Admissible Search Methods for Minimum Penalty Sequencing
of Jobs with Setup Times on One and Two Machines

Anup K. Sen, A. Bagchi and Bani K. Sinha
Indian Institute of Management Calcutta

Joka, Diamond Harbour Road
P.O. Box 16757, Calcutta - 700 027, India

Abstract

Many efficient implementations of Al search
algorithms have been realized in recent years. In
an effort to widen the area of application of
search methods to problems that arise In
industry, this paper examines the role that search
can play in solving certain types of hard
optimization problems that involve the proper
sequencing of jobs in one-machine job-shops
and two-machine flow-shops. The problems
studied here have the following general form:
The completion of a job at time f induces a
penalty G(f), where G(.) is a given penalty
function which can be different for different
jobs; the jobs must be so sequenced that the
total penalty summed over all jobs Is minimized.
The objective Is to improve upon current
methods and to show that problems earlier
considered formidable can at least be attempted,
If not resolved satisfactorily, using admissible
search algorithms. The crucial aspect is the
derivation of good admissible heuristics that can
direct the search narrowly to a goal. The search
graph is not necessarily a tree. Algorithm A*
has been run on randomly generated data using
the derived heuristic estimates to solve a variety
of penalty minimization problems; some
indicative experimental results are provided.

1 Introduction

Recent years have withnessed a renewed spurt of interest
in the theory and implementation of best-first search
techniques [Pearl, 1984]. This interest is yet to be
adequately reflected, however, in the application of Al
search methods to optimization problems that arise in
industry, many of which cannot be solved conveniently
by any of the known algorithms. Viswanathan and
Bagchi [1988] describe a successful attempt at applying
search methods to rectangular cutting stock problems, but
such examples are few. In this context, an area that
appears to hold great promise is sequencing and
scheduling, where most problems of practical importance
require the wuse of branch-and-bound or dynamic
programming methods [French, 1982; Lawler et al,

178 Automated Reasoning

1982]. Now that efficient implementations of best-first
search algorithms such as A*, IDA* [Korf, 1985], and
MREC [Sen and Bagchi, 1989] have been realized,

search could prove superior to other methods in cases
where reasonably tight lower bounds can be derived.

This paper investigates the role that best-first search
can play in solving certain types of one-machine and
two-machine job sequencing problems that arise in job-
shops and flow-shops. The major objective is to enlarge
the sphere of application of best-first search, and at the
same time to illustrate how good admissible heuristics
can be defined for practical problems. A typical problem
studied by us has the following form. Jobs J,, 1 € i € n,
with processing times a; 1 € 1 € n, have been submitted
to a one-machine job-shop at time t = 0. The jobs are to
be processed on the given machine one at a time. Let
the processing of job J; be completed at time f. Penalty
functions Gi(), 1 < 1 < n, are supplied, such that the
penalty associated with completing job J; at time f; is
Gi(f). An example of a penalty function is Gi(f) = cif?,
where the c's are given constants, the penalty associated
with a job being proportional to the square of the finish
time of the job. The jobs must be sequenced on the
machine in such a way that the total penalty

F = 2 {(Gf)ll<i<n)
IS minimized. The penalty functions arc non-decreasing,
and in general non-linear. Moreover, a job has a setup
time that is independent of its position in the processing
sequence; we say that the setup times are separable. In a
more general formulation, the setup times can be
sequence-dependent, i.e. the setup time of a job can
depend on the job that immediately precedes it in the
processing sequence. Problems of this type have obvious
relevance to industry, but are known to be very hard to
solve satisfactorily in their full generality, the number of
job sequences being exponential in the number of jobs.
No efficient general methods of solution have been
reported. Schild and Fredman [1963] proposed a scheme
for non-linear penalty functions that ignored setup times
but nevertheless required a great deal of computation;
Improvements were subsequently suggested by Townsend
[1978] and Bagga and Kalra [1980], but these were
specific to quadratic penalty functions. Another special
case has been studied by Rinnooy Kan et al. [1975]. As
for two-machine flowshop situations, work has been
confined to the determination of minimum length

schedules in the presence of setup times

1985;

(see, for

example, [Gupta and Darrow, Sule, 1982; Corwin

and Esogbue, 1974]); penalty functions have not yet been

considered by anyone in any detail.

