element of the Poincaré–Birkhoff–Witt basis of osp(1|2) are
at most 1. Every element of the Poincaré–Birkhoff–Witt basis is an eigenvector
of the adjoint action of the Cartan subalgebra. Hence, the centraliser algebras
C(h, osp(1|2)) and C(h, sl(2)) are spanned by Poincaré–Birkhoff–Witt basis vectors
whose eigenvalues are 0. Within such basis vectors, every occurrence of the f
generator must be countered by an e and vice versa for both osp(1|2) and sl(2).
Similarly, for osp(1|2), every occurrence of y must be countered by an x and vice
versa. Using the commutation relations, the generators in these basis vectors can
be reordered, so that that basis vectors become sums of monomials in h, fe, yx for
osp(1|2) and h, fe for sl(2). It then follows by direct computation that

yx =
1

2

(
h− Σ +

1

2

)
, fe = −1

4

(
h+ Σ +

3

2

)(
h− Σ +

1

2

)
,

for osp(1|2) and for sl(2) that

fe =
1

2

(
Q− 1

2
h2 − h

)
.

The algebraic independence of h and Σ then follow from the algebraic independence
of h and Q, since any algebraic relation of h and Σ would also imply a relation for
h and Q. �

As mentioned in the proof above, the quadratic Casimir operator of osp(1|2) has
the nice property of freely generating the centre of the universal enveloping algebra
of osp(1|2), however, the super-Casimir operator Σ shall prove to be far more
convenient in the considerations that follow. For example, isomorphism classes
of simple osp(1|2) weight modules can be characterised in terms of their weight
support and the action of the super-Casimir operator Σ. Similarly, isomorphism
classes of simple sl(2) weight modules can be characterised in terms of their weight
support and the action of the Casimir operator Q.

Theorem 2 (Block [38], [39]). Any simple sl(2) weight module is isomorphic to
one of the following:

(1) The simple (λ+1)-dimensional module Fλ which is both highest and lowest-
weight, where λ ∈ Z≥0. The weights of the highest and lowest-weight vectors
are λα and −λα, respectively, and the eigenvalue of Q is λ(λ+ 2)/2.
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(2) The simple infinite-dimensional highest weight module D+

λ , where λ ∈ C \
Z≥0. This module is generated by a highest weight vector vλ of weight λα,
which therefore satisfies evλ = 0 and hvλ = λvλ. A basis is given by the
weight vectors {fnvλ : n ∈ Z≥0} and the eigenvalue of Q is λ(λ+ 2)/2.
This is an example of a Verma module.

(3) The simple infinite-dimensional lowest-weight module D−λ , where λ ∈ C \
Z≤0. This module is generated by a lowest-weight vector vλ of weight λα,
which therefore satisfies fvλ = 0 and hvλ = λvλ. A basis is given by the
weight vectors {envλ : n ∈ Z≥0} and the eigenvalue of Q is λ(λ− 2)/2.
This is an example of a Verma module for which f (as opposed to e) has
been chosen as the simple root vector.

(4) The simple infinite-dimensional dense weight module Eλ,q, with [λ] ∈ C/2Z
and q ∈ C satisfying q 6= µ(µ + 2) for all µ ∈ [λ]. This module is generated
by a weight vector vλ,q that is neither highest nor lowest-weight, satisfying
hvλ,q = λvλ,q and Qvλ,q = qvλ,q, and has a basis of weight vectors {vλ,q,
envλ,q, f

nvλ,q : n ∈ Z≥1}.

Theorem 3. Any simple Z2-graded osp(1|2) weight module is isomorphic to one
of the following or its parity reversal:

(1) The simple (2λ+1)-dimensional module Aλ which is both highest and lowest-
weight, where λ ∈ Z≥0. The highest and lowest-weight vectors both have even
parity and their respective weights are λα and −λα. The eigenvalue of Σ is
λ(λ+ 1)/2 on even vectors and −λ(λ+ 1)/2 on odd vectors.

(2) The simple infinite-dimensional highest weight module B+

λ , where λ ∈ C \
Z≥0. This module is generated by an even parity highest weight vector vλ
of weight λα, which therefore satisfies xvλ = 0 and hvλ = λvλ. A basis of
weight vectors of this module is given by {ynvλ : n ∈ Z≥0}. The eigenvalue
of Σ is λ(λ+ 1)/2 on even vectors and −λ(λ+ 1)/2 on odd vectors. This
is an example of a Verma module.

(3) The simple infinite-dimensional lowest-weight module B−λ , where λ ∈ C \
Z≤0. This module is generated by an even parity lowest-weight vector vλ,
which therefore satisfies yvλ = 0 and hvλ = λvλ. A basis of this module
is given by the weight vectors {xnvλ : n ∈ Z≥0}. The eigenvalue of Σ is
λ(λ− 1)/2 on even vectors and −λ(λ− 1)/2 on odd vectors. This is an
example of a Verma module for which y has been chosen as the simple root
vector.

(4) The simple infinite-dimensional dense weight module C[λ],s, with [λ] ∈ C/2Z
and s ∈ C satisfying s2 6= (µ+ 1/2)

2
for any µ ∈ [λ] ∪ [λ+ 1]. This module

is generated by an even parity weight vector vλ,s that is neither highest nor
lowest-weight, satisfying hvλ,s = λvλ,s and Σvλ,s = svλ,s, and has a basis
of weight vectors {vλ,s, xnvλ,s, ynvλ,s : n ∈ Z≥1}.

Note that the parity reversal of C[λ],s is ΠC[λ],s
∼= C[λ+1],−s.

See [40] for a proof of Theorem 2 and a comprehensive discussion of sl(2) module
theory. The proof of the classification of simple osp(1|2) weight modules is similar
to that of sl(2) and was given in [2].
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2. The affinisation of osp(1|2)

The Lie superalgebra osp(1|2) can be affinised by constructing its loop algebra and
centrally extending it. It is common to add a degree operator to ensure that the
induced invariant bilinear form on the newly constructed affine Lie superalgebra
is non-degenerate. Here, however, we shall always identify the action of such a
degree operator on modules with that of the negative of the Virasoro L0 operator
of the Sugawara construction. We therefore omit the degree operator from the
affinisation of osp(1|2). We consider two affinisations ôsp(1|2)0 and ôsp(1|2)1/2,
identifiable by spectral flow isomorphisms, which we shall respectively refer to as
the Neveu–Schwarz and Ramond affinisation. We shall suppress superscripts and
just write ôsp(1|2) whenever the distinction between the two affinisations is not
important. Though these two affinisations are isomorphic, their conformal gradings
differ and thus so do the module categories which one considers for each algebra.

As vector spaces the Neveu–Schwarz and Ramond affinisations of osp(1|2) are
given by

ôsp(1|2)0 = osp(1|2)⊗ C[t, t−1]⊕ CK

ôsp(1|2)1/2 = span{e, h, f} ⊗ C[t, t−1]⊕ span{x, y} ⊗ C[t, t−1]t1/2 ⊕ CK.

The (anti-) commutation relations of these two algebras are constructed from those
of osp(1|2) and are given by

[am, bn] = [a, b]⊗ tm+n +mκ
(
a, b
)
δm+n,0 , am = a⊗ tm, bn = b⊗ tn,

where a, b ∈ osp(1|2) are homogeneous vectors of definite parity, [ , ] denotes
either the commutator or the anti-commutator depending on the parities of a and
b and m,n lie in Z or Z + 1/2 depending on the parities of a, b and the algebra
considered. Finally, K is even and central. Here and hereafter we shall also suppress
the t variables and write am instead of a⊗ tm.

The Neveu–Schwarz and Ramond affinisations of osp(1|2) admit triangular de-
compositions as well as relaxed triangular decompositions. For the Neveu–Schwarz
affinisation we choose the decompositions

ôsp(1|2)0 = ôsp(1|2)
−
0 ⊕ ĥ⊕ ôsp(1|2)

+
0 ,

ôsp(1|2)
−
0 = span

{
e−n, x−n, h−n, y1−n, f1−n : n ∈ Z+

}
,

ôsp(1|2)
+
0 = span

{
en−1, xn−1, hn, yn, fn : n ∈ Z+

}
,

ĥ = span{h0,K},

ôsp(1|2)0 = ôsp(1|2)
<
0 ⊕ ôsp(1|2)

0
0 ⊕ ôsp(1|2)

>
0

ôsp(1|2)
<
0 = span

{
e−n, x−n, h−n, y−n, f−n : n ∈ Z+

}
ôsp(1|2)

>
0 = span

{
en, xn, hn, yn, fn : n ∈ Z+

}
,

ôsp(1|2)
0
0 = osp(1|2)⊕ CK,

(3)

where the decomposition on the left is the usual triangular decomposition into
negative roots, a Cartan subalgebra and positive roots, and the decomposition on
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the right is a relaxed triangular decomposition. For the Ramond affinisation we
choose the decompositions

ôsp(1|2)1/2 = ôsp(1|2)
−
1/2 ⊕ ĥ⊕ ôsp(1|2)

+
1/2,

ôsp(1|2)
−
1/2 = span

{
e−n, x1/2−n, h−n, y1/2−n, f1−n : n ∈ Z+

}
,

ôsp(1|2)
+
1/2 = span

{
en−1, xn−1/2, hn, yn−1/2, fn : n ∈ Z+

}
,

ĥ = span{h0,K},

ôsp(1|2)1/2 = ôsp(1|2)
<
1/2 ⊕ ôsp(1|2)

0
1/2 ⊕ ôsp(1|2)

>
1/2,

ôsp(1|2)
<
1/2 = span

{
e−n, x1/2−n, h−n, y1/2−n, f−n : n ∈ Z+

}
ôsp(1|2)

>
1/2 = span

{
en, xn−1/2, hn, yn−1/2, fn : n ∈ Z+

}
ôsp(1|2)

0
1/2 = sl(2)⊕ CK,

(4)

where the decomposition on the left is the usual triangular decomposition and
the decomposition on the right is a relaxed triangular decomposition. Finally, the
parabolic subalgebras are denoted by

ôsp(1|2)
≥
ε = ôsp(1|2)

0
ε ⊕ ôsp(1|2)

>
ε .

Definition 2. LetM be an ôsp(1|2)ε module. A relaxed highest weight vector m ∈
M is a simultaneous eigenvector of the Cartan subalgebra ĥ which is annihilated
by ôsp(1|2)

>
ε . Further, M is said to be a relaxed highest weight module if it is

generated by a relaxed highest weight vector and is said to be a relaxed Verma
module if it is isomorphic to

Ind
ôsp(1|2)ε
ôsp(1|2)≥ε

M = U(ôsp(1|2)ε)⊗U(ôsp(1|2)≥ε )M,

where U(ôsp(1|2)ε) denotes the universal enveloping algebra andM is some simple

ôsp(1|2)
0
ε weight module upon which ôsp(1|2)

>
ε acts trivially.

Since in the Neveu–Schwarz and Ramond sectors, respectively, we have

ôsp(1|2)
0
0
∼= osp(1|2)⊕ CK,

ôsp(1|2)
0
1/2
∼= sl(2)⊕ CK,

Neveu–Schwarz and Ramond Verma modules are respectively induced from
osp(1|2) and sl(2) modules on which the central element K to act as k · id, k ∈ C.
For Ramond Verma modules, the sl(2) modules they are induced from will be
assigned even parity.

The above triangular decompositions suggest certain natural module categories
within which to consider weight modules.

Definition 3. Category R is the category of ôsp(1|2)ε modules M which satisfy
the following axioms:
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• M is Z2-graded.

• M is finitely generated.

• M is a weight module (the action of the Cartan subalgebra is semisimple).

• The action of ôsp(1|2)
>
ε is locally nilpotent: For any m ∈ M, the space

U
(
ôsp(1|2)

>
ε

)
·m is finite-dimensional.

The morphisms are the ôsp(1|2)ε module homomorphism between these modules.
Category O is the full subcategory of category R whose modules satisfy the
additional property

• The action of ôsp(1|2)
+
ε is locally nilpotent.

All relaxed highest weight modules belong to category R and highest weight
modules belong to category O and thus also R. Additionally, since ôsp(1|2)ε
has finite-dimensional root spaces (if one grades by both osp(1|2) and conformal
weight), finite generation implies that each module in R has finite-dimensional
weight spaces (again, if one grades by both osp(1|2) and conformal weight). If one
grades only by conformal weight or only by osp(1|2) weight, then the weight spaces
will be infinite-dimensional in general. Finally, the axioms also imply that every
module in category R contains a relaxed highest weight vector, thus the simple
objects of category R are simple relaxed highest weight modules.

Definition 4. We denote the unique simple quotients by maximal proper submo-
dules of the inductions of the modules of Theorems Theorems 2 and 3 by the same
symbols with the overline removed. To simplify notation, we suppress the algebras

appearing in the super- and subscript of Ind
ôsp(1|2)ε
ôsp(1|2)≥ε

.

• In the Neveu–Schwarz sector:

(1) Aλ, where λ ∈ Z≥0, is the simple quotient of IndAλ.

(2) B+
λ , where λ ∈ C \ Z≥0, is the simple quotient of Ind B+

λ .

(3) B−λ , where λ ∈ C \ Z≤0, is the simple quotient of Ind B−λ .

(4) C[λ],s, with [λ] ∈ C/2Z, s ∈ C satisfying s2 6= (µ+ 1/2)
2

for any µ ∈
[λ] ∪ [λ+ 1], is the simple quotient of Ind C[λ],s.

• In the Ramond sector:

(5) Fλ, where λ ∈ Z≥0, is the simple quotient of Ind Fλ.

(6) D+
λ , where λ ∈ C \ Z≥0, is the simple quotient of IndD+

λ .

(7) D−λ , where λ ∈ C \ Z≤0, is the simple quotient of IndD−λ .

(8) E[λ],q, with [λ] ∈ C/2Z, q ∈ C satisfying q 6= µ(µ + 2) for any µ ∈ [λ], is

the simple quotient of Ind E [λ],q.

Finally, before considering the vertex operator superalgebras that can be const-
ructed from ôsp(1|2), we introduce a family of isomorphisms σ`, ` ∈ 1

2Z, called
spectral flow. These relate Neveu–Schwarz and Ramond affinisations of osp(1|2).
The images of the basis vectors of ôsp(1|2) under σ` are

σ`(en) = en−2`, σ`(xn) = xn−`, σ`(hn) = hn − 2`δn,0K,

σ`(K) = K, σ`(yn) = yn+`, σ`(fn) = fn+2`.
(5)
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Clearly, the spectral flow isomorphism σ` is an automorphism relating the
Neveu–Schwarz and Ramond affinisations to themselves if ` ∈ Z, otherwise it
maps from the Neveu–Schwarz to the Ramond affinisation and vice versa. Algebra
isomorphisms such as the spectral flow isomorphism σ` lead one naturally to
consider modules whose algebra action has been twisted by such an automorphism.

Definition 5. Let A and B be Lie superalgebras, φ : A→ B an isomorphism and
let M be a module over B, then we define, φ−1M , the twist of M by φ, to be the
A-module which as a vector superspace is just M but on which the action of A is
defined to be

a ·φ m = φ(a)m, ∀a ∈ A, ∀m ∈M.

Because the spectral flow isomorphisms do not preserve the triangular decom-
positions (3) or (4), the twist of a module in category R need not lie in category
R. However, the algebra isomorphism ζ defined by

ζ(en) = −fn+1, ζ(xn) = −yn+1/2, ζ(hn) = −hn + 2δn,0K,

ζ(K) = K, ζ(yn) = xn−1/2, ζ(fn) = −en−1.
(6)

preserves the standard triangular decompositions of ôsp(1|2), that is, ζ
(
ôsp(1|2)

±
ε

)
= ôsp(1|2)

±
1/2−ε and ζ

(
ĥ
)

= ĥ. Twisting by ζ therefore defines functors mapping
between the Neveu–Schwarz and Ramond sectors of category O. In particular, the
twist of a highest weight Neveu–Schwarz module at level k of highest weight λα is
a highest weight Ramond module at level k of highest weight (k − λ)α.

Remark 1. Our choice of representation category is informed by physics considera-
tions coming from conformal field theory as well as technical considerations coming
from Zhu’s algebra, an associative algebra to be discussed below. A necessary
condition for the consistency of a conformal field theory is that the representation
category be closed under fusion and conjugation. Additionally, one generally re-
quires characters to be well defined and to behave well under modular transforma-
tions so that modular invariants can be identified and fusion rules at the level of the
Grothendieck group can be computed from Verlinde-like formulae. Neither closure
under fusion nor conjugation appear to be satisfied for category O when considering
non-integral admissible levels, see [11] for the case of sl(2), [41] for the βγ ghosts
or [2] for osp(1|2) at level k = −5/4. While the generalisation to category R yields
closure under conjugation, the Verlinde-like formulae in [2], [11], [41], computed
using the standard module formalism, indicate that category R does not close
under fusion and indeed also that the action of the modular group does not close
on the span of category R characters.

