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ADMISSIBLE SCORING SYSTEMS FOR
CONTINUOUS DISTRIBUTIONS

Thomas A. crown

I. INTRODUCTION

The use of admissible scoring systems as a measure of

probabilistic forecasts is becoming increasingly well-
known in those cases where the forecast is a discrete

distribution over a finite number of alternatives (e.g.:
Will it rain or not? Will Dewey, Truman,.Wallace, or
Thurmond.be elected? Will the Rams or the Vikings win the
game?). The defining property of an admissible scoring
system is that anv-individual perceives-himself as maxi-
mizing his expected score by reporting his true.subjective
distribution. That is to-SaY-,-if yoU-Waht to beat the
system the best way to do it is to be honest.

Most serious forecasts which are made in the real
world seem to be forecasts of qucintities (e.g.: What will
be the total U.S. wheat production during 1974? How many
tanks will there be in the Egyptian Army on July 1, 1975?
What will be the Dow-Jones average on January 2, 1976?)
rather than choices between a finite number of alternatives.
In such cases as this, it seems much more natural to ask
the forecaster to specify a continuous probability distri-

bution which represents his expectations rather than trying
to re-cast a basically continuous process into a discrete
one. But how can we construct an admissible scoring system
for a continuous distribution? There are three basic
approaches which seem to work:

(1) We can regard the continuous distribution aS the
limit of a 'discrete one, and derive a continuous
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admissible scoring system as the limit of

sequence or discrete ones.

(2) We can create continuous admissible scoring

systems by exploiting the Schwartz inequality,

or by using other well-known inequalities of

mathematical analysis.

(3) We can postulate a collection of possible bets

on a continuous variable, and construct an

admissible scoring system as the net pay-off to

a forecaster who takes all bets (and only those

bets) which appear favorable on the basis of

his reported distribution. This is an exact

analogue to the "gambling house" construction

a method which may be used to discover discrete

admissible scoring systems.

Of-the three techniques, I tend tO prefer the third

because it gives greater insight into what actually lies

behind an admissible scoring system, and suggests ways to

tailor the scoring system to accomplish one's goals more

effectively in a given situation. But let us discuss each

.of the methods in turn.
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II. LIMITS OP DISCRETE SCORING SYSTEMS

Suppose that the domain of possible answers to a

forecasting question is an interval D For example, if we
are forecasting the temperature at noon on May 1 in Santa
Monica we might take D to be all temperatures between 32°
and 1300. Suppose a forecaster specifies a probability
density function f(x)dx over D which he asserts is his

best subjective estimate of what the temperature will be.
How should we reward him when the true temperature becomes
known?

We could convert the problem into a discrete ne by
the following device: divide D into n small intervals,
each of length Ax. Choose a set of n points [xi) in such
a way that x. is in the ith interval. If r(x) is continu-i

ous and Ax-is-small -enoughthen-the forecaster is/ssert-
ing (approximately) that. there is a probability r(x.1 )Ax that

, .

.the-true temDerature is in the i th interval. This is a
probabilistic forecast over a finite number (n) of alterna-
tives, so we could use any discrete admissible scoring
system on it. For the sake of definiteness, let us apply
the quadratic admissible scoring system. This means that
if the true answer is in the i th interval, the forecaster
would be rewarded as follows:

2r(x1)Ax

Note that the pay-off becomes small if n is large
(since Ax is then small). Recall that if you multiply an
admissible scoring system by a constant, you get another
admissible scoring system. Therefore we have another

admissible scoring system if we "renormalize" the one
above by dividing out Ax:
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2r(xi) I:fr(xj)1
2
Ax

j=l

If r(x) is continuous, then if we let n-oct, the sequence of

scores f(i) clearly goes to a limlt F(t), where

f (t) = 2r(t) [r(x)]
2dx

In this expression, t stands for the "true answer."

Because of the way in which_it was constructed, we. would

expect the expression above to be an admissible sca:,:ing .

system on continuous distributions: any deviation from
...... ............

the true subjective r(x) would he reflected in a less than

optimal-score on the fn for n sufficiently large, and

therefore (one would think) in a less than optimal score

on f. But to make this argument rigorous is somewhat

cumbersome. A much more efficient way to provide a rigor-

ous proof that f(t) is admissible is to invoke the Schwartz

inequality, which we shall do in the next section.