This paper, which 1is in the nature of a preliminary

report, describes how best-first search techniques can be

used to determine minimal penalty job sequences for one

and two machines when the setup times are separable.

A* is the search algorithm wused. Each case involves the

computation of a reasonably tight lower bound that <can

serve to guide the search fairly narrowly to a goal.

Search graphs have been implemented as graphs and not

as trees whenever it has been found possible to do so;
this tends to speed up the execution. In the two-machine
case the search methods given below are not always
order preserving [Pearl, 1984, p. 102], and unless the

search graph is a tree the solution may not be optimal.

The programs have been run on random data that try to
simulate real-life situations. The results we have obtained

are mo st encouraging; our main contribution lies in

showing how wuseful best-first search can be in

attacking

job sequencing problems traditionally regarded as very

difficult, such as the determination of a minimum

penalty job sequence for a two-machine flow-shop

however simple the penalty function, or for a single

machine when the penalty for a job 1is proportional to a

non-integral power of the finish time of the job.

2 One Machine Job Sequencing Problems

2.1 Problem Description

For the one-machine problem with sequence-dependent

setup times we define the following notation

number of jobs

—=

" ith job

ai processing time (> 0) for job J,

SiJ setup time for job J; when it immediately
follows job J; in the processing sequence

; completion time of job J;

di deadline for job J;

G'() penalty function for job ji

penalty coefficient for job J;

total penalty for a given sequence

If J; is the first job in the sequence, then sg; represents

its setup time. After the last job in +the sequence s

completed, the machine need not be brought back to any
specific state. A penalty of G;(f; - d;) is incurred for job
Ji when f, > f,; |f fiS d; then no penalty is incurred for
Ji. The formulation can be generalized to include the cost

of carrying in inventory +those jobs that get completed

before their respective deadlines. In order to simplify the

problem it is frequently assumed that all deadlines are

zero; we make this assumption in the paper.
When the setup times are

separable as in [Sule,

1982], we have the following alternative notation

pi initialization time for job J;

qi cleanup time for job J;

Ai Pi + I+ Qi

Initialization time refers to the time needed to initialize

the machine settings before job J can be processed,

while cleanup time refers to the time needed to clean the
machine and bring it back to a specified state after the
processing of job J; has Dbeen

completed. When job J;

follows job J; in the sequence, the total setup time (q; +

Pi) can be viewed as corresponding to s;; in the general
case; again, if J; is the first job in the sequence, then p;
corresponds to s, ; in the general case. Let the jobs be

processed in the sequence

@), "j(n)

and let the completion time of job J;«) be fjky. Then for
1 £ k< n, i) = z { A 1S TSk} - djo

Note that the finish time of a job does not include the
cleanup time for the job; the <cleanup time gets added
when the finish times of the jobs that follow in the

sequence are computed. For one-machine problems, there

is no loss of generality if the initialization time of a job

is included i n the

processing time and not considered

separately. As an illustration of the kind

of problem we

are trying to solve, consider the following example:

Example: Penalty for a job J; proportional to its finish

time f;. separable setup times.

Here, G;(fi) = <c¢if;, where the <ci's are constants, C; being

the penalty coefficient for job J;. Thus

F = 2 {cgfigll<k<n)}
= gyl Agll<ick) - Lqg
F

To minimize we just need to arrange the jobs in the

order [French, 1982]:

Ay = AfS < S Ajn/CSimy
since the last sum in the expression for F is a constant.

Here we do not need to take help of search methods. [

In more complex situations we are forced to take

recourse to Al search methods. Algorithm A* is imple-
mented in the standard manner [Nilsson, 1980; Pearl,
1984]. OPEN is maintained as a priority queue. Nodes
generally <correspond to wunordered subsets of jobs; the

root node is the empty set. When a node corresponding

to a selected from OPEN and

subset of k jobs gets

expanded, it generates (n-k)

subset of (k+1) jobs. A

sons, each son being a
when a

OPEN. For

problem gets solved

complete set of n jobs gets selected from
two-machine problems, a node sometimes corresponds to

an ordered

sequence of jobs. The following additional

notation is used in the specifications of the problems:

