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Admittance based Adaptive Cooperative Control for

Multiple Manipulators with Output Constraints
Yong Li, Chenguang Yang, Weisheng Yan, Rongxin Cui, Andy Annamalai

Abstract—This paper proposes a novel adaptive control
methodology based on admittance model for multiple manipula-
tors transporting a rigid object cooperatively along a predefined
desired trajectory. Firstly, an admittance model is creatively
applied to generate reference trajectory online for each manipu-
lator according to the desired path of the rigid object, which
is the reference input of the controller. Then, an innovative
integral Barrier Lyapunov function (iBLF) is utilized to tackle
the constraints due to the physical and environmental limits.
Adaptive neural networks (NN) are also employed to approximate
the uncertainties of the manipulator dynamics. Different from the
conventional NN approximation method, which is usually semi-
globally uniformly ultimately bounded (SGUUB), a switching
function is presented to guarantee the global stability of the
closed-loop. Finally, the simulation studies are conducted on
planar 2-link robot manipulators to validate the efficacy of the
proposed approach.

Index Terms—Neural networks; Robot manipulators; Ad-
mittance control; Barrier Lyapunov function (BLF); Globally
uniformly ultimately bounded (GUUB)

I. INTRODUCTION

In recent decades, robots have been widely employed in

a variety of applications, such as entertainment, manufactur-

ing industry and medical service [1], [2], etc. Among these

applications, robot manipulators play a significant role and

hence has attracted a lot of attention. Subsequently, large

amount of efforts have been dedicated to the advance of robot

manipulator technology [3]–[8]. An increasing complexity of

tasks performed by robots demand higher manipulation skills

and has rendered single manipulators ineffective in many

situations. Hence, the research about coordinated multiple

manipulators is becoming progressively significant [9]–[11].

For instance, the problem of transporting a long, heavy object

has been studied in [12], where the task was accomplished

easily with the cooperation of multiple robots.
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However, the cooperative control of multi-manipulators is

much more complicated than that of single one. The complex

dynamics due to the presence of a large number of degrees

of freedom (DOFs) of multiple manipulators in a system,

result in a closed holonomic constrained chain mechanism

[13]. In [14], a compound position/force control strategy was

investigated under the assumption that an object was carried

without relative motion between the object and manipulators.

However, the relative motion between manipulators during the

cooperative movement exists for a number of applications. A

self-tuning control for cooperative manipulators was studied

in [15], where the closed kinematic chain was formed by

manipulators in the presence of uncertainty of kinematics

model. Two cascaded estimators were adopted to change

the kinematic parameters online to attain a good tracking

performance. A flexible payload transforming problem for

multiple collaborative agents was addressed in [16], which

was regarded as a formation control problem by modelling

the contact forces as the gradients of nonlinear potentials.

For multiple manipulators transporting a rigid object, some

properties of grasp need to be taken into consideration. In

grasp planning, there are two main classes of grasps known

as “form closure” and “force closure” grasps [17]. These ter-

minologies were first used by Reuleaux [18] in 1875 when he

investigated the mechanism of some machines. Form closure is

a pure geometry property, which describes the capability that

the contacts can prevent all motions of a grasped object [17].

Reuleaux found that to obtain the form closure property, at

least four contact points are needed in a planar case and Somov

reported the number for a general spatial case is at least seven

[19]. A further detailed classification of form closure can be

seen in [20]. The significant difference between force-closure

and form-closure is whether the friction forces are considered

or not [21]. The manner in which the contact forces are being

exerted on the object and the kinematics of the manipulators

are contained by Force closure.

Investigations of interaction control mainly include force

control and impedance control. Impedance control was intro-

duced in [22], with the kernel idea of taking the mechanical

impedance into consideration and mapping from state of the

system to the interaction forces. The feasible, robust impe-

dence control can be seen in [13], [23], [24]. On the contrary,

another control method called admittance can be regarded as

an inverse process of impedance control, mapping from forces

to desired trajectory [25]. In conventional admittance control

system, with predefined desired trajectory and the interaction

forces exerted on the object, a virtual desired trajectory can be

obtained. In this paper, an admittance model with interaction
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force between manipulators and object (measured by pressure

sensors) is utilized to generate reference trajectories online for

each manipulator.

In practical applications, there are still considerable diffi-

culties to determine the precise actual kinematic and dynamic

models of robots due to the uncertainties and environmental

disturbances. Therefore, neural networks based methods have

been widely employed in designing adaptive controller in the

absence of availability of a precise model of the system [26]–

[32]. The radial basis function Neural Networks (RBFNN)

is a highly effectively tool for obtaining a model due to

its universal approximation ability, which means it can ap-

proximate a smooth nonlinear function, and hence has been

extensively utilized in designing controller for uncertain or

unknown system [6]. In [33], the NN approximation strategy

was used to compensate for the uncertain dynamics of the ma-

nipulated object and the robot manipulator. A class of multi-

input-multi-output (MIMO) nonlinear manipulators adaptive

control problem was investigated in [34]. In this work, two

RBFNN namely, a critic NN and an actor NN are employed to

achive the optimal control. Control method based on adaptive

RBFNN to guarantee the global stability was developed in

[35]–[38]. To deal with the unknown system paramters and

complex couplings among several subsystems, an ANN was

presented in [39].

It is noted that the conventional NN approximation method

can only guarantee the semi-globally uniformly ultimately

bounded (SGUUB) stability of the closed-loop system, which

means the NN approximator is only valid in its active domain.

Therefore it is essential to design NN controller with globally

uniformly ultimately bounded (GUUB) stability [40], [41]. In

[41], a novel switching scheme was introduced by combining

a robust controller with an adaptive neural controller in the

approximation domain, to guaranteed that the states in closed-

loop system are GUUB.