Other discrete admissible scoring systems may.be

introduced as the quadratic was above, although the details

of the renormalization process differ from case to case.

If you use the logarithmic discrete scoring system the

continuous system derived.is simply

g (t) = logir(t)

If you use the "spherical" scoring system of Masanao

Toda, then the corresponding continuous system is

h (t)

r(t)

1/11.(x)2dx

This limiting process is a good way to discover con-

tinuous scoring systems, but it is a poor way to prove

tha:t''a scoring system has the "admissible property."
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III. EXPLOITING SOME WELL-KNOWN INEQUALITIES

Once a continuous admissible scoring system has been
discovered (by means of a limiting process applied to a
discrete admissible scoring system, or otherwise) , it is

usually not very difficult to provide a rigorous proof

that the scoring system is, in fact, admissible by apply-
ing more or less well-known theorems and techniques from
the field of integral inequalities. ET way of illustra-
tion, let us begin by attacking the quadratic scoring
system f(t), mentioned above. If we let s(t)dt denote the
"true" probability density function, and r(t)dt denote the
probability density function specified by the respondent,
then wu must prove that the respondent will maximize his
expected score by making r(t) = s(t) . Putting thiS into
symbols, we must prove that

12s(t)r(t)dt fs(t)dtfr(x) 2 x sj2s(t) 2dt -fs(t)dtfs(2X)--dx

have

Since s(t)dt is a probability density function, we

fs(t)cit = 1

Therefore we seek to show

12s(t)r(t)dt - fr(x) 2dx fs(x) 2dx

which is the same as showing

0 s f[s(t) - r(t)J2dt

Since the above inequality obviously holds, and is a

strict inequality unless s(t) r(t) , except on a set of

measure zero, it follows that the "quadratic" continuous
scoring system does indeed have the admissible property.

8
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Now let us turn our attention to the "logarithmic"

continuous scoring system, g(t). As before, let s(t)dt

denote the "true" probability density function, and let

r(t)dt denote the one specified by the respondent. Our

task is to prove that

fs(t) log s(t)dt fs(t) log r(t)dt

and that equality holds if and only if s(t) = r(t). But

this is the same as proving.

rwl0 .fs(t) log f dt

We know that

log x s x 1

with equality holding if and only if x = I (indeed, the

right-hand side is a tangent line to the left-hand side of

the above inequality). Therefore

(t) log [rs ((ttndt s fs (t) ldt = fr (t)dt - fs (t)dt

- = 0

The inequality is strict unless r(t)/s(t) = I almost every-

where, and thus our desired result is established. Note,

by the way, that we m'ade use of the fact that r(t) integrates

-to one over the whole space, while we did not have to use

this fact in establishing that the quadratic continlious

scoring system is admissible. Indeed, the logarithmic

scoring system as defined here can be "beaten" if you allow

the respondent to specify improper distributions (ones

which integrate to more than one), while this is not the

case with the quadratic scoring syStem. As a practical

matter, this means that any real-world implementation of
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the logarithmic scoring system must include a test (perhaps
followed by a renormaIization) to ensure that he is speci-
fying a proper distribution. This test is unnecessary in
the case of the quadratic scoring system for the respondent
is only "hurting himself" if he specifies an improper distri-
bution.

Finally, let us look at the "spherical" continuous
scoring system. The inequality which we must establish in
order to prove that this is an admissible scoring system
is the following:

5s(t)r(t)dt fs(t)2dt
s f

Ilfr (x) 2dx )1 fs (x) 2-dx

This is readily transformed into

fs(t)r(t)dt s Ilfs(t)2dtfr(t)2dt

which is the very well-known Schwartz inequality, with
equality holding if and only if s(t) = r(t) almost every-
where.

All three of the scoring systems which we have so far
discussed have a common handicap in that they do not seem

to take adequate account of the topology of the real line.
This is to say, if forecaster A asserted that the true

answer was certain to appear between 10 and 11, and the
true answer was 12, common sense indicates that B had done
a better job than A: he had put his distribution closer to
the answer than A had. But none of the schemes we have
discussed would give him any credit for that. If A and B
both used rectangular distributions, they would both get
identical scores, as follows:

10
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Quadratic

Logarithmic

Spherical
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A's Score B's Score

-1

co

-1

co

0 0

We will now turn to a construction technique which

can readily produce admissible scoring systems on continu-

ous distributions which do not have this handicap.