The reason for focusing on category R is that modules in category R will always
contain relaxed highest weight vectors and Zhu’s algebra can be interpreted as the
associative algebra of zero modes of fields acting on relaxed highest weight vectors.
As Zhu algebra methods are blind to modules not containing relaxed highest weight
vectors, category R is the largest category in which Zhu algebras can be used for
module classification.

The success of the standard module formalism as a conjectured generalisation
of the Verlinde formula for rational theories suggests that the natural module
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category to work with is the smallest category containing R, all twists of R by the
spectral flow isomorphisms σ` and all extensions of modules in these categories.

3. The affine osp(1|2) vertex operator superalgebra

The affine osp(1|2) vertex operator superalgebras are constructed by inducing from

the trivial osp(1|2) module. Let Ck, k ∈ C\{−3/2} be the 1-dimensional ôsp(1|2)
0
0

module on which osp(1|2) acts trivially and on which the central element K acts as
k · id. As an ôsp(1|2)0 module, the universal osp(1|2) vertex operator superalgebra
Vk is given by the relaxed Verma module induced from Ck, that is,

Vk = Ind
ôsp(1|2)0
ôsp(1|2)

≥
0

Ck.

As a vertex operator superalgebra Vk is freely generated under normal ordering
and taking derivatives by 5 fields, labelled by the basis vectors of osp(1|2), subject
to the operator product relations

a(z)b(w) ∼
κ
(
a, b
)

(z − w)2
+

[a, b](w)

z − w
, a, b ∈ osp(1|2).

The Virasoro field, whose Laurent expansion coefficients generate the Virasoro
algebra, is given by the standard Sugawara construction.

T (z)=
1

2k+3

(1

2
:h(z)2: + :e(z)f(z): + :f(z)e(z):

− 1

2
:x(z)y(z): +

1

2
:y(z)x(z):

)
.

(7)

We follow the definition given by Frenkel and Ben-Zvi [42, Chap. 5.1], aug-
mented to include a Z2 grading by parity, for modules over a vertex operator
superalgebra. Note that this implies that a module over Vk is just a smooth Z2-
graded level k ôsp(1|2)-module and vice versa.

Corollary 4. All modules in the Neveu–Schwarz sector of R are modules over
Vk, while all modules in the Ramond sector of R are modules twisted by the parity
automorphism over Vk, that is, modules for which the action of odd fields has half
integer monodromy about 0.

We call a non-zero vector of a Vk module singular if it is a simultaneous
eigenvector of h0 and L0, and is annihilated by all positive root vectors, that
is, by ôsp(1|2)

+
0 . The highest weight vectors which generate Verma modules are

prominent examples of singular vectors.

Proposition 5 (Gorelik and Kac [43]). The vertex operator superalgebra Vk, k ∈
C \ {−3/2} has a non-trivial proper ideal if and only if there exist integers u ≥ 2,
v ≥ 1 satisfying u− v ∈ 2Z and gcd(u, (u− v)/2) = 1 such that

2k + 3 =
u

v
.
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Further, the ideal is unique (the only other ideals are the trivial one and the ver-
tex operator superalgebra itself) and it is generated by a singular vector χu,v of
osp(1|2) weight (u− 1)α and conformal weight (u− 1)v/2.

Note that since the ideal of Theorem 5 is unique, Vk admits no singular vectors
other than χu,v and the vacuum vector, up to rescaling. We refer to the levels
satisfying the conditions of Theorem 5 as admissible and parametrise them as

ku,v =
u− 3v

2v
.

Definition 6. Let u ≥ 2, v ≥ 1 be integers satisfying

u− v ∈ 2Z and gcd(u, (u− v)/2) = 1. (8)

The minimal model osp(1|2) vertex operator superalgebra B0|1(u, v) is defined to be
the unique simple quotient of the universal osp(1|2) vertex operator superalgebra
Vku,v by its maximal proper ideal:

B0|1(u, v) =
Vku,v
〈χu,v〉

.

Our choice of notation for B0|1(u, v) mimics Kac’s notation for osp(1|2) in his
classification of simple Lie superalgebras [1]. Here and hereafter it will always
be assumed that the variables u and v satisfy the conditions of Theorem 5 and
Definition 6. In the context of any formulae that u, v appear in, the level will always
be taken to satisfy Theorem 5. Since B0|1(u, v) is a quotient of Vku,v , a module over
Vku,v is also a module over B0|1(u, v) if and only if the ideal 〈χu,v〉 acts trivially.
This clearly holds in both the Neveu–Schwarz and the Ramond sectors, that is,
for both untwisted and twisted modules.

2. Zhu algebras and module classification

Zhu algebras are associative algebras constructed from vertex operator super-
algebras. They can be interpreted as the algebras of zero modes of vertex operator
superalgebra fields acting on relaxed highest weight vectors. They are invaluable
aides to module classification, because there is a one-to-one correspondence bet-
ween simple Zhu algebra modules and simple relaxed highest weight vertex opera-
tor superalgebra modules. This is due to the fact that the space of relaxed highest
weight vectors of a simple relaxed highest weight vertex operator superalgebra
module is naturally a Zhu algebra module and conversely any Zhu algebra module
can be induced to a vertex operator superalgebra module whose space of relaxed
highest weights is the Zhu algebra module. As their name suggests, Zhu algebras
were originally considered by Zhu [15] for vertex operator algebras. Zhu’s work was
then later generalised to untwisted modules over vertex operator superalgebras by
Kac and Wang [5] and to twisted vertex operator superalgebra modules by Dong,
Li and Mason [44]. We refer to [34, App. A] for the definitions and conventions
used here.
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Proposition 6. For k ∈ C \ {−3/2}, the untwisted and twisted Zhu algebras of
Vk are

Zhu[Vk] ∼= U(osp(1|2)), Zhuτ [Vk] ∼= U(sl(2)).

The untwisted case was proved in [5] and the twisted case in [2]; both follow from
the same reasoning as in [45] where non-super affine Lie algebras were considered.

Proposition 7. Let u ≥ 2, v ≥ 1 be integers satisfying the condition (8). The
untwisted and twisted Zhu algebras of B0|1(u, v) are

Zhu
[
B0|1(u, v)

] ∼= U(osp(1|2))

〈[χu,v]〉
,

Zhuτ
[
B0|1(u, v)

] ∼=


U(sl(2))

〈[χu,v]τ 〉
, u, v odd,

U(sl(2))

〈[y0χu,v]
τ 〉
, u, v even,

where 〈[χu,v]〉 and 〈[χu,v]τ 〉 (or 〈[y0χu,v]
τ 〉) are the two-sided ideals generated by

the images of the singular vector χu,v (or y0χu,v) in the algebra Zhu
[
B0|1(u, v)

]
and Zhuτ

[
B0|1(u, v)

]
, respectively.

The above presentations for the untwisted and twisted Zhu algebras were proved
in [2]. We will be computing the image of the singular vector in the Zhu algebras by
evaluating certain polynomial constraints. These constraints are only meaningful
once one knows that the image of the singular vector is non-zero.

Lemma 8. Let u ≥ 2, v ≥ 1 be integers satisfying the condition (8). The image
of the singular vector χu,v of Vku,v in the untwisted and twisted Zhu algebras is
non-zero.

Proof. We prove the lemma by contradiction. If the image of the singular vector
were zero in the untwisted or twisted Zhu algebras, then the two-sided ideals of
Theorem 7 would be zero ideals. Hence the Zhu algebras of Vku,v and B0|1(u, v)
would be isomorphic and every module over a Vk Zhu algebra would also be a
module over the corresponding B0|1(u, v) Zhu algebra. This would imply that every
simple Vku,v module would also be a simple B0|1(u, v) module and in particular
that the field χu,v(z) acts trivially on every simple Vku,v module.

Consider the mode of χu,v(z) of index −(u − 1)v/2, that is, the coefficient of
z0. This mode acts non-trivially in Vku,v and therefore corresponds to a non-zero
element in (a completion of) the universal enveloping algebras of ôsp(1|2)0, in
particular its projection onto the universal enveloping algebra of the subalgebra
ôsp(1|2)

−
0 ⊕ ĥ is non-zero. So applying this mode to the highest weight vector of the

Verma module Ind B+

λ evaluates to a non-zero linear combination of monomials
in ôsp(1|2)0 generators with non-positive index, where all occurrences of h0 are
replaced by λ, that is, the coefficients of the monomials will be polynomials in

λ. These polynomials cannot vanish for every simple Verma module Ind B+

λ , since

there are infinitely many values of λ for which Ind B+

λ is simple. This contradicts
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χu,v(z) acting trivially on every simple Vku,v module, thus the image of the singular
vector in the untwisted Zhu algebra must be non-zero.

The twisted case follows from the untwisted case. Since there are simple Neveu–

Schwarz Verma modules Ind B+

λ which are not modules over B0|1(u, v), the Ramond

Verma module IndD+

k−λ
∼= ζ
(
Ind B+

λ

)
is also not a twisted module over B0|1(u, v)

and thus the image of the singular vector in the twisted Zhu algebras must be
non-zero. �

Recall that the Zhu algebras are filtered by conformal weight and so vectors
in osp(1|2) such as e and h are assigned degree 1 in the Zhu algebras because
they are the images of the conformal weight 1 fields e(z) and h(z). The conformal
weight of the Virasoro field is 2 and its image in the untwisted and twisted Zhu
algebras is proportional to the quadratic Casimirs Qosp(1|2) and Q, respectively,
which are therefore assigned degree 2. Finally, since the osp(1|2) quadratic Casimir,
Qosp(1|2), is quadratic in the super-Casimir, Σ, the degree of Σ in the untwisted
Zhu algebra is 1.

Lemma 9. Let u ≥ 2, v ≥ 1 be integers satisfying the condition (8). Then in the
untwisted Zhu algebra of Vku,v the image of the singular vector is

[χu,v] =

{
e(u−1)/2g(h,Σ) if u, v odd,

e(u−2)/2xg(h,Σ) if u, v even,
(9)

while in the twisted Zhu algebra it is

[χu,v]
τ

= e(u−1)/2gτ (h,Q) if u, v odd,

[y0χu,v]
τ

= e(u−2)/2gτ (h,Q) if u, v even,
(10)

where g and gτ are polynomials whose degrees satisfy

deg g(h,Σ) ≤ (u− 1)(v − 1)

2
, deg gτ (h,Q) ≤ (u− 1)(v − 1) + 1

2
. (11)

Proof. The osp(1|2) weight of the singular vector is (u− 1)α and so the images of
the singular vector in the untwisted and twisted Zhu algebras are elements of the
universal enveloping algebras of osp(1|2) and sl(2), respectively, of the same weight.
Since osp(1|2) and sl(2) are rank 1, it is clear that any homogeneous element of
the universal enveloping algebras of positive weight can be written as the product
of a monomial in the positive root vectors and an element of the centralisers of
the Cartan subalgebra introduced in Theorem 1. The images of the singular must
therefore be as given in (9) and (10).

Since the conformal weight of the singular vectors is (u− 1)v/2, the total degree
of the images of the singular vectors is at most (u− 1)v/2. The factors of e and
x in the images of the singular vectors each contribute 1 unit of degree and the
right-hand sides of the inequalities of (11) are just the upper bounds on how many
units of degree the polynomials g and gτ can contribute. �
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Definition 7. The Kac table of B0|1(u, v) is the set of pairs of integers

Ku,v = {(i, j) : 1 ≤ i ≤ u− 1, 1 ≤ j ≤ v − 1}

and the Neveu–Schwarz and Ramond Kac tables are the subsets

KNS
u,v = {(i, j) ∈ Ku,v : i+ j is odd},

KR
u,v = {(i, j) ∈ Ku,v : i+ j is even},

respectively. Let ∼ denote the equivalence relation on Ku,v given by (i, j) ∼ (i′, j′)
if and only if (i, j) = (i′, j′) or (i, j) = (u − i′, v − j′). The reduced Kac table,
the reduced Neveu–Schwarz Kac table and the reduced Ramond Kac table are then
respectively defined to be

Ku,v = Ku,v/∼, K
NS

u,v = KNS
u,v/∼, K

R

u,v = KR
u,v/∼ .

For i, j ∈ Z, let

λi,j =
i− 1

2
− 1 + (−1)i+j

4
− u

2v
j, si,j =

i

2
− u

2v
j, qi,j =

(uj − vi)2 − 4v2

8v2
.

Theorem 10. Let u ≥ 2, v ≥ 1 be integers satisfying the condition (8). Up to
normalisation, the images of the singular vectors χu,v in Vku,v are given by the
following formulae: In the untwisted Zhu algebra,

[χu,v] =

{
e(u−1)/2g(Σ) u, v odd,

e(u−2)/2xg(Σ) u, v even,

and in the twisted Zhu algebra,

e(u−2)/2gτ (Q) =

{
[χu,v]

τ
u, v odd,

[y0χu,v]
τ

u, v even,

where

g(Σ) = ∏
(i,j)∈KNS

u,v

(Σ− si,j) and gτ (Q) = ∏
[(i,j)]∈KR

u,v

(Q− qi,j). (12)

The proof of the above polynomial formulae is where most of the effort of
this paper is spent. The main idea is to evaluate the action of the zero mode
of the singular vector on candidate relaxed highest weight vectors. Since the
images of the singular vector in the Zhu algebras are polynomials in osp(1|2) or
sl(2) generators, these polynomials can be determined through sufficiently many
evaluations. Unfortunately, closed formulae for singular vectors are notoriously
hard to find. We sidestep this issue by constructing the singular vector χu,v within
free field realisations as the image of screening operators. However, these free field
methods require significant preparation and so, for greater clarity of presentation,
we postpone the proof of Theorem 10 to Section 4 where it has been split up into
four cases: Theorems 25, 26, 28 and 29.
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Theorem 11. Let u ≥ 2, v ≥ 1 be integers satisfying the condition (8). The mi-
nimal model osp(1|2) vertex operator superalgebra B0|1(u, v) is rational in category
O in both the Neveu–Schwarz and Ramond sectors, that is, both sectors admit only
a finite number of isomorphism classes of simple modules and every module is
semisimple. Any simple B0|1(u, v) module in category R is isomorphic to one of
the following mutually inequivalent modules.

In the Neveu–Schwarz sector:

(1) Aλi,0 or ΠAλi,0 , where 1 ≤ i ≤ u− 1 and i is odd.

(2) B+
λi,j

or ΠB+
λi,j

, where (i, j) ∈ KNS
u,v.

(3) B−−λi,j or ΠB−−λi,j , where (i, j) ∈ KNS
u,v.

(4) C[λ],si,j , where [λ] ∈ C/2Z, (i, j) ∈ KNS
u,v and s2

i,j 6= (µ+ 1/2)
2

for all µ ∈
[λ] ∪ [λ+ 1].

In the Ramond sector:

(5) Fλi,0 or ΠFλi,0 , where 1 ≤ i ≤ u− 1 and i is even.

(6) D+
λi,j

or ΠD+
λi,j

, where (i, j) ∈ KR
u,v.

(7) D−−λi,j or ΠD−−λi,j , where (i, j) ∈ KR
u,v.

(8) E[λ],qi,j or ΠE[λ],qi,j , where [λ] ∈ C/2Z, [(i, j)] ∈ K
R

u,v and qi,j 6= µ(µ + 2)
for all µ ∈ [λ].

Note that the parity reversals of the dense modules C[λ],si,j do not need to be
included, as ΠC[λ],si,j

∼= C[λ+1],−si,j = C[λ+1],su−i,v−j .

Proof. The theorem follows by evaluating the action of the image of the singular
vector in the untwisted and twisted Zhu algebras on the simple modules of Theo-
rems 2 and 3. Those simple osp(1|2) and sl(2) modules on which the image of the
singular vector acts trivially can be induced to modules over B0|1(u, v).

In both the Neveu–Schwarz and Ramond sectors, the factors of e and x in the
image of the singular vectors cannot act trivially on infinite-dimensional simple
weight modules. They do however act trivially on finite-dimensional simple weight
modules up to a certain dimension, that is, those of items (1) and (5).

For the infinite-dimensional simple weight modules, since the factors of e and
x cannot act trivially, the polynomials g or gτ must. Thus, in the Neveu–Schwarz
sector the super-Casimir Σ must act as ±si,j · id for one of the si,j in the factorisa-
tion (12) of g. The modules for which this is the case are precisely those of items
(2)–(4). Similarly, in the Ramond sector the sl(2) Casimir Q must act as qi,j · id
for one of the qi,j in the factorisation (12) of gτ .The modules for which this is the
case are precisely those of items (6)–(8).