N current node (either an unordered subset of
jobs or an ordered partial sequence of jobs)

g(N) cost of minimal <cost path currently known
from the root node to node N

h(N) heuristic estimate at node N

h*(N) cost of minimal cost path from node N to a

goal node

P set of jobs already processed at node N

Q set of jobs remaining to be processed at
node N

T time at which all jobs in P get completed

qlut cleanup time of last job in P

m number of jobs in Q

Sen, Bagchi, and Sinha 179

2.2 Non-Linear Penalty Functions

Case | Penalty for a job proportional to square of

its completion time; all initialization and
cleanup times are zero.

Here Gi(fy) = cf’. Townsend [1978] proposed a new
method for computing lower bounds in a best-first
branch-and-bound algorithm to solve this problem;
certain improvements were subsequendy suggested by
Bagga and Kalra [1982]. We compute the heuristic
estimate h(N) at the current node N as follows :

Order the processing times of the m jobs in Q in
the non-decreasing order

al) = aj2) S5 %m)
Also order the penalty coefficients of the jobs in Q
independently in the non-increasing order

iy 2 %i2) = 2 Si(m)
Take the heuristic estimate as

h(N) = 2 { ¢ fi? 1 1 sk <m)
where fy = T+Z { aj(u)lls_ug_k },
and T = {a] 1sinP }

Our computation ensures that h(N) is a lower bound on
h*(N), the cost of the optimal path from N to a goal,
since the penalty functions strictly dominate each other
and have no crossover points. The sorting of the
processing times and the penalty coefficients is done
only once at start. Thereafter, we just have to keep track
of which jobs are in Q, and when computing the
heuristic estimate we simply skip over those terms in the
sorted lists that correspond to jobs in P.

The method can be generalized to handle penalty
functions for job J; that are proportional to (f)* or to
exp(kfi), where k is a real constant independent of I.
Such functional forms have not been considered by
Townsend [1978] or Bagga and Kalra [1980].

In our experiments, programs were written in C and
run on the SUN 3/60 workstation. The search graph was
a graph and not a tree. The heuristic Is monotone

[Nilsson, 1980], so that a node is expanded at most
once. But it is still advantageous to use a graph
representation because this allows the g-values of

unexpanded nodes to get updated
representation causes an explosion
nodes generated and expanded. To implement graphs
efficiently, we need to be able to find out quickly
whether a newly generated successor is already present
in the graph. This can be achieved by the use of a

in OPEN. A tree
in the number of

hashing scheme. A node N corresponds to a subset of

jobs; the bit representation of N is viewed as a binary
number which is then hashed using the modulo method.
All particulars about a node are stored in the hash table;
entries In the priority queue are pointers to the hash
table. Two different penalty functions of the form G(f)
= ci(f)* were considered, with k = 2.0 and k = 15
Processing times (ai) of jobs were integers and were
chosen randomly in the range 1 to 99 from a uniform

nodes expanded were averaged over 25 runs. Results are
given in Table I. It was found experimentally that for k
= 2, Townsend's algorithm runs slightly faster than ours,
but these results are not shown in the table.

TABLE I

k=20
Number Exec Nodes Nodes

k=1.5
Exec Nodes Nodes

of Jobs Time Gen Exp Time Gen Exp
(sec) (sec)

12 083 2118 855 2.39 1799 669

13 1.63 3980 1478 4.63 3266 1092

14 3.29 7561 2871 9.36 6130 2098

15 7.43 14123 5519 19.28 11322 3953

—— A - R

For k = 1.5, computations were done using real numbers,
and so the execution times are larger. The heunstic is
quite tight: For 14 jobs, only 7561 nodes are generated
when k = 2.0, while there are 14! job sequences.

Case I Penalty for a job proportional to square of
its completion time; separable setup times.

No algorithm has yet been proposed for thus problem.
We determine the heuristic estimate h(N) as follows. Let
q = min { q, |J, isin Q }
Onrder the jobs 1n Q according to the conditions
Piy + ay) = (+a5) <...< (Pim + dm)
ancf J(glrder% (H'le penfft(;) co%i’z cients as 1n o Iél(’f‘he
expression for h(N) i1s the same as in Case I, but here

take f0 = T+ Quu+ 2 { Py + 3 | 1 <u <k}
+ (k - 1)q
and T = 2 { A lJisinP} -qy.

