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Abstract 

Many efficient implementations of Al search 
algorithms have been realized in recent years. In 
an effort to widen the area of application of 
search methods to problems that arise in 
industry, this paper examines the role that search 
can play in solving certain types of hard 
optimization problems that involve the proper 
sequencing of jobs in one-machine job-shops 
and two-machine flow-shops. The problems 
studied here have the following general form: 
The completion of a job at time f induces a 
penalty G(f), where G(.) is a given penalty 
function which can be different for different 
jobs; the jobs must be so sequenced that the 
total penalty summed over all jobs is minimized. 
The objective is to improve upon current 
methods and to show that problems earlier 
considered formidable can at least be attempted, 
if not resolved satisfactorily, using admissible 
search algorithms. The crucial aspect is the 
derivation of good admissible heuristics that can 
direct the search narrowly to a goal. The search 
graph is not necessarily a tree. Algorithm A* 
has been run on randomly generated data using 
the derived heuristic estimates to solve a variety 
of penalty minimization problems; some 
indicative experimental results are provided. 

1 Introduction 

Recent years have witnessed a renewed spurt of interest 
in the theory and implementation of best-first search 
techniques [Pearl, 1984]. This interest is yet to be 
adequately reflected, however, in the application of Al 
search methods to optimization problems that arise in 
industry, many of which cannot be solved conveniently 
by any of the known algorithms. Viswanathan and 
Bagchi [1988] describe a successful attempt at applying 
search methods to rectangular cutting stock problems, but 
such examples are few. In this context, an area that 
appears to hold great promise is sequencing and 
scheduling, where most problems of practical importance 
require the use of branch-and-bound or dynamic 
programming methods [French, 1982; Lawler et al.y 

1982]. Now that efficient implementations of best-first 
search algorithms such as A* , IDA* [Korf, 1985], and 
MREC [Sen and Bagchi, 1989] have been realized, 
search could prove superior to other methods in cases 
where reasonably tight lower bounds can be derived. 

This paper investigates the role that best-first search 
can play in solving certain types of one-machine and 
two-machine job sequencing problems that arise in job-
shops and flow-shops. The major objective is to enlarge 
the sphere of application of best-first search, and at the 
same time to illustrate how good admissible heuristics 
can be defined for practical problems. A typical problem 
studied by us has the following form. Jobs J,, 1 i n, 
with processing times ai 1 i n, have been submitted 
to a one-machine job-shop at time t = 0. The jobs are to 
be processed on the given machine one at a time. Let 
the processing of job Ji be completed at time fi. Penalty 
functions Gi(.), 1 i n, are supplied, such that the 
penalty associated with completing job Jj at time fi is 
Gi(fi). An example of a penalty function is Gi(fi) = cifi

2, 
where the ci's are given constants, the penalty associated 
with a job being proportional to the square of the finish 
time of the job. The jobs must be sequenced on the 
machine in such a way that the total penalty 

is minimized. The penalty functions arc non-decreasing, 
and in general non-linear. Moreover, a job has a setup 
time that is independent of its position in the processing 
sequence; we say that the setup times are separable. In a 
more general formulation, the setup times can be 
sequence-dependent, i.e. the setup time of a job can 
depend on the job that immediately precedes it in the 
processing sequence. Problems of this type have obvious 
relevance to industry, but are known to be very hard to 
solve satisfactorily in their full generality, the number of 
job sequences being exponential in the number of jobs. 
No efficient general methods of solution have been 
reported. Schild and Fredman [1963] proposed a scheme 
for non-linear penalty functions that ignored setup times 
but nevertheless required a great deal of computation; 
improvements were subsequently suggested by Townsend 
[1978] and Bagga and Kalra [1980], but these were 
specific to quadratic penalty functions. Another special 
case has been studied by Rinnooy Kan et al. [1975]. As 
for two-machine flowshop situations, work has been 
confined to the determination of minimum length 
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s c h e d u l e s i n t h e p r e s e n c e o f s e t u p t i m e s ( s e e , f o r 

e x a m p l e , [ G u p t a a n d D a r r o w , 1 9 8 5 ; S u l e , 1 9 8 2 ; C o r w i n 

a n d E s o g b u e , 1 9 7 4 ] ) ; p e n a l t y f u n c t i o n s h a v e n o t y e t b e e n 

c o n s i d e r e d b y a n y o n e i n a n y d e t a i l . 