To conclude rationality in category O one must show that there exist no inde-
composable extensions of modules in items (1) and (2) or modules in items (5) and
(6). Consider first the Neveu–Schwarz sector. An indecomposable self-extension
would have as its space of relaxed highest weight vectors an indecomposable self-
extensionM of a simple highest weight Zhu algebra module of highest weight λα.
Further, the weight space Mλα of M of weight λα would be a two-dimensional
module over C[h,Σ]. If Mλα were semisimple it would generate two simple direct
summands of M under the action of the Zhu algebra contradicting the indecom-
posability of M. Thus Mλα would be indecomposable over C[h,Σ]. If we choose
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a Poincaré–Birkhoff–Witt ordering which places y to the left of x, then Σ =
h − 2yx + 1/2. By Definition 3, h acts semisimply in category O and yx acts
trivially on the weight space of weight λα, because both composition factors ofM
contain no vectors of weight (λ+ 1)α. Thus, the formula for Σ implies that Σ acts
semisimply on the weight spaceMλα, thereby contradicting indecomposability. To
rule out indecomposable extensions of two inequivalent simple modules,M and N ,
in category O, note that either the indecomposable module or its contragredient
dual would be a highest weight module and thus a quotient of a Verma module.
In particular the highest weight of the submodule would need to match the weight
of a singular vector of the Verma module. However, from [46, Thm. 3.1], it is easy
to verify that Verma modules with highest weights as in items (1) or (2) do not
have singular vectors with weights as in items (1) or (2).

The rationality of the Ramond sector in category O follows from that of the
Neveu–Schwarz sector after twisting by the algebra isomorphism ζ of (6): Since
ζ preserves the triangular decomposition used to define category O, the twist
of an indecomposable extension of Ramond modules in category O would be an
indecomposable extension of Neveu–Schwarz modules in category O, but no such
extensions exist in the Neveu–Schwarz sector of category O and so neither can
they in the Ramond sector of category O. �

3. Free field algebras and screening

In this section we shall set the stage for proving Theorem 10 by following a line
of reasoning that has already been proved to be very successful for similar Zhu
algebra related problems [32], [33], [25], [34]. The basic idea is as follows. First we
construct a free field realisation of the universal osp(1|2) vertex operator super-
algebra Vk, that is, we embed Vk into free field vertex operator superalgebras. Free
field vertex operator superalgebras have the convenient property of allowing one to
easily construct certain module homomorphisms called screening operators which
in turn can be used to realise the singular vector as the image of certain highest
weight vectors. Armed with these formulae for singular vectors, we then evaluate
the action of the zero mode of the singular vector on candidate relaxed highest
weight vectors to deduce the image of the singular vector in the Zhu algebras.

1. The Heisenberg free field algebra and lattice vertex algebras

The rank r Heisenberg algebra is the affinisation of the trivial r dimensional
complex Lie algebra. Though the only ranks required here will be r = 1 and r = 2,
we give the general definition for conceptual clarity. The definition presented here is
essentially the definition of “free (super) bosons” in [47]. An exhaustive description
of lattice vertex algebras is given in [48] and all results of this subsection are a
specialisation of those of [48].

Let Hr be an r-dimensional complex (purely even) vector space together with
a symmetric non-degenerate bilinear form (−,−) (recall that all such forms are
equivalent over the complex numbers). The Heisenberg algebra is given by

Hr = Hr ⊗ C
[
t, t−1

]
⊕ C1,
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as a vector space, where 1 is the central element which will always be identified
with the identity when acting on modules. The Lie bracket is given by

[am, bn] = m(a, b)δm+n,01, am = a⊗ tm, bn = b⊗ tn, a, b ∈ Hr. (13)

The usual triangular decomposition of the Heisenberg algebra is then given by

H±r = Hr ⊗ C[t±]t±, H0
r = Hr ⊕ C1.

The Verma modules with respect to this decomposition are called Fock spaces and
they are all simple. Writing H≥r = H+

r ⊕ H0
r, we define

Fb = IndHr
H
≥
r
C|b〉, b ∈ Hr,

to be the Verma module induced from the 1-dimensional H≥r module characterised
by

a0|b〉 = (a, b)|b〉, 1|b〉 = |b〉, H+
r |b〉 = 0.

Definition 8. LetHr be an r-dimensional complex vector space with any choice of
symmetric non-degenerate bilinear form (−,−) and any choice of basis {a1, . . . , ar}.
The rank r Heisenberg vertex algebra is the unique vertex algebra that is strongly
generated by fields a1(z), . . . , ar(z) (one for each basis vector), subject to the
defining operator product expansions

ai(z)aj(z) ∼ (ai, aj)

(z − w)2
, 1 ≤ i, j ≤ r,

and satisfies no additional relations beyond those required by vertex algebra axi-
oms.

The operator product expansions (8) imply that the modes of the Laurent
expansions

a(z) = ∑
n∈Z

anz
−n−1, a ∈ Hr

satisfy the commutation relations (13) of the Heisenberg algebra Hr. As a module
over itself Hr corresponds to F0. The Heisenberg vertex algebras admit continuous
families of conformal structures, however, we shall wait until later applications to
choose a specific one.

Vertex operators are maps between Fock spaces whose definition requires us to
extend the universal enveloping algebra of the Heisenberg Lie algebra U(Hr) by
the group algebra C[Hr], where Hr is viewed as an abelian group under vector
space addition. For any vector a ∈ Hr, we denote the corresponding group algebra
element by ea. Then C[Hr] ⊗ U(Hr) is an associative algebra after imposing the
relations

[an, e
b] = (a, b)δn,0e

b, a, b ∈ H,n ∈ Z.

Finally, we define the group algebra elements to act on the highest weight vectors
of Fock spaces in the following way:

ea|b〉 = |a+ b〉.

906



MINIMAL MODELS AND HIGHEST WEIGHT MODULES

For any a ∈ Hr, the vertex operator Va(z), corresponding to a, is given by

Va(z) = eaza0 ∏
m≥1

exp
(a−m
m

zm
)

exp
(
−am
m
z−m

)
.

On Fock spaces Va(z) defines a map

Va(z) : Fb 7→ Fa+b

q
z, z−1

y
z(a,b)

and the composition of ` vertex operators associated to vectors a1, . . . , a` ∈ Hr is
given by

Va1(z1) · · ·Va`(z`)

= ∏
1≤i<j≤`

(zi−zj)(ai,aj)ea
1+···+a`

`

∏
i=1

z
ai0
i ∏
m≥1

exp
( `

∑
i=1

ai−m
m

zmi

)
exp
(
−

`

∑
i=1

aim
m
z−mi

)
.

(14)

Lattice vertex algebras are (infinite order) extensions of Heisenberg vertex al-
gebras Hr constructed by picking linearly independent vectors a1, . . . , am in Hr
such that the pairings of these vectors are integral. Let

〈
a1, . . . , am

〉
=
⊕m
i=1 Zai

denote the lattice in Hr generated by a1, . . . , am.

Definition 9. Let Hr be an r-dimensional complex vector space with a choice of
symmetric non-degenerate bilinear form (−,−) and associated Heisenberg vertex
algebra Hr, further let {a1, . . . , am}, 1 ≤ m ≤ r be a choice of linearly independent
vectors in Hr, such that the pairings of these vectors are integral. The lattice vertex
algebra L〈a1,...,am〉 is the extension of Hr ∼= F0 which as a vector space is given by

L〈a1,...,am〉 =
⊕

µ∈〈a1,...,am〉
Fµ =

⊕
n1,...,nm∈Z

Fn1a1+···+nmam ,

where the state-field correspondence is uniquely determined by assigning to each
highest weight vector |n1a

1 + · · ·+ nma
m〉 the vertex operator Vn1a1+···nmam(z).

Remark 2. Note that we are not requiring the pairing on the lattice in the above
definition to be even or positive definite, as it will be necessary to consider indefinite
lattices for the free field realisation of the βγ ghost vertex algebra constructed
below.

Proposition 12. Let
〈
a1, . . . , am

〉∗
= {µ ∈ Hr : (µ, λ) ∈ Z ∀λ ∈

〈
a1, . . . , am

〉
}

be the dual of
〈
a1, . . . , am

〉
in Hr. For each coset [λ] ∈

〈
a1, . . . , am

〉∗
/
〈
a1, . . . , am

〉
,

F[λ] =
⊕

µ∈〈a1,...,am〉
Fλ+µ

is a module over L〈a1,...,am〉.

Proof. Clearly the action of L〈a1,...,am〉 closes on F[λ], so the only potential obstruc-
tion to F[λ] being a module (and not a twisted module) is the fields of L〈a1,...,am〉
being single valued, that is, that their series expansions only have integer expo-
nents. This is true if and only if it is true for the vertex operators Vai(z), 1 ≤ i ≤ m
and it is true for those by construction due to the Fock space weights all lying in〈
a1, . . . , am

〉∗
. �
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2. The βγ ghosts

We refer to [41] for an in depth treatment of the βγ ghosts. The βγ ghost algebra
is an infinite-dimensional complex Lie algebra

Gβγ =
⊕
n∈Z

Cβn ⊕
⊕
n∈Z

Cγn ⊕ C1,

whose Lie brackets are

[γm, βn] = δm+n,01, [βm, βn] = [γm, γn] = 0, m, n ∈ Z. (15)

The βγ ghost algebra admits the relaxed triangular decomposition

G±βγ =
⊕
n≥1

Cβ±n ⊕
⊕
n≥1

Cγ±n, G0
βγ = Cβ0 ⊕ Cγ0 ⊕ C1. (16)

Conveniently, G0
βγ is just the A1 Weyl algebra for which Block classified all simple

modules [39]. Here we shall only need simple weight modules, and to list them we
introduce the operator J = γ0β0.

Proposition 13. Every simple G0
βγ weight module is isomorphic to one of the

following.

(1) The simple highest weight module G+
= C[γ0]Ω generated by a highest-

weight vector Ω satisfying β0Ω = 0, hence JΩ = 0.

(2) The simple lowest weight G0
βγ-module G− = C[β0]ω generated by a lowest-

weight vector ω satisfying γ0ω = 0, hence Jω = ω.
(3) The simple dense module W [λ], [λ] ∈ C/Z, [λ] 6= [0] with a basis of weight

uj, satisfying Juj = juj, hence W [λ] = C[β0]uµ ⊕ C[γ0]γ0uµ.

In addition to the simple weight modules above, we also need to consider
two indecomposable weight modules whose J-weight support is Z and whose
isomorphism classes are determined by the following short exact sequences

(Ext1
(
G−,G+)

= Ext1
(
G+

,G−
)

= C):

0→ G+ →W+

0 → G
− → 0, 0→ G− →W−0 → G

+ → 0.

Both may be realised on the space C[γ0]u0 ⊕C[β0]u1, where β0u0 = 0 and γ0u1 =
a+u0, for W+

0 , and β0u0 = a−u1 and γ0u1 = 0, for W−0 . We may normalise the
basis vectors so that a+ = a− = 1.

We denote the inductions of the above modules by the same symbols but without
the overlines:

G+ = Ind
Gβγ

G
≥
βγ

G+
, G− = Ind

Gβγ

G
≥
βγ

G−,

W[λ] = Ind
Gβγ

G
≥
βγ

W [λ], W±0 = Ind
Gβγ

G
≥
βγ

W±0 .
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The first three of the above modules are simple while the last are characterised by
the non-split exact sequences

0→ G+ →W+
0 → G− → 0, 0→ G− →W−0 → G+ → 0.

The βγ algebra admits an algebra automorphism σ called spectral flow whose
action on generators is given by

σ(βn) = βn−1, σ(γn) = γn+1, σ(1) = 1.

Since spectral flow is an algebra automorphism, it can be used to twist modules
(recall Definition 5). In particular, G+ and G− are related by spectral flow:

G− ∼= σ−1G+.

Note, however, that spectral flow does not preserve the relaxed triangular decompo-
sition (16) and therefore the spectral flow of a relaxed highest weight module will
generally no longer be relaxed highest weight (it will instead be relaxed highest
weight with respect to a different triangular decomposition).

Definition 10. The βγ ghost vertex algebra G is the unique vertex algebra that
is strongly generated by two even fields β(z) and γ(z), has the operator product
expansions

γ(z)β(w) ∼ β(w)γ(z) ∼ 1

z − w
, β(z)β(w) ∼ γ(z)γ(w) ∼ 0. (17)

and satisfies no additional relations beyond those required by vertex algebra axi-
oms.

The operator product expansion (17) implies that the modes of the Laurent
expansion

β(z) = ∑
n∈Z

βnz
−n−1, γ(z) = ∑

n∈Z
γnz
−n

satisfy the commutation relations (15) of the βγ ghost algebra. As a βγ ghost
algebra module, G is isomorphic to G+. The βγ ghost vertex algebra admits a 1-
parameter family of Virasoro fields. Here we shall only consider the unique choice
T = − :β(z)∂γ(z): which assigns conformal weight 1 to β and conformal weight 0
to γ. Below it will also be necessary to consider the field J(z) = :β(z)γ(z): which
generates a rank 1 Heisenberg vertex algebra and grades the βγ ghost vertex al-
gebra by assigning weight 1 to β and weight −1 to γ. The central charge for this
choice of Virasoro field is c = 2.

The βγ ghost vertex algebra admits a free field realisation in terms of a lattice
algebra, that is, there exists an embedding from G to a lattice algebra.

Proposition 14. Let H2 be the rank 2 Heisenberg vertex algebra and let θ, ψ be a
basis of H2 such that the non-vanishing pairings of (−,−) are (ψ,ψ) = −(θ, θ) = 1.
Then there exists an embedding G→ L〈θ+ψ〉 of vertex algebras defined by

β(z) 7→ Vθ+ψ(z), γ(z) 7→ :ψ(z)V−θ−ψ(z): . (18)
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Proof. The map is a homomorphism of vertex algebras because Vθ+ψ(z) and
:ψ(z)V−θ−ψ(z): satisfy the same operator product expansions as β(z) and γ(z)

do. It is injective because it is non-trivial and the βγ ghost vertex algebra is simple.
�

Since G is a vertex subalgebra of L〈θ+ψ〉, we can decompose L〈θ+ψ〉 modules into
G modules. Before we do so, note that the dual lattice of 〈θ + ψ〉 can be written
as

〈θ + ψ〉∗ = {λ(θ + ψ) + nψ : λ ∈ C, n ∈ Z}.

Proposition 15. As modules over G, the L〈θ+ψ〉 modules of Theorem 12 decom-
pose as

F[nψ]
∼= σn+1W−0 for n ∈ Z,

F[λ(θ+ψ)+nψ]
∼= σn+1W[λ] for λ ∈ C \ Z, n ∈ Z

(19)

Proof. It was shown in [41] that the characters of σn+1W−0 and σn+1W[λ], with
[λ] ∈ Z/Z, [λ] 6= [0] and n ∈ Z form a basis of the span of characters of relaxed
highest weight modules and their spectral flow twists. Thus, the proposition follows
by comparing characters of the left and right-hand sides of (19). The embedding
(18) implies that

J(z) = :β(z)γ(z): 7→ −θ(z),

T (z) = − :β(z)∂γ(z): 7→ 1

2
:ψ2(z): − 1

2
:θ2(z): − 1

2
∂(ψ(z)− θ(z)).

Thus

trF[λ(θ+ψ)+nψ]

(
zJ0qL0−1/12

)
= ∑
m∈Z

trF(λ+m)(θ+ψ)+nψ

(
zJ0qL0−1/12

)
= ∑
m∈Z

zλ+mq(n+1)(2(λ+m)+n)/2

η(q)2

=
zλq(n+1)λ+(n+1)n/2

η(q)2 ∑
m∈Z

zmq(n+1)m = ch
[
σn+1Wλ

]
,

where the last equality was taken from Equation (5.1) of [41]. This proves the
proposition whenever the right-hand side of (19) is simple, that is, when λ is not
an integer. For the non-simple case the character implies 3 possibilities: the right-
hand side is either semisimple or isomorphic to either σn+1W+

0 or σn+1W−0 . That
the right-hand side is isomorphic to σn+1W−0 then follows by checking the action
of the β and γ fields on the highest weight vectors of the Fock space summands in
F[nψ]. �

3. The bc ghosts

The final free field algebra which we shall consider is the bc ghost algebra, the
fermionic analogue of the βγ ghosts. The bc ghost algebras are a pair of infinite-
dimensional Lie superalgebras

bcε =
⊕

n∈Z+ε

Cbn ⊕
⊕

n∈Z+ε

Cγn ⊕ C1, ε = 0,
1

2
,
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whose Lie brackets are

{bm, cn} = δm+n,0, {bm, bn} = {cm, cn} = 0, m, n ∈ Z + ε.

As in the previous sections on osp(1|2), ε = 0 corresponds to the Neveu–Schwarz
sector and ε = 1/2 corresponds to the Ramond sector.

The bc ghost algebra bcε admits a triangular decomposition

bc±ε =
⊕
n≥1

b±(n−ε) ⊕
⊕
n≥1

c±(n−ε), bc00 = Cb0 ⊕ Cc0 ⊕ C1, bc01/2 = C1.