As 1n Case I, h(N) < h*(N), and h is monotone.
Again, the method can be extended to powers other than
two and to exponentials. A* was run with the above
heunstics. Data was generated as in Case I, the
initialization and cleanup times were also geperated
randomly, but in the range 1 to 9 to keep them smaller
than the processing times. Nodes still correspond to
unordered subsets of jobs. Results are shown in Table 11
for the case k = 2. A depth-first branch-and-bound
implementation was also tried out, but was found to be
much slower in execution.

TABLE 11
Number Exec Nodes Nodes
of Jobs Time Gen Exp
(sec)
10 0.18 535 191
12 0.75 1910 676
14 2.93 6647 2246

distribution. Penalty coefficients (c;) were also integers Case |11 General non-linear penalty functions;

and were generated in the range 1 to 9 in the same way. separable setup times.

For each set of jobs, the execution time, the total

number of nodes generated, and the total number of This generalizes Case |l. Here we consider penalty
functions G; that have the non-negative integers as

180 Automated Reasoning

domain and the non-negative real numbers as range; each
G; is non-decreasing and possibly non-linear, and the
Gi's do not necessarily have identical functional forms
[Schild and Fredman, 1963]. Let q, T and fjx be defined
as in Case n, and let
G(x) = min { Gi(x) | Jjis in Q }.

When computing the heuristic estimate arrange the jobs
as in Case Il and then use G and q instead of the Gi's
and the qi's, but when computing g(N) use the actual G;
and q; values. Close bounds are hard to obtain when the
Gi's have different functional forms.
Claim h(N)<h*(N).
Proof: Express h*(N) as a function of T, and of the
parameters G;, pi, a; and q; of the jobs J; in Q. Replace
each occurrence of G; and q; in the expression for h*(N)
by G and q respectively; this gives a value h,N) <
h*(N). But when G and g are used for computing the
heuristic estimate, h(N) is the smallest estimate we can
get, so that we must have h(N) < ho(N). o

Some experimental results are given in Table 1H. As
before, nodes correspond to unordered sets of jobs and
the heuristic is monotone. The penalty functions were
chosen to have the form Gi(f) = Cf + ci(f)°. The
coefficients C; and c¢; were both randomly generated in
the range 1 to 9.

Table 11X
Number Exec Nodes Nodes
of Jobs Time Gen Exp
(sec)
10 1.51 1011 775
11 3.54 2019 1624
12 8.25 4091 3400

3 Two-Machine Flow-Shop Problems

In the two-machine flow-shop problem, each job must be
processed twice; it must be processed on the first
machine before it is processed on the second machine.
The completion time of a job is the time at which its
processing on the second machine is finished. The
classic algorithm of Johnson [1954] finds a minimum
length schedule. Our objective is to minimize the total
penalty. This problem has been generally considered to
be intractable, and there are very few references on the
topic. Search methods can be applied here with
advantage. We use the notation introduced earlier with
the following additions and modifications:

M, machine 1
M, machine 2
TABLE IV
Tree Graph
No of Exec Nodes Nodes Opt Exec Nodes Nodes Cost
Jobs Time Gen Exp Cost Time Gen Exp Obtd
(sec) (sec)
10 0.29 1192 210 2652 028 268 68 2660
11 086 3343 563 3212 0.72 441 103 3226
12 4.59 15741 2622 3723 2.56 834 204 3734

P &, q; imtalization, processing and cleanup times
of J, on M,

I, b, s imtialization, processing and cleanup times
of J, on M,

A, Pi + & + q;

B. r,+b +s.

T, completion time on M, of all jobs in P

T, completion ime on M, of all jobs in P

Qast cleanup time on M, of the last job in P

S{ast cleanup time on M, of the last job in P

A well known theorem (see French [1982], Theorem
5.1, p. 67) states that in the absence of setup times,
there is an optimal schedule in which jobs are sequenced
in the same order on the two machines. This theorem
remains valid when the setup times are separable, but
not when they are sequence-dependent [Gupta and
Darrow, 1985]. Since our study is confined to separable
setup tumes, we can restrict ourselves to job sequences
which are identical for the two machines.