T h i s p a p e r , w h i c h i s i n t h e n a t u r e o f a p r e l i m i n a r y 

r e p o r t , d e s c r i b e s h o w b e s t - f i r s t s e a r c h t e c h n i q u e s c a n b e 

u s e d t o d e t e r m i n e m i n i m a l p e n a l t y j o b s e q u e n c e s f o r o n e 

a n d t w o m a c h i n e s w h e n t h e s e t u p t i m e s a r e s e p a r a b l e . 

A * i s t h e s e a r c h a l g o r i t h m u s e d . E a c h c a s e i n v o l v e s t h e 

c o m p u t a t i o n o f a r e a s o n a b l y t i g h t l o w e r b o u n d t h a t c a n 

s e r v e t o g u i d e t h e s e a r c h f a i r l y n a r r o w l y t o a g o a l . 

S e a r c h g r a p h s h a v e b e e n i m p l e m e n t e d a s g r a p h s a n d n o t 

a s t r e e s w h e n e v e r i t h a s b e e n f o u n d p o s s i b l e t o d o s o ; 

t h i s t e n d s t o s p e e d u p t h e e x e c u t i o n . I n t h e t w o - m a c h i n e 

c a s e t h e s e a r c h m e t h o d s g i v e n b e l o w a r e n o t a l w a y s 

order preserving [ P e a r l , 1 9 8 4 , p . 1 0 2 ] , a n d u n l e s s t h e 

s e a r c h g r a p h i s a t r e e t h e s o l u t i o n m a y n o t b e o p t i m a l . 

T h e p r o g r a m s h a v e b e e n r u n o n r a n d o m d a t a t h a t t r y t o 

s i m u l a t e r e a l - l i f e s i t u a t i o n s . T h e r e s u l t s w e h a v e o b t a i n e d 

a r e m o s t e n c o u r a g i n g ; o u r m a i n c o n t r i b u t i o n l i e s i n 

s h o w i n g h o w u s e f u l b e s t - f i r s t s e a r c h c a n b e i n a t t a c k i n g 

j o b s e q u e n c i n g p r o b l e m s t r a d i t i o n a l l y r e g a r d e d a s v e r y 

d i f f i c u l t , s u c h a s t h e d e t e r m i n a t i o n o f a m i n i m u m 

p e n a l t y j o b s e q u e n c e f o r a t w o - m a c h i n e f l o w - s h o p 

h o w e v e r s i m p l e t h e p e n a l t y f u n c t i o n , o r f o r a s i n g l e 

m a c h i n e w h e n t h e p e n a l t y f o r a j o b i s p r o p o r t i o n a l t o a 

n o n - i n t e g r a l p o w e r o f t h e f i n i s h t i m e o f t h e j o b . 

2 O n e M a c h i n e J o b S e q u e n c i n g P r o b l e m s 

2 . 1 P r o b l e m D e s c r i p t i o n 

F o r t h e o n e - m a c h i n e p r o b l e m w i t h s e q u e n c e - d e p e n d e n t 

s e t u p t i m e s w e d e f i n e t h e f o l l o w i n g n o t a t i o n : 

n u m b e r o f j o b s 

i t h j o b 

p r o c e s s i n g t i m e ( > 0 ) f o r j o b J i 

s e t u p t i m e f o r j o b J j w h e n i t i m m e d i a t e l y 

f o l l o w s j o b J j i n t h e p r o c e s s i n g s e q u e n c e 

c o m p l e t i o n t i m e o f j o b J i 

d e a d l i n e f o r j o b J i 

p e n a l t y f u n c t i o n f o r j o b j i 

p e n a l t y c o e f f i c i e n t f o r j o b J i 

t o t a l p e n a l t y f o r a g i v e n s e q u e n c e 

I f J i i s t h e f i r s t j o b i n t h e s e q u e n c e , t h e n s 0 , i r e p r e s e n t s 

i t s s e t u p t i m e . A f t e r t h e l a s t j o b i n t h e s e q u e n c e i s 

c o m p l e t e d , t h e m a c h i n e n e e d n o t b e b r o u g h t b a c k t o a n y 

s p e c i f i c s t a t e . A p e n a l t y o f G i ( f i - d i ) i s i n c u r r e d f o r j o b 

J i w h e n f i > f i ; i f f i d i t h e n n o p e n a l t y i s i n c u r r e d f o r 

J i . T h e f o r m u l a t i o n c a n b e g e n e r a l i z e d t o i n c l u d e t h e c o s t 

o f c a r r y i n g i n i n v e n t o r y t h o s e j o b s t h a t g e t c o m p l e t e d 

b e f o r e t h e i r r e s p e c t i v e d e a d l i n e s . I n o r d e r t o s i m p l i f y t h e 

p r o b l e m i t i s f r e q u e n t l y a s s u m e d t h a t a l l d e a d l i n e s a r e 

z e r o ; w e m a k e t h i s a s s u m p t i o n i n t h e p a p e r . 

