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A complete classification of shock waves in a van der Waals fluid is undertaken. This is in order to

gain a theoretical understanding of those shock-related phenomena as observed in real fluids which

cannot be accounted for by the ideal gas model. These relate to admissibility of rarefaction shock

waves, shock-splitting phenomena, and shock-induced phase transitions. The crucial role played by

the nature of the gaseous state before the shock (the unperturbed state), and how it affects the

features of the shock wave are elucidated. A full description is given of the characteristics of shock

waves propagating in a van der Waals fluid. The strength of these shock waves may range from

weak to strong. The study is carried out by means of the theory of hyperbolic systems supported by

numerical calculations.VC 2011 American Institute of Physics. [doi:10.1063/1.3622772]

I. INTRODUCTION

The ideal gas model has played a pivotal role in the

study of shock wave phenomena. Many important and inter-

esting features of shock waves have been obtained, thereby

(see, for example, Refs. 1 and 2).

Real gases (fluids) are, evidently, not exactly described

by the ideal gas model. There are always deviations from the

ideal gas model in the behaviour of a real fluid, in particular

with regard to shock wave phenomena. Thus, shock waves in

real fluids exhibit richer behavior than that predicted by the

ideal gas model. The model of a real fluid is usually pre-

scribed by the thermal and caloric equations of state which

show explicitly the differences from the ideal gas model.2

This is exemplified, in particular, by the van der Waals equa-

tions of state.

Shock waves in real fluids have been the subject of

many theoretical and experimental studies in past decades

(see e.g., Ref. 3) starting from the pioneering work by

Bethe.4 In particular, shock waves in real fluids named

Bethe-Zel’dovich-Thompson (BZT) fluids,4–6 the definition

of which will be given later, have attracted much interest of

researchers in various fields. One example of the BZT fluid

is the van der Waals fluid consisting of complex molecules.

The crucial importance of real-fluid effects on shock waves

is found in several practical applications, such as in mechani-

cal engineering systems.7 Typical phenomena related to

shock waves in real fluids are propagation of rarefaction

shock waves, shock splitting phenomena, and shock-induced

phase transitions.

Rarefaction shock waves (also called negative shock

waves) are shock waves of which the density in an unper-

turbed state ahead of the shock wave is larger than that of the

perturbed state following the passage of the shock wave.6,8–12

Propagation of a rarefaction shock wave is impossible in the

ideal gas model, where only (and all) the compressive shock

waves can exist and be stable. Thus, in the terminology of the

theory of hyperbolic systems, only compressive shocks are

admissible in ideal gases. In real fluids, however, the situation

is more complicated. Compressive shocks, as well as rarefac-

tion shocks, may be either admissible or inadmissible

depending both on the strength of the shock and on the char-

acteristics of the unperturbed state.

Shock splitting phenomena are strictly connected to the

above-mentioned dependence of the shock admissibility on

the shock strength. We observe in this case the decomposi-

tion of an unstable shock wave into a combination of shock

and rarefaction waves as the strength of the shock increases

under certain conditions.13–15 Rarefactive fronts and shock

splitting phenomena in a van der Waals fluid have also been

investigated via dynamical simulations.16

Finally, shock-induced phase transition is a dynamic

phase transition accompanied by a shock wave (phase

boundary) whose unperturbed and perturbed states are in dif-

ferent phases.17–22 This phenomenon, which occurs only in

real fluids, has been thoroughly investigated experimentally

(see, for example, the liquefaction shock wave studied by

Meier23). Several review articles are available on these

topics; among others, it is worth mentioning Refs. 23–28.

See also Refs. 17, 29–32 for the general theoretical Riemann

problem in a van der Waals fluid.

Despite the remarkable success so far in theoretical stud-

ies of real-fluid effects, a comprehensive study embracing all

the above-mentioned phenomena within a unified theoretical

framework is, in our opinion, still missing.

Here, undertake a complete classification of shock

waves, the strength of which ranges from weak to strong,

when the unperturbed state is taken in the gas phase. We

a)Electronic mail: zhaonanr@scu.edu.cn.
b)Electronic mail: mentrelli@ciram.unibo.it.
c)Electronic mail: tommaso.ruggeri@unibo.it.
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investigate how the choice of the unperturbed state affects

the admissibility of compressive=rarefaction shock waves

and the possibility of obtaining phase transitions induced by

shock waves. In order to model the gas=liquid coexistence

phase, the van der Waals equations of state are suitably

modified according to the Maxwell construction.33

It will be shown, in detail, that it is possible to identify a

set of regions in the q–p (density-pressure) plane such that in

each of these regions, the unperturbed states in the gas phase

lead to shock waves with similar admissibility features. In

particular, there exist regions such that: (i) all and only the

compressive shocks are admissible and no phase transition is

allowed, just as in an ideal gas; (ii) all the rarefaction shocks

are inadmissible and the compressive ones may be admissi-

ble or inadmissible, depending on the strength of the shock;

(iii) all the compressive shocks are admissible and the rare-

faction ones may be admissible or inadmissible, depending

on the strength of the shock; (iv) both compressive and rare-

faction shocks may be admissible or inadmissible, depending

on the strength of the shock. Moreover, for each of the last

three scenarios, gas=liquid and gas=coexistence shock-

induced phase transitions may occur.

The paper is organized as follows: Sections II–IV are

preparatory. In Sec. II, the van der Waals model is reviewed

along with salient aspects of thermodynamic stability and

phase transitions. In Sec. III, an outline of hyperbolic systems

of conservation laws is provided, while in Sec. IV, the basic

concepts on shock waves and the related Rankine-Hugoniot

(RH) conditions are summarized. These conditions, in the

case of the van der Waals fluids, are also shown explicitly.

In Sec. V, the theoretical basis for the study of the admis-

sibility of shock waves is recalled. It is shown that the Euler

equations, together with the van der Waals equations of state,

involves locally linearly degenerate (or locally exceptional)

waves which are responsible, from a mathematical point of

view, for most of the phenomena observed in real gases. The

Liu condition,34,35 which replaces the Lax condition36 as a

selection rule for the study of the shock admissibility when

locally linearly degenerate waves are involved, is discussed

and applied to the fastest non-characteristic shock wave

which, without any loss of generality, is representative of all

the non-characteristic shocks in a van der Waals fluid.

The detailed analysis of the van der Waals fluid is devel-

oped in Sec. VI. The theoretical results are presented along

with numerical calculations coming from the solution of the

given hyperbolic system of equations. In this context, the nu-

merical approach plays a two-fold role: it supports the theo-

retical results and it completes the theory in all those cases

where inadmissible shocks are expected and the shock pro-

files are not directly predictable by means of the theory.

Finally, in Sec. VII, a summary of the main results is

given, along with conclusions that may be drawn in the light

of the results obtained.

II. THE VAN DERWAALS MODEL

In this section, characteristic features of the van der

Waals fluids, which are necessary in the following analysis,

are briefly summarized.

The van der Waals fluid is characterized by the caloric

and thermal equations of state based on a modification of the

ideal gas law. This modification involves the introduction of

two material-dependent parameters, a and b, representing,

respectively, a measure for the attraction between the con-

stituent particles and the effective volume of each particle.

These equations of state are the following:

e ¼ cvT � aq (1)

and

p ¼ R
Tq

1� bq
� aq2; (2)

where e is the specific internal energy, c
v
is the specific heat

at fixed volume, T is the absolute temperature, q is the mass

density, p is the pressure, and R is the specific gas constant

(R¼ kB=m, being kB the Boltzmann constant and m the mass

of a particle). Throughout the present paper, cv is assumed to

be constant, that is, only polytropic fluids are studied. We

define a dimensionless material-dependent quantity, d, as

follows:

d � R=cv; (3)

being 0 < d � 2=3, with d¼ 2=3 for a monatomic fluid.

Equation (1) may thus be rewritten as

e ¼
R

d
T � aq: (4)

By means of the Gibbs relation and making use of Eqs. (2)

and (4), we obtain the specific entropy S of the van der Waals

fluid

S ¼ R ln KT1=d 1� bq

q

� �
; (5)

where K is a constant.

Furthermore, combining Eqs. (2) and (5), one can derive

the expression of the sound velocity

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@p=@qð ÞS

q
; (6)

as follows:

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dð Þ

pþ aq2

q 1� bqð Þ
� 2aq

s
: (7)

It is convenient to introduce the dimensionless (or reduced)

variables q̂, p̂, and T̂ defined as follows:

q̂ ¼ q=qcr; p̂ ¼ p=pcr; T̂ ¼ T=Tcr;

where

qcr ¼
1

3b
; pcr ¼

a

27b2
; Tcr ¼

8a

27Rb

are the critical values of density, pressure, and temperature,

respectively. The state (qcr, pcr, Tcr) is called the critical
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point. The introduction of the reduced variables allows us to

write the equations of state in a form independent of the ma-

terial constants a and b (law of the corresponding states). In

addition to the reduced variables defined above, it is useful

to introduce also the following dimensionless quantities:

ê ¼ qcr=pcrð Þe; ĉ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qcr=pcr

p
c; Ŝ ¼ Tcrqcr=pcrð ÞS:

In terms of the reduced variables, the caloric and thermal

equations of state take the form

ê ¼
8

3d
T̂ � 3q̂; p̂ ¼

8T̂q̂

3� q̂
� 3q̂2; (8)

and the dimensionless sound velocity, ĉ, and specific en-

tropy, Ŝ, appear as

ĉ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dð Þ
3 p̂þ 3q̂2ð Þ

q̂ 3� q̂ð Þ
� 6q̂

s

; (9a)

Ŝ ¼
8

3
ln K̂T̂1=d3� q̂

q̂

� �
; (9b)

where K̂ is a constant proportional to K.

