
Admissible Search Methods for Minimum Penalty Sequencing
of Jobs with Setup Times on One and Two Machines

Anup K. Sen, A. Bagchi and Bani K. Sinha
Indian Institute of Management Calcutta

Joka, Diamond Harbour Road
P.O. Box 16757, Calcutta - 700 027, India

Abstract

Many efficient implementations of Al search
algorithms have been realized in recent years. In
an effort to widen the area of application of
search methods to problems that arise in
industry, this paper examines the role that search
can play in solving certain types of hard
optimization problems that involve the proper
sequencing of jobs in one-machine job-shops
and two-machine flow-shops. The problems
studied here have the following general form:
The completion of a job at time f induces a
penalty G(f), where G(.) is a given penalty
function which can be different for different
jobs; the jobs must be so sequenced that the
total penalty summed over all jobs is minimized.
The objective is to improve upon current
methods and to show that problems earlier
considered formidable can at least be attempted,
if not resolved satisfactorily, using admissible
search algorithms. The crucial aspect is the
derivation of good admissible heuristics that can
direct the search narrowly to a goal. The search
graph is not necessarily a tree. Algorithm A*
has been run on randomly generated data using
the derived heuristic estimates to solve a variety
of penalty minimization problems; some
indicative experimental results are provided.

1 Introduction

Recent years have witnessed a renewed spurt of interest
in the theory and implementation of best-first search
techniques [Pearl, 1984]. This interest is yet to be
adequately reflected, however, in the application of Al
search methods to optimization problems that arise in
industry, many of which cannot be solved conveniently
by any of the known algorithms. Viswanathan and
Bagchi [1988] describe a successful attempt at applying
search methods to rectangular cutting stock problems, but
such examples are few. In this context, an area that
appears to hold great promise is sequencing and
scheduling, where most problems of practical importance
require the use of branch-and-bound or dynamic
programming methods [French, 1982; Lawler et al.y

1982]. Now that efficient implementations of best-first
search algorithms such as A* , IDA* [Korf, 1985], and
MREC [Sen and Bagchi, 1989] have been realized,
search could prove superior to other methods in cases
where reasonably tight lower bounds can be derived.

This paper investigates the role that best-first search
can play in solving certain types of one-machine and
two-machine job sequencing problems that arise in job-
shops and flow-shops. The major objective is to enlarge
the sphere of application of best-first search, and at the
same time to illustrate how good admissible heuristics
can be defined for practical problems. A typical problem
studied by us has the following form. Jobs J,, 1 i n,
with processing times ai 1 i n, have been submitted
to a one-machine job-shop at time t = 0. The jobs are to
be processed on the given machine one at a time. Let
the processing of job Ji be completed at time fi. Penalty
functions Gi(.), 1 i n, are supplied, such that the
penalty associated with completing job Jj at time fi is
Gi(fi). An example of a penalty function is Gi(fi) = cifi

2,
where the ci's are given constants, the penalty associated
with a job being proportional to the square of the finish
time of the job. The jobs must be sequenced on the
machine in such a way that the total penalty

is minimized. The penalty functions arc non-decreasing,
and in general non-linear. Moreover, a job has a setup
time that is independent of its position in the processing
sequence; we say that the setup times are separable. In a
more general formulation, the setup times can be
sequence-dependent, i.e. the setup time of a job can
depend on the job that immediately precedes it in the
processing sequence. Problems of this type have obvious
relevance to industry, but are known to be very hard to
solve satisfactorily in their full generality, the number of
job sequences being exponential in the number of jobs.
No efficient general methods of solution have been
reported. Schild and Fredman [1963] proposed a scheme
for non-linear penalty functions that ignored setup times
but nevertheless required a great deal of computation;
improvements were subsequently suggested by Townsend
[1978] and Bagga and Kalra [1980], but these were
specific to quadratic penalty functions. Another special
case has been studied by Rinnooy Kan et al. [1975]. As
for two-machine flowshop situations, work has been
confined to the determination of minimum length

178 Automated Reasoning

s c h e d u l e s i n t h e p r e s e n c e o f s e t u p t i m e s (s e e , f o r

e x a m p l e , [G u p t a a n d D a r r o w , 1 9 8 5 ; S u l e , 1 9 8 2 ; C o r w i n

a n d E s o g b u e , 1 9 7 4]) ; p e n a l t y f u n c t i o n s h a v e n o t y e t b e e n

c o n s i d e r e d b y a n y o n e i n a n y d e t a i l .