11
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IV. A SEQUENCE OF BETS CONSTRUCTION METHOD

A decisionmaker is interested in forecasts which help
him make more intelligent bets about the future. If we
take this aphorism seriously, it suggests that we construct
a Scoriiig'syStem for probabilistic forecasters on the basis
of how well a gambler would do who made all wagers (and
only those wagers) which offered a positive expected pay-
off according to the distribution specified byLthe fore-
caster. This approach has been very successful as a tech-
nique for deriving the best-known discrete admissible
scoring systems and gaining new insights into their proper-
ties. Let us.try to apply it to derive continuous admissible
scoring systems.

First of all, what is a typical bet in a continuous
context? Let y be a real random variable, let x be some
fixed real number, and let r be a fixed real number between
zero and one. A typical bet would be for me to agree to
pay you an amount r if y turns out to be greater than x,
on condition that you pay me an amount 1 r if y turns
out to be less than or equal to x. This bet will look
favorable to me if I believe the probability that y will
be less than or equal to x is greater than r. My pay-off
may be written symbolically as follows:

(r, y) = r if y s x

( -r if y > x

Similarly we could make bets where I receive the posi-
tive pay-off if y > x. Symbolically, such a bet could be
written

ux(r, y) = -r if y s x

tl r if y > x

12
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This bet will look favorable to me if I believe the

probability that y s'x is less than 1 - 4; otherwise, it

will look unfavorable to me. In order to avoid minor tech-

nical problems with infinity, let us supposr "Int 4' is

certain (and known to everyone) that -L ere-L is

some fixed real number). Let us suppos fc each x,

we have a continuous spectrum of infinitesimal bets (pro-

portional to the beta above) with r rangingfrom zero to

one. Let,R(x) denote our "subjective probability" that

y s x. Then we would take up all the "lower" bets (of the

type denoted by the function I,x
above) for which r < R(x),

and we would take up all the "upper" bets (of the type

denoted by the function ux
above) for which r < 1 - R(x).

If t denotes the "true value" which the random variable y

assumes, then our net pay-off for lower and upper bets

taken at this value of x will be

fR(x) 1-R(x)
(r, t)dr and ux (r , t) dr

0
X 0

respectively. We can calculate these integrals explicitly

as follows:

1

R (x) R'xi
2

if t s x
x

Lx(r, t)dr =
0 -R(x)

2

2
if t > x

1-R(x))
2

1-R(x) 2

2
0 - R(x)

2

ux(r, t)dr =
) (1-R(x))

1 if t > x

if t s x

13



These net pay-offs themselves constitute bets. If we

imagine these bets as being distributed continuously over
the interval -L < x < L, then we see that our grand total

pay-off function will be as follows:

+L
F(t) =1 dx

-L 0

+L
t) dr + dx , t) dr

-L 0

It should be very clear that this pay-off scheme con-
stitutes an admissible scoring system, because we would

perceive any deviation between the R(x) we reported and the
R(x) we actually believed as being equivalent either to
rejecting some bets which were favorable to lus or accept-
ing some which were unfavorable.

Let's take a closer )_ook at the scoring system we have
just derived. Carrying out some obvious transformations

shows That it can be expressed in the following form:

+L
F(t) [1 R(x)]dx R(x)dx - 1/2 1 t

2(x)

-L it

+ 1 R (x) ) 2 d x

Suppose a respondent does not make use of the freedom
he has to specify a distribution, but simply makes a "point
estimate" d. That is to say, he reports the following

cumulative.function:

tO if x < d
R(x) = '

1 if x d

Then a simple calculation shows

F(t) = L = It - dj

a



-12-

This is quite a satisfying result: the penalty he

suffers is exactly the amount by which he missed the true

answer. What could be more natural?
---
What score does an individual expect to make if he

believes in and reports a cumulative distribution R(x)?