As is well known, the thermodynamic stability requires

that (@p=@q)T> 0 (or, in terms of the reduced variables,

@p̂=@q̂ð ÞT̂> 0); this means that there is a region in the

reduced state space, where the van der Waals fluid described

by the equations of state (8) is not thermodynamically stable.

This region (dark shaded region, marked as gas=liquid coex-

istence (COE) region, in Fig. 1) is bounded by the so-called

spinodal curve, S, which is the locus of the states in the

q̂� p̂ plane such that @p̂=@q̂ð ÞT̂¼ 0. From Eq. (8), it is easily

seen that the spinodal curve, S, is given by

p̂ ¼ q̂2 3� 2q̂ð Þ: (10)

Another important curve in the q̂� p̂ plane is the so-called

coexistence curve, C (also shown in Fig. 1), below which,

according to the van der Waals model, the gas and liquid

phases may coexist in the so-called coexistence state. For

any temperature T̂ < 1 (T<Tcr), there are a vaporization

point and a liquefaction point, with densities q̂G � q̂GðT̂Þ

and q̂L � q̂LðT̂Þ, respectively, belonging to the same iso-

therm, between which the fluid may undergo a gas=liquid
phase transition at constant pressure, p̂coe � p̂coeðT̂Þ. It is

worth recalling here that, in the context of the van der Waals

model, the gas phase region is conveniently assumed to be

bounded in the q̂� p̂ plane by the coexistence curve (below

the critical point) and by the critical isotherm T̂ ¼ 1 (above

the critical point).

Recalling that the chemical potential, l, defined as l¼ e

– TSþ p=q must be constant on an isothermal phase transi-

tion process with a common pressure p̂coe, after some alge-

bra, one can write down

3 q̂G � q̂Lð Þ 6� q̂G � q̂Lð Þ þ 3� q̂Gð Þ 3� q̂Lð Þ q̂G þ q̂Lð Þ

� ln
q̂L 3� q̂Gð Þ

q̂G 3� q̂Lð Þ

� �
¼ 0;

p̂coe ¼ q̂Gq̂L 3� q̂G � q̂Lð Þ (11)

which implicitly define the coexistence curve C and give the

quantities q̂G and q̂L in terms of p̂coe.

Moreover, we assume that the coexistence state is ho-

mogeneous in phase composition, with no slip between the

phases. Taking into account the additivity of the specific vol-

ume, one can obtain the following basic equations for a

coexistence state. First, the caloric and thermal equations of

state are given by

ecoe ¼
R

d
T � a qG þ qL �

qGqL
q

� �
(12)

and

pcoe ¼ R
TqG

1� bqG
� aq2G ¼ R

TqL
1� bqL

� aq2L: (13)

Second, the specific entropy Scoe turns out to be

Scoe ¼ 1� að ÞSG þ aSL;

where a is the volume fraction of the liquid phase, expressed

by

a ¼
qL q� qGð Þ

q qL � qGð Þ
;

and SG and SL are given by

SG ¼ R ln KT1=d 1� bqG
qG

� �
;

SL ¼ R ln KT1=d 1� bqL
qL

� �
:

Third, the sound velocity for a homogeneous coexistence

state, defined as37

ccoe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@pcoe
@q

� �

Scoe

s
;

is proved to take the form of (see for example, Refs. 37

and 38)

FIG. 1. Spinodal Sð Þ and coexistence Cð Þ curves in the q̂� p̂ plane, along

with three different isotherms T̂ ¼ 0:85; 0:95; 1
� �

. The dashed lines repre-

sent the isotherms when phase transition is taken into account. (G: gas

phase, L: liquid phase, MG: metastable gas phase, ML: metastable liquid

phase, and COE: gas=liquid coexistence phase).
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ccoe ¼
dpcoe
dT

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dSG

dT
�
ðq� qGÞ

qqG

d2pcoe

dT2
þ

1

q2G

dpcoe

dT

dqG
dT

s :

It must be emphasized that quantities qG and qL are functions

only of T (through pcoe, see Eq. (11)), so is SG. Therefore,

based on this expression, the sound velocity in a coexistence

state can be evaluated directly in terms of the thermody-

namic quantities q and T.

For the sake of completeness, the reduced forms of the

relations above are summarized as follows:

êcoe ¼
8

3d
T̂ � 3 q̂G þ q̂L �

q̂Gq̂L
q̂

� �
; (14a)

p̂coe ¼
8T̂q̂G
3� q̂G

� 3q̂2G ¼
8T̂q̂L
3� q̂L

� 3q̂2L; (14b)

ĉcoe ¼

dp̂coe

dT̂

q̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dŜG

dT̂
�
ðq̂� q̂GÞ

q̂q̂G

d2p̂coe

dT̂2
þ

1

q̂2G

dp̂coe

dT̂

dq̂G

dT̂

s ; (14c)

Ŝcoe ¼ 1� að ÞŜG þ aŜL; (14d)

with

ŜG ¼
8

3
ln K̂T̂1=d 3� q̂G

q̂G

� �
;

ŜL ¼
8

3
ln K̂T̂1=d 3� q̂L

q̂L

� �
:

Finally, a comment is added here, concerning the metastable

states and coexistence states of the van der Waals model. In

the region below the spinodal curve (dark shaded region in

Fig. 1), only coexistence states are physically meaningful,

since these are the only thermodynamically stable ones. On

the contrary, in the region between the coexistence and spi-

nodal curves (light shaded region), both metastable states

(metastable gas or metastable liquid states, respectively,

denoted by MG and ML in Fig. 1) and coexistence states are

physically meaningful. In other words, in the COE region,

the dashed isotherms shown in Fig. 1 are the only acceptable

ones, but in the MG and ML region, both the continuous and

the dashed isotherms are acceptable. It should be noted, how-

ever, that although a metastable gas or liquid state is stable

with respect to small fluctuations of thermodynamic quanti-

ties, such a state is unstable with respect to large fluctua-

tions. A metastable state eventually changes to a

corresponding coexistence state. In dynamical processes far

from equilibrium such as shock-induced phase transitions

under consideration, many kinds of fluctuations may inevita-

bly appear. Therefore, it seems to be natural to assume that

only coexistence states occur when the perturbed state falls

in the region between the coexistence and the spinodal

curves. Thus, in the following, we shall adopt this assump-

tion. And we shall call the union of COE, MG, and ML

regions coexistence region and denote it as G=L region.

III. OUTLINE OF HYPERBOLIC SYSTEMS OF
CONSERVATION LAWS

Let us consider a one-space-dimension problem. A

quasi-linear first order system of N differential equations

A0 uð Þ@tuþ A uð Þ@xu ¼ 0 (15)

(@t¼ @=@t; @x¼ @=@x; u � u x; tð Þ 2 RN; A0;A 2 RN�N) is

hyperbolic in the time direction if det (A0)= 0, and

(A – kA0)r¼ 0 admits real eigenvalues, k(k)(u), and a set of

linearly independent right eigenvectors, r(k)(u), (k¼ 1,…,N).

The eigenvalues k(k) are called characteristic velocities

and the system (15) is symmetric if A0 and A are symmetric

matrices and A0 is positive definite. It is easily seen, from

linear algebra, that every symmetric system is hyperbolic.

The one-dimensional conservation laws of mass, mo-

mentum, and total energy for a perfect fluid (i.e., a fluid with

zero viscosity and zero thermal conductivity; Euler equa-

tions) are written as

@tuþ @xF uð Þ ¼ 0; (16a)

u �
q

qv

E

0
@

1
A; F �

qv

qv2 þ p

Eþ pð Þv

0
@

1
A; (16b)

where v is the velocity and E is the total energy

(E¼ qeþ qv2=2).
The system (16) is a particular case of quasi-linear first

order systems, since it is obtained from Eq. (15) by setting

N¼ 3, A0 ¼ I, A¼ @F=@u.
In physical applications, like fluid-dynamics of perfect

gases, every solution of Eq. (16) satisfies also a supplemen-

tary law

@th
0 uð Þ þ @xh uð Þ ¼ R � 0;

which has a physical interpretation: it represents the balance

of entropy, provided that

h0 ¼ �qS; h ¼ �qSv;

while �R is the entropy production that, in the case of an

Euler fluid, is zero for classical solutions and non-negative

for weak solutions, in particular for shocks.

It was proven39,40 that, if h0(u) is a convex function,

there exists a privileged set of field variables (the main field,

u0) such that the original system becomes symmetric. Thus,

the convexity of h0 (i.e., the concavity of qS) guarantees the

hyperbolicity of the system.