T h i s p a p e r , w h i c h i s i n t h e n a t u r e o f a p r e l i m i n a r y

r e p o r t , d e s c r i b e s h o w b e s t - f i r s t s e a r c h t e c h n i q u e s c a n b e

u s e d t o d e t e r m i n e m i n i m a l p e n a l t y j o b s e q u e n c e s f o r o n e

a n d t w o m a c h i n e s w h e n t h e s e t u p t i m e s a r e s e p a r a b l e .

A * i s t h e s e a r c h a l g o r i t h m u s e d . E a c h c a s e i n v o l v e s t h e

c o m p u t a t i o n o f a r e a s o n a b l y t i g h t l o w e r b o u n d t h a t c a n

s e r v e t o g u i d e t h e s e a r c h f a i r l y n a r r o w l y t o a g o a l .

S e a r c h g r a p h s h a v e b e e n i m p l e m e n t e d a s g r a p h s a n d n o t

a s t r e e s w h e n e v e r i t h a s b e e n f o u n d p o s s i b l e t o d o s o ;

t h i s t e n d s t o s p e e d u p t h e e x e c u t i o n . I n t h e t w o - m a c h i n e

c a s e t h e s e a r c h m e t h o d s g i v e n b e l o w a r e n o t a l w a y s

order preserving [P e a r l , 1 9 8 4 , p . 1 0 2] , a n d u n l e s s t h e

s e a r c h g r a p h i s a t r e e t h e s o l u t i o n m a y n o t b e o p t i m a l .

T h e p r o g r a m s h a v e b e e n r u n o n r a n d o m d a t a t h a t t r y t o

s i m u l a t e r e a l - l i f e s i t u a t i o n s . T h e r e s u l t s w e h a v e o b t a i n e d

a r e m o s t e n c o u r a g i n g ; o u r m a i n c o n t r i b u t i o n l i e s i n

s h o w i n g h o w u s e f u l b e s t - f i r s t s e a r c h c a n b e i n a t t a c k i n g

j o b s e q u e n c i n g p r o b l e m s t r a d i t i o n a l l y r e g a r d e d a s v e r y

d i f f i c u l t , s u c h a s t h e d e t e r m i n a t i o n o f a m i n i m u m

p e n a l t y j o b s e q u e n c e f o r a t w o - m a c h i n e f l o w - s h o p

h o w e v e r s i m p l e t h e p e n a l t y f u n c t i o n , o r f o r a s i n g l e

m a c h i n e w h e n t h e p e n a l t y f o r a j o b i s p r o p o r t i o n a l t o a

n o n - i n t e g r a l p o w e r o f t h e f i n i s h t i m e o f t h e j o b .

2 O n e M a c h i n e J o b S e q u e n c i n g P r o b l e m s

2 . 1 P r o b l e m D e s c r i p t i o n

F o r t h e o n e - m a c h i n e p r o b l e m w i t h s e q u e n c e - d e p e n d e n t

s e t u p t i m e s w e d e f i n e t h e f o l l o w i n g n o t a t i o n :

n u m b e r o f j o b s

i t h j o b

p r o c e s s i n g t i m e (> 0) f o r j o b J i

s e t u p t i m e f o r j o b J j w h e n i t i m m e d i a t e l y

f o l l o w s j o b J j i n t h e p r o c e s s i n g s e q u e n c e

c o m p l e t i o n t i m e o f j o b J i

d e a d l i n e f o r j o b J i

p e n a l t y f u n c t i o n f o r j o b j i

p e n a l t y c o e f f i c i e n t f o r j o b J i

t o t a l p e n a l t y f o r a g i v e n s e q u e n c e

I f J i i s t h e f i r s t j o b i n t h e s e q u e n c e , t h e n s 0 , i r e p r e s e n t s

i t s s e t u p t i m e . A f t e r t h e l a s t j o b i n t h e s e q u e n c e i s

c o m p l e t e d , t h e m a c h i n e n e e d n o t b e b r o u g h t b a c k t o a n y

s p e c i f i c s t a t e . A p e n a l t y o f G i (f i - d i) i s i n c u r r e d f o r j o b

J i w h e n f i > f i ; i f f i d i t h e n n o p e n a l t y i s i n c u r r e d f o r

J i . T h e f o r m u l a t i o n c a n b e g e n e r a l i z e d t o i n c l u d e t h e c o s t

o f c a r r y i n g i n i n v e n t o r y t h o s e j o b s t h a t g e t c o m p l e t e d

b e f o r e t h e i r r e s p e c t i v e d e a d l i n e s . I n o r d e r t o s i m p l i f y t h e

p r o b l e m i t i s f r e q u e n t l y a s s u m e d t h a t a l l d e a d l i n e s a r e

z e r o ; w e m a k e t h i s a s s u m p t i o n i n t h e p a p e r .