This is easily calculated as follows:

Respondent's +L
Expected = I R'(t)F(t)dt
Score -L

-L R'(t)dt J-L
1 - R(x)dx-+

+L
R'(t)dt

-L

+L
R(x)dx - R2 (x) + (1 - R(x))

2dx
-L

-L J x
R'(t)(1 - r(x))dtdx

R'(t)R(x)dtdx
-L JO

+L
- 1/2 R (x) + - R(x)

-L

+L
R(x) + (1 - R(x))2dx

-L

Note the interchange of order of integration in the

calculation above. It is easy to see that a respondent's

maximum expectation occurs when he is completely certain

of the right answers (he then expects_to score L) and the

minimum expectation occurs when he feels there is a 50%
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chance y = -L and a 50% chance that y = +L (in which case
his expectation is L/4) .. If he feels that Y is equally
likely to assume any value between -L and +L, then his
expectation is 2L/3. The reader may feel that the expected
pay-off is not sufficiently sensitive to the precision of

the respondent's estimate; but recall that any admissible
scoring system may be multiplied by a positive constant or
have any constant added to it. Thus we could "renormalize"
to secure any degree of - ty desired.

tp verify directl ,1,4t V(t) is an admissible scoring

system, let us introduce S(x) to stand for the true cumula-
tive function of the random variable y. Then the absolute
expected pay-off to a response R(x) is as follows:

Absolute
Expected = S'(t)F(t)dt

TScore

+L
= S'(t)dt i (1 -

-L

.0

+L -t7I,

+ S'(t)dt:A R(x)dx - 11 R (x) + (1 - ,dx
- L

2
)
2

.14c L

1

= 1(1 - S(x)) (1 - R(x)) + S(x)R(x)
L

1/2( R2 (x) tl- - R (x) 2 dx

+L
1 2

= li S (-x) -±
I-L 1

(S(x) - R(x)
+L

-L

The first integral_±n the right-hand side above depends
orily_on the true distribution 8(x); the second integral is
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obviously minimized if and onlyif the respondellt's distri-

bution equals the true distribution almost everywhere.

This confirms that F(t) is, indeed, an admissible scoring

system.

The first integral on the right-hand side is of

interest in itself, for it gives a general expression for

the maximum score which an individual can expect against a

given distribution. It can be interpreted as a constant

minus the integral of the variance of the two-alternative

distribution ."greater than x or than x" across all x.

The reader may suspect that there is some deep relationship

between this quantity and the variance of the distribution

represented by S(t) itself. Note, however, that if we multi-

ply the random variable y by a positive constant K, then

this quantity is multiplied by K while the variance of y is

multiplied by K
2

.
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V. GENERALIZATIONS

It is quite clear from the nature of the "sequence_of
bets" construction method that we can generate other
admissible scoring systems by varying the functions (r,
and u

x (r, t) in the expression

dx
+L

-L C
x(r , t)dr + dx

-L
, t) dr

In fact, if y(x, r) and T(x, r) are any positive
functions of x and r whatsoever, then we generate an admis-
sible scoring system on continuous distributions by taking

(1 - r)y(x, r) if y s x
x (r, y) = -r y(x, r) if y > x

-r r) if y x

(1 y > X

in the expression above. Whatever functions we use, how-.
ever, we will always come .oUt with a scoring system in
terms of the cumulative probability function rather than
the probability density function. This is because of the
form of the bets we are permitting: they are all bets
that y will fall in a given half-time (essentially). One
could think of admissible scoring systems based on the
probability density function (like the three discussed in

-SectionsII,and-III-abouVe) -aS'beih4gerietea by sequences
f bets placed on whether or not y falls in a sequence of
smaller and smaller intervals. Which class of scoring

systems is more appropriate depends on the details of-the
particular application you have in mind.
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VI. ASSESSING REALISM

Repeated experiments-have indicated that it is a

common human characteristic to overstate high probabili-

ties and understate lOw ones. Or, putting it another way,

to overestimate the degree of one'S knowledge. Or, putting

it still anOther way, to report subjective probability

distributions:Which are too "tight," Some individuals

exhibit the opposite form of behavior, however, and tend

to hedge too much rather than too little. In any informa7 .

tion system involving subjective probability estimates we

would like to detect when either of these_behavior patterns

are present and provide appropriate feedback in order to

help the esEIMators improve their behavior.

The way this has been done in Rand CAAPT implementa-

tions in the past is that the individual's external validity

graph has been estimated (generally using-a- one-parameter

linear least squares technique) and feedbaCk has been based

on this estimate.. It_is hard to see what would be the

continuous analogue of an external:validity igraph,. howeveir,

-Therefore I belieVe--that We should providefEeedbaCk tO

respondents (urging them to hedge more or hedge less)

strictly on the basis of whether they score-worse or better-

(over a number of questions) than-they expected..