In the case of a van der Waals fluid, the convexity of h0

is guaranteed provided that (@p=@q)T> 0, while the hyper-

bolicity requires (@p=@q)S> 0. The former condition coin-

cides with the well-known condition of thermodynamic

stability, already mentioned in Sec. II, while the latter condi-

tion comes from imposing that all the eigenvalues of the

system (16)

kð1Þ ¼ v� c; kð2Þ ¼ v; kð3Þ ¼ vþ c (17)
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are real, being c the sound velocity defined in Eq. (6).

From the following well-known thermodynamic relation

(see e.g., Ref. 41),

@p

@q

� �

S

¼
@p

@q

� �

T

þ
T

cvq2
@p

@T

� �

q

" #2
;

we obtain

@p

@q

� �

S

�
@p

@q

� �

T

;

which is in agreement with the result according to which ev-

ery symmetric system is hyperbolic.

If we adopted the caloric and thermal equations of state

given in Eq. (8), we would have a region of non-hyperbolicity

bounded, in the q̂� p̂ plane, by the curve

p̂ ¼
q̂2 3� 3d� 2q̂ð Þ

1þ d
: (18)

It is easily seen, comparing Eqs. (18) and (10), that – in agree-

ment with the above results – this region is a subset of the

region delimitated by the curve S for any meaningful value of

d. Since the modification of the van der Waals equations of

state by means of the Maxwell construction described in

Sec. II – which we are considering in this paper – allows to

avoid the physically unstable region delimited by the curve S,
it also automatically allows to avoid any loss of hyperbolicity,

therefore, the curve given by Eq. (18) is not even highlighted

in Fig. 1 because it is not meaningful to the present analysis.

IV. SHOCKWAVES AND RANKINE-HUGONIOT
CONDITIONS

A shock wave (or, in short, a shock) is a weak solution

of the hyperbolic system (15), i.e., it is a solution which has

a discontinuity localized on the so-called shock front. The

shock front, propagating with velocity s, divides the space

into two subspaces, in each of which the solution is smooth.

Denoting as unperturbed state, u0, the state before the shock

and as perturbed state, u1, the state after the shock (i.e., the

states, respectively, ahead and behind the propagating front),

it is well-known that a shock wave must satisfy the RH con-

ditions (see, for example, Ref. 36)

� s½½u�� þ ½½F�� ¼ 0; (19)

where ½½u uð Þ�� ¼ u1 � u0 represents the discontinuity (jump)

of the generic quantity u across the propagating shock front,

being u1 � u u1ð Þ and u0 � u u0ð Þ the quantity u evaluated,

respectively, in the perturbed and unperturbed states.

Taking into account Eq. (16b), the above conditions

(19) may be written as follows:

�s½½q�� þ ½½qv�� ¼ 0;

�s½½qv�� þ ½½qv2 þ p�� ¼ 0;

�s½½qeþ qv2=2�� þ ½½ qeþ qv2=2þ p
� �

v�� ¼ 0:

The RH conditions admit a one-parameter family of solu-

tions; letting n be the parameter, the perturbed state, u1, that

can be connected to a given unperturbed state, u0, through a

shock front, and the velocity s of propagation of the front

itself may be written as

u1 � u1 u0; nð Þ; s � s u0; nð Þ: (20)

The set of all the perturbed states u1 satisfying Eq. (19) for a

given unperturbed state u0 is called the Hugoniot locus for

the point u0 and is denoted as H u0ð Þ.
In the wide literature concerning shock waves in fluids,

the shock velocity, s, is often replaced by the Mach number

of the unperturbed state (unperturbed Mach number),

M0¼ (s� v0)=c0, where c0 is the sound velocity (Eq. (7)) in

the unperturbed state.

Without loss of generality, due to the Galilean invari-

ance, we shall assume from now on that v0¼ 0 and we

consider only the shock wave propagating in the positive x-

direction. Moreover, as already pointed out, we restrict

ourselves to the case in which the unperturbed state is in the

gas phase, i.e., u0 2 G.

In order to explicitly write down the solutions (20) of

the RH conditions (19), we need to distinguish two cases:

(i) the perturbed state, u1, is in the gas or liquid phase

(G ! G and G ! L solutions of the Rankine-Hugo-

niot conditions);

(ii) the perturbed state, u1, is in the gas=liquid coexistence
phase (G ! G=L solution of the Rankine-Hugoniot

conditions).

A. The Gfi G and Gfi L solutions to the
Rankine-Hugoniot conditions

In this case, the equations of state to be considered are

those given in Eqs. (2) and (4).

Given an unperturbed state, u0 : (q0, 0, q0e0)
T, in the

gas region, and taking as parameter the density of the per-

turbed state u1 � q1; q1v1; q1e1 þ q1v
2
1=2

� �T
, i.e., letting n

: q1, the solution of the RH conditions, written in terms of

dimensionless quantities, is the following:

v̂1 ¼ ĉ0M0

q̂1 � q̂0
q̂1

; (21)

p̂1 ¼ p̂0 þ ĉ20M
2
0

q̂0 q̂1 � q̂0ð Þ

q̂1
; (22)

where the unperturbed Mach number, M0, is given by

M0 ¼
1

ĉ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q̂1

q̂0 q̂1 � q̂0ð Þ
p̂1 �

q̂0q̂1 ê1 � ê0ð Þ

q̂1 � q̂0

� �s
: (23)

Taking into account Eq. (8),

ê0 ¼
p̂0 þ 3q̂20
� �

3� q̂0ð Þ

3dq̂0
� 3q̂0; (24a)

ê1 ¼
p̂1 þ 3q̂21
� �

3� q̂1ð Þ

3dq̂1
� 3q̂1; (24b)

and Eq. (23) may be written as
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M0 ¼
1

ĉ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6q̂1

p̂0 1þ dð Þ þ q̂0q̂1 q̂1 þ q̂0 þ 3d� 3ð Þ

q̂0 2q̂0 3� q̂1ð Þ þ 3d q̂0 � q̂1ð Þð Þ

s
: (25)

The dimensionless sound velocity in the unperturbed state is

given, following Eq. (9a), by

ĉ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dð Þ
3 p̂0 þ 3q̂20
� �

q̂0 3� q̂0ð Þ
� 6q̂0

s

:

As the entropy production must be non-negative, the entropy

production rate, g, may be calculated as follows:

g ¼ �s½½h0�� þ ½½h�� ¼ s½½qS�� � ½½qSv�� ¼ q0 s� v0ð Þ½½S�� � 0

which may be written as, in terms of dimensionless quanti-

ties ĝ ¼ Tcrq
1=2
cr p�3=2

cr g
� �

:

ĝ ¼ q̂0ĉ0M0½½Ŝ�� � 0 (26)

where

½½Ŝ�� ¼
8

3
ln

T̂1

T̂0

� �1=d
3� q̂1ð Þq̂0
3� q̂0ð Þq̂1

 !
:

B. The Gfi G=L solutions to the Rankine-Hugoniot
conditions

In this case, the equations of state given in Eqs. (2) and (4)

are still to be used in the unperturbed state, u0, but the equa-

tions of state given in Eqs. (13) and (12) must be considered

for the perturbed state u1.

The dimensionless perturbed fluid velocity, v̂1, pressure,

p̂1, and the unperturbed Mach number, M0, are still given by

Eqs. (21)–(23), respectively, but Eq. (25) is not valid any-

more, since Eq. (24b) must be replaced by

ê1 ¼
p̂1 þ 3q̂2G
� �

3� q̂Gð Þ

3dq̂G
� 3 q̂G þ q̂L �

q̂Gq̂L
q̂1

� �
; (27)

obtained from Eq. (14a).

Thus, Eq. (25) has to replaced by Eq. (23), Eq. (24a),

and Eq. (27) that set up a system which must be solved by

means of a suitable numerical method.

The dimensionless entropy production rate, ĝ, is calcu-

lated by means of Eq. (26) where ½½Ŝ��, according to Eq.

(14d), is given by

½½Ŝ�� ¼ 1� að ÞŜG þ aŜL � Ŝ0

¼
8

3
ln

T̂1

T̂0

� �1=d
3� q̂G
q̂G

� �1�a
3� q̂L
q̂L

� �a
q̂0

ð3� q̂0Þ

" #
:

V. THE ADMISSIBILITYOF SHOCK WAVES

According to the theory of hyperbolic systems, not every

solution of the Rankine-Hugoniot conditions corresponds to

a physically meaningful shock wave. Thus, we need a crite-

rion to select which of the states u1 2 H u0ð Þ are perturbed

states that together with u0 form admissible shocks. Admissi-

ble shocks propagate with no change in shape and, moreover,

they are stable with respect to small perturbations of the

unperturbed and perturbed states;42 for this reason, admissi-

ble shocks are usually called also stable shocks.

In order to provide a selection rule to evaluate the

admissibility of shocks, it is necessary to recall that in the

theory of hyperbolic systems a wave associated to a charac-

teristic velocity k is called r � @=@uð Þ: genuinely non-lin-

ear, if rk � r 6¼ 0 8u; linearly degenerate (or exceptional),

if rk � r � 0 8u; locally linearly degenerate (or locally

exceptional), if rk � r ¼ 0 for some u.

From now on, we shall call k the kth characteristic ve-

locity and r the corresponding eigenvector, i.e., k: k(k) and

r: r
(k).