Case 1 Penalty for a job equal to its completion
time;
all imtialization and cleanup times are zero.

Here g(N) 1s the sum of the finish times of the jobs in
P. To determine h(N), order the processing times on M,
of the m jobs in Q as follows:

Gy = g = - -
Order the processing umes on M2 oa the jobs in Q
independently as follows:

b(,) < b(z) < ..

] . = l:’(m)

Let X = mT, + {m+1-k)a,, +bl1<k<m)])
Y=mT,+2 {m+1-Kbyll<k<m)

where T, = max { T, + 2, T, },

and take h(N) = max { X, Y }.

Claim h(N) < h*(N).

Proof We have to show that X < h*(N) and Y

< h*(N). The jobs in Q have been so ordered that the
finish time on M, of the kth job in Q is the earliest
possible; moreover, each of the jobs in Q must be
processed on M,, and the processing on M, of the kth
job in Q cannot begin until the processing on M, of the
kth job 1s over. This proves that X < h*(N). Again, the
processing of any job in Q cannot commence on M,
before T3, so Y < h*(N). O

Sequencing problems of up to 12 jobs can be readily
solved using a tree representation for the search graph,
where a node corresponds to an ordered sequence of
jobs. Such a formulation is essentially equivalent to a
best-first branch and bound procedure. If we represent a
node as an unordered subset of jobs we find that the
search is faster but no longer order preserving, because
when the jobs in P are permuted, not only g(N) but also
T,, and therefore T3, get altered. This has the unusual
consequence that with a graph representation, non-
optimal solutions are outputted even when the heuristics
are admissible. It was found experimentally, however,
that the solutions are close to optimal, so that the
method can still be useful in practice. Experimental
results are given in Table V. Data was generated

Sen, Bagchi, and Sinha 181

independently and randomly for the jobs on the two
machines. It is interesting to observe that if we change
the expressions for X and Y to

X = T1+Z[aklls_k_<_m}+bj(l)

Y = T,+2{bll<k<m]

and set g(N) = 0 and h(N) = max { X, Y }, we get a
minimum length schedule. This gives us an altemative to
Johnson’s algorithm, but the latter runs much faster.
Case 11 Penalty for a job proportional to its
completion time; separable setup tumes.
This generalizes Case 1. Here G,(f.) = cf, where the c’s
are the penalty coefficients as before. Let g(N) be the
weighted sum of the finish times of the jobs in P. To
compute h(N) order the processing imes on M, of the m
jobs 1n Q as follows:

Ai(l)/ct(li < Apftigy £-- - = Aym)Cim
Independently order the processing times on M, of the
jobs 1n Q:

i])/c o = Biefoa <. - 2 Byn/Oim)
Also, D be the inner product, for the _]ObS in Q, of
the m-element b-vector with the corresponding c-vector,
where the b.’s in the b-vector are arranged in non-
decreasing order while the c¢,’s i the c-vector are
arranged in non-increasing order. Now take
X = 2o Ty + Quu+ 2 { Ay | L cu<k }) gy +
D-2 {qclJ isin Q }
= 2 (T3 + 2 { By, I 1 sus<k}) -
2 $¢ ! J, 1sin Q }
where T; = max { T, + q,., + Piy + A1y - Trnaxr
T2 + S)ast }
r,, = max { ., | J is 10 Q }.
ILet h(N) = max { X, Y }. Expenmental results are
given in Table V. Here, ty0, h(N) 1s a lower bound on
h*(N). If we can redefine X and Y as follows

X = T, +qm.+2{A ll<k<m}+b i) = Gmax
Y = T3+Z{Bkllsk5m}'sm

where Quax, = Max { q, | J, 15 1n Q }, and

Smax = Max { s, 1 J 1510 Q }
and set g(N) = 0 and h(N) = max { X, Y }, we get an
alternative to Sule’s [1982] method for finding a
minimum length schedule when setup times are
separable.