Let me give a heuristic justification for this

approach. If an individual gets a significantly worse

score than he expected, what does that indicate? It indi-

cates that eVents he thought were relatively likely did. not

.,,yOcg13g-4P,JP.q4PTAt?7,11.PWA-W4.1-"P-11P-'t1191424
were relatively unIlkely occurredArtore frequently than he

expected. He wouldlhavedone better if he had. hedged his:

bets more. On thie other hand, if his score is better than

he expected, that_Indicates just the reverse and he-WOuld

:have made an even_betterscore if he had not hadged his

AD.Q_t.P. so Tq.c.h.,
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Of course, an individual will rarely make exactly his
expected score. In order to determine whether the differ

ence between his expected score and his achieved score is
great enough to justify corrective feedback, it seems

reasonable to calculate the variance of his expected score
and provide feedback only if his actual:score falls more
than two standard deviations (say) away from his expected
score.

Tb make these +d(za..z definite, let uswork out specific
formulas for the ease ol the quadratic.:Jscoring system
(f(t) derived in Sention SupposeTan individual anSwers
a set of n questions, givtng a response: r.(x) on7the i th

question, His expected.iscore (m.) on=the1 th question is
then given by

m. .= .c[ri(x)3 2dx.

zthAn easy calcUlation.shows that the variance_on theli
question (a

i

2
) is given.:by

-2 ---I-- 1 3 2 1
./1 (x)] dx m.

if the questions are independent of?:.one another, then
the variance of the total.score will be simply the sum of
the variances of the scores on the individUal questions.

In actual practice, the questions will probably not be
completely independent of one another, and this will mean
that the variance in the total score will be somewhat
greater. -This doesmot ndermine our basic concept of

'usingtha-variance:ealculated.l.as though the questions are
independent as a standard for providing feedback: it only
means wemust not tri t01.,betmo precise: in making statementS
about whathe individual viied his chance of making such
a large or such a small,scone as being. The expected score
on.the wheIe test will be the sum of the exnectecUscores

c
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on the individual questions, whether the questions are

independent or not. So let us take

m m.

i=1

T 2Er. (t) - Ern.

i=1 i=1

Wmight then provide feedback in the following form.:

IfT < m 4a: "Your score is significantly worse

than you expected. You would have done much better

if you had put more spread into your responses and

not claimed to be so certain about the Correct values.

If m -'4a s T <,m . "Your score is somewhat

-worse than you. expected. You would have(done better

if you had hedged more in your responses.'

if m - 2a s T m + 2 : No correctiVe feedback-.

if m + 2a < T m + 4a: "Your score is soMewhat

better than you expected. If would be even better

fif you had not hedged yOur responses quite so much"

m +.4a < T: 'Your score significantly, better

than you expected. You would have7maaP an even better

scare if youhad-had more confidence and had not put

somuch spread into your responses..
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VII. EXPERIMENTA: 1 ,NTATION

We seem to have some sort of answer to every question
I can think of about CAAPT for continuous distributions.
Therefore we should proceed at once to some sort of demon-
stration program so that we can garner some informal

empirical experience before investing in a program designed
for serious use and systematic test. JOSS seems like a
good vehicle for such a demonstration program for the
following reasons:

1. It's the only system in which I am proficient.
2. It lends itself to outside demonstrations.
3. Its limitation to alpha-numeric IO is a limita-

tion shdred by many systems which might be good
vehicles for follow-on programs (e.g., Jerry
Shure's system).

There are some serious difficulties with the JOSS sys-
tem, however:

1. Its IO speed is very slow for this application.
2. Lack of graphic output makes some natural feed-

back schemes infeasible.

Even if the above difficulties meaa that the MSS
program is ineffective, however, the work we put ,into it
will not be entirely wasted: much of :the work required in
preparing the JOSS program will be required for any aontin-
uous CAAPT routine. So let us charge ahead with theaout7
line of a Plan for such an experimental JOSS implemprti-atEon.

The scoring system used will be the quadratic scoring
system introduced in Section II above. . Feedback (simtthe
end of a set of questions) will be based on the individual:s
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expected score and variance (as discussed in Section VI

above).. The respondent will have two options:

Feedback after every question and at the end of

the qution set.