The issue of shock admissibility when genuinely non-

linear and linearly degenerate waves are involved has been

largely investigated; the hyperbolic system of conservation

laws of mass, momentum, and energy for an ideal gas, for

example, features only waves belonging to these two types

and it has been deeply analyzed in the past decades (see,

among the others, the book by Landau and Lifshitz1). On the

contrary, the hyperbolic system of the van der Waals fluid

features linearly degenerate and locally linearly degenerate

waves. A comprehensive analysis of the shock admissibility

in this kind of fluid has never been presented up to now, as

far as the authors know.

A. Lax and Liu conditions

The selection rule useful to study the admissibility of

shocks depends on the type of the involved non-linear waves.

Thus, it is necessary to discuss separately the cases of genu-

inely non-linear, linearly degenerate, and locally linearly

degenerate waves.

When we deal with genuinely non-linear waves, the

selection rule is given by the Lax condition, according to

which a shock wave is admissible if there exists a character-

istic velocity k such that36

k0 < s < k1;

where k0 : k (u0) and k1 : k (u1); such a shock wave is

called k–shock (being k the kth eigenvalue of the system).

The Lax condition turns out to be equivalent (at least for

weak shocks) to the condition of entropy growth across the

shock

g ¼ �s½½h0�� þ ½½h�� > 0:

On the other hand, when we deal with a linearly degenerate

wave, admissible k–shocks are called characteristic shocks

and they propagate with velocity s¼ k0¼ k1. In this case,

there is no entropy growth across the shock, i.e., g¼ 0. A

characteristic shock depends on as many parameters as the

multiplicity of the eigenvalue k;43 the system of equations of

the Euler fluid in three space dimensions, for example,

exhibits an eigenvalue of multiplicity three, and the contact

shock wave associated to this eigenvalue is thus a character-

istic shock depending on three parameters.
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Finally, when the system features locally linearly degen-

erate waves, the selection rule is given by the Liu condi-

tion,34,35 stating that a shock wave is admissible if

s � s	;

8s	 2 fs	 : s	 u	 � u0ð Þ ¼ F u	ð Þ � F u0ð Þ;

u	 2 H u0ð Þbetween u0 and u1g:

This means that a shock is admissible if its velocity, s, is not

smaller than the velocity of any other shock with the same

unperturbed state u0 and with perturbed state u	 lying on the

Hugoniot locus for u0 between u0 and u1 (see Fig. 2). If the

Liu condition is not satisfied, the shock is unstable or inad-

missible. It is well-known that the Liu condition implies the

Lax condition, and at least for moderate shock, the entropy

growth, and therefore, the stable shocks satisfy the second

law of the thermodynamics (see, e.g., Ref. 42). Conversely,

the entropy growth is not sufficient to imply the Liu condi-

tion, and we need additional conditions.42,44

B. Further analysis

Differentiating Eq. (19) with respect to the parameter n

and taking into account (Eq. (20)) we get

_s u1 � u0ð Þ ¼ A� sIð Þ _u1; (28)

where � � d=dn. Letting l and r be, respectively, the left and

right normalized eigenvectors of A, i.e.,

l A� kIð Þ ¼ 0;

A� kIð Þr ¼ 0;

lðiÞ � rðjÞ ¼ dij ði; j ¼ 1;…;NÞ;

we may write, from Eq. (28),

_s l � ½½u�� ¼ k� sð Þl � _u1: (29)

From Eqs. (28) and (29), when ½½u�� ! 0 we have

s ! k0; _u1 ! r0; (30)

with r0: r(u0); then, for weak shocks,
53

½½u�� ¼ n� n0ð Þr0 þO
�
n� n0ð Þ2

�

and

l � ½½u�� ¼ n� n0 þO
�
n� n0ð Þ2

�
; (31a)

l � _u1 ¼ 1þO n� n0ð Þ: (31b)

Assuming that the quantities l � ½½u�� and l � _u1, which—as

seen in Eq. (31)—are different from zero for weak shocks,

do not vanish also for non-weak shocks, and denoting as pos-

itive shocks, the solution of the RH conditions with n> n0
(forming the positive branch of the Hugoniot locus H u0ð Þ)
and negative shocks those with n< n0 (forming the negative

branch of H u0ð Þ) and combining Eqs. (29) and (31), we

obtain the results shown in Table I and sketched in Fig. 2(b).

Differentiating Eq. (28) and (A – kI)r¼ 0 with respect

to n, we obtain, respectively,

� €s ½½u�� þ _A� 2 _sI
� �

_u1 þ A� sIð Þ€u1 ¼ 0 (32)

and

_A� _kI
� �

rþ A� kIð Þ _r ¼ 0: (33)

Taking the limit ½½u�� ! 0 of Eqs. (32) and (33) and then mul-

tiplying both by l0¼ l(u0), we have the well-known result:36

_s0 ¼
1

2
_k0: (34)

If _k0 > 0, from Eq. (34), it is seen that _s0 > 0 and, taking

into account the results shown in Table I, we get that positive

shocks are admissible and negative ones are inadmissible.

This is true at least for weak shocks n ’ n0ð Þ and it is cer-

tainly true also for strong shocks nj j 
 n0ð Þ if s is an increas-
ing function of the parameter n.

Analogously, if _k0, _s0 < 0 the opposite situation is veri-

fied: the negative shocks are admissible and the positive

ones are inadmissible. This conclusion, which is always true

for weak shocks, is true also for strong shocks if s is a

decreasing function of n.

The case of the hyperbolic systems of the Euler equa-

tions of an ideal gas is a well-known example of a system

with shocks whose velocity of propagation, s, is a strictly

monotonous function of the parameter n so—except for the

FIG. 2. Shock velocity s as a function of the

shock parameter n and the range of the admissi-

ble shocks (bold curve). k is the characteristic

velocity.

TABLE I. Relation between the quantity (k – s) and the quantity _s along the

positive and negative branches of the Hugoniot locus.

Branch ofH u0ð Þ _s > 0 _s ¼ 0 _s < 0

Positive shocks (n> n0) k> s k¼ s k< s

Negative shocks (n< n0) k< s k¼ s k> s
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characteristic shocks—there is an entire branch of H u0ð Þ
which is admissible while the other branch is entirely

inadmissible.

Since in fluid-dynamics a shock characterized by a den-

sity of the unperturbed state lower than the density of the

perturbed state is usually called compressive shock, while in

the opposite case a shock is called rarefaction (or negative)

shock, it turns out that in an ideal gas all (and only) the com-

pressive shocks are admissible.

If _k0 ¼ _s0 ¼ 0, two situations are possible: if n0 corre-

sponds to a minimum value of k, then both positive and neg-

ative weak shocks are admissible; if n0 corresponds to a

maximum value of k, both positive and negative weak

shocks are inadmissible.45 This situation is encountered

when dealing with locally linearly degenerate waves, in fact

(see Eq. (30))

_k0 ¼ rk � _u1ð Þ0¼ rk � rð Þ0;

so the condition _k0 ¼ _s0 ¼ 0 is verified when the unper-

turbed state belongs to the locus of states such that

rk � r ¼ 0, which exists only when the wave associated to

the eigenvalue k is locally linearly degenerate.

From the above discussion, it is clear that the local

exceptionality hypersurface, defined as the locus of the states

u such that rk � r ¼ 0, is crucial in the study of the shock

admissibility when locally exceptional waves are involved.

In fact, aside from being the locus of the unperturbed

states for which both positive and negative weak shocks are

admissible or inadmissible, the local exceptionality hypersur-

face divides the space of the states into two subspaces: on one

of these subspaces _k0 > 0 and when the unperturbed state falls

into this region, among the weak shocks, only the positive

ones are admissible; on the other subspace, the opposite situa-

tion is verified: among the weak shocks, only the negative

ones are admissible. We may chose the eigenvector r such

that rk � r > 0 in the first case and rk � r < 0 in the second

case, for a reason that will become evident in Sec. V C.

From this discussion, it turns out that when locally line-

arly degenerate waves are involved, both compressive and

rarefaction (i.e., positive and negative) shocks may be admis-

sible, depending on where the unperturbed state is taken.

This is exactly the case of the hyperbolic system of the van

der Waals fluid described in Sec. II.

C. The local exceptionality hypersurface for the van
der Waals fluid

In order to calculate the local exceptionality hypersur-

face associated to the hyperbolic system of equations of the

van der Waals fluid, we observe that if we perform the for-

mal substitution

@t ! �kd; @x ! d; (35)

where d is a differential operator (not to be confused with

the constant d previously defined), we obtain from Eq. (15)

that du / r. Therefore,

dk ¼ rk � du / rk � r ¼ 0

and we conclude that the local exceptionality hypersurface is

the locus of states such that dk vanishes.

In the case of a van der Waals fluid, it is seen that locally

linearly degenerate waves, with characteristic velocities k,

are involved. It is thus possible to calculate the associated

local exceptionality hypersurfaces, dividing the space of the

states into two subspaces, over each of which rk � r does not
vanish and never changes sign.

The wave associated to the eigenvalue k(2), given in Eq.