TABLE V
Number Exec Nodes Nodes
of Jobs Time Gen Exp
(sec)

10 0.34 1140 208

11 0.83 2670 439

12 4.15 12241 1926
Case II' Penalty for a job proportional to square of

its completion time; all initialization and
cleanup times are zero.

The penalty functions are as in Case II of Section 2.2.
Compute g(N) by summing, over the jobs in P, the

182 Automated Reasoning

squares of the finish times multiplied by the appropriate
penalty coefficients. Order as in Case I the processing
times on M, of the jobs in Q, and independently the
processing times on M, of the jobs in Q. Also order the
corresponding penalty coefficients ¢, in non-increasing
order:

Ckny 2 Sk 202
Let X = zuzl) [(T) +
Y = 20 (T +2 (bjw) | 1 < W < u}y?

Zuul Ci(u) (TI + z [a,(w) il <w<u} + bj(l))z
whereT and T, are as in Case I, and take

h(N) = max { X, Y, Z }.

We again have h(N) < h*(N). This case, as well as
the next, can be generalized to powers other than two
and to exponentials. Experimental results for the square
penalty function are given in Table VI.

C(m
2 l)ai(w)ll_'(.wﬁ“])z"'

TABLE VI
Number Exec Nodes Nodes
of Jobs Time Gen Exp
(sec)
8 0.57 1730 453
9 1.81 4965 1181

10 13.90 33750 7828

Case IV Penalty for a job proportional to square of

1ts completion time; separable setup times.
In this case let q = mm{ qlJ isin Q }
s = min { 5 | J, isin Q }
Order the processing times on M, and M, of the jobs in
Q independently as follows:

(Piy + ai(l)) < (P.(z) + a5) <. S (Pim + Am)
Ty + bjy)) < (g + b <2>S .. S (G + bj(m);
Let the penalty coefgments be arranged in non-mcreasmg
order as in Case III. Arrange the m-element b-vector in
non-decreasing order, square each element, and let D be
the inner product of the resulting vector with the

corresponding m-element c-vector arranged as above.

TABLE V11
Number Exec ~ Nodes Nodes
of Jobs Time Gen Exp
(sec)
8 0.46 1084 260
9 3.25 6917 1632

Now let bg,,;, be the smallest b; in Q, and let

X =20 e Sy [T + Qo + 2 (Piwy + 3wy | 1 S W <
u} + (u-I)}g ¥+ D

Y = 2uilltl ck(u) [T3 + 2 l((w) + bj(w)) | 1
1)s]?

Z =30 Gy [Ty + Qu + 2 @iy + 30 | 1 S W
u} + (u-1)q + by

<w<u} + (u-

and take h(N) = max { X, Y, Z }
Experimental results are given in Table VII.

4 Conclusion

The major aim of this paper has been to open a new
area of application for Al search methods, and to
lllustrate how good admissible heuristics can be derived
for some practical problems. It has been shown that
certain types of difficult but practical one-machine and
two-machine job sequencing problems, for which
efficient algorithms are not currently known, can be
tackled in a reasonably satisfactory way by admissible
search schemes. The work reported here can be extended
iIn many directions. Even before any extension in scope
Is attempted, more intensive experimental testing needs
to be undertaken of the admissible heuristics derived
here on real life data gathered from job-shops and flow-
shops. The following additional issues and questions
could be taken up for closer examination and study:

1) Is it possible to modify the methods described
here to solve sequencing problems involving sequence-
dependent setup times? In the one-machine case, this
problem has some similarities with the travelling
salesman problem. In the two-machine case, an optimal
schedule can sequence jobs in different orders on the
two machines; this greatly complicates the situation, and
pernaps a totally new approach is necessary.

ii) When there are more than two machines in a
flow-shop, an optimal schedule can order jobs in
different orders on the machines. One way out of the
difficulty is to restrict oneself to permutation schedules
only [Lageweg et al., 1978], in which jobs are sequenced
In the same order on all machines, but this has the
obvious limitation that optimal schedules may not be
realized. Can search methods be used to determine good
permutation schedules ?

i) In a real life problem, a job normally has a
deadline by which the processing must be completed; no
penalty accrues for a job that gets completed within its
deadline. Is it possible to modify the heuristic estimate
functions to take care of deadlines ? A positive answer
will greatly increase the worth of this approach.