W h e n t h e s e t u p t i m e s a r e s e p a r a b l e a s i n [ S u l e , 

1 9 8 2 ] , w e h a v e t h e f o l l o w i n g a l t e r n a t i v e n o t a t i o n 

i n i t i a l i z a t i o n t i m e f o r j o b J i 

c l e a n u p t i m e f o r j o b J i 

P i + i + qi 

I n i t i a l i z a t i o n t i m e r e f e r s t o t h e t i m e n e e d e d t o i n i t i a l i z e 

t h e m a c h i n e s e t t i n g s b e f o r e j o b J i c a n b e p r o c e s s e d , 

w h i l e c l e a n u p t i m e r e f e r s t o t h e t i m e n e e d e d t o c l e a n t h e 

m a c h i n e a n d b r i n g i t b a c k t o a s p e c i f i e d s t a t e a f t e r t h e 

p r o c e s s i n g o f j o b J i h a s b e e n c o m p l e t e d . W h e n j o b J j 

f o l l o w s j o b J i i n t h e s e q u e n c e , t h e t o t a l s e t u p t i m e ( q i + 

P j ) c a n b e v i e w e d a s c o r r e s p o n d i n g t o s i j i n t h e g e n e r a l 

c a s e ; a g a i n , i f J i i s t h e f i r s t j o b i n t h e s e q u e n c e , t h e n p i 

c o r r e s p o n d s t o s o , i i n t h e g e n e r a l c a s e . L e t t h e j o b s b e 

p r o c e s s e d i n t h e s e q u e n c e 

J j ( l ) ' J J(2) , ' ' ' J j ( n ) 
a n d l e t t h e c o m p l e t i o n t i m e o f j o b J j ( k ) b e f j ( k ) . T h e n f o r 

1 k n, f j ( k ) = { A j ( i ) I 1 i k } - q j ( k ) . 

N o t e t h a t t h e f i n i s h t i m e o f a j o b d o e s n o t i n c l u d e t h e 

c l e a n u p t i m e f o r t h e j o b ; t h e c l e a n u p t i m e g e t s a d d e d 

w h e n t h e f i n i s h t i m e s o f t h e j o b s t h a t f o l l o w i n t h e 

s e q u e n c e a r e c o m p u t e d . F o r o n e - m a c h i n e p r o b l e m s , t h e r e 

i s n o l o s s o f g e n e r a l i t y i f t h e i n i t i a l i z a t i o n t i m e o f a j o b 

i s i n c l u d e d i n t h e p r o c e s s i n g t i m e a n d n o t c o n s i d e r e d 

s e p a r a t e l y . A s a n i l l u s t r a t i o n o f t h e k i n d o f p r o b l e m w e 

a r e t r y i n g t o s o l v e , c o n s i d e r t h e f o l l o w i n g e x a m p l e : 

E x a m p l e : P e n a l t y f o r a j o b J i p r o p o r t i o n a l t o i t s f i n i s h 

t i m e f i ; s e p a r a b l e s e t u p t i m e s . 

H e r e , G i ( f i ) = c i f i , w h e r e t h e c i ' s a r e c o n s t a n t s , C i b e i n g 

t h e p e n a l t y c o e f f i c i e n t f o r j o b J j . T h u s 

T o m i n i m i z e F w e j u s t n e e d t o a r r a n g e t h e j o b s i n t h e 

o r d e r [ F r e n c h , 1 9 8 2 ] : 

* • •   

s i n c e t h e l a s t s u m i n t h e e x p r e s s i o n f o r F i s a c o n s t a n t . 

H e r e w e d o n o t n e e d t o t a k e h e l p o f s e a r c h m e t h o d s .  