(17), is linearly degenerate while the waves associated to k(1)

and k(3) are locally linearly degenerate. Focusing on the

wave associated to k : k(3) (the study of k(1) is analogous),

by applying Eq. (35) to the conservation laws of mass and

entropy, and recalling the definition of the sound velocity

given in Eq. (6), we obtain

dv ¼
c

q
dq; dS ¼ 0; dc ¼

pqq
� �

S

2c
dq:

Therefore, we get

dk ¼
qðpqqÞS þ 2 pq

� �
S

2cq
dq; (36)

and, as a result, the locus of the states such that rk � r ¼ 0,

which we shall call local exceptionality curve, Ld, is given

by

q pqq
� �

S
þ 2 pq
� �

S
¼ 0

or taking into account the van der Waals thermal equation of

state and switching to reduced variables

p̂ ¼ q̂2
2 3� q̂ð Þ2

2þ 3dþ d2
� 3

 !
: (37)

The local exceptionality curve corresponds to what is com-

monly known in gasdynamic as transition line (see, for

example, Ref. 46), i.e., the locus of thermodynamic states for

which the fundamental derivative

C �
s3

2c2
pssð ÞS¼

1

2qc2
@

@q
q2 pq
� �

S

h i
; (38)

vanishes (s denotes here the specific volume, i.e., s¼ 1=q).
In fact, comparing Eqs. (36) and (38), it is seen that

dk

dq
¼

c

q
C:

Since the early Seventies, the curve C¼ 0 has played a major

role in the study of the so-called BZT fluid, i.e., those fluids

in which nonclassical phenomena as rarefaction shock waves

may come into play. The BZT fluids—which took this name

after the works by Bethe, Zel’dovich, and Thompson4–6—

are in fact those fluids for which a region with C< 0 appears,

in contrast to ideal gases and many real fluids for which C is

always positive.

The choice of the eigenvectors pointed out in Sec. V B

is made in order to let the sign of the quantity rk � r match
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the sign of the fundamental derivative C; the regions with

rk � r > 0 and rk � r < 0 correspond, respectively, to the

regions where C> 0 (also known as region of positive nonli-

nearity) and C< 0 (region of negative nonlinearity).

Since only the thermodynamic quantities q̂ and p̂ appear

in Eq. (37), we can restrict ourselves to considering, instead

of a surface in the state space, only the curve described by

the above equation in the q̂� p̂ plane.

The subscript in the notation we use for the local excep-

tionality curve, Ld, points out the dependence of this curve

on the parameter d, in contrast to what happens to the already

defined S and C curves. This dependence is shown, for some

values of the material constant d, in Fig. 3.

Since we are considering that below the coexistence

curve only coexistence states are allowed (i.e., we are dis-

carding metastable states), the Ld curve is meaningful only

outside the coexistence region. Making use of Eqs. (11) and

(37), it is easily seen that the local exceptionality curve is

meaningful only when 0 < d < dBZT with dBZT ’ 0:06
since, as it may be appreciated from Fig. 3, as d ! dBZT the

region enclosed between the Ld and C curves vanishes.

As it will be discussed later, dBZT is an important

threshold value of the parameter d: only when d < dBZT , a

region of negative nonlinearity appears and nonclassical phe-

nomena are possible. This happens, according to Eq. (3),

when the specific heat, c
v
, is sufficiently large.

VI. ANALYSIS OF THE SHOCK ADMISSIBILITYAND
SHOCK-INDUCED PHASE TRANSITIONS

In this section, first, we make theoretical considerations

on the shock-related phenomena and show how the choice of

the unperturbed states affects the features of the phenomena.

Second, we show and discuss the typical numerical results in

order to check the theoretical results and to investigate the

wave profiles in the case of inadmissible shocks.

A. Theoretical considerations

As pointed out in Sec. V, in the case of the hyperbolic

system of the Euler equations (16) for an ideal gas, since the

involved waves are genuinely non-linear, the study of the

admissibility of non-characteristic shocks requires the Lax

condition. The application of this selection rule gives results

that may be easily summarized as follows:

1. Every compressive shock is admissible (stable shocks)

and

2. Every rarefaction shock is inadmissible (unstable shocks).

In the case of the van der Waals fluid, locally linearly

degenerate waves are involved; the admissibility of shocks is

to be investigated by means of the Liu condition and the

results of the application of this selection rule are not so

straightforward as in the ideal gas case. As far as weak

shocks are concerned, these results may still be easily sum-

marized as follows:

1. Every compressive weak shock is admissible when the

unperturbed state is taken in the region of the q̂� p̂ plane

where rk � r > 0, i.e., in the region of positive

nonlinearity.

2. Every rarefaction weak shock is admissible when the

unperturbed state is taken in the region of the q̂� p̂ plane

where rk � r < 0, i.e., in the region of negative

nonlinearity.

3. Both compressive and rarefaction weak shocks are admis-

sible (inadmissible) when the unperturbed state is taken

on the curve of the q̂� p̂ plane such that rk � r ¼ 0, i.e.,

on the transition line, and k: k(n) has a maximum (mini-

mum) on this curve.

For non-weak shocks, a satisfactory classification

requires a closer look at the features of the unperturbed state,

as we shall see. Moreover, in the case of a van der Waals

fluid, in contrast to the case of an ideal gas, the possibility of

shock-induced phase transitions is to be considered.

It is thus interesting to analyze in greater detail how the

admissibility of shocks and the possibility of shock-induced

phase transitions are affected by the choice of the unper-

turbed state, u0 (or, in terms of reduced variables, û0). In this

analysis, we will assume that the unperturbed state is in the

gas phase, i.e., û0 is represented, in the q̂� p̂ plane, by a

state q̂0; p̂0ð Þ in the region marked by G in Fig. 3. In agree-

ment with the considerations expressed in Sec. II, we discard

the possibility of shock-induced phase transition from gas

phase to metastable phase, and we shall therefore be con-

cerned with phase transitions from gas phase to coexistence

phase (G ! G=L shocks) and from gas phase to liquid phase

(G ! L shocks).

As already pointed out in Sec. V C, the local exception-

ality curve depends on the parameter d, and only for

d � dBZT ’ 0:06, this curve is meaningful from a physical

point of view. Therefore, the two cases d � dBZT and

d > dBZT have to be discussed separately.

1. Case d£ dBZT (BZT fluids)

When d � dBZT ’ 0:06, a region of negative nonlinear-

ity (C< 0 or, equivalently,rk � r < 0) appears and non-clas-

sical shock phenomena may come into play: this corresponds

to the case of so-called BZT fluids.

In this case, the gas region in the q̂� p̂ plane may be

subdivided into a set of non-overlapping regions (the union

FIG. 3. Curves of local exceptionality (Ld curves) for several values of the

parameter d (d¼ 0, 0.02, 0.04, 0.055). The gas, liquid, and coexistence

regions (respectively G, L, and G=L) are highlighted.
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of which completely covers the gas region), as it is shown—

for d¼ 0.01—in Fig. 4. It is essential to observe that the

change of d, as far as d does not exceed dBZT , leads to

changes in size and shape of the regions that we are about to

discuss, but does not alter the following qualitative analysis.

Each of these regions (that we denote as A, B, C, eC, D, and
E, assuming the region B as split up into the two subregions

B1 and B2, as seen in Fig. 4) contains states that, if taken as

unperturbed states, lead to Hugoniot loci with similar fea-

tures from the point of view of the shock admissibility. The

gas region may be subdivided as follows:

• region A [ B [ C [ eC. This is the region where

rk � rð Þ0> 0. When the unperturbed state belongs to this

region, compressive weak shocks are admissible and rare-

faction weak shocks are inadmissible. A deeper analysis

shows that:
• region A [ B. When the unperturbed state belongs to this

region, the Hugoniot locus H û0ð Þ does not go through

the coexistence region nor the liquid region, so no

shock-induce phase transition is possible. This region

may be further subdivided as follows:
• region A. When û0 2 A, all the compressive shocks

are admissible and all the rarefaction shocks are inad-

missible, i.e., the positive branch of H û0ð Þ is entirely
admissible and the negative branch is entirely inadmis-

sible. In this case, the shock admissibility is qualita-

tively the same as in the ideal gas case, i.e., the Liu

condition is equivalent to the Lax condition;
• region B. When û0 2 B, the Hugoniot locus H û0ð Þ
crosses the local exceptionality curve. The Liu condi-

tion and the Lax condition are not equivalent. As a

result, not all the compressive shocks are admissible

but all the rarefaction shocks are inadmissible for the

unperturbed states in B1, and not all the rarefaction

shocks are admissible but all the compressive shocks

are admissible for the unperturbed states in B2.
• region C. When the unperturbed state belongs to this

region, the Hugoniot locus H û0ð Þ crosses the coexis-

tence curve, C, so phase transitions may be allowed. The

Hugoniot locus may cross also the local exceptionality

curve, Ld, so inadmissible compressive shocks can be

encountered.

• region eC. When the unperturbed state belongs to this

region, admissible compressive strong shocks have the un-

usual property that, as the strength of the shock increases,

the perturbed density decreases. This kind of shock, called

compressive upper shock, and the properties of the region
eC have been extensively analyzed elsewhere47 and they

will not be discussed here any further.
• region D [ E. This is the region where rk � rð Þ0< 0.

When the unperturbed state belongs to this region, rarefac-

tion weak shocks are admissible and compressive weak

shocks are inadmissible. This region may be further subdi-

vided as follows:
• region D. When û0 2 D the Hugoniot locus H û0ð Þ does
not cross the coexistence region nor the liquid region, so

no phase transition is allowed;
• region E. When û0 2 E the Hugoniot locus H û0ð Þ goes
through the coexistence and liquid region, so phase tran-

sitions may be allowed.