Up to isomorphism and parity reversal there is only one simple bc≥0 = bc00⊕bc+0
module C|NS〉 ⊕ Cc0|NS〉, on which 1 acts as the identity and bc+0 acts trivially.
The action of b0 satisfies b0|NS〉 = 0 (this is necessary for simplicity) and the global
parity of the module is fixed by assigning even parity to |NS〉. The Verma module,

FNS = Indbc0
bc
≥
0

(C|NS〉 ⊕ Cc0|NS〉),

together with its parity reversal are the only Neveu–Schwarz Verma modules and
both are simple. They are called Neveu–Schwarz Fock spaces.

In the Ramond sector, via bc≥1/2 = bc01/2 ⊕ bc+1/2, one has the Verma module

FR = Ind
bc1/2

bc
≥
1/2

C|R〉

where C|R〉 is the 1-dimensional bc≥1/2 module characterised by |R〉 having even

parity and
1|R〉 = |R〉, bc+1/2|R〉 = 0.

This Verma module and its parity reversal are simple and they are the only
Ramond Verma modules.

Definition 11. The bc ghost vertex superalgebra bc is the unique vertex super-
algebra that is strongly generated by two odd fields b(z), c(z), has the defining
operator product expansions

b(z)c(w) ∼ −c(w)b(z) ∼ 1

z − w
,

and satisfies no additional relations beyond those required by the vertex superal-
gebra axioms.

As a bc0 module bc is isomorphic to FNS.

4. Free field realisations of the universal vertex operator
superalgebra Vk

In this section we consider two free field realisations of Vk, once as a subalgebra
of F = H1 ⊗ G⊗ bc and once as a subalgebra of B = H1 ⊗ L〈θ+ψ〉 ⊗ bc.
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Proposition 16. Let ξ ∈ C \ {0} and k = ξ2−3
2 . There exists a vertex operator

superalgebra homomorphism Vk → F uniquely characterised by the assignment

e(z) 7→ β(z),

x(z) 7→ b(z) + :β(z)c(z): ,

h(z) 7→ ξa(z) + :b(z)c(z): + 2 :β(z)γ(z): ,

y(z) 7→ (ξ2 − 2)∂c(z) + ξ :a(z)c(c): + :γ(z)b(z): + :β(z)γ(z)c(z): ,

f(z) 7→ −ξ :a(z)γ(z): − :β(z)γ(z)γ(z): − :γ(z)b(z)c(z):

+
1− ξ2

2
:∂c(z)c(z): +

3− ξ2

2
∂γ(z).

(20)

We omit the tensor product symbols for brevity, identifying a with a ⊗ 1 ⊗ 1 and
so on. The image of the Virasoro field under the above homomorphism is

T (z) 7→ 1

2
:a(z)a(z): − 1

2ξ
∂a(z)− :β(z)∂γ(z): − :b(z)∂c(z): .

Proof. This free field realisation appears to have first been considered by Bershad-
sky and Ooguri in [49]. The validity of the proposition follows by checking, through
direct calculation, that the generating fields of Vk and their images in F satisfy the
same operator product expansions and that the formulae for the Virasoro fields
match. Therefore the above map is a well defined vertex operator superalgebra
homomorphism. �

Remark 3. The admissible levels of Theorem 5 at which Vk is not simple are
realised by the free field realisation whenever ξ2 = u/v, where u, v are the integer
parameters of Theorem 5.

Since the above homomorphism is non-trivial, it follows that it is injective for
the levels at which Vk is simple. To show that the homomorphism remains injective
at the levels for which Vk is not simple, we need to take a closer look at F modules,
which are automatically also Vk modules due to the homomorphism Vk → F. Let
|p; NS〉 = |p〉 ⊗ Ω ⊗ |NS〉, |p; j; NS〉 = |p〉 ⊗ uj ⊗ |NS〉, |p; R〉 = |p〉 ⊗ Ω ⊗ |R〉 and
|p; j; R〉 = |p〉 ⊗ uj ⊗ |R〉 respectively be relaxed highest weight vectors in

FF NS
p = Fp ⊗ G+ ⊗ FNS, FF NS

p;[j] = Fp ⊗W[j] ⊗ FNS,

FF R
p = Fp ⊗ G+ ⊗ FR FF R

p;[j] = Fp ⊗W[j] ⊗ FR,

where Ω is the highest weight vector of G+ and uj a relaxed highest weight vector
of W[j] of weight j. Let

λNS
p = ξp, λNS

p;j = ξp+ 2j, λR
p = ξp− 1

2
, λR

p;j = ξp− 1

2
+ 2j,

sp = ξp+
1

2
, qp =

(ξp+ 1/2)
2 − 1

2
.
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From the vertex operator superalgebra homomorphism (20) it then follows that

h0|p; NS〉 = λNS
p |p; NS〉, Σ|p; NS〉 = sp|p; NS〉,

h0c0|p; NS〉 =
(
λNS
p − 1

)
c0|p; NS〉, Σc0|p; NS〉, = −spc0|p; NS〉,

h0|p; j; NS〉 = λNS
p;j |p; j; NS〉, Σ|p; j; NS〉 = sp|p; j; NS〉,

h0c0|p; j; NS〉 =
(
λNS
p;j − 1

)
c0|p; j; NS〉, Σc0|p; j; NS〉 = −spc0|p; j; NS〉,

h0|p; R〉 = λR
p |p; R〉, Q|p; R〉 = qp|p; R〉,

h0|p; j; R〉 = λR
p;j |p; j; R〉, Q|p; j; R〉 = qp|p; j; R〉,

where Σ = x0y0 − y0x0 + 1/2 and Q = h2
0/2 + e0f0 + f0e0. Note that while

the eigenvalue of h0 depends on the βγ weight of the relaxed highest vector, the
eigenvalues of Σ and Q do not.

Lemma 17.

(1) The vertex operator superalgebra homomorphism of Theorem 16 is injective
for all k ∈ C \ {−3/2} and therefore any singular vectors of Vk will have
non-trivial image.

(2) For admissible levels k = (u− 3v)/2v, the singular vector at osp(1|2) weight
(u − 1)α and conformal weight (u − 1)v/2 is unique, up to rescaling, in F,
where F is regarded as a Vk module.

It was shown in [46] that ôsp(1|2) Verma modules have the same submodule

structure as the Virasoro algebra, ŝl(2) and the N = 1 superconformal algebra.
Additionally, since the latter three algebras all share the same submodule structure
when decomposing their free field modules (the analogues of Feigin-Fuchs modules
for the Virasoro algebra), it would come as no surprise if the ôsp(1|2) free field
modules also shared this structure. If this were true, then that would imply that
singular vectors are unique if they exist, that is, any given weight space contains
at most one singular vector up to rescaling. Part 2 of the above lemma would
then immediately follow from part 1. The author is not aware of any literature
giving a rigorous decomposition of ôsp(1|2) free field modules. Fortunately, detailed
knowledge of the decomposition of ôsp(1|2) free field modules is not needed here.
All that is required is that there is an embedding of Vk and the uniqueness of the
singular vector.

Proof. Recall from Theorem 5 that Vk admits at most one singular vector other
than the vacuum vector and that this non-trivial singular vector exists if and only
if Vk has a proper non-trivial ideal. At the levels k where Vk has no ideals and is
thus simple, part 1 follows automatically because the homomorphism is non-zero.
To show part 1 at the levels where Vk admits non-trivial proper ideals, we note
that the uniqueness of the ideal implies that the image of the homomorphism is
isomorphic to either Vk or the affine minimal model vertex operator superalgebra
of the same level. Consider the formulae for the h0 eigenvalues of |p; NS〉. It is clear
that |p; NS〉 is an ôsp(1|2)0 highest weight vector and as one varies p, there are
no restrictions on the osp(1|2) weights that can be obtained. Thus any simple Vk
highest weight module can be realised as a subquotient of FF NS

p for suitable values
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of p ∈ C. However, for the affine minimal model vertex operator superalgebras
B0|1(u, v) not all osp(1|2) weights are allowed as highest weights. For example,
(u− 1)α, the weight of the singular vector, is not allowed. Thus, the image of the
homomorphism must be isomorphic to Vk and not just a quotient thereof.

We show part 2 by contradiction. In order to do so we prepare some results
from [46] on the submodule structure and singular vectors of ôsp(1|2)0 Verma
modules. We denote by Vλ the Verma at admissible level ku,v generated by a
highest weight vector of osp(1|2) weight λα and by Lλ its simple quotient by its
unique maximal proper submodule. Specialising [46, Thm. 3.1] to the case at hand
shows that the last few terms of the BGG resolution of L0, L−1 and Lu−1 are
given by

· · · → V−u−1 ⊕ V2u−1 → V−u ⊕ Vu → V−1 ⊕ Vu−1 → V0 → L0 → 0,

· · · → V−u−1 ⊕ V2u−1 → V−u ⊕ Vu → V−1 → L−1 → 0,

· · · → V−u−1 ⊕ V2u−1 → V−u ⊕ Vu → Vu−1 → Lu−1 → 0.

These resolutions imply that V0 has two independent singular vectors2 whose
osp(1|2) and conformal weights are (−α, 0) and ((u−1)α, (u−1)v/2), respectively.
These two singular vectors each generate a Verma submodule, and both of these
submodules share a pair of independent singular vectors whose osp(1|2) and con-
formal weights are (−uα, (u − 1)v/2) and (uα, (u + 1)v/2), respectively. These
two additional singular vectors each generate a Verma submodule, and again both
of these submodules share a pair of independent singular vectors whose osp(1|2)
and conformal weights are (−(u + 1)α, (u + 1)v/2) and ((2u − 1)α, (u + 1)v/2),
respectively, and so on. As an ôsp(1|2) module Vku,v is isomorphic to V0/V−1 and,
as stated in Theorem 5, this quotient has a unique singular vector at osp(1|2)
and conformal weight ((u − 1)α, (u − 1)v/2). In part 1, we showed that Vku,v is
isomorphic to the ôsp(1|2) submodule of F generated by the vector |0; NS〉. Thus,
U(ôsp(1|2))|0; NS〉 ∼= V0/V−1. A direct calculation shows that x0c0|0; NS〉 = |0; NS〉
and therefore, U(ôsp(1|2))c0|0; NS〉/U(ôsp(1|2))|0; NS〉 is an ôsp(1|2) highest
weight module of weight −α and is therefore isomorphic to a quotient of V−1.

Due to the weights at which the singular vectors of V−1 appear, the ((u −
1)α, (u − 1)v/2) weight spaces of V−1 and L−1 have the same dimension. This
implies that neither V−1 nor any quotient of V−1 contains a singular vector in the
((u − 1)α, (u − 1)v/2) weight space. Further, since both F and V0 have the same
characters as ôsp(1|2) modules, their weight spaces also have the same dimensions.
Thus, the weight spaces of F have the same dimensions as those of the direct sum
(V0/V−1)⊕V−1. Finally, this implies that the dimensions of the ((u−1)α, (u−1)v/2)
weight spaces of F and U(ôsp(1|2)0)c0|0; NS〉 are equal, since the dimension of the
((u− 1)α, (u− 1)v/2) weight spaces of V−1 and L−1 are.

Assume that the ôsp(1|2)0 singular vector of weight ((u− 1)α, (u− 1)v/2) in F
is not unique, then the quotient module U(ôsp(1|2)0)c0|0; NS〉/U(ôsp(1|2)0)|0; NS〉
would have to contain at least one singular vector at this weight, because the weight
space of F of weight ((u − 1)α, (u − 1)v/2) is contained in U(ôsp(1|2)0)c0|0; NS〉

2Independent here meaning that the singular vector is a descendant of the highest
weight vector only and not of other singular vectors.
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by the above dimension counting arguments. However, neither V−1 nor any of its
quotients contain a singular vector at this weight, so in particular, neither can the
quotient module U(ôsp(1|2)0)c0|0; NS〉/U(ôsp(1|2)0)|0; NS〉. �

The second free field realisation of Vk is constructed by embedding the βγ vertex
algebra of the first realisation into a lattice algebra as in Theorem 14.

Lemma 18.

(1) The composition of the algebra homomorphisms in Theorems 14 and 16 is
injective. Therefore any singular vectors of Vk will have non-trivial image
in B.

(2) For admissible levels k = (u− 3v)/2v, the singular vector at osp(1|2) weight
(u− 1)α and conformal weight (u− 1)v/2 is unique, up to rescaling, in B.

Proof. Part 1 follows from the fact that the two algebra homomorphisms in Theo-
rems 14 and 16 are both injective and thus so is their composition.

We show part 2 by contradiction. As a module over F the vertex superalgebra
B is isomorphic to F0 ⊗ σW−0 ⊗ FNS. Further, since σW−0 satisfies the non-split
exact sequence

0→ G+ → σW−0 → σG+ → 0,

B satisfies the non-split exact sequence:

0→ F→ B→ F0 ⊗ σG+ ⊗ FNS → 0.

Since the singular vector at osp(1|2) and conformal weights (u−1)α and (u−1) v2
is unique in F, it is unique in B if and only if there is no ôsp(1|2) singular vector at
those weights in F0⊗σG+⊗FNS. As shall shortly become apparent, no such singular
vector exists because F0 ⊗ σG+ ⊗ FNS admits no ôsp(1|2) singular vectors at any
weight. A necessary condition for a vector to be singular is that it is annihilated
by f1. We will show that no non-trivial such vector exists by using the fact that
γ1 acts injectively on σG+ (this is a consequence of γ0 acting injectively on G+) to
show that f1 acts injectively on F0 ⊗ σG+ ⊗ FNS. The expansion of f1 in free field
generators is

f1 = −ξa0γ1 −
(

2 ∑
m≥2

β−mγm + 2 ∑
m≥0

γ−mβm + β−1γ1

)
γ1

− :b c: 0γ1 −
3− ξ2

2
γ1 + C

= −(ξa0 + 2 :β γ: 0 + :b c: 0 − β−1γ1)γ1 −
3− ξ2

2
γ1 + C,

where C denotes all summands not containing γ1, while :b c: 0 denotes the zero
mode of the normally ordered product :b(z)c(z): and :β γ: 0 denotes the zero
mode of the normally ordered product :β(z)γ(z): . Next, we refine the grading of
F0 ⊗ σG+ ⊗ FNS by Heisenberg, βγ and bc weights to also include the eigenvalue
of β−1γ1 (on σG+ the eigenvalues of β−1γ1 are all integers). When acting on a
homogeneous vector with respect to this refined grading, the terms collected in C
in the expansion of f1 either do not change the eigenvalue of β−1γ1 or increase
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the eigenvalue by a positive integer if they contain factors of β−1. Conversely,
the summands containing γ1 shift the eigenvalue of β−1γ1 by −1. Let w be a
homogeneous vector with respect to the refined grading, then

f1w = (ξa0 + 2 :β γ: 0 + :b c: 0 − β−1γ1)γ1w −
3− ξ2

2
γ1w + Cw

=
(
m+ 2− u+ v

2v

)
γ1w + Cw,

where m ∈ Z is the eigenvalue of ξa0 + 2 :β γ: 0 + :b c: 0−β−1γ1 and we have used
the fact that ξ2 = u/v. Since v and (u+ v)/2 are coprime, (u+ v)/2v is not an
integer and the coefficient of γ1w is therefore non-zero. Further, γ1w and Cw have
different β−1γ1 eigenvalues, so they cannot be linearly dependent. Thus, f1w 6= 0
for any homogeneous vector of the refined grading and f1 acts injectively. �

Remark 4. The importance of the uniqueness of the singular vectors in Theorems
17 and 18 will become apparent in Section 4, where these singular vectors will be
constructed as images of highest weight under screening operators. Since screening
operators are module homomorphisms it follows immediately that these images
are singular vectors, but without uniqueness it would not be clear that the correct
singular vectors have been constructed.

The second free field realisation implies that modules over B are also modules
over Vk by restriction. We introduce the following notation

FB NS
p = Fp ⊗ F[0] ⊗ FNS, FB NS

p;[λ],n = Fp ⊗ F[λ(ψ+θ)+nψ] ⊗ FNS,

FB R
p = Fp ⊗ F[0] ⊗ FR, FB R

p;[λ],n = Fp ⊗ F[λ(ψ+θ)+nψ] ⊗ FR.

We now turn screening operators — the original introduced by Dotsenko and
Fateev in the context of the Coulomb gas formalism [20] — as a means of construct-
ing Vk singular vectors.

Definition 12. Let V be a vertex operator superalgebra together with a free field
realisation, V ↪→W, in a free field vertex operator superalgebra W. A screening field
is a field corresponding to a vector in a module over W, whose operator product
expansions with the fields of V have singular parts that are total derivatives. It
suffices to check this for the generating fields of V .