I n m o r e c o m p l e x s i t u a t i o n s w e a r e f o r c e d t o t a k e 

r e c o u r s e t o A I s e a r c h m e t h o d s . A l g o r i t h m A * i s i m p l e ­

m e n t e d i n t h e s t a n d a r d m a n n e r [ N i l s s o n , 1 9 8 0 ; P e a r l , 

1 9 8 4 ] . O P E N i s m a i n t a i n e d a s a p r i o r i t y q u e u e . N o d e s 

g e n e r a l l y c o r r e s p o n d t o u n o r d e r e d s u b s e t s o f j o b s ; t h e 

r o o t n o d e i s t h e e m p t y s e t . W h e n a n o d e c o r r e s p o n d i n g 

t o a s u b s e t o f k j o b s g e t s s e l e c t e d f r o m O P E N a n d 

e x p a n d e d , i t g e n e r a t e s ( n - k ) s o n s , e a c h s o n b e i n g a 

s u b s e t o f ( k + 1 ) j o b s . A p r o b l e m g e t s s o l v e d w h e n a 

c o m p l e t e s e t o f n j o b s g e t s s e l e c t e d f r o m O P E N . F o r 

t w o - m a c h i n e p r o b l e m s , a n o d e s o m e t i m e s c o r r e s p o n d s t o 

a n o r d e r e d s e q u e n c e o f j o b s . T h e f o l l o w i n g a d d i t i o n a l 

n o t a t i o n i s u s e d i n t h e s p e c i f i c a t i o n s o f t h e p r o b l e m s : 

c u r r e n t n o d e ( e i t h e r a n u n o r d e r e d s u b s e t o f 

j o b s o r a n o r d e r e d p a r t i a l s e q u e n c e o f j o b s ) 

c o s t o f m i n i m a l c o s t p a t h c u r r e n t l y k n o w n 

f r o m t h e r o o t n o d e t o n o d e N 

h e u r i s t i c e s t i m a t e a t n o d e N 

c o s t o f m i n i m a l c o s t p a t h f r o m n o d e N t o a 

g o a l n o d e 

s e t o f j o b s a l r e a d y p r o c e s s e d a t n o d e N 

s e t o f j o b s r e m a i n i n g t o b e p r o c e s s e d a t 

n o d e N 

t i m e a t w h i c h a l l j o b s i n P g e t c o m p l e t e d 

c l e a n u p t i m e o f l a s t j o b i n P 

n u m b e r o f j o b s i n Q 
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2.2 Non-Linear Penalty Functions 
Case I Penalty for a job proportional to square of 

its completion time; all initialization and 
cleanup times are zero. 

Here Gi(fi) = cifi2. Townsend [1978] proposed a new 
method for computing lower bounds in a best-first 
branch-and-bound algorithm to solve this problem; 
certain improvements were subsequendy suggested by 
Bagga and Kalra [1982]. We compute the heuristic 
estimate h(N) at the current node N as follows : 

Order the processing times of the m jobs in Q in 
the non-decreasing order 

ai1) aj(2) ' • * a j (m) 
Also order the penalty coefficients of the jobs in Q 
independently in the non-increasing order 

C i ( l ) C i(2) . . . . . . . . . . . . . . . . C i (m) ' 
Take the heuristic estimate as 

where 
and  
Our computation ensures that h(N) is a lower bound on 
h*(N), the cost of the optimal path from N to a goal, 
since the penalty functions strictly dominate each other 
and have no crossover points. The sorting of the 
processing times and the penalty coefficients is done 
only once at start. Thereafter, we just have to keep track 
of which jobs are in Q, and when computing the 
heuristic estimate we simply skip over those terms in the 
sorted lists that correspond to jobs in P. 

The method can be generalized to handle penalty 
functions for job Ji that are proportional to (fi)k or to 
exp(kf i), where k is a real constant independent of i. 
Such functional forms have not been considered by 
Townsend [1978] or Bagga and Kalra [1980]. 

In our experiments, programs were written in C and 
run on the SUN 3/60 workstation. The search graph was 
a graph and not a tree. The heuristic is monotone 
[Nilsson, 1980], so that a node is expanded at most 
once. But it is still advantageous to use a graph 
representation because this allows the g-values of 
unexpanded nodes to get updated in OPEN. A tree 
representation causes an explosion in the number of 
nodes generated and expanded. To implement graphs 
efficiently, we need to be able to find out quickly 
whether a newly generated successor is already present 
in the graph. This can be achieved by the use of a 
hashing scheme. A node N corresponds to a subset of 
jobs; the bit representation of N is viewed as a binary 
number which is then hashed using the modulo method. 
A l l particulars about a node are stored in the hash table; 
entries in the priority queue are pointers to the hash 
table. Two different penalty functions of the form Gi(fi) 
= c i(f i)k were considered, with k = 2.0 and k = 1.5. 
Processing times (ai) of jobs were integers and were 
chosen randomly in the range 1 to 99 from a uniform 
distribution. Penalty coefficients (ci) were also integers 
and were generated in the range 1 to 9 in the same way. 
For each set of jobs, the execution time, the total 
number of nodes generated, and the total number of 
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nodes expanded were averaged over 25 runs. Results are 
given in Table I. It was found experimentally that for k 
= 2, Townsend's algorithm runs slightly faster than ours, 
but these results are not shown in the table. 