It is worth noting that the curve of the q̂� p̂ plane that

separates regions A and B1 is the locus L
	
d of the states that,

when taken as unperturbed states, lead to Hugoniot loci tan-

gent to the local exceptionality curve.

For any fixed d, letting p̂Ld
� p̂Ld

q̂ð Þ the reduced pres-

sure as a function of the reduced density on the local excep-

tionality curve Ld, provided by Eq. (37), and p̂H � p̂H q̂; û0ð Þ
the reduced pressure along the Hugoniot locus for û0, pro-

vided by Eq. (22), the states û0 2 L	
d are those that satisfy,

for some q̂, the following system of equations:

p̂Ld
q̂ð Þ ¼ p̂H q̂; û0ð Þ;

@p̂Ld
q̂ð Þ

@q̂
¼

@p̂H q̂; û0ð Þ

@q̂
:

Analogously, the curve separating regions B and C (and

regions D and E) is the locus C	 of the unperturbed states

whose Hugoniot loci are tangent to the coexistence curve.

Thus, the states û0 2 C	 are those that satisfy, for some q̂,

the conditions

p̂C q̂ð Þ ¼ p̂H q̂; û0ð Þ;

@p̂C q̂ð Þ

@q̂
¼

@p̂H q̂; û0ð Þ

@q̂
;

FIG. 4. (a) Regions of the q̂� p̂ plane. Each

region consists of states that, when taken as

unperturbed states, lead to shocks with similar

features as far as admissibility and phase-transi-

tion issues are concerned. (b) Magnification of

the region enclosed in a box in part (a) of the

figure. (The regions shown in this figure are

obtained with d¼ 0.01).
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where p̂C � p̂C q̂ð Þ is the reduced pressure as a function of the

reduced density on the coexistence curve, obtained as

explained in Sec. II.

A little bit trickier is the case of the curve L		
d separating

the regions A and B2. The Hugoniot loci for the states

belonging to the region B2 have partially admissible negative

branches, in contrast to the states of region A that have com-

pletely inadmissible negative branches of the Hugoniot loci.

On the basis of the theory presented in Sec. V B, it may be

shown that the curve L		
d is thus found as the locus of states

û0 satisfying, for some q̂, the following conditions:

sH q̂; û0ð Þ ¼ kH q̂; û0ð Þ ¼ k0;

where sH � sH q̂; û0ð Þ and kH � kH q̂; û0ð Þ are, respectively,
the shock velocity and the characteristic eigenvalue eval-

uated on the Hugoniot locus for u0 and k0 � kH q̂0; û0ð Þ.
It is worth noting that the curve L		

d is the locus of the

unperturbed states for which exactly one rarefaction shock

wave is admissible. This curve was first obtained by Zamfir-

escu, Guardone, and Colonna11,12 and, since the velocity of

the unique admissible rarefaction shock obtainable for

û0 2 L		
d equals the sound velocity in both the unperturbed

and perturbed states, this curve was named double sonic

locus (DSL) by those authors (see also Ref. 48).

The details concerning the calculation of the curve Cb,
separating region C and region eC, are available, along with a

discussion of the properties of the region eC in Ref. 47.

The curves L	
d, C

	, L		
d , and Cb are shown, for d¼ 0.01,

in Fig. 4.

2. Case d > dBZT (non-BZT fluids)

In the second case to be discussed, i.e., when

d > dBZT ’ 0:06, the local exceptionality curve, Ld, is not

relevant, as seen in Sec. V C. This case corresponds to

the case of classical (i.e., non-BZT) fluids, in which non-

classical phenomena like rarefaction shocks do not come

into play.

The regions B, D, and E previously discussed vanish as

d ! dBZT and it is seen that this case may still be described

as the case of BZT fluids just letting B � D � E � ; for

dBZT < d � dR ’ 0:16 or letting B � C � eC � D � E � ;
for d > dR. That is, in the former case, phase-transition phe-

nomena may still occur, even if the fluid is classical (in the

sense of non-BZT). In the latter case, only the region A

exists and therefore shock-induced phase transitions never

occur.

The fluids exhibiting these two different behaviors are

usually classified as retrograde fluids d � dRð Þ and regu-

lar fluids d > dRð Þ. Retrograde fluids and their role in gas

dynamics have been extensively studied in the past deca-

des (see, for instance, Refs. 23 and 49) because of their

capability of undergoing a phase transition as a conse-

quence of an isoentropic process or an adiabatic shock

compression.

B. Numerical results

In order to check the results obtained by means of the

theory of the hyperbolic systems previously discussed and to

investigate the wave profiles in the case of inadmissible

shocks, numerical calculations have been performed to solve

the system (16) with the equations of state given in Sec. II in

terms of adimensionalized quantities

@t̂ûþ @x̂F̂ ûð Þ ¼ 0; û �
q̂

q̂v̂

Ê

0
@

1
A; F̂ �

q̂v̂

q̂v̂2 þ p̂

Êþ p̂
� �

v̂

0
@

1
A;

FIG. 5. (Color online) (a) Hugoniot locus

H û0ð Þ for an unperturbed state û0 2 A (thin=-
thick branches: inadmissible=admissible

branches); (b) M0 and k* as functions of the pa-

rameter n � q̂1; (c) and (d): numerically calcu-

lated wave profiles related to the unperturbed

state û0 (dark-faced dot) and perturbed states û1
(light-faced dots) highlighted onH û0ð Þ.
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where x̂, t̂, and v̂ are, respectively, dimensionless space,

time, and velocity defined, after introducing a characteristic

length, L, as

x̂ ¼
x

L
; t̂ ¼

t

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qcr=pcr

p ; v̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qcr=pcr

p
v:

All the calculations have been carried out with a

MATLAB=Cþþ general-purpose code, based on a central

Runge-Kutta (CRK) scheme,50 useful for the numerical solu-

tion of hyperbolic systems of balance and=or conservation

laws elsewhere presented51 and already used for the analysis

of the interaction between shocks and acceleration waves in

an ideal gas.52

The selection of the numerical results offered here

includes six different set of results: for each of the five

regions shown in Fig. 4, an unperturbed state û0 has been

selected and several perturbed states belonging to H û0ð Þ
have been chosen, with the aim of picking out interesting

cases of admissible=inadmissible, compressive=rarefaction
shocks. Finally, the last set of results concerns the case in

which the unperturbed state û0 belongs to the local excep-

tionality curve, Ld, leading to both admissible (or inadmissi-

ble) compressive, and rarefaction weak shocks, as discussed

in Sec. V B. All the presented results are obtained, without

any loss of generality, with d¼ 0.01.

Fig. 5 concerns the case of an unperturbed state û0
belonging to region A. The Hugoniot locus H û0ð Þ is shown
in Fig. 5(a); here, and in all the subsequent figures, the thin

branch of the Hugoniot locus represents inadmissible shocks

and the thick branch represents admissible shocks according

to the Liu condition (see Sec. V A). We shall therefore call

the thin and thick branches, respectively, inadmissible and

FIG. 6. (Color online) (a) Hugoniot locus

H û0ð Þ for an unperturbed state û0 2 B1 (thin=-
thick branches: inadmissible=admissible

branches); (b) M0 and k* as functions of the

parameter n � q̂1; (c)–(h): numerically calcu-

lated wave profiles related to the unperturbed

state û0 (dark-faced dot) and perturbed states û1
(light-faced dots) highlighted onH û0ð Þ.

086101-12 Zhao et al. Phys. Fluids 23, 086101 (2011)

Downloaded 23 Jan 2013 to 133.68.232.231. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



admissible branches. In this figure, as well as in all the other

figures, the dark-faced dot alongH û0ð Þ represents the chosen
unperturbed state and the light-faced dots represent the per-

turbed states on H û0ð Þ for which the wave profiles have

been numerically calculated as the solution, at a given time

t> 0, of the Riemann problem associated to the initial data

û x; t ¼ 0ð Þ ¼
û1 x < 0

û0 x > 0

	
with û1 2 H û0ð Þ:

Since û1 belongs to the Hugoniot locus for û0, the states û1
and û0 are connected through an (admissible or inadmissible)

shock associated to the eigenvalue k: k(3).

For the case of the unperturbed and perturbed states

taken in region A, these profiles are shown in Figs. 5(c) and

5(d). The behavior of the unperturbed Mach number, M0,

and of a suitably adimensionalized characteristic velocity,

k*¼ k=c0, as functions of the parameter n � q̂ are shown in

Fig. 5(b).54 In this case, two perturbed states have been

selected: one on the admissible branch and one on the inad-

missible branch of the Hugoniot locus. As expected, the nu-

merical results concerning the case of the inadmissible shock

show the typical profile of a rarefaction wave, while in the

other case the typical sharp profile of a stable shock is

obtained.