Proposition 19. The field

Q1(z) = (β(z)c(z)− b(z))V−a/ξ(z) (21)

is a screening field for the free field realisations Vk ↪→ F and also for Vk ↪→ B when
β(z) is realised as β(z) = Vθ+ψ(z). The field

Q2(z) = (β(z)c(z)− b(z))Vξa−(1+ξ2)(θ+ψ)/2(z) (22)

is a screening field for Vk ↪→ B, where again β(z) = Vθ+ψ(z).
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Proof. The proposition follows by direct computation, that is, computing the
operator product expansions of the generators of Vk with the screening fields Q1(z)
and Q2(z) and verifying that they are indeed total derivatives. For Q1(z) the non-
zero operator product expansions are

y(z)Q1(w) ∼ ∂w
ξ2V−a/ξ(w)

z − w
, f(z)Q1(w) ∼ ∂w

ξ2c(w)V−a/ξ(w)

z − w
,

while for Q2(z) they are

y(z)Q2(w)

∼ ∂w
Vξa−(1+ξ2)(θ+ψ)/2(w)

z − w
,

f(z)Q2(w)

∼ ∂w
1+ξ2

2 b(w)Vξa−(3+ξ2)(θ+ψ)/2(w) + 1−ξ2
2 c(w)Vξa−(1+ξ2)(θ+ψ)/2(w)

z − w
. �

Remark 5. While screening operators of the form (21) are well known, those of
the form (22) are less commonly considered. They have appeared in the physics
literature as formal non-integer powers of screening operators, that is, through
identities of the form “Q2(z) = Q1(z)−ξ

2

” see for example [50]. In [51] such non-
integer powers were interpreted as formal quantities which were to be expanded
within normally ordered products in a way that avoids non-integer powers.

Here, instead, we enlarge the βγ vertex algebra, by embedding it into a lattice
vertex algebra, through a free field realisation. In this larger vertex algebra non-
integer powers of β(z) = Vθ+ψ(z) can be defined as β(z)λ = Vλ(θ+ψ)(z) which
is well defined because θ + ψ has norm 0 and thus, for all λ, µ ∈ C, we have
Vλ(θ+ψ)(z)Vµ(θ+ψ)(z) = V(λ+µ)(θ+ψ)(z).

The interest in screening fields, for a free field realisation V ↪→ W, stems from
the fact that their residues, when well defined, commute with the action of V. These
residues, referred to as screening operators, thus define V module homomorphisms.
This implies that the image of any singular vector will again be singular (or zero).
Thus screening fields and operators are an invaluable tool for constructing singular
vectors in V modules.

Consider the composition of ` copies of the screening field Q1(z):

Q1(z1) · · · Q1(z`)

= (β(z1)c(z1)− b(z1)) · · · (β(z`)c(z`)− b(z`))e−`/ξa ∏
1≤i<j≤`

(zi − zj)ξ
−2

·
`

∏
i=1

z
−a0/ξ
i · ∏

m≥1

[
exp

(−1

ξ

a−m
m

`

∑
i=1

zmi

)
exp

(1

ξ

am
m

`

∑
i=1

z−mi

)] (23)

The action of screening fields and operators is most easily evaluated using methods
coming from the theory of symmetric functions, however, products of fermions such
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as those above are skew-symmetric. This obstacle can be overcome by factoring
out the Vandermonde determinant ∆(z) = ∏1≤i<j≤`(zi − zj):

∏
1≤i<j≤`

(zi − zj)ξ
−2

= ∆(z) ∏
1≤i<j≤`

(zi − zj)ξ
−2−1

= ∆(z) ∏
1≤i 6=j≤`

(zi − zj)(ξ−2−1)/2
,

where we have suppressed a complex phase in the second equality which will
later be absorbed into integration cycles. This allows us to rewrite the product
of screening fields (23) in the form

Q1(z1) · · · Q1(z`)

= e−`/ξa ∏
1≤i 6=j≤`

(
1− zi

zj

)(ξ−2−1)/2

·
`

∏
i=1

z
−a0/ξ+(`−1)(ξ−2−1)/2
i

·∆(z)(β(z1)c(z1)− b(z1)) · · · (β(z`)c(z`)− b(z`))

· ∏
m≥1

[
exp

(−1

ξ

a−m
m

`

∑
i=1

zmi

)
exp

(1

ξ

am
m

`

∑
i=1

z−mi

)]
,

(24)

where the skew symmetry of the fermions is now countered by that of the Vander-
monde determinant.

To define screening operators as integrals of products of screening fields, there
need to exist cycles over which to integrate. The obstruction to the existence
of such cycles lies in the multivaluedness of the second product on the right-
hand side of (24). If the exponent −a0/ξ + (`− 1)(ξ−2 − 1)/2 evaluates to an
integer, when acting on a Neveu–Schwarz free field module, then there exists such
a cycle Γ(`, ξ), generically unique in homology up to normalisation and constructed
in [21]. For example, on the free field module Fp ⊗ W[j] ⊗ FNS, a0 acts as p
and the exponent evaluates to −p/ξ + (`− 1)(ξ−2 − 1)/2. The cycles Γ(`, ξ) are
homologically equivalent to the cycles over which one integrates in the theory of
symmetric polynomials to define inner products — see [32, Sect. 3] for details. The
actual construction of the cycles Γ(`, ξ) is rather subtle and we refer the interested
reader to [21] for the complete picture.

For completeness, we mention that when acting on a Ramond free field module,
the cycles Γ(`, ξ) exist when −a0/ξ+(`− 1)(ξ−2 − 1)/2 evaluates to a half integer
(to compensate for the half integer exponents of free fermion fields). Screening
operators between Ramond modules shall, however, not be needed in what follows.

Analogously, composing ` copies of the screening field Q2(z) yields
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Q2(z1) · · · Q2(z`)

= e`ξa−`(1+ξ2)(θ+ψ)/2

· ∏
1≤i 6=j≤`

(
1− zi

zj

)(ξ2−1)/2 `

∏
i=1

z
ξa0+(`−1)(ξ2−1)/2−(1+ξ2)(θ0+ψ0)/2
i

·∆(z)(β(z1)c(z1)− b(z1)) · · · (β(z`)c(z`)− b(z`))

· ∏
m≥1

[
exp

(
ξ
a−m
m

`

∑
i=1

zmi

)
exp

(
−ξ am

m

`

∑
i=1

z−mi

)]
· ∏
m≥1

[
exp
(
−1 + ξ2

2

θ−m + ψ−m
m

`

∑
i=1

zmi

)
exp
(1 + ξ2

2

θm + ψm
m

`

∑
i=1

z−mi

)]
,

(25)

Definition 13. Let ` and m be integers, and ` ≥ 1.

(1) For p = (`− 2m− 1)/2ξ−ξ(`− 1)/2, the screening operators Q[`]
1 : FF NS

p →
FF NS
p−`/ξ and Q[`]

1 : FF NS
p;j → FF NS

p−`/ξ;j are defined by

Q[`]
1 =

∫
Γ(`,ξ)

Q1(z1) · · · Q1(z`)dz1 · · · dz`,

meaning that the cycle Γ(`, ξ) exists.

(2) For p = (`+ 2m− 1)/2ξ−ξ(`− 1)/2, the screening operators Q[`]
2 : FB NS

p →
FB NS
p+`ξ;[−`(1+ξ2)/2],0 and Q[`]

2 : FB NS
p;[λ],n → FB NS

p+`ξ;[λ−`(1+ξ2)/2],n are defined
by

Q[`]
2 =

∫
Γ(`,ξ−1)

Q2(z1) · · · Q2(z`)dz1 · · · dz`,

meaning that the cycle Γ(`, ξ−1) exists.

We normalise these cycles such that

∫
Γ(`,ξ±1)

∏
1≤i 6=j≤`

(
1− zi

zj

)(ξ∓2−1)/2
dz1 · · · dz`
z1 · · · z`

= 1.

We shall lighten notation in what follows by suppressing the cycle Γ(`, ξ±1) in
all integrals.

Remark 6. As mentioned previously, the

∆(z)(β(z1)c(z1)− b(z1)) · · · (β(z`)c(z`)− b(z`))

factor and the factors of exponential functions that appear on the right-hand side
of (24) and (25) are both invariant under permuting the zi. The action of the

screening operators Q[`]
1 and Q[`]

1 can thus be evaluated using the well-studied
family of inner products of symmetric polynomials defined by
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〈f, g〉t` =

∫
∏

1≤i 6=j≤`

(
1− zi

zj

)1/t
f(z−1

1 , . . . , z−1
` )g(z1, . . . , z`)

dz1 · · · dz`
z1 · · · z`

, (26)

where f and g are symmetric polynomials and t ∈ C\{0}. One of the characterising
properties of Jack symmetric polynomials Ptλ

(
z
)

is that they are orthogonal with
respect to these inner products labelled by t. For readers unfamiliar with Jack sym-
metric polynomials we recommend Macdonald’s comprehensive book [52], while
for readers familiar with Jack symmetric polynomials, a short summary of their
properties and the notation used here can be found in [25, App. A].

5. Free field correlation functions

In this section we derive identities involving the correlation functions of the Heisen-
berg, βγ and bc fields. These will be needed for evaluating the action of the zero
modes of singular vectors in Section 4.

Let F∗p be the graded dual of the highest-weight Hr-module Fp, p ∈ Hr. Then,
F∗p is a lowest-weight right Hr-module generated by a lowest-weight vector 〈p|
satisfying

〈p|p〉 = 1, 〈p|H−r = 0.

It is convenient to extend the domain of the functionals in F∗p to all Fock spaces
Fq, q ∈ Hr, but to have them act trivially unless q = p.

Definition 14. Let B be any combination of normally ordered products of free
bosons a(z), vertex operators Vp(z) and their derivatives. The free boson correla-
tion function in Fp and F∗q is then defined to be 〈q|B|p〉.

The operator product expansion formulae (14) then imply the following well-
known correlation function formulae.

Proposition 20. The correlation function of k vertex operators is given by

〈q|Vp1(z1) · · ·Vpk(zk)|p〉 = δq,p1+···+pk+p ∏
1≤i<j≤k

(zi − zj)(pi,pj) ·
k

∏
i=1

z
(p,pi)
i .

Let G+ ∗ be the graded dual of the highest weight Gβγ module G+. Then, G+ ∗ is
a lowest-weight right Gβγ module generated by a lowest-weight vector φ satisfying

〈φ|Ω〉 = 1, φG−βγ = 0.

Further, let W∗q be the graded dual of the highest weight Gβγ module Wq. Then,
W∗q is a lowest-weight right Gβγ module generated by a lowest-weight vector φq
satisfying

〈φq|uq〉 = 1, φq G
−
βγ = 0.

Definition 15. Let B be any combination of normally ordered products of G
fields. The bosonic ghost correlation functions in G+ and Wq are then respectively
defined to be

〈B〉 = 〈φ|B|Ω〉, 〈B〉q = 〈φq|B|uq〉. (27)
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Lemma 21. Let n be a non-negative integer, q ∈ C and let (q)n be the rising
factorial ∏n

i=1(q + i− 1). The β, γ fields satisfy

〈γn1 β(z1) · · ·β(zn)〉 = n!

〈γn0 β(z1) · · ·β(zn)〉q = (q)n

n

∏
i=1

z−1
i .

Proof. The formulae follow by induction after noting that [γn, β(z)] = 1z−n, that
γ1Ω = 0 and that γ0β0uq = quq. �

Let FNS ∗ be the graded dual of the highest weight bc0 module FNS. Then,
FNS ∗ is a lowest-weight right bc0 module generated by a lowest-weight vector 〈NS|
satisfying

〈NS|NS〉 = 1, 〈NS|b0c0|NS〉 = 1, 〈NS|bc−0 = 0.

Further, let FR ∗ be the graded dual of the highest weight bc1/2 module FR. Then,
FR ∗ is a lowest-weight right bc1/2 module generated by a lowest-weight vector 〈R|
satisfying

〈R|R〉 = 1, 〈R|bc−1/2 = 0.

Definition 16. Let B be any combination of normally ordered products of bc
fields. The fermionic ghost correlation functions in FNS and FR are then defined
to be

〈B〉+NS = 〈NS|B|NS〉, 〈B〉−NS = 〈NS|b0Bc0|NS〉, 〈B〉R = 〈R|B|R〉.

Correlation functions involving fermions can often be efficiently expressed using
pfaffians and this remains true for bc ghosts. The determinant of a skew-symmetric
matrix A = −Aᵀ can always be written as the square of a polynomials in the
coefficients of A. This polynomial, up to a choice of sign, is the pfaffian pf(A) of A.

Definition 17. Let A be a 2n× 2n skew-symmetric matrix, so that A is uniquely
determined by its upper-triangular entries Ai,j , i < j. We shall write A =
(Ai,j)1≤i<j≤2n to indicate a skew-symmetric matrix A with given upper-triangular
entries. After defining the pfaffian of the 0 × 0 matrix to be 1, the pfaffian of A
can be recursively defined by

pf(A) =
2n

∑
j=1
j 6=i

(−1)i+j+θ(j−i)Ai,j pf(Aı̂,̂), (28)

where the row index i may be chosen arbitrarily, Aı̂,̂ denotes the matrix A with
the ith and jth rows and columns removed, and

θ(x) =

{
1 if x > 0,

0 if x < 0

is the Heaviside step function. In particular, i = 1 gives the simplified formula

pf(A) =
2n

∑
j=2

(−1)jA1,j pf(A1̂,̂). (29)
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Lemma 22. Let n be a non-negative integer and m ∈ Z. The βγ and bc fields
satisfy the following correlation function formulae.

(1) In the Neveu–Schwarz sector,〈
2n

∏
i=1

(c(zi)z
m
i − b(zi))

〉+

NS

= (−1)n pf

(
zmi + zmj
zi − zj

)
1≤i<j≤2n

,

〈
2n

∏
i=1

(c(zi)z
m
i − b(zi))

〉−
NS

= (−1)n pf

(
zm+1
i z−1

j + z−1
i zm+1

j

zi − zj

)
1≤i<j≤2n

.

(2) In the Ramond sector,〈
2n

∏
i=1

(c(zi)z
m
i − b(zi))

〉
R

= (−1)n pf

zm+ 1
2

i z
− 1

2
j + z

− 1
2

i z
m+ 1

2
j

zi − zj


1≤i<j≤2n

.

Proof. The above identities all follow by induction using the recursive definition of
pfaffians. We give the details for the first identity and leave the rest as an exercise
for the reader.

The base step of the induction follows from the fact that for n = 0 the correlator
is empty and therefore equal to 1. For the inductive step, assume the identity is
true for n− 1 and consider〈

2n

∏
i=1

(c(zi)z
m
i − b(zi))

〉+

NS

=

〈
(c(z1)zm1 − b(z1))

2n

∏
i=2

(c(zi)z
m
i − b(zi))

〉+

NS

= ∑
k≥1

zm−k1

〈
ck

2n

∏
i=2

(c(zi)z
m
i − b(zi))

〉+

NS

− ∑
k≥0

z−k−1
1

〈
bk

2n

∏
i=2

(c(zi)z
m
i − b(zi))

〉+

NS

=
2n

∑
j=2

(−1)
j−1

〈
2n

∏
i=2
i 6=j

(
c(zi)z

−1
i − b(zi)

)〉+

NS

∑
k≥0

(
zm−k−1

1 zkj + z−k−1
1 zk+m

j

)

=
2n

∑
j=2

(−1)
j

(
−1

zm1 + zmj
z1 − zj

)〈 2n

∏
i=2
i 6=j

(
c(zi)z

−1
i − b(zi)

)〉+

NS

= pf

(
−
zmi + zmj
zi − zj

)
1≤i<j≤2n

= (−1)
n

pf

(
zmi + zmj
zi − zj

)
1≤i<j≤2n

,

where the third equality follows from the anti-commutation relations {ck, b(z)} =
1zk−1 and {bk, c(z)} = 1zk and the fifth from the recursive definition of pfaffians.
�

The above correlation functions involve fermions and so it is unsurprising that
they are skew-symmetric with respect to permuting the zi variables. This skew-
symmetry can be compensated for by multiplying the above correlation functions
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with the Vandermonde determinant. In addition to being symmetric, the products
of the above correlation functions with the Vandermonde determinant also vanish
whenever 3 variables coincide. Symmetric polynomials with this property form an
ideal of the ring of symmetric polynomials. This ideal and generalisations thereof
were studied by by Feigin and Jimbo and Miwa and Mukhin [31]. This ideal is
spanned by Jack symmetric functions at parameter value t = −3 whose associated
partitions satisfy certain admissibility conditions. We refer the reader to [34, Sect.
3] for a detailed account of how to apply Feigin and Jimbo and Miwa and Mukhin’s
work to correlation functions and for the definitions of the notation used below. See
in particular the notation introduced in Definitions 3.1 and 3.4 for the admissible
partitions δ(m)(n1, n2) and ε(m)(n), and the involution of partitions [k − ε(m)(n)]
in Lemma 3.5 of [34], as they shall be used repeatedly in what follows.