References

[Bagga and Kalra, 1980] P. C. Bagga and K. R. Kalra, A
Node Elimination Procedure for Townsend's Algorithm for
Solving the Single Machine Quadratic Penalty Function

Scheduling Problem, Management Science, vol 26, no 6,
1980. pp 633-636.

[Cheng'en, 1989] Y. Cheng'en, A Dynamic Programming
Algorithm for the Travelling Repairman Problem, Asia-
Pacific Journal of Operational Research, vol 6, no 2,
1989, pp 192-206.

[Corwin and Esogbue, 1974] Corwin, B. D. and Esogbuc, A.
0., Two-Machine Row-Shop Scheduling Problems with
Sequence Dependent Setup Times A Dynamic

Programming Approach, Naval = Research Logistics
Quarterly, vol 21, 1974, pp 515-524.

[French, 1982] S. French, Sequencing and Scheduling: An
Introduction to the Mathematics of the Job-Shop, Ellis
Horwood Ltd, 1982.

[Gupta and Darrow, 1985] J. N. D. Gupta and W. P. Darrow,
Approximate Schedules for Two-Machine Flow-Shop With
Sequence Dependent Setup Times, Indian Journal of
Management and Systems, vol 1, no 1, 1985, pp 6-11.

[Johnson, 1954] S. M. Johnson, Optimal Two-and-Three-Stage
Production Schedules With Setup Times Included, Naval
Research Logistics Quarterly, vol 1, 1954, pp 61-68.

[Korf, 1985] R. E. Korf, Depth-First lterative Deepening. An
Optimal Admissible Search, Atrtificial Intelligence, vol 27,
no 1, 1985, pp 97-109.

[Lageweg et al., 1978] B. J. Lageweg, J. K. Lenstra and A.
H. G. Rinnooy Kan, A General Bounding Scheme for the
Permutation Flow-Shop Problem, Operations Research, vol
26, no 1, 1978, pp 53-67.

[Lawler et al, 1982] E. L. Lawler, J. K. Lenstra and A. H.
G. Rinnooy Kan, Recent Developments in Deterministic
Sequencing and Scheduling: A Survey, in Deterministic
and Stochastic Scheduling (Eds. M. A. H. Dempster, J. K.
Lenstra and A. H. G. Rinnooy Kan), D Reidel Publishing
Co., 1982.

[Nilsson, 1980] N. J. Nilsson, Principles of Alrtificial

Intelligence, Tioga-Springer Verlag, 1980.

[Pearl, 1984] J. Pearl, Heuristics, Addison-Wesley, 1984.

[Rinnooy Kan et al, 1975] A. H. G. Rinnooy Kan, B. J.
Lageweg and J. K. Lenstra, Minimizing Total Costs in

One Machine Scheduling, Operations Research, vol 23, no
9, 1975, pp 908-927.

[Schild and Fredman. 1963] A. Schild and L J. Fredman,
Scheduling Tasks with Deadlines and Non-linear Loss
Functions, Management Science, vol 9, 1963, pp 73-81.

[Sen and Bagchi, 1989] Anup K. Sen and A. Bagchi, Fast
Recursive Formulations for Best-First Search That Allow
Controlled Use of Memory, Proc. IJCA71-89, International
Joint Conference on Artificial Intelligence, Detroit, U.S.A,,
1989, pp 297-302.

[Sule, 1982] Sule, D. R., Sequencing n Jobs on Two
Machines with Setup, Processing and Removal Times,
Naval Research Logistics Quarterly, vol 29, no 3, 1982,
pp 517-519.

[Townsend, 1978] W. Townsend, The Single Machine
Problem With Quadratic Penalty Function of Completion

Times : A Branch and Bound Solution, Management
Science, vol 24, no 5, pp 530-534.

[Viswanathan and Bagchi, 1988] K. V. Viswanathan and A.
Bagchi, An Exact Best-First Search Procedure for the
Constrained Rectangular Guillotine Knapsack Problem,

Proc. AAAI-88, American Association for Artificial
Intelligence, St. Paul, U.S.A., 1988, pp 145-149.

Sen, Bagchi, and Sinha 183