The actual control system always faces some limitations

in practical situations, such as state constraints, input and

output constraints, etc. Barrier Lyapunov Function (BLF) was

proposed due to its advantage of achieving a good tracking

performance and satisfying the constraints simultaneously

[42]. By utilizing some barrier functions whose value is

infinite at corresponding limits, these methodologies keep the

barriers not to be violated. As a consequence, the constraints

are guaranteed to be valid all the time. BLFs are used for

designing controller in several forms, for instance, Brunovsky

form [43], feedback output-constrained system [44], state-

constrained system [45]. Compared with the generalized BLF

whose constraints tend to be more conservative, an improved

approach named integral barrier Lyapunov function (iBLF)

[46] for nonlinear system allows the mixture of the initial state

constraints and the errors. In this paper, iBLF is also presented

in the analysis of system stability.

Inspired by the aforementioned discussion, a control scheme

for a multiple homogeneous manipulators system grasping an

object and tracking a predefined trajectory without knowing

the precise system model is designed in this paper. For clarity,

the main contributions of this paper are highlighted as follows:

1) The admittance model is introduced to work as a

trajectory generator, which also depicts the interaction

between the object and manipulators. Once the desired

trajectory of the carried object is given, the reference

trajectory for each manipulator could be generated on-

line.

2) A novel iBLF function is presented in this paper. The

iBLF function is of great significance in dealing state

constraints.

3) An NN control scheme is proposed by combing a

switch function with an adaptive neural network. Such

a scheme could achieve a global approximation for the

uncertainties in the system dynamics.

Then a global RBFNN based adaptive control approach is

specially designed for each manipulator to track the corre-

sponding reference trajectories. By learning from system states

and applying updating law for the weight matrix, optimal

estimated weight matrix of the neural networks is obtained.

The structure of this paper is organised as follows. Section II

formulates the problem and introduces some preliminaries. In

section III, the multiple manipulators model is presented and

the trajectory generator is designed. Section IV proposes the

control strategy and the proof of system stability. In Section

V, the simulation studies are conducted to verify the proposed

methodology. The conclusion is drawn in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Consider a system with multiple homogeneous robot manip-

ulators, the coordinated task is for m manipulators to grasp

and move an object along a predefined trajectory, as shown in

Fig.1. The forces between the manipulators and the object can

be measured by the pressure sensors. By employing admittance

model [25] which mapping from forces to trajectories, the

reference trajectories are obtained and tracked. In order to

successfully fulfil the task, the following control objectives

need to be accomplished:

(i) the reference trajectory can be generated by using

admittance method.

(ii) the end-effectors of the manipulators could track the

reference end-effectors trajectories and the actual trajectories

should be bounded within a predefined range due to the

practical limitation.

(iii) the contact force between the object and manipulators

could be restricted within an allowable range, in case of

damaging to the object.

Before discussing the control of multiple manipulators, we

need to take the contacts on the rigid object into consideration.

Therefore, the following assumption is considered as a premise

of the proposed method.

Assumption 1: The holding of the rigid object by multiple

manipulators is form-closured, which means the contacts be-

tween manipulators and object prevent all kinds of motions of

the rigid object.

Assumption 2: The end-effector is rigidly attached to the

object, i.e., there is no relative movement between the end-

effector and the object.
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Fig. 1. A typical illustration of multiple robot manipulators carrying an object

B. Robot Manipulator Dynamics

In this paper, a class of rigid robot manipulators with n-

degree of freedom (DOF) has been considered. The dynamics

of the ith manipulator [47] is represented as follows:

Me,i(qi)q̈i + Ce,i(qi, q̇i)q̇i +Ge,i(qi)

=τe,i + JT
e,i(qi)Fi

(1)

where qi, q̇i, q̈i ∈ R
Ni are the joint position, joint velocity and

joint acceleration, respectively, Me,i(qi) ∈ R
Ni×Ni denotes

the symmetric positive definite inertia matrix, Ce,i(qi, q̇i) ∈
R

Ni×Ni is the Coriolis-centrifugal torque matrix, Ge,i(qi) ∈
R

Ni denotes the gravity torque vector; τe,i ∈ R
Ni stands for

the control input torque vector, Fi is the force vector exerted

on the end-effector of the ith manipulator, Ni(i = 1, · · · ,m)
stands for the number of the ith manipulator’s DOF, and m is

the number of manipulators.

Considering the position of the end-effector of the ith

manipulator xi ∈ R
ni in the Cartesian space, the kinematics of

the ith manipulator is xi = φi(qi). Differentiate the kinematics

with regards to time yields

ẋi = Je,i(qi)q̇i (2)

where Je,i(qi) ∈ R
ni×Ni is the Jacobian matrix. The dynamics

of ith manipulator in Cartesian space can be represented as

below

Mi(qi)ẍi + Ci(qi, q̇i)ẋi +Gi(qi)

=τi + Fi

(3)

where

Mi(qi) =J−T
e,i (qi)Me,i(qi)J

−1
e,i (qi)

Ci(qi, q̇i) =J−T
e,i (qi)

(

Ce,i(qi, q̇i)−Me,i(qi)

J−T
e,i (qi)J̇e,i(qi)

)

J−1
e,i (qi)

Gi(qi) =J−T
e,i (qi)Ge,i(qi)

τi =J−T
e,i (qi)τe,i

(4)

The rigid robot manipulators depicted in (1)have the fol-

lowing properties [47] :

Property 1: The skew-symmetric matrix 2Ci(qi, q̇i) −
Ṁi(qi) ∈ R

ni×ni satisfies that

xT [Ṁi(qi)− 2Ci(qi, q̇i)]x = 0, ∀x ∈ R