Let B be some combination of βγ and bc fields, then we denote the combined
correlation functions by 〈B〉q;±NS = 〈〈B〉q〉±NS, 〈B〉qR = 〈〈B〉q〉R and we abbreviate

〈〈B〉〉±NS as 〈B〉±NS.

Lemma 23. Let n be a non-negative integer and q ∈ C.

(1) In the Neveu–Schwarz sector,

2n

∏
i=1

z−2n+2
i ∆(z)

〈
γn1

2n

∏
i=1

(β(zi)c(zi)− b(zi))
〉+

NS

= n!
2n

∏
i=1

z−2n+2
i ∆(z)

〈 2n

∏
i=1

(c(zi)− b(zi))
〉+

NS

= n!(−2)
nP−3

δ(2n)(0,0)

(
z−1

)
,

2n+1

∏
i=1

z−2n
i ∆(z)

〈
γn1 b0

2n+1

∏
i=1

(β(zi)c(zi)− b(zi))
〉+

NS

= n!
2n+1

∏
i=1

z−2n
i ∆(z)

〈
b0

2n+1

∏
i=1

(c(zi)− b(zi))
〉+

NS

= −n!(−2)
n+1P−3

δ(2n)(2,0)

(
z−1

)
,

(31)

and

2n

∏
i=1

z−2n+1
i ∆(z)

〈
γn0

2n

∏
i=1

(β(zi + w)c(zi + w)− b(zi + w))

〉q;±
NS

= (q)n(−1)
n

2n

∏
i=1

(zi + w)
−1

n

∑
i=0

wn−ic
(2n)
i P−3

[2n−1−ε(2n)(i)]

(
z−1

)
, (32a)

2n+1

∏
i=1

z−2n−1
i ∆(z)

〈
γn+1

0 b0
2n+1

∏
i=1

(β(zi + w)c(zi + w)− b(zi + w))

〉q;+
NS

= (q)n+1(−1)
n+1

2n+1

∏
i=1

(zi + w)
−1
n+1

∑
i=0

wn+1−ic
(2n+1)
i P−3

[2n+1−ε(2n+1)(i)]

(
z−1

)
, (32b)

2n+1

∏
i=1

z−2n−1
i ∆(z)

〈
γn0 c0

2n+1

∏
i=1

(β(zi + w)c(zi + w)− b(zi + w))

〉q;−
NS

= (q)n(−1)
n+1

2n+1

∏
i=1

(zi + w)
−1

n

∑
i=0

wn+1−ic
(2n+1)
i P−3

[2n+1−ε(2n+1)(i)]

(
z−1

)
, (32c)
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where the c
(k)
i ∈ C are non-zero constants.

(2) In the Ramond sector,

2n

∏
i=1

z−2n+2
i ∆(z)

〈
γn0

2n

∏
i=1

(β(zi + w)c(zi + w)− b(zi + w))

〉q
R

= (q)n(−2)n
2n

∏
i=1

(zi + w)
− 1

2P−3
δ(2n)(0,0)

(
z−1

)
, (33a)

2n+1

∏
i=1

z−2n+1
i ∆(z)

〈
γn0

2n+1

∏
i=1

(β(zi + w)c(zi + w)− b(zi + w)) · c(w)

〉q
R

= −(q)n(−2)nw
1
2

2n+1

∏
i=1

(zi + w)
− 1

2P−3
δ(2n+1)(0,0)

(
z−1

)
. (33b)

Proof. The main stepping stones to the above identities are the identities, proved
in Proposition 3.8 of [34],

∆(z1, . . . , z2n) pf

(
1

zi − zj

)
1≤i<j≤2n

= P−3
δ(2n)(0,0)

(
z1, . . . , z2n

)
,

∆(z1, . . . , z2n) pf

(
zi + zj
zi − zj

)
1≤i<j≤2n

= P−3
δ(2n)(1,0)

(
z1, . . . , z2n

)
;

(34)

the translation invariance of P−3
δ(2n)(0,0)

, that is,

P−3
δ(2n)(0,0)

(
z1 + w, . . . , z2n + w

)
= P−3

δ(2n)(0,0)

(
z1, . . . , z2n

)
;

and the Taylor expansion

P−3
δ(2n)(1,0)

(
z1 + w, . . . , z2n + w

)
=

n

∑
i=0

c
(2n)
i P−3

ε(2n)(i)

(
z1, . . . , z2n

)
wn−i. (35)

The non-vanishing of the expansion coefficients c
(2n)
i was shown in the Remark

directly after Proposition 3.9 of [34]. Verifying the above formulae for correlation
functions now follows in exactly the same way as it did in Proposition 3.9 of [34], so
we give the details for first two cases of (32) only and leave the rest as an exercise
for the reader.

When multiplying out the product ∏2n
i=1(β(zi)c(zi)− b(zi)) in

〈
γn0

2n

∏
i=1

(β(zi)c(zi)− b(zi))

〉q;±
NS

the only summands which can contribute are those containing an equal number of
b and c fields, that is, n of each. These summands will also contain n β fields and
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so applying the second identity of Theorem 21 implies〈
γn0

2n

∏
i=1

(β(zi)c(zi)− b(zi))

〉q;±
NS

= (q)n

〈
2n

∏
i=1

(
c(zi)z

−1
i − b(zi)

)〉±
NS

= (q)n(−1)n pf

(
z−1
i + z−1

j

zi − zj

)
1≤i<j≤2n

= (q)n(−1)n
2n

∏
i=1

z−1
i pf

(
zi + zj
zi − zj

)
1≤i<j≤2n

,

where the second equality follows from the identities of Theorem 22. Multiplying
by the Vandermonde determinant and applying the second identity of (34) then
gives

∆(z)

〈
γn0

2n

∏
i=1

(β(zi)c(zi)− b(zi))

〉q;±
NS

= (q)n(−1)n
2n

∏
i=1

z−1
i P−3

δ(2n)(1,0)

(
z
)
.

Finally, translating all variables by w (recall that the Vandermonde determinant
is translation invariant), applying the Taylor expansion (35) and multiplying by

∏2n
i=1 z

−2n+1
i gives

2n

∏
i=1

z−2n+1
i ∆(z)

〈
γn0

2n

∏
i=1

(β(zi + w)c(zi + w)− b(zi + w))

〉q;±
NS

= (q)n(−1)n
2n

∏
i=1

(zi + w)
−1

2n

∏
i=1

z−2n+1
i P−3

δ(2n)(1,0)

(
z1 + w, . . . , z2n + w

)
= (q)n(−1)

n
2n

∏
i=1

(zi + w)
−1

n

∑
i=0

wn−ic
(2n)
i P−3

[2n−1−ε(2n)(i)]

(
z−1

)
.

(36)

The formulae for an odd number of β(zi)c(zi) − b(zi) factors follow from the
even case by specialisation. Consider

2n+1

∏
i=0

z−2n−1
i ∆(z0, . . . , z2n+1)

〈
γn+1

0

2n+1

∏
i=0

(β(zi + w)c(zi + w)− b(zi + w))

〉q;+
NS

=
2n+1

∏
i=1

(
1− zi

z0

) 2n+1

∏
i=1

z−2n+1
i ∆(z1, . . . , z2n+1)

·

〈
γn+1

0

(
∑
)
k≥0
l≥1

βkcl(z0 + w)
−k−l−1 − ∑

k≥0

bk(z0 + w)
−k−1

·
2n+1

∏
i=1

(β(zi + w)c(zi + w)− b(zi + w))

〉q;+
NS

.
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Multiplying by z0 and then taking the limit z0 →∞ (or setting z−1
0 = 0 gives

2n+1

∏
i=1

z−2n+1
i ∆(z1, . . . , z2n+1)

〈
γn+1

0 b0
2n+1

∏
i=1

(β(zi + w)c(zi + w)− b(zi + w))

〉q;+
NS

,

while multiplying the right-hand side of (36) by z0 and then taking the limit
z0 →∞ gives

(q)n+1(−1)
n+1

2n+1

∏
i=1

(zi + w)
−1
n+1

∑
i=0

wn+1−ic
(2n+2)
i P−3

[2n+1−ε(2n+2)(i)]

(
0, z−1

1 , . . . , z−1
2n+1

)
= (q)n+1(−1)

n+1
2n+1

∏
i=1

(zi + w)
−1

·
n+1

∑
i=0

wn+1−ic
(2n+2)
i P−3

[2n+1−ε(2n+1)(i)]

(
z−1

1 , . . . , z−1
2n+1

)
,

where we have used the fact that the (2n + 2)th part of the partitions [2n + 1 −
ε(2n+1)(i)] is 0, so setting z−1

0 = 0 amounts to dropping the (2n+ 2)th part of the
partition and considering the corresponding Jack polynomials in 2n+ 1 variables.
�

4. The proof of Theorem 10

In this section we prove Theorem 10 by evaluating the zero mode of the singular
vector on suitable candidate relaxed highest weight vectors and thereby calculating
the image of the singular vector in the Zhu algebras. The evaluation of these zero
modes boils down to evaluating inner products of symmetric polynomials of the
form 〈

P−3
κ

(
z
)
,
n

∏
i=1

(
1 +

zi
w

)λ〉t
n

, (37)

where λ is a complex number depending on free fields weights, κ is an admissible
partition, so that the Jack polynomial P−3

κ

(
z
)

is well defined, t is positive rational
and the inner product is the integral inner product (26) with respect to which Jack
polynomials at parameter value t are orthogonal. In order to evaluate this inner
product both the left and right argument need to be expanded in Jack polynomials
at parameter value t. The right argument expands as, see [25, Eq. (A.28)] with
X = −λt,

n

∏
i=1

(
1 +

zi
w

)λ
= ∑

µ

(−w)|µ| ∏
b∈µ

−λt+ ta′(b)− `′(b)
t(a(b) + 1) + `(b)

Ptµ
(
z
)
,

where µ runs over all partitions of integers of length at most n, b runs over all the
cells in the Young diagram of µ, and a(b), `(b), a′(b) and `′(b) are the arm length,
leg length, arm colength and leg colength, respectively, of b. The left argument
satisfies an upper triangular decomposition P−3

κ

(
z
)

= Ptκ
(
z
)

+ ∑µ<κ cκ,µP
t
µ

(
z
)
,
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where the cκ,µ are rational functions of t and µ < κ denotes the dominance partial
ordering of partitions. The inner product therefore evaluates to〈

P−3
κ

(
z
)
,
n

∏
i=1

(
1 +

zi
w

)λ〉t
n

= (−w)|κ| ∑
µ<κ

cµ ∏
b∈µ

−λt+ ta′(b)− `′(b)
t(a(b) + 1) + `(b)

,

cµ = cκ,µ
〈
Ptµ
(
z
)
,Ptµ

(
z
)〉t
n
.

(38)

Note in particular, that the coefficients cµ do not depend on the exponent λ. So
the inner product (37) is a polynomial in λ and because the numerators of the
summands on the right-hand side of (38) depend only on arm and leg colengths,
the cells common to all partitions dominated by κ will give rise to factors common
to the numerators of all summands and hence zeros in the parameter λ common
to all summands. Finding these common zeros is key to the proofs below and we
shall find them using Lemma 3.2 of [34].

1. The case when v > u and k < −1

Throughout this section we assume that u, v are integers satisfying v > u ≥ 2,
u− v ∈ 2Z and gcd(u, (u− v)/2) and that ξ =

√
u/v. We will prove Theorem 10

under the assumption v > u by using the screening operator Q1 to construct the
singular vector of Vku,v and then evaluating the action of its zero mode on relaxed
highest weight vectors to deduce its image in the Zhu algebras. Note that for v > u,
the exponent (ξ−2 − 1)/2 = (v − u)/2u in (24) is positive rational and will form
the Jack polynomial parameter.

Lemma 24. The singular vector of Vku,v , as a subalgebra of F, is given by

χu,v = Q[u−1]
1 |(u− 1)/ξ; NS〉,

where |(u− 1)/ξ; NS〉 is the highest weight vector of FF NS
(u−1)/ξ.

To prove this lemma we consider both symmetric polynomials and their infinite-
variable limits, the symmetric functions. For easy visual distinction, we denote the
infinite alphabet of variables for symmetric functions by y = (y1, y2, . . . ) and the
finite alphabet of variables for symmetric polynomials by z = (z1, . . . , zn). We shall
use both the infinite- and finite-variable inner products 〈· , ·〉t and 〈· , ·〉tn, referring
to [25, App. A] for our conventions, as well as the identity (see [25, Eq. (A.16)])

∏
m≥1

exp

(
1

t

pm
(
z
)
pm
(
y
)

m

)
= ∑

λ

Ptλ
(
z
)
Qtλ
(
y
)
, (39)

where pm is the m-th power sum and the Qtλ
(
y
)

are the symmetric functions dual

(with respect to 〈· , ·〉t) to the Jack symmetric functions Ptλ
(
y
)
.

A simple, but very useful, observation concerning the ring of symmetric func-
tions Λ is that it is isomorphic, as a commutative algebra, to the universal envelop-
ing of either the positive or negative subalgebra, H+

1 or H−1 , of the rank 1 Heisenberg
algebra H1. We denote the corresponding isomorphisms by
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ρ+
γ : Λ→ C[a1, a2, . . . ],

pm 7→ γam,

ρ−γ : Λ→ C[a−1, a−2, . . . ],

pm 7→ γa−m,
γ ∈ C \ {0}.

We shall use these isomorphisms to identify inner products involving Heisenberg
generators with the symmetric function inner product 〈· , ·〉t. For example, one
easily verifies in the power sum basis, hence for arbitrary f, g ∈ Λ, that

〈f, g〉t =
〈
q
∣∣∣ρ+
t/γ(f)ρ−γ (g)

∣∣∣q〉, (40)

where the right-hand side is evaluated in the Fock space Fq, for any q ∈ C and any
γ ∈ C \ {0}.

Proof. Since
∣∣∣(u− 1)

√
v/u; NS

〉
is an ôsp(1|2) highest weight vector and Q[u−1]

1

is a module homomorphism, the image of
∣∣∣(u− 1)

√
v/u; NS

〉
must be either a

singular vector or zero. By Theorem 17 the singular vector in F is unique and

therefore it is sufficient to show that Q[u−1]
1

∣∣∣(u− 1)
√
v/u; NS

〉
is non-zero. We do

this by explicitly evaluating certain matrix elements and verifying that they are
non-zero.

Evaluating formula (24) for Q[u−1]
1 on |(u− 1)/ξ; NS〉 yields

Q[u−1]
1 |(u− 1)/ξ; NS〉 =

∫
∏
i 6=j

(
1− zi

zj

)(ξ−2−1)/2

·
u−1

∏
i=1

z
2−(u+v)/2
i ∆(z)(β(z1)c(z1)− b(z1)) · · · (β(zu−1)c(zu−1)− b(zu−1))

· ∏
m≥1

exp

(
−1

ξ

a−m
m

pm
(
z
))
|0; NS〉dz1 · · · dzu−1

z1 · · · zu−1
.

To further evaluate this formula, we distinguish between u and v even or odd.

Suppose first that u and v are odd. Then, by the identities (31) in Theorem 23,

u−1

∏
i=1

z
2−(u+v)/2
i ∆(z)

〈
γ

(u−1)/2
1

(u−1)/2!
(β(z1)c(z1)−b(z1)) · · · (β(zu−1)c(zu−1)−b(zu−1))

〉+

NS

=
u−1

∏
i=1

z
(u−v)/2−1
i P−3

δ(u−1)(0,0)

(
z−1

)
= P−3

κ

(
z−1

)
,

where κ is the admissible partition κ = δ(u−1)((v − u)/2 + 1, (v − u)/2 + 1) and
〈 〉+NS denotes the combination of the βγ and bc correlation functions. The non-

vanishing of Q[u−1]
1 |(u− 1)/ξ; NS〉 then follows by evaluating the following matrix
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element as an integral of correlators:

〈0; NS| γ
(u−1)/2
1

(u− 1)/2! 2(u−1)/2
ρ+
−ξ

(
P2/(ξ−2−1)
κ

(
y
))
Q[u−1]

1 |(u− 1)/ξ; NS〉

=

∫
∏
i 6=j

(
1− zi

zj

)(ξ−2−1)/2

P−3
κ

(
z−1

)
P2/(ξ−2−1)
κ

(
z
)dz1 · · · dzu−1

z1 · · · zu−1

=
〈
P−3
κ

(
z
)
,P2/(ξ−2−1)

κ

(
z
)〉2/(ξ−2−1)

u−1

=
〈
P2/(ξ−2−1)
κ

(
z
)
,P2/(ξ−2−1)

κ

(
z
)〉2/(ξ−2−1)

u−1
6= 0,

where the third equality uses the fact that Jack symmetric polynomials decompose
upper triangularly (with leading coefficient equal to 1) in terms of Jack symmetric
polynomials at different values of the parameter and that Jack symmetric poly-
nomials at parameter value 2/(ξ−2 − 1) are orthogonal with respect to the inner

product 〈 , 〉2/(ξ
−2−1)

u−1 .