2. Feedback at the end of test only.

Ouestions will be in sets of up to nine. The i
th

question in a 5a-it will be "part 90 + i." The true answer

to the i
th ques&ion will be T(i); the number of questions

in the set will be T(o); the normalization number (to be

multiplied by the raW score.on the question) will be U(i).

The responses will be.demanded in the following format:

There is a

There is a

There is a

There is a

There is a

There is a

-01 chance the true answer is less

.20 chance the true answer is less

-40 chance the true answer is less

-60.chance the true answer is less

chance.the true answer is less

.99 chance the true answer is less

than:

than:-

than:

than:

than:

than:

The above format will be used on the first question in

a set only. Thereafter the following format will be used:

.01...1ess than:

. .20...less than:

. .40...less than:

... .60...less than:

. .80...less than:

.99...less than:

The six percentile breaks elicited on the i
th question

would be stored as V1, 1), R(i, 2)...R(i, 6). In calCu7

lating the reward function, we hypothesize that the proba-.

bility density function is constant between the specified
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percentile breaks. This hypothesis enables us to make

easy computations and provide feed-back well suited to
alpha-numeric output. Specifically, if we ignore the

density less than .01 and greater than .99, we can cal-

culate the integral in the scoring furiction as follows:

.0361 .0361
R(i,2) R(i,l) R(i,6) R(i,5)

=.4

4
04E R(i,J+1) R(i,J1

j=2

We will also temporarily store the probability
densities as follows:

D(1)

D(2)

D(3)

D(4)

D(5)

=

=

=

.19
R(i,2)

.20
.

R(1,3) -

.20
R(i,4) -

.20

R(i,3)

.

R(1,5) -

.19

R(i,4)

R(i,6)

After all six of the R's have been elicited from a

respondent, then we will provide feed-back of the follow-

ing form:

2 4
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IF THE TRUE ANSWER IS:

but

YOu WILL SCORE:

less than R(i,l)

to R(i,l)

-u(i) Q
- Q]greater than or equal

less than R(i,2)
u(i).[D(1)

greater than or equal to R(i,2) but u(i) (1)(2) Q]
less than R(i,3)

greater than or equal to R(i,3) but u(i) (1)(3) Q]
less than R(i,4)

greater than or equal to R(i,4) but (i) (1)(4) Q]
less than R(i,5)

greater than or equal to R(i,5) but U(i)(1)(5) Q]
less than R(i,6)

.........

greater than oz equal to R(i, ) -u Q

The underlined quantities above will, of course,

be expressed in numerical terms. The above format will

be one of two alternative feed-back formats. The more

condensed version, used after the first question is over

with, will be the following:

IF THE TRUE ANSWER IS:

less than R(i,l)

between
R(i,2)

between
R(i,3)

between
R(i,4)

between
R(i,5)

R(i,6)
between

greater than or equal to

YOU WILL SCORE:

U (i).[D(l) - Q]

U (i) [D(2) - Q]

u(i) - [D(3) - Q]

(i) [D(4) - Q]

(i) (1)(5) - Q]

-u(i) Q



-23-

The respondent will then be given an opportunity to
revise his answer (if he wishes) . If he is satisfied that
his response is the best he can make, he will signal that
fact to the machine. The machine will then report the true
answer to the individual along with the score he achieved.

.In order to form the basis for analytical feed-back-
at the end of the'question set, we will.keep a tally of
true total score, expected total score,and expected
variance in total score as quantities L, M, and N.
respectively. Iherefore before we proceed to the next
question we must carry out the following operations:

S (i) = True score on question i

E (i) = Expected score on question i

.19U(i),ID(1) 4' D(5)]

-D(i)Q

Set L = L + S(i)

Set M = M + E(i)

4

.2-U(i) E D(j)
j=2

,
,Set N = N + .02.[U(i)'QJ 2

+ .19 U(i) 2
(2)

2

+ (D(5) Q)
2J

4
2 2+ .2U(i) E [D(j) Q12 E(i)

j=2

After all questions in the set have been answered
the machine will provide one of the five feed-back messages
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specified in Section VI above, depending on whether

L < M opYR , m < L < M - 2WK, M + 24\1 < L <

M + 4,111, or M + 4ArN < L

2 7