Case I I I General non-linear penalty functions; 
separable setup times. 

This generalizes Case I I . Here we consider penalty 
functions Gi that have the non-negative integers as 



domain and the non-negative real numbers as range; each 
Gi is non-decreasing and possibly non-linear, and the 
Gi's do not necessarily have identical functional forms 
[Schild and Fredman, 1963]. Let q, T and fj(k) be defined 
as in Case n, and let 

G(x) = min { G i(x) I Ji is in Q }. 
When computing the heuristic estimate arrange the jobs 
as in Case II and then use G and q instead of the G i's 
and the qi's, but when computing g(N) use the actual Gi 
and qi values. Close bounds are hard to obtain when the 
G i's have different functional forms. 
Claim h(N)<h*(N). 
Proof: Express h*(N) as a function of T, and of the 
parameters Gi, pi, ai and qi of the jobs Ji in Q. Replace 
each occurrence of Gi and qi in the expression for h*(N) 
by G and q respectively; this gives a value h o N) < 
h*(N). But when G and q are used for computing the 
heuristic estimate, h(N) is the smallest estimate we can 
get, so that we must have h(N) < ho(N). □ 

Some experimental results are given in Table 1H. As 
before, nodes correspond to unordered sets of jobs and 
the heuristic is monotone. The penalty functions were 
chosen to have the form G i(f i) = Cifi + c i(f i)2. The 
coefficients Ci and ci were both randomly generated in 
the range 1 to 9. 

In the two-machine flow-shop problem, each job must be 
processed twice; it must be processed on the first 
machine before it is processed on the second machine. 
The completion time of a job is the time at which its 
processing on the second machine is finished. The 
classic algorithm of Johnson [1954] finds a minimum 
length schedule. Our objective is to minimize the total 
penalty. This problem has been generally considered to 
be intractable, and there are very few references on the 
topic. Search methods can be applied here with 
advantage. We use the notation introduced earlier with 
the following additions and modifications: 
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Sequencing problems of up to 12 jobs can be readily 
solved using a tree representation for the search graph, 
where a node corresponds to an ordered sequence of 
jobs. Such a formulation is essentially equivalent to a 
best-first branch and bound procedure. If we represent a 
node as an unordered subset of jobs we find that the 
search is faster but no longer order preserving, because 
when the jobs in P are permuted, not only g(N) but also 
T2, and therefore T3, get altered. This has the unusual 
consequence that with a graph representation, non-
optimal solutions are outputted even when the heuristics 
are admissible. It was found experimentally, however, 
that the solutions are close to optimal, so that the 
method can still be useful in practice. Experimental 
results are given in Table IV. Data was generated 
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and take h(N) = max { X, Y, Z } 
Experimental results are given in Table VII . 

4 Conclusion 

The major aim of this paper has been to open a new 
area of application for AI search methods, and to 
illustrate how good admissible heuristics can be derived 
for some practical problems. It has been shown that 
certain types of difficult but practical one-machine and 
two-machine job sequencing problems, for which 
efficient algorithms are not currently known, can be 
tackled in a reasonably satisfactory way by admissible 
search schemes. The work reported here can be extended 
in many directions. Even before any extension in scope 
is attempted, more intensive experimental testing needs 
to be undertaken of the admissible heuristics derived 
here on real life data gathered from job-shops and flow-
shops. The following additional issues and questions 
could be taken up for closer examination and study: 

i) Is it possible to modify the methods described 
here to solve sequencing problems involving sequence-
dependent setup times? In the one-machine case, this 
problem has some similarities with the travelling 
salesman problem. In the two-machine case, an optimal 
schedule can sequence jobs in different orders on the 
two machines; this greatly complicates the situation, and 
perhaps a totally new approach is necessary. 

ii) When there are more than two machines in a 
flow-shop, an optimal schedule can order jobs in 
different orders on the machines. One way out of the 
difficulty is to restrict oneself to permutation schedules 
only [Lageweg et al., 1978], in which jobs are sequenced 
in the same order on all machines, but this has the 
obvious limitation that optimal schedules may not be 
realized. Can search methods be used to determine good 
permutation schedules ? 

ii i) In a real life problem, a job normally has a 
deadline by which the processing must be completed; no 
penalty accrues for a job that gets completed within its 
deadline. Is it possible to modify the heuristic estimate 
functions to take care of deadlines ? A positive answer 
wil l greatly increase the worth of this approach. 
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