The case where u and v are even follows similarly by evaluating the matrix
element

〈0; NS| γ
(u−2)/2
1

u/2! 2u/2
b0ρ

+
−ξ

(
P2/(ξ−2−1)
κ

(
y
))
Q[u−1]

1 |(u− 1)/ξ; NS〉

=
〈
P−3
κ

(
z
)
,P2/(ξ−2−1)

κ

(
z
)〉2/(ξ−2−1)

u−1

=
〈
P2/(ξ−2−1)
κ

(
z
)
,P2/(ξ−2−1)

κ

(
z
)〉2/(ξ−2−1)

u−1
6= 0,

where κ = δ(u−1)((v − u)/2 + 2, (v − u)/2). �

Lemma 25. Up to an irrelevant scale factor, the polynomial g(h,Σ) of Theorem 9
is given by

g(h,Σ) = ∏
(i,j)∈KNS

u,v

(Σ− si,j), si,j =
i

2
− u j

2v
. (41)

In particular, g(h,Σ) does not depend on h.

Proof. As stated in Theorem 9, the degree of the polynomial g(h,Σ) is bounded by
(u− 1)(v − 1)/2. We shall show that the factors (Σ − si,j) of (41) divide g(h,Σ)
by showing that g(h, si,j) vanishes independently of h. Since these factors saturate
the maximal degree of g and g is non-zero by Theorem 8, they uniquely determine
g up to scaling.

Consider first the case when u and v are odd. The zero mode of the singular
vector maps the relaxed highest weight vectors |p; q; NS〉 and c0|p; q; NS〉 to mul-

tiples of β
(u−1)/2
0 |p; q; NS〉 and β

(u−1)/2
0 c0|p; q; NS〉, respectively. This mapping is
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non-zero if and only if the following matrix elements are also non-zero.〈
p; q; NS

∣∣∣γ(u−1)/2
0 Q[u−1]

1 V((u−1)/ξ)a(w)
∣∣∣p; q; NS

〉
=

∫ 〈
γ

(u−1)/2
0

u−1

∏
i=1

(β(zi + w)c(zi + w)− b(zi + w))

〉q;±
NS〈

pa

∣∣∣∣∣u−1

∏
i=1

V−a/ξ(zi + w) ·V((u−1)/ξ)a(w)

∣∣∣∣∣pa
〉

dz1 · · · dzu−1

=

∫
∏
i 6=j

(
1− zi

zj

)(ξ−2−1)/2 u−1

∏
i=1

(
1 +

zi
w

)−p/ξ u−1

∏
i=1

z
2−(u+v)/2
i

∆(z)

〈
γ

(u−1)/2
0

u−1

∏
i=1

(β(zi + w)c(zi + w)− b(zi + w))

〉q;±
NS

dz1 · · · dzu−1

z1 · · · zu−1

= w(1−u)/2
(u−1)/2

∑
i=0

w−ici

〈
P−3

[(v+u)/2−2−ε(u−1)(i)]

(
z
)
,
u−1

∏
i=1

(
1+

zi
w

)−p/ξ−1
〉2/(ξ−2−1)

u−1

,

(42)

the second equality follows from the identities (32) in Theorem 23. By the argument
outlined at the beginning of Section 4, we need to identify the cells common to
all partitions dominated by

[
(v + u)/2− 2− ε(u−1)(i)

]
, i = 0, . . . , (u− 1)/2. The

parts of the admissible partitions
[
(v + u)/2− 2− ε(u−1)(i)

]
are all bounded below

by the parts of
[
(v + u)/2− 2− δ(u−1)(1, 0)

]
= δ(u−1)((v − u)/2 + 1, (v − u)/2)

and so by [34, Lem. 3.2.(3)], the cells common to all partitions dominated by the[
(v + u)/2− 2− ε(u−1)(i)

]
form the length u− 1 partition

ρ =
[v − 1

2
,
v − 1

2
− 1,

v − 1

2
− 1, . . . ,

v − u
2

+ 1,
v − u

2
+ 1,

v − u
2

]
,

that is, ρ1 = (v − 1)/2 = ρ2 + 1 and ρi = ρi−2 + 1 for i = 3, . . . , u− 1. Therefore,
by (38), the zeros of

∏
b∈ρ

(
2

ξ−2 − 1

(
p

ξ
+ 1

)
+

2

ξ−2 − 1
a′(b)− `′(b)

)
(43)

are common to all the summands of (42). Up to irrelevant scale factors, this
polynomial can be rewritten as

∏
b∈ρ

(
ξp+

1

2
− 1

2
(`′(b) + 1) +

ξ2

2
(`′ + 2a′(b) + 2)

)
= ∏
b∈ρ

(
±sp − s`′(b)+1,`′(b)+2a′(b)+2

)
=

(v−1)/2

∏
j=1

(±sp − s1,2j)
(u−3)/2

∏
i=1

(v−1)/2−i

∏
j=1

(±sp − s2i,2i+2j−1)(±sp − s2i+1,2i+2j)

·
(v−u)/2

∏
j=1

(±sp − su−1,u+2j−2),
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where we recall that sp = ±
(
ξp+ 1

2

)
are the respective eigenvalues of Σ acting on

the relaxed highest weight vectors |p; q; NS〉 and c0|p; q; NS〉. So for (i, j) ∈ KNS
u,v,

i < j we have that g(h, si,j) = 0 and g(h,−si,j) = 0. Since −si,j = su−i,v−j , this
implies g(h, si,j) = 0 for all (i, j) ∈ KNS

u,v. Note we have used the fact that v > u,
otherwise the ordered pairs (i, j), (u − i, v − j), with i < j, would not cover the
entire Neveu–Schwarz Kac table.

Next, consider the case of even u and v. The action of the zero mode of
the singular vector acting on the relaxed highest weight vectors |p; q; NS〉 and
c0|p; q; NS〉 is non-zero if and only if the following matrix elements are also non-
zero: 〈

p; q; NS
∣∣∣γu/20 b0Q[u−1]

1 V(u−1)/ξ(w)
∣∣∣p; q; NS

〉
,〈

p; q; NS
∣∣∣b0γ(u−2)/2

0 c0Q[u−1]
1 V(u−1)/ξ(w)c0

∣∣∣p; q; NS
〉
.

(44)

Up to irrelevant factors involving q, both matrix elements evaluate to

w3u/2−2
u/2−1

∑
i=1

w−ic
(u−1)
i

〈
P−3

[(v+u)/2−2−ε(u−1)(i)]

(
z
)
,
u−1

∏
i=1

(
1 +

zi
w

)−p/ξ−1
〉2/(ξ−2−1)

u−1

.

As in the case of odd u, v we identify zeros by finding cells common to all Young
diagrams of partitions dominated by

[
(v + u)2−2−ε(u−1)(i)

]
. By [34, Lem. 3.2.(4)],

ρ =

[
v

2
− 1,

v

2
− 1,

v

2
− 2,

v

2
− 2, . . . ,

v − u
2

+ 1,
v − u

2
+ 1,

v − u
2

]
is the partition of length u− 1 formed by these cells. The zeros of

∏
b∈ρ

(
ξp+

1

2
− 1

2
(`′(b) + 1) +

ξ2

2
(`′ + 2a′(b) + 2)

)
= ∏
b∈ρ

(
±sp − s`′(b)+1,`′(b)+2a′(b)+2

)
=
u/2−1

∏
i=1

v/2−i

∏
j=1

(±sp − s2i−1,2i+2j−2)(±sp − s2i,2i+2j−1)
(v−u)/2

∏
j=1

(±sp − su−1,u+2j−2).

are therefore also zeros of the original matrix elements (44). As in the case for u
and v odd, this implies that g(h, si,j) = 0 for all (i, j) ∈ KNS

u,v. �

Lemma 26. Up to an irrelevant scale factor, the polynomial gτ (h,Q) of Theo-
rem 9 is given by

gτ (h,Q) = ∏
[(i,j)]∈KR

u,v

(Q− qi,j), qi,j =
(u j − v i)2 − 4v2

8v2
. (45)

In particular, gτ (h,Q) does not depend on h.

931



SIMON WOOD

Proof. As stated in Theorem 9, the degree of the polynomial gτ (h,Q) is bounded
by ((u− 1)(v − 1)− 1)/2. We shall show that the factors (Q− qi,j) of (45) divide
gτ (h,Q) by showing that gτ vanishes independently of h at appropriate values of
Q. Since these factors saturate the maximal degree of gτ and gτ is non-zero by
Theorem 8, they uniquely determine gτ up to scaling.

Consider first the case where u and v are odd. The zero mode of the singular
vector maps the relaxed highest weight vector |p; j; R〉 to a multiple of the vector

β
(u−1)/2
0 |p; j; R〉. This action is non-zero if and only if the following matrix element

is non-zero:〈
p; j; R

∣∣∣γ(u−1)/2
0 Q[u−1]

1 V((u−1)/ξ)a(w)
∣∣∣p; j; R

〉
=

∫ u−1

∏
i=1

(
1− zi

zj

)(ξ−2−1)/2 u−1

∏
i=1

(
1 +

zi
w

)−1

·
u−1

∏
i=1

z
2−(u+v)/2
i ∆(z)

〈
γ

(u−1)/2
0

u−1

∏
i=1

(β(zi)c(zi)− b(zi))

〉j
R

dz1 · · · dzu−1

z1 · · · zu−1
(46)

Using the identities (33) of Theorem 23, this evaluates to

(j)(u−1)/2(−2)
(u−1)/2

〈
P−3
δ(u−1)((v−u)/2+1,(v−u)/2+1)

(
z
)
,
u−1

∏
i=1

(
1+

zi
w

)−p/ξ−1/2
〉2/(ξ−2−1)

u−1

.

As in the proof of Theorem 25, cells common to all Young diagrams of partitions
dominated by δ(u−1)((v − u)/2 + 1, (v − u)/2 + 1) can be used to identify zero of
the above inner product. By [34, Lem. 3.2.(1)] these cells form the length u − 1
partition

ρ =

[
v − 1

2
,
v − 1

2
,
v − 1

2
− 1,

v − 1

2
− 1, . . . ,

v − u
2

+ 1,
v − u

2
+ 1

]
and the zeros of (46) include the zeros of

∏
b∈ρ

(
ξp+

ξ2

2
+ ξ2a′(b)− 1− ξ2

2
`′(b)

)
= ∏
b∈ρ

(
ξp+

1

2
− 1

2
(`′(b) + 1) +

ξ2

2
(`′(b) + 2a′(b) + 1)

)
= ∏
b∈ρ

(
sp − s`′(b)+1,`′(b)+2a′(b)+1

)
= ∏

(i,j)∈KR
u,v

i≤j

(sp − si,j).

Since the above zeros do not depend on the βγ weight, they correspond to values
of Q at which the polynomial gτ (h,Q) vanishes independently of h. Recall that
qp = 1

2

(
s2
p − 1

)
and assume gτ (h, d) = 0 for some d ∈ C independent of h; then

gτ (h, qp) is divided by

qp − d =
1

2

(
s2
p − 1

)
− d =

1

2

(
sp − d̃

)(
sp + d̃

)
,
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where ±d̃ are the square roots of 2d + 1. So if (sp − si,j) divides g(h, qp), then
(sp + si,j) must do so also. Thus the product (sp − si,j)(sp + si,j)=

(
2qp − s2

i,j + 1
)

= 2(qp − qi,j) divides g(h, qp). So since Q−qi,j divides gτ for all i ≤ j, (i, j) ∈ KR
u,v

and every class in K
R

u,v has a representative of this form (assuming v > u), this
proves the lemma for u and v odd.

Next consider the case when u and v are even; then the action of the zero mode
of the singular vector on a relaxed highest weight vector |p; j; R〉 is non-zero if and
only if the following matrix element is non-zero:

〈
p; j; R

∣∣∣γu/2−1
0 Q[u−1]

1 c(w)V((u−1)/ξ)a(w)
∣∣∣p; j; R

〉
=

∫ u−1

∏
i=1

(
1− zi

zj

)(ξ−2−1)/2 u−1

∏
i=1

z
2−(u+v)/2
i ∆(z)

·

〈
γ

(u−2)/2
0

u−1

∏
i=1

(β(zi + w)c(zi + w)− b(zi + w))c(w)

〉j
R

dz1 · · · dzu−1

z1 · · · zu−1
. (47)

Up to an irrelevant scale factor in j this evaluates to

〈
P−3
δ(u−1)((v−u)/2+1,(v−u)/2+1)

(
z
)
,
u−1

∏
i=1

(
1 +

zi
w

)−p/ξ−1/2
〉2/(ξ−2−1)

u−1

.

By [34, Lem. 3.2.(2)], the partition formed by the cells common to the Young
diagrams of all partitions dominated by δ(u−1)

(
v−u

2 + 1, v−u2 + 1
)

is

ρ =

[
v

2
− 1,

v

2
− 2,

v

2
− 2, . . . ,

v − u
2

+ 1,
v − u

2
+ 1

]
.

Thus, the zeros of the matrix element (47) include those of

∏
b∈ρ

(
sp − s`′(b)+1,`′(b)+2a′(b)+1

)
= ∏

(i,j)∈KR
u,v

i≤j

(sp − si,j).

The remainder of the proof then follows as in the case of u and v odd. �

2. The case when u > v and k > −1

Throughout this section we will assume that u, v are integers satisfying u > v ≥ 1,
u− v ∈ 2Z and gcd(u, (u− v)/2) and that ξ =

√
u/v. We will prove Theorem 10

under the assumption u > v by using the screening operator Q2 to construct the
singular vector of Vku,v and then evaluating the action of its zero mode on relaxed
highest weight vectors to deduce its image on the Zhu algebras. Note that for
u > v, the exponent (ξ2 − 1)/2 = (u− v)/2v in (25) is positive rational and will
form the Jack polynomial parameter. Throughout this section we will be using the
second free field realisation of Vk in which β(z) = Vθ+ψ(z).
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Lemma 27. The singular vector of Vku,v , as a subalgebra of B, is given by

χu,v = Q[v−1]
2

∣∣∣∣(1− v)ξ;

(
u− u+ v

2v

)
(θ + ψ); NS

〉
(48)

where |(1− v)ξ; (u− (u+ v)/2v)(θ + ψ); NS〉 is the highest weight vector of

F(1−v)ξa ⊗ F(u−(u+v)/2v)(θ+ψ) ⊗ FNS.

Proof. Since the singular vector is unique by Theorem 18, it suffices to show that
(48) does not vanish. As in the previous section, we do this by verifying that certain
matrix elements are non-zero.

Expanding (48) as an integral of multiple copies of the screening field Q2(z)
gives

∫
∏
i 6=j

(
1− zi

zj

)(ξ2−1)/2 v−1

∏
i=1

z
2−(u+v)/2
i ∆(z)

·
v−1

∏
i=1

(β(zi)c(zi)− b(zi))
v−1

∏
i=1

V−((u+v)/2v)(θ+ψ)(zi)

· ∏
m≥1

exp
(
ξ
a−m
m

pm
(
z
))∣∣∣∣0;

(
u− u+ v

2v

)
(θ + ψ); NS

〉
dz1 · · · dzv−1

z1 · · · zv−1
(49)

For u and v odd, we show that this is non-zero by computing the matrix element〈
0;
u−1

2
(θ+ψ); NS

∣∣∣∣ρ+
ξ−1

(
P2/(ξ2−1)
κ

(
y
))
Q[v−1]

2

∣∣∣∣(1−v)ξ;

(
u− u+v

2v

)
(θ+ψ); NS

〉
,

where κ = δ(v−1)(1 + (u−v)/2, 1 + (u−v)/2). The above matrix element then
evaluates to

∫
∏
i 6=j

(
1− zi

zj

)(ξ2−1)/2

P2/(ξ2−1)
κ

(
z
) v−1

∏
i=1

z
2−(u+v)/2
i ∆(z)

·
〈
u− 1

2
(θ + ψ); NS

∣∣∣∣ v−1

∏
i=1

(β(zi)c(zi)− b(zi))

·
v−1

∏
i=1

V−((u+v)/2v)(θ+ψ)(zi)

∣∣∣∣(u− u+ v

2v

)
(θ + ψ); NS

〉
dz1 · · · dzv−1

z1 · · · zv−1

The combined βγ weight of the ket and the V−((u+v)/2v)(θ+ψ)(zi) vertex opera-
tors is ((u− v)/2)(θ + ψ), so in order to reach the bra’s weight of ((u−1)/2)(θ+ψ),
the product of β and bc fields needs to contribute ((v − 1)/2)(θ + ψ), that is, the
only summands of ∏v−1

i=1 (β(zi)c(zi)− b(zi)) which contribute are those containing
β exactly (v − 1)/2 times. Further, since β(z) = Vθ+ψ(z) and V−((u+v)/2v)(θ+ψ)(z)
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have regular operator product expansions with themselves and each other, the
above matrix element simplifies to

∫
∏
i 6=j

(
1− zi

zj

)(ξ2−1)/2

P2/(ξ2−1)
κ

(
z
) v−1

∏
i=1

z
2−(u+v)/2
i

·∆(z)

〈
v−1

∏
i=1

(c(zi)− b(zi))

〉+

NS

dz1 · · · dzv−1

z1 · · · zv−1

=

∫
∏
i 6=j

(
1− zi

zj

)(ξ2−1)/2

P2/(ξ2−1)
κ

(
z
)
P−3
κ

(
z−1

)dz1 · · · dzv−1

z1 · · · zv−1

=
〈
P2/(ξ2−1)
κ

(
z
)
,P−3

κ

(
z
)〉2/(ξ2−1)

v−1

=
〈
P2/(ξ2−1)
κ

(
z
)
,P2/(ξ2−1)

κ

(
z
)〉2/(ξ2−1)

v−1
6= 0.