W h e n t h e s e t u p t i m e s a r e s e p a r a b l e a s i n [S u l e ,

1 9 8 2] , w e h a v e t h e f o l l o w i n g a l t e r n a t i v e n o t a t i o n

i n i t i a l i z a t i o n t i m e f o r j o b J i

c l e a n u p t i m e f o r j o b J i

P i + i + qi

I n i t i a l i z a t i o n t i m e r e f e r s t o t h e t i m e n e e d e d t o i n i t i a l i z e

t h e m a c h i n e s e t t i n g s b e f o r e j o b J i c a n b e p r o c e s s e d ,

w h i l e c l e a n u p t i m e r e f e r s t o t h e t i m e n e e d e d t o c l e a n t h e

m a c h i n e a n d b r i n g i t b a c k t o a s p e c i f i e d s t a t e a f t e r t h e

p r o c e s s i n g o f j o b J i h a s b e e n c o m p l e t e d . W h e n j o b J j

f o l l o w s j o b J i i n t h e s e q u e n c e , t h e t o t a l s e t u p t i m e (q i +

P j) c a n b e v i e w e d a s c o r r e s p o n d i n g t o s i j i n t h e g e n e r a l

c a s e ; a g a i n , i f J i i s t h e f i r s t j o b i n t h e s e q u e n c e , t h e n p i

c o r r e s p o n d s t o s o , i i n t h e g e n e r a l c a s e . L e t t h e j o b s b e

p r o c e s s e d i n t h e s e q u e n c e

J j (l) ' J J(2) , ' ' ' J j (n)
a n d l e t t h e c o m p l e t i o n t i m e o f j o b J j (k) b e f j (k) . T h e n f o r

1 k n, f j (k) = { A j (i) I 1 i k } - q j (k) .

N o t e t h a t t h e f i n i s h t i m e o f a j o b d o e s n o t i n c l u d e t h e

c l e a n u p t i m e f o r t h e j o b ; t h e c l e a n u p t i m e g e t s a d d e d

w h e n t h e f i n i s h t i m e s o f t h e j o b s t h a t f o l l o w i n t h e

s e q u e n c e a r e c o m p u t e d . F o r o n e - m a c h i n e p r o b l e m s , t h e r e

i s n o l o s s o f g e n e r a l i t y i f t h e i n i t i a l i z a t i o n t i m e o f a j o b

i s i n c l u d e d i n t h e p r o c e s s i n g t i m e a n d n o t c o n s i d e r e d

s e p a r a t e l y . A s a n i l l u s t r a t i o n o f t h e k i n d o f p r o b l e m w e

a r e t r y i n g t o s o l v e , c o n s i d e r t h e f o l l o w i n g e x a m p l e :

E x a m p l e : P e n a l t y f o r a j o b J i p r o p o r t i o n a l t o i t s f i n i s h

t i m e f i ; s e p a r a b l e s e t u p t i m e s .

H e r e , G i (f i) = c i f i , w h e r e t h e c i ' s a r e c o n s t a n t s , C i b e i n g

t h e p e n a l t y c o e f f i c i e n t f o r j o b J j . T h u s

T o m i n i m i z e F w e j u s t n e e d t o a r r a n g e t h e j o b s i n t h e

o r d e r [F r e n c h , 1 9 8 2] :

* • •

s i n c e t h e l a s t s u m i n t h e e x p r e s s i o n f o r F i s a c o n s t a n t .

H e r e w e d o n o t n e e d t o t a k e h e l p o f s e a r c h m e t h o d s .

I n m o r e c o m p l e x s i t u a t i o n s w e a r e f o r c e d t o t a k e

r e c o u r s e t o A I s e a r c h m e t h o d s . A l g o r i t h m A * i s i m p l e ­

m e n t e d i n t h e s t a n d a r d m a n n e r [N i l s s o n , 1 9 8 0 ; P e a r l ,

1 9 8 4] . O P E N i s m a i n t a i n e d a s a p r i o r i t y q u e u e . N o d e s

g e n e r a l l y c o r r e s p o n d t o u n o r d e r e d s u b s e t s o f j o b s ; t h e

r o o t n o d e i s t h e e m p t y s e t . W h e n a n o d e c o r r e s p o n d i n g

t o a s u b s e t o f k j o b s g e t s s e l e c t e d f r o m O P E N a n d

e x p a n d e d , i t g e n e r a t e s (n - k) s o n s , e a c h s o n b e i n g a

s u b s e t o f (k + 1) j o b s . A p r o b l e m g e t s s o l v e d w h e n a

c o m p l e t e s e t o f n j o b s g e t s s e l e c t e d f r o m O P E N . F o r

t w o - m a c h i n e p r o b l e m s , a n o d e s o m e t i m e s c o r r e s p o n d s t o

a n o r d e r e d s e q u e n c e o f j o b s . T h e f o l l o w i n g a d d i t i o n a l

n o t a t i o n i s u s e d i n t h e s p e c i f i c a t i o n s o f t h e p r o b l e m s :

c u r r e n t n o d e (e i t h e r a n u n o r d e r e d s u b s e t o f

j o b s o r a n o r d e r e d p a r t i a l s e q u e n c e o f j o b s)

c o s t o f m i n i m a l c o s t p a t h c u r r e n t l y k n o w n

f r o m t h e r o o t n o d e t o n o d e N

h e u r i s t i c e s t i m a t e a t n o d e N

c o s t o f m i n i m a l c o s t p a t h f r o m n o d e N t o a

g o a l n o d e

s e t o f j o b s a l r e a d y p r o c e s s e d a t n o d e N

s e t o f j o b s r e m a i n i n g t o b e p r o c e s s e d a t

n o d e N

t i m e a t w h i c h a l l j o b s i n P g e t c o m p l e t e d

c l e a n u p t i m e o f l a s t j o b i n P

n u m b e r o f j o b s i n Q

S e n , B a g c h i , a n d S i n h a 1 7 9

2.2 Non-Linear Penalty Functions
Case I Penalty for a job proportional to square of

its completion time; all initialization and
cleanup times are zero.

Here Gi(fi) = cifi2. Townsend [1978] proposed a new
method for computing lower bounds in a best-first
branch-and-bound algorithm to solve this problem;
certain improvements were subsequendy suggested by
Bagga and Kalra [1982]. We compute the heuristic
estimate h(N) at the current node N as follows :

Order the processing times of the m jobs in Q in
the non-decreasing order

ai1) aj(2) ' • * a j (m)
Also order the penalty coefficients of the jobs in Q
independently in the non-increasing order

C i (l) C i(2) C i (m) '
Take the heuristic estimate as

where
and
Our computation ensures that h(N) is a lower bound on
h*(N), the cost of the optimal path from N to a goal,
since the penalty functions strictly dominate each other
and have no crossover points. The sorting of the
processing times and the penalty coefficients is done
only once at start. Thereafter, we just have to keep track
of which jobs are in Q, and when computing the
heuristic estimate we simply skip over those terms in the
sorted lists that correspond to jobs in P.

The method can be generalized to handle penalty
functions for job Ji that are proportional to (fi)k or to
exp(kf i), where k is a real constant independent of i.
Such functional forms have not been considered by
Townsend [1978] or Bagga and Kalra [1980].

In our experiments, programs were written in C and
run on the SUN 3/60 workstation. The search graph was
a graph and not a tree. The heuristic is monotone
[Nilsson, 1980], so that a node is expanded at most
once. But it is still advantageous to use a graph
representation because this allows the g-values of
unexpanded nodes to get updated in OPEN. A tree
representation causes an explosion in the number of
nodes generated and expanded. To implement graphs
efficiently, we need to be able to find out quickly
whether a newly generated successor is already present
in the graph. This can be achieved by the use of a
hashing scheme. A node N corresponds to a subset of
jobs; the bit representation of N is viewed as a binary
number which is then hashed using the modulo method.
A l l particulars about a node are stored in the hash table;
entries in the priority queue are pointers to the hash
table. Two different penalty functions of the form Gi(fi)
= c i(f i)k were considered, with k = 2.0 and k = 1.5.
Processing times (ai) of jobs were integers and were
chosen randomly in the range 1 to 99 from a uniform
distribution. Penalty coefficients (ci) were also integers
and were generated in the range 1 to 9 in the same way.
For each set of jobs, the execution time, the total
number of nodes generated, and the total number of

180 Automated Reasoning

nodes expanded were averaged over 25 runs. Results are
given in Table I. It was found experimentally that for k
= 2, Townsend's algorithm runs slightly faster than ours,
but these results are not shown in the table.

Case I I I General non-linear penalty functions;
separable setup times.

This generalizes Case I I . Here we consider penalty
functions Gi that have the non-negative integers as

domain and the non-negative real numbers as range; each
Gi is non-decreasing and possibly non-linear, and the
Gi's do not necessarily have identical functional forms
[Schild and Fredman, 1963]. Let q, T and fj(k) be defined
as in Case n, and let

G(x) = min { G i(x) I Ji is in Q }.
When computing the heuristic estimate arrange the jobs
as in Case II and then use G and q instead of the G i's
and the qi's, but when computing g(N) use the actual Gi
and qi values. Close bounds are hard to obtain when the
G i's have different functional forms.
Claim h(N)<h*(N).
Proof: Express h*(N) as a function of T, and of the
parameters Gi, pi, ai and qi of the jobs Ji in Q. Replace
each occurrence of Gi and qi in the expression for h*(N)
by G and q respectively; this gives a value h o N) <
h*(N). But when G and q are used for computing the
heuristic estimate, h(N) is the smallest estimate we can
get, so that we must have h(N) < ho(N). □

Some experimental results are given in Table 1H. As
before, nodes correspond to unordered sets of jobs and
the heuristic is monotone. The penalty functions were
chosen to have the form G i(f i) = Cifi + c i(f i)2. The
coefficients Ci and ci were both randomly generated in
the range 1 to 9.

In the two-machine flow-shop problem, each job must be
processed twice; it must be processed on the first
machine before it is processed on the second machine.
The completion time of a job is the time at which its
processing on the second machine is finished. The
classic algorithm of Johnson [1954] finds a minimum
length schedule. Our objective is to minimize the total
penalty. This problem has been generally considered to
be intractable, and there are very few references on the
topic. Search methods can be applied here with
advantage. We use the notation introduced earlier with
the following additions and modifications:

Sen, Bagchi, and Sinha 181

Sequencing problems of up to 12 jobs can be readily
solved using a tree representation for the search graph,
where a node corresponds to an ordered sequence of
jobs. Such a formulation is essentially equivalent to a
best-first branch and bound procedure. If we represent a
node as an unordered subset of jobs we find that the
search is faster but no longer order preserving, because
when the jobs in P are permuted, not only g(N) but also
T2, and therefore T3, get altered. This has the unusual
consequence that with a graph representation, non-
optimal solutions are outputted even when the heuristics
are admissible. It was found experimentally, however,
that the solutions are close to optimal, so that the
method can still be useful in practice. Experimental
results are given in Table IV. Data was generated

182 Automated Reasoning

and take h(N) = max { X, Y, Z }
Experimental results are given in Table VII .

4 Conclusion

The major aim of this paper has been to open a new
area of application for AI search methods, and to
illustrate how good admissible heuristics can be derived
for some practical problems. It has been shown that
certain types of difficult but practical one-machine and
two-machine job sequencing problems, for which
efficient algorithms are not currently known, can be
tackled in a reasonably satisfactory way by admissible
search schemes. The work reported here can be extended
in many directions. Even before any extension in scope
is attempted, more intensive experimental testing needs
to be undertaken of the admissible heuristics derived
here on real life data gathered from job-shops and flow-
shops. The following additional issues and questions
could be taken up for closer examination and study:

i) Is it possible to modify the methods described
here to solve sequencing problems involving sequence-
dependent setup times? In the one-machine case, this
problem has some similarities with the travelling
salesman problem. In the two-machine case, an optimal
schedule can sequence jobs in different orders on the
two machines; this greatly complicates the situation, and
perhaps a totally new approach is necessary.

ii) When there are more than two machines in a
flow-shop, an optimal schedule can order jobs in
different orders on the machines. One way out of the
difficulty is to restrict oneself to permutation schedules
only [Lageweg et al., 1978], in which jobs are sequenced
in the same order on all machines, but this has the
obvious limitation that optimal schedules may not be
realized. Can search methods be used to determine good
permutation schedules ?

ii i) In a real life problem, a job normally has a
deadline by which the processing must be completed; no
penalty accrues for a job that gets completed within its
deadline. Is it possible to modify the heuristic estimate
functions to take care of deadlines ? A positive answer
wil l greatly increase the worth of this approach.

References

[Bagga and Kalra, 1980] P. C. Bagga and K. R. Kalra, A
Node Elimination Procedure for Townsend's Algor i thm for
Solving the Single Machine Quadratic Penalty Function
Scheduling Problem, Management Science, vo l 26, no 6,
1980. pp 633-636.

[Cheng'en, 1989] Y. Cheng'en, A Dynamic Programming
Algori thm for the Travell ing Repairman Problem, Asia-
Pacific Journal of Operational Research, vo l 6, no 2,
1989, pp 192-206.

[Corwin and Esogbue, 1974] Corwin, B. D. and Esogbuc, A.
0., Two-Machine Row-Shop Scheduling Problems with
Sequence Dependent Setup Times A Dynamic
Programming Approach, Naval Research Logistics
Quarterly, vo l 2 1 , 1974, pp 515-524.

[French, 1982] S. French, Sequencing and Scheduling: An
Introduction to the Mathematics of the Job-Shop, Ellis
Horwood Ltd , 1982.

[Gupta and Darrow, 1985] J. N. D. Gupta and W. P. Darrow,
Approximate Schedules for Two-Machine Flow-Shop With
Sequence Dependent Setup Times, Indian Journal of
Management and Systems, vol 1, no 1, 1985, pp 6-11.

[Johnson, 1954] S. M. Johnson, Optimal Two-and-Three-Stage
Production Schedules Wi th Setup Times Included, Naval
Research Logistics Quarterly, vo l l, 1954, pp 61-68.

[Korf, 1985] R. E. Korf, Depth-First Iterative Deepening. An
Optimal Admissible Search, Artificial Intelligence, vol 27,
no 1, 1985, pp 97-109.

[Lageweg et al., 1978] B. J. Lageweg, J. K. Lenstra and A.
H. G. Rinnooy Kan, A General Bounding Scheme for the
Permutation Flow-Shop Problem, Operations Research, vol
26, no 1, 1978, pp 53-67.

[Lawler et al., 1982] E. L. Lawler, J. K. Lenstra and A. H.
G. Rinnooy Kan, Recent Developments in Deterministic
Sequencing and Scheduling: A Survey, in Deterministic
and Stochastic Scheduling (Eds. M. A. H. Dempster, J. K.
Lenstra and A. H. G. Rinnooy Kan), D Reidel Publishing
Co., 1982.

[Nilsson, 1980] N. J. Nilsson, Principles of Artificial
Intelligence, Tioga-Springer Verlag, 1980.

[Pearl, 1984] J. Pearl, Heuristics, Addison-Wesley, 1984.

[Rinnooy Kan et al, 1975] A. H. G. Rinnooy Kan, B. J.
Lageweg and J. K. Lenstra, Minimizing Total Costs in
One Machine Scheduling, Operations Research, vol 23, no
5, 1975, pp 908-927.

[Schild and Fredman. 1963] A. Schild and L J. Fredman,
Scheduling Tasks wi th Deadlines and Non-linear Loss
Functions, Management Science, vo l 9, 1963, pp 73-81.

[Sen and Bagchi, 1989] Anup K. Sen and A. Bagchi, Fast
Recursive Formulations for Best-First Search That A l low
Controlled Use of Memory, Proc. IJCA1-89, International
Joint Conference on Art i f ic ia l Intelligence, Detroit, U.S.A.,
1989, pp 297-302.

[Sule, 1982] Sule, D. R., Sequencing n Jobs on Two
Machines wi th Setup, Processing and Removal Times,
Naval Research Logistics Quarterly, vol 29, no 3, 1982,
pp 517-519.

[Townsend, 1978] W. Townsend, The Single Machine
Problem With Quadratic Penalty Function of Completion
Times : A Branch and Bound Solution, Management
Science, vol 24, no 5, pp 530-534.

[Viswanathan and Bagchi, 1988] K. V. Viswanathan and A.
Bagchi, An Exact Best-First Search Procedure for the
Constrained Rectangular Guillotine Knapsack Problem,
Proc. AAAI-88, American Association for Art i f icial
Intelligence, St. Paul, U.S.A., 1988, pp 145-149.

Sen, Bagchi, and Sinha 183