In Fig. 6, the case of an unperturbed state û0 belonging

to region B (in particular, û0 2 B1) is discussed. In this case,

as expected, not the whole positive branch of the Hugoniot

locus is admissible: this is clearly shown in Figs. 6(e)–6(g),

FIG. 7. (Color online) (a) Hugoniot locus

H û0ð Þ for an unperturbed state û0 2 C (thin=-
thick branches: inadmissible=admissible

branches); (b) M0 and k* as functions of the pa-

rameter n � q̂1; (c)–(h): numerically calculated

wave profiles related to the unperturbed state û0
(dark-faced dot) and perturbed states û1 (light-

faced dots) highlighted onH û0ð Þ.
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where the wave profiles for three inadmissible compression

shocks are given. These profiles are interesting because,

aside from confirming the inadmissibility of the shocks, they

also show the so-called shock splitting phenomenon: the

wave profiles numerically obtained as a solution of the Rie-

mann problem are a composition of shocks, rarefaction

waves and, possibly, constant states.

From Figs. 6(d)–6(h) it is also possible to appreciate

that, in agreement with the theory, not all the compressive

shocks are inadmissible: when the perturbed states are taken

on the admissible branch of H û0ð Þ (thick part or the Hugo-

niot locus in Fig. 6(a)), the numerically calculated wave pro-

files clearly show stable shocks. This set of results is

completed by a rarefaction wave profile, shown in Fig. 6(c),

obtained for an inadmissible rarefaction shock.

In contrast to what happens for regions A and B, when

the unperturbed state û0 belongs to region C, the Hugoniot

locus crosses the coexistence region. An example of such a

case is shown in Fig. 7. Both gas=liquid and gas=coexistence
shock-induced phase transitions (respectively, G ! L and G

! G=L shocks) may be allowed when û0 2 C. An example

of a G ! L shock is presented in Fig. 7(h), while a stable

shock with no phase transition (both the unperturbed and

perturbed state are in the gas phase) is shown in Fig. 7(d).

The wave profile shown in Fig. 7(c) represents a rarefaction

wave associated to an inadmissible rarefaction shock, while

in Figs. 7(e)–7(g) shock-splitting phenomena associated to

inadmissible compressive shocks are shown.

It is interesting to observe that, as already pointed out,

shock-induced gas=liquid phase transitions are possible for

non-weak shocks when the unperturbed state û0 belongs to

region C. Nevertheless, the admissible branch of the Hugo-

niot locus H û0ð Þ crosses the critical isotherm T̂ ¼ 1 (dashed

curve in Fig. 7(a), which is conveniently regarded as the

boundary between gas and liquid regions) when the parame-

ter of the shock further increases, thus no phase transition

occurs in the strong shock limit.55 An explanation of such a

behavior of real fluids may be found in the book by Landau

and Lifshitz1, even if it is nowadays well-known (see Ref.

23) and the references cited therein) that the arguments by

those authors are not always valid, since phase transitions

induced by shock waves may exist in real fluids for moderate

shock, i.e., not in the weak nor in the strong shock limits.

(With this regard, an analysis of liquid=solid phase transi-

tions induced by shock waves in a hard-sphere system may

be found in Ref. 21).

FIG. 8. (Color online) (a) Hugoniot locus

H û0ð Þ for an unperturbed state û0 2 D (thin=-
thick branches: inadmissible=admissible

branches); (b) M0 and k* as functions of the pa-

rameter n � q̂1; (c)–(f): numerically calculated

wave profiles related to the unperturbed state û0
(dark-faced dot) and perturbed states û1 (light-

faced dots) highlighted onH û0ð Þ.
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It is worth mentioning that the discontinuities of the

slope of the Hugoniot locus and of k* that may be appreci-

ated in Figs. 7(a) and 7(b) (as well as in Figs. 9(a) and 9(b)),

are due to the abrupt changes of the constitutive laws that

take place on the C curve.

In Fig. 8, the case of an unperturbed state lying in region

D is presented. In agreement with the theory, this is the case

in which both compressive and rarefaction shocks may be

admissible or inadmissible. An example of each of these four

possible cases is presented in Fig. 8, where the wave profiles

obtained by means of the numerical calculations are in com-

plete agreement with the expectations, as seen in Figs. 8(c)–

8(f).

It is remarkable that, in contrast to what happens when

the unperturbed state is taken in region C or in region E,

when the unperturbed state belongs to region A, B, or D, no

shock-induced phase transition may be allowed because the

Hugoniot locus H û0ð Þ never crosses the coexistence curve C
nor the critical isotherm T̂ ¼ 1 on the right (in the q̂� p̂

plane) of the critical point.56

The case analyzed in Fig. 9, concerning an unperturbed

state belonging to region E, is similar to the previous one,

except that the Hugoniot locus crosses, in this case, the coex-

istence curve. As a consequence, both G ! G=L and G ! L

shocks may be allowed; an example of a gas=liquid shock-

induced phase transition is given in Fig. 9(f). As it is seen in

Fig. 9(a), the Hugoniot locus H û0ð Þ crosses the critical iso-

therm T̂ ¼ 1 regarded, as explained in Sec. II, as the bound-

ary between gas and liquid phases. This fact, which is not

peculiar to the chosen state û0 but is, instead, common to all

the unperturbed states belonging to region C and region E,

means that—as already explained—no phase transition

occurs in the strong shock limit.

In Figs. 10 and 11, two different cases of unperturbed

states on the local exceptionality curve, Ld, are finally shown.

In the first of these two cases, all the shocks whose perturbed

states are sufficiently close to the unperturbed state turn out

to be inadmissible—as seen in Figs. 10(c) and 10(d)—and in

the other case, the opposite situation is encountered, i.e., all

the shocks whose perturbed states are sufficiently close to the

unperturbed state are admissible (Figs. 11(c) and 11(d)). This

is in complete agreement with the theoretical results

explained in Sec. V B (see also Ref. 45).

VII. CONCLUSIONS

Several outstanding phenomena related to shock prop-

agation in real gases, including rarefaction shocks (also

FIG. 9. (Color online) (a) Hugoniot locus

H û0ð Þ for an unperturbed state u0 2 E (thin=-
thick branches: inadmissible=admissible

branches); (b) M0 and k* as functions of the pa-

rameter n � q̂1; (c)–(f): numerically calculated

wave profiles related to the unperturbed state û0
(dark-faced dot) and perturbed states u1 (light-

faced dots) highlighted onH û0ð Þ.
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known as negative shocks), the so-called shock splitting

phenomena, and shock-induced phase transitions are

nowadays well-known and have been studied over the past

decades by many authors, especially from the standpoint

of theoretical gas dynamics, but a unified approach capa-

ble of giving account of all the above mentioned phenom-

ena in the framework of the theory of hyperbolic system

was missing. This task has been accomplished by studying

the features of shock propagation in a fluid modelled

by means of the hyperbolic system of Euler equations

with the van der Waals equations of state. This model, de-

spite its simplicity, has turned out to be a suitable model

capable of giving account of all the above-mentioned

phenomena.

FIG. 10. (Color online) (a) Hugoniot locus

H û0ð Þ for an unperturbed state û0 2 L0:01 such

that no weak shock is admissible (thin=thick
branches: inadmissible=admissible branches);

(b) M0 and k* as functions of the parameter

n � q̂1; (c) and (d): numerically calculated

wave profiles related to the unperturbed state û0
(dark-faced dot) and perturbed states û1 (light-

faced dots) highlighted onH û0ð Þ.

FIG. 11. (Color online) (a) Hugoniot locus

H û0ð Þ for an unperturbed state û0 2 L0:01 such

that every weak shock is admissible (thin=thick
branches: inadmissible=admissible branches);

(b) M0 and k* as functions of the parameter

n � q̂1; (c) and (d): wave profiles related to the

unperturbed state û0 (dark-faced dot) and per-

turbed states û1 (light-faced dots) highlighted

onH û0ð Þ.
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We have shown by means of the well-established

theory of hyperbolic systems and by numerical calculations,

how rarefaction shocks may propagate in the van der Waals

fluid and how shock splitting phenomena—strictly related

to the shock admissibility—take place in some circumstan-

ces. This target is accomplished by means of the under-

standing of the crucial role of the unperturbed state, i.e., the

state before the shock wave. In particular, the gas region (in

the q̂� p̂ plane) has been subdivided into several regions,

each of which contains states that, when taken as unper-

turbed states, lead to shock waves with similar features as

far as shock admissibility is concerned. In particular, we

have shown that, depending on where the unperturbed state

is taken in the q̂� p̂ plane, the following situations are pos-

sible: all and only the compressive shocks are admissible

and no phase transition is allowed (i.e., the van der Waals

fluid qualitatively behaves like an ideal gas as far as shock

phenomena are concerned); all the compressive shocks are

admissible and rarefaction ones may be admissible or inad-

missible; all the rarefaction shocks are inadmissible and

compressive ones may be admissible or inadmissible; both

compressive and rarefaction shocks may be admissible or

inadmissible.

Moreover, it was shown that—except for the first case—

gas=coexistence and gas=liquid shock-induced phase transi-

tions may occur for some unperturbed states.

All these results, obtained by applying the well-estab-

lished theory of hyperbolic systems, have been confirmed by

numerical calculations. The numerical approach was useful

in testing the theoretical results and in obtaining the wave

profiles in all those cases in which the shock is not stable and

the wave profile is not directly provided by the theory, as in

the cases in which shock-splitting phenomena occur.

ACKNOWLEDGMENTS

The authors thank Dr. Shigeru Taniguchi for his useful

comments on the present work. This work was supported by

National Natural Science Foundation of China (NSFC), No.

20973119 (N.Z.); GNFM=INdAM “Young Researchers Proj-

ect” (A.M.); Japan Society for the Promotion of Science

(JSPS), No. PE07046 (A.M.) and No. 20560054 (M.S.);

MIUR=PRIN Project “Nonlinear Propagation and Stability

in Thermodynamical Processes of Continuous Media”

(T.R.).

1L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Fluid

Mechanics Vol. 6 (Pergamon, London 1959).
2L. E. Henderson, “General laws for propagation of shock waves through

matter,” in Handbook of Shock Waves, Vol. 1 – Theoretical, Experimental,

and Numerical Techniques, edited by G. Ben-Dor, O. Igra, and T. Elperin

(Academic, San Diego 2001) pp. 143–183.
3M. S. Cramer, “Nonclassical dynamics of classical gases,” in Nonlinear

Waves in Real Fluids, edited by A. Kluwick (Springer-Verlag, New York

1991) Chap. 5, pp. 91–145.
4H. A. Bethe, “On the theory of shock waves for an arbitrary equation of

state,” Technical Report 545, Office of Scientific Research and Develop-

ment (1942).
5Ya. B. Zel’dovich, “On the possibility of rarefaction shock waves,” Zh.

Eksp. Teor. Fiz. 4, 363 (1946).
6P. A. Thompson and K. C. Lambrakis, “Negative shock waves,” J. Fluid

Mech. 60, 187 (1973).

7Shock Wave Science and Technology Reference Library, Multiphase Flows

I, Vol. 1, edited by M. E. H. van Dongen (Springer Verlag, Berlin 2007).
8A. A. Borisov, A. L. Borisov, S. S. Kutateladze, and V. E. Nakoyakov,

“Rarefaction shock wave near the thermodynamic critical point,” J. Fluid

Mech. 126, 59 (1983).
9S. S. Kutateladze, V. E. Nakoryakov, and A. A. Borisov, “Rarefaction

waves in liquid and gas-liquid media,” Annu. Rev. Fluid Mech. 19, 577

(1987).
10A. Kluwick, “Rarefaction shocks,” in Handbook of Shock Waves, Vol. 1.

Theoretical, Experimental, and Numerical Techniques, edited by G. Ben-

Dor, O. Igra, and T. Elperin (Academic, San Diego 2001), Chap. 3 and 4,

pp. 339–411.
11C. Zamfirescu, A. Guardone, and P. Colonna, “Admissibility region for

rarefaction shock waves in dense gases,” J. Fluid Mech. 599, 363 (2008).
12A. Guardone, C. Zamfirescu, and P. Colonna, “Maximum intensity of rare-

faction shock waves for dense gases,” J. Fluid Mech. 642, 127 (2010).
13P. A. Thompson and Y.-G. Kim, “Direct observation of shock splitting in

a vapor-liquid system,” Phys. Fluids 26, 3211 (1983).
14P. A. Thompson, H. Chaves, G. E. A. Maier, Y.-G. Kim, and H.-D. Speck-

mann, “Wave splitting in a fluid of large heat-capacity,” J. Fluid Mech.

185, 385 (1987).
15M. S. Cramer, “Shock splitting in single-phase gases,” J. Fluid Mech. 199,

281 (1989).
16J. W. Bates and D. C. Montgomery, “Some numerical studies of exotic

shock wave behavior,” Phys. Fluids 11, 462 (1999).
17H. Hattori, “The Riemann problem for a van der Waals fluid with entropy

rate admissibility criterion–Nonisothermal case,” J. Differ. Equations 65,

158 (1986).
18P. A. Thompson, G. A. Carofano, and Y.-G. Kim, “Shock waves and phase

changes in a large heat capacity fluid emerging from a tube,” J. Fluid

Mech. 166, 57 (1986).
19P. A. Thompson, “Liquid-vapor adiabatic phase changes and related phe-

nomena,” in Nonlinear Waves in Real Fluids, edited by A. Kluwick

(Springer, New York 1991) Chap. 6, pp. 147–213.
20N. Zhao, M. Sugiyama, and T. Ruggeri, “Phase Transition induced by a

shock wave in hard-sphere and hard-disc systems,” J. Chem. Phys. 129,

054506 (2008).
21S. Taniguchi, A. Mentrelli, N. Zhao, T. Ruggeri, and M. Sugiyama,

“Shock-induced phase transition in systems of hard spheres with internal

degrees of freedom,” Phys. Rev. E 81, 066307 (2010).
22Y. Zheng, N. Zhao, T. Ruggeri, M. Sugiyama, and S. Taniguchi, “Non-

polytropic effect on shock-induced phase transitions in a hard-sphere sys-

tem,” Phys. Lett. A 374, 3315 (2010).
23G. E. A. Meier, “Liquefaction shock waves”, in Shock Wave Science and

Technology Reference Library, Vol. 1 – Multiphase Flows I, edited by M.

E. H. van Dongen (Springer Verlag, Berlin 2007) Chap. 7, pp. 231–267.
24R. Menikoff and B. J. Plohr, “The Riemann problem for fluid flow of real

materials,” Rev. Mod. Phys. 61, 75 (1989).
25Nonlinear Waves in Real Fluids, edited by A. Kluwick (Springer, New

York 1991).
26Handbook of Shock Waves, Vol. 1 – Theoretical, Experimental, and Nu-

merical Techniques, edited by G. Ben-Dor, O. Igra, and T. Elperin (Aca-

demic, San Diego 2001).
27Ya. B. Zel’dovich and Yu. P. Reizer, Physics of Shock Waves and High-

Temperature Hydrodynamic Phenomena (Dover, Minola 2002).
28W. Dahmen, S. Müller, and A. Voß, “Riemann problem for the Euler

equation with non-convex equation of state including phase transitions,” in

Analysis and Numerics for Conservation Laws, edited by G. Warnecke

(Springer, Berlin 2005) pp. 137–162.
29M. Slemrod, “Admissibility criteria for propagating phase boundaries in a

van der Waals fluid,” Arch. Ration. Mech. Anal. 81, 301 (1983).
30H. Hattori, “The Riemann problem for a van der Waals fluid with entropy

rate admissibility criterion–Isothermal case,” Arch. Ration. Mech. Anal.

92, 247 (1986).
31L. Quartapelle, L. Castelletti, A. Guardone, and G. Quaranta, “Solution of

the Riemann problem of classical gasdynamics,” J. Comput. Phys. 190,

118 (2003).
32S. Müller, and A. Voß “The Riemann problem for the Euler equations

with nonconvex and nonsmooth equation of state: Constructon of wave

curves,” SIAM J. Sci. Comput. 28, 651 (2006).
33J. L. Lebowitz and O. Penrose, “Rigorous treatment of the van der Waals-

Maxwell theory of liquid-vapor transition,” J. Math. Phys. 7, 98 (1966).
34T.-P. Liu, “The entropy condition and the admissibility of shocks,”

J. Math. Anal. Appl. 53, 78 (1976).

086101-17 Admissible shock waves and shock-induced phase transitions Phys. Fluids 23, 086101 (2011)

Downloaded 23 Jan 2013 to 133.68.232.231. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1017/S002211207300011X
http://dx.doi.org/10.1017/S002211207300011X
http://dx.doi.org/10.1017/S002211208300004X
http://dx.doi.org/10.1017/S002211208300004X
http://dx.doi.org/10.1146/annurev.fl.19.010187.003045
http://dx.doi.org/10.1017/S0022112008000207
http://dx.doi.org/10.1017/S0022112009991716
http://dx.doi.org/10.1063/1.864093
http://dx.doi.org/10.1017/S0022112087003227
http://dx.doi.org/10.1017/S0022112089000388
http://dx.doi.org/10.1063/1.869862
http://dx.doi.org/10.1016/0022-0396(86)90031-8
http://dx.doi.org/10.1017/S0022112086000046
http://dx.doi.org/10.1017/S0022112086000046
http://dx.doi.org/10.1063/1.2936990
http://dx.doi.org/10.1103/PhysRevE.81.066307
http://dx.doi.org/10.1016/j.physleta.2010.06.016
http://dx.doi.org/10.1103/RevModPhys.61.75
http://dx.doi.org/10.1007/BF00250857
http://dx.doi.org/10.1007/BF00254828
http://dx.doi.org/10.1016/S0021-9991(03)00267-5
http://dx.doi.org/10.1137/040619909
http://dx.doi.org/10.1063/1.1704821
http://dx.doi.org/10.1016/0022-247X(76)90146-3


35T.-P. Liu, “Admissible solutions of hyperbolic conservation laws,” Mem.

Am. Math. Soc. 240, 12 (1981).
36P. D. Lax, “Hyperbolic systems of conservation land the mathematical

theory of shock waves,” in CBMS-NSF, Regional Conference Series in

Applied Mathematics Vol. 11 (SIAM, Philadelphia 1973).
37E. E. Michaelides and K. L. Zissis, “Velocity of sound in two-phase

mixtures,” Int. J. Heat Fluid Flow 4, 79 (1983).
38D. J. Picard and P. R. Bishnoi, “Calculation of the thermodynamic sound

velocity in two-phase multicomponent fluids,” Int. J. Multiphase Flow 13,

295 (1987).
39G. Boillat, “Sur l’existence et la recherche d’équations de conservation
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