The case for u and v odd follows similarly by evaluating the matrix element〈
0;
u

2
(θ + ψ); NS

∣∣∣∣b0ρ+
ξ−1

(
P

2
ξ2−1
κ

(
y
))
Q[v−1]

2

∣∣∣∣(1− v)ξ;

(
u− u+ v

2v

)
(θ + ψ); NS

〉
and verifying that it is non-zero. �

Lemma 28. Up to an irrelevant scale factor, the polynomial g(h,Σ) of Theorem 9
is given by

g(h,Σ) = ∏
(i,j)∈KNS

u,v

(Σ− si,j), si,j =
i

2
− u j

2v
.

In particular, g(h,Σ) does not depend on h.

Proof. This proof mirrors that of Theorem 25 but with the screening operator Q1

replaced by Q2, that is, we will show that the factors (Σ − si,j) all divide g(h,Σ),
thus saturating the degree bound on g and determining g up to scaling.

Recall that by Theorem 15 we have F[λ(θ+ψ)−ψ]
∼= Wλ as a βγ module and

so |p; j(θ + ψ)− ψ; NS〉 and c0|p; j(θ + ψ)− ψ; NS〉 are ôsp(1|2) relaxed highest
weight vectors. The zero mode of the singular vector shifts the ôsp(1|2) weights of
such relaxed highest weight vectors by (u − 1)α. For u and v odd, this means a
shift of ((u− 1)/2)(θ + ψ) in βγ weight, and for u and v even, it means a shift of
((u− 2)/2)(θ + ψ) in βγ weight and 1 unit of bc weight.

Consider the case when u and v are odd, then the action of the zero mode of
the singular vector on the relaxed highest weight vectors |p; j(θ + ψ)− ψ; NS〉 and
c0|p; j(θ + ψ)− ψ; NS〉 is non-zero if and only if the matrix elements〈

p;
(
j+ u−1

2

)
(θ + ψ)− ψ; NS

∣∣∣∣
Q[v−1]

2 V(1−v)ξa+(u−(u+v)/2v)(θ+ψ)(w)∣∣∣∣p; j(θ+ψ)− ψ; NS

〉
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and

〈
p;

(
j +

u− 1

2

)
(θ + ψ)− ψ; NS

∣∣∣∣
b0Q[v−1]

2 V(1−v)ξa+(u−(u+v)/2v)(θ+ψ)(w)c0∣∣∣∣p; j(θ + ψ)− ψ; NS

〉

are non-zero. Evaluating the first matrix element gives

〈
p;

(
j +

u− 1

2

)
(θ + ψ)− ψ; NS

∣∣∣∣
Q[v−1]

2 V(1−v)ξa+(u−(u+v)/2v)(θ+ψ)(w)∣∣∣∣p; j(θ + ψ)− ψ; NS

〉
=

∫
∏
i 6=j

(
1− zi

zj

)(ξ2−1)/2 v−1

∏
i=1

(
1 +

zi
w

)ξp v−1

∏
i=1

z
2−(u+v)/2
i ∆(z)

·
〈(

j +
u− 1

2

)
(θ + ψ)− ψ; NS

∣∣∣∣
v−1

∏
i=1

(β(zi + w)c(zi + w)− b(zi + w))

·
v−1

∏
i=1

V−((u+v)/2v)(θ+ψ)(zi + w)

·V(u−(u+v)/2v)(θ+ψ)(w)∣∣∣∣j(θ + ψ)− ψ; NS

〉
dz1 · · · dzv−1

z1 · · · zv−1

The combined βγ weight of the ket and the vertex operators in the integrand is
(j + (u− v)/2)(θ + ψ)−ψ, so in order to reach the bra’s weight of (j + (u− 1)/2)
· (θ + ψ) the product of β, b and c fields needs to contribute ((v − 1)/2)(θ + ψ),
that is, after multiplying out the product, only summands containing (v − 1)/2
copies of β will contribute to the matrix element. Thus, the matrix element inside
the integrand evaluates to

〈
v−1

∏
i=1

(
c(zi + w)(zi + w)−1 − b(zi + w)

)〉+

NS

w(u+v)/2v−u
v−1

∏
i=1

(zi + w)
(u+v)/2v

=

〈
v−1

∏
i=1

(
c(zi + w)(zi + w)−1 − b(zi + w)

)〉+

NS

w(v−u)/2
v−1

∏
i=1

(
1 +

zi
w

)(u+v)/2v

Thus the total matrix element evaluates to
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〈
p;

(
j +

u− 1

2

)
(θ + ψ)− ψ; NS

∣∣∣∣
Q[v−1]

2 V(1−v)ξa+(u−(u+v)/2v)(θ+ψ)(w)∣∣∣∣p; j(θ + ψ)− ψ; NS

〉
= w(v−u)/2

∫
∏
i 6=j

(
1− zi

zj

)(ξ2−1)/2 v−1

∏
i=1

(
1 +

zi
w

)ξp+(u+v)/2v v−1

∏
i=1

z
2−(u+v)/2
i

·∆(z)

〈
v−1

∏
i=1

(
c(zi + w)(zi + w)−1 − b(zi + w)

)〉+

NS

dz1 · · · dzv−1

z1 · · · zv−1

= (j)(v−1)/2(−1)(v−1)/2w(v−u)/2
∫

∏
i 6=j

(
1− zi

zj

)(ξ2−1)/2 v−1

∏
i=1

(
1 +

zi
w

)ξp+(u+v)/2v−1

·
v−1

∏
i=1

z
−(u−v)/2
i

(v−1)/2

∑
i=0

w(v−1)/2−ic
(v−1)
i P−3

[v−2−ε(v−1)(i)]

(
z−1

)dz1 · · · dzv−1

z1 · · · zv−1

=
(v−1)/2

∑
i=1

w(v−1)/2−ic
(v−1)
i

·

〈
P−3

[(u+v)/2+2−ε(v−1)(i)]

(
z
)
,
v−1

∏
j=1

(
1 +

zj
w

)ξp+(u+v)/2v−1
〉2/(ξ2−1)

v−1

,

where the second equality makes use of the identities of (32). As in the proof
of Theorem 25, we can look for zeros common to all summands to find zeros of
the action of the zero mode of the singular vector by identifying cells common
to all Young diagrams of partitions dominated by the

[
(u+ v)/2 + 2− ε(v−1)(i)

]
.

By [34, Lem. 3.2.(3)] these cells form the length v − 1 partition

ρ =

[
u− 1

2
,
u− 1

2
− 1,

u− 1

2
− 1, . . . ,

u− v
2

+ 1,
u− v

2
+ 1,

u− v
2

]

and the zeros common to all summands above include those of

∏
b∈ρ

(
ξp+

ξ2 − 1

2
− a′(b) +

ξ2 − 1

2
`′(b)

)
= ∏
b∈ρ

(
sp − s`′(b)+2a′(b)+2,`′(b)+1

)
= ∏

(i,j)∈KNS
u,v

i>j

(sp − si,j).

The analogous matrix element coming from the action of the zero mode of the
singular vectors in the relaxed highest weight vector c0|p; j(θ + ψ)− ψ; NS〉 gives
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〈
p;

(
j +

u− 1

2

)
(θ + ψ)− ψ; NS

∣∣∣∣
b0Q[v−1]

2 V(1−v)ξa+(u−(u+v)/2v)(θ+ψ)(w)c0∣∣∣∣p; j(θ + ψ)− ψ; NS

〉
= w(v−u)/2

∫
∏
i 6=j

(
1− zi

zj

)(ξ2−1)/2 v−1

∏
i=1

(
1 +

zi
w

)ξp+(u+v)/2v v−1

∏
i=1

z
2−(u+v)/2
i

·∆(z)

〈
v−1

∏
i=1

(
c(zi + w)(zi + w)−1 − b(zi + w)

)〉−
NS

dz1 · · · dzv−1

z1 · · · zv−1

=
(v−1)/2

∑
i=1

w(v−1)/2−ic
(v−1)
i

·

〈
P−3

[(u+v)/2+2−ε(v−1)(i)]

(
z
)
,
v−1

∏
j=1

(
1 +

zj
w

)ξp+(u+v)/2v−1
〉2/(ξ2−1)

v−1

.

As above, the zeros common to all summands include those of

∏
b∈ρ

(
ξp+

ξ2 − 1

2
− a′(b) +

ξ2 − 1

2
`′(b)

)
= ∏
b∈ρ

(
−sp − s`′(b)+2a′(b)+2,`′(b)+1

)
= ∏

(i,j)∈KNS
u,v

i>j

(−sp − si,j).

Thus, g(h, si,j) = 0 independent of h for all (i, j) ∈ KNS
u,v. Note that we have used

the fact that u > v, otherwise the ordered pairs (i, j) and (u− i, v− j), with i > j,
would not cover the entire Neveu–Schwarz Kac table.

For u and v even, the action of the zero mode of the singular vector on the
relaxed highest weight vectors |p; j(θ + ψ)− ψ; NS〉 and c0|p; j(θ + ψ)− ψ; NS〉 is
non-zero if and only if the matrix elements〈
p;
(
j+ u−2

2

)
(θ+ψ)−ψ; NS

∣∣∣b0Q[v−1]
2 V(1−v)ξa+(u−(u+v)/2v)(θ+ψ)(w)

∣∣∣p; j(θ+ψ)−ψ; NS
〉
,〈

p;
(
j+ u

2

)
(θ+ψ)−ψ; NS

∣∣∣Q[v−1]
2 V(1−v)ξa+(u−(u+v)/2v)(θ+ψ)(w)c0

∣∣∣p; j(θ+ψ)−ψ; NS
〉

are non-zero. By the same reasoning as in the case of odd u and v above, these
matrix elements both evaluate to

v/2−1

∑
i=0

w−u/2−ici

〈
v−1

∏
i=1

z
(u−v)/2
i P−3

[v−2−ε(v−1)(i)]

(
z
)
,
v−1

∏
i=1

(
1 +

zi
w

)ξp+(ξ2+1)/2−1
〉2/(ξ2−1)

v−1

.
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By [34, Lem. 3.2.(4)], the cells common to all Young diagrams dominated by[
v − 2− ε(v−1)(i)

]
form the length v − 1 partition

ρ =

[
u

2
− 1,

u

2
− 1, . . . ,

u− v
2

+ 1,
u− v

2
+ 1,

u− v
2

]
.

The zeros common to all summands therefore include those of

∏
b∈ρ

(
±sp − s`′(b)+2a′(b)+2,`′(b)+1

)
.

Thus, g(h, si,j) = 0 independent of h for all (i, j) ∈ KNS
u,v. �

Lemma 29. Up to an irrelevant scale factor, the polynomial gτ (h,Q) of Theo-
rem 9 is given by

gτ (h,Q) = ∏
[(i,j)]∈KR

u,v

(Q− qi,j), qi,j =
(u j − v i)2 − 4v2

8v2
.

In particular, gτ (h,Q) does not depend on h.

Proof. This proof mirrors that of Theorem 26 but with the screening operator
Q1 replaced by Q2. For u and v odd, the action of the zero mode of the singular
vector on the candidate relaxed highest weight vector is non-zero if and only if the
following matrix element is non-zero:〈
p;

(
j +

u− 1

2

)
(θ + ψ)− ψ; R

∣∣∣∣
Q[v−1]

2 V(1−v)ξa+(u−(u+v)/2v)(θ+ψ)(w)∣∣∣∣p; j(θ + ψ)− ψ; R

〉
= w(1−u)/2(−2)(v−1)/2

∫
∏
i 6=j

(
1− zi

zj

)(ξ2−1)/2 v−1

∏
i=1

(
1 +

zi
w

)ξp v−1

∏
i=1

z
2−(u+v)/2
i ∆(z)

·
〈(
j +

u− 1

2

)
(θ + ψ)− ψ; R

∣∣∣∣ v−1

∏
i=1

(β(zi + w)c(zi + w)− b(zi + w))

·
v−1

∏
i=1

V−((u+v)/2v)(θ+ψ)(zi + w)·V(u−(u+v)/2v)(θ+ψ)(w)∣∣∣∣j(θ+ψ)−ψ; R

〉
dz1· · ·dzv−1

z1· · ·zv−1

=w(1−u)/2(−2)(v−1)/2

·

〈
P−3
δ(v−1)((u−v)/2+1,(u−v)/2+1)

(
z
)
,
v−1

∏
i=1

(
1+

zi
w

)ξp+ξ2/2〉2/(ξ2−1)

v−1

, (50)

where the matrix element in the integrand is evaluated as in the proof of Theo-
rem 28 (that is, the only summands of the product of β, b and c fields which
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contribute are those containing (v − 1)/2 copies of β) and using the identities of
(33). As above in the proofs of Theorem 25, 26, and 28, we identify cells common to
all Young diagrams of partitions dominated by δ(v−1)((u− v)/2 + 1, (u− v)/2 + 1)
to find zeros. By [34, Lem.3.2.(1)] the cells form the length v − 1 partition

ρ =

[
u− 1

2
,
u− 1

2
,
u− 1

2
− 1,

u− 1

2
− 1, . . . ,

u− v
2

+ 1,
u− v

2
+ 1

]
.

The zeros of the matrix element (50) therefore include those of

∏
b∈ρ

(
ξp+

ξ2

2
− a′(b) +

ξ2 − 1

2
`′(b)

)
= ∏
b∈ρ

(
ξp+

1

2
− 1

2
(`′(b) + 2a′(b) + 1) +

ξ2

2
(`′(b) + 1)

)
= ∏
b∈ρ

(
sp − s`′(b)+2a′(b)+1,`′(b)+1

)
= ∏

(i,j)∈KR
u,v

i>j

(sp − si,j),

Also as in the proof of Theorem 26, (sp − si,j) dividing gτ (h, qp) implies that
(sp + si,j) = (sp − su−r,v−s) does so as well and thus qp − qi,j divides gτ (h, qp) for

all (i, j) ∈ KR
u,v, i > j. Since u > v every class of K

R

u,v has a representative of this
form, thus proving the lemma for odd u and v.

For u and v even, one must consider the action of the zero mode of the y0

descendant of the singular vector. This action vanishes on the relaxed highest
weight vector |p; j(θ + ψ)− ψ; R〉 if and only if the matrix element〈

p;
(
j + u−2

2

)
(θ + ψ)− ψ; R

∣∣∣∣
Q[v−1]

2 c(w)V(1−v)ξa+(u−(u+v)/2v)(θ+ψ)(w)∣∣∣∣p; j(θ + ψ)− ψ; R

〉
vanishes. This matrix element evaluates to〈

p;

(
j +

u− 2

2

)
(θ + ψ)− ψ; R

∣∣∣∣
Q[v−1]

2 c(w)V(1−v)ξa+(u−(u+v)/2v)(θ+ψ)(w)∣∣∣∣p; j(θ + ψ)− ψ; R

〉
= −w1−u/2(−2)(v−2)/2

·

〈
P−3
δ(v−1)((u−v)/2+1,(u−v)/2+1)

(
z
)
,
v−1

∏
i=1

(
1 +

zi
w

)ξp+ξ2/2〉2/(ξ2−1)

v−1

The usual trick of looking for cells common to all Young diagrams of partitions
dominated by δ(v−1)((u− v)/2 + 1, (u− v)/2 + 1) gives the length v − 1 partition

ρ =

[
u

2
,
u

2
− 1,

u

2
− 1,

u

2
− 2,

u

2
− 2, . . . ,

u− v
2

+ 1,
u− v

2
+ 1

]
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by [34, Lem. 3.2.(2)]. The zeros of the above matrix element therefore include those
of

∏
b∈ρ

(
sp − s`′(b)+2a′(b)+1,`′(b)+1

)
= ∏

(i,j)∈KR
u,v

i>j

(sp − si,j).

As in the case of odd u and v this implies that gτ (h, qi,j) = 0 for all [(i, j)] ∈ K
R

u,v.
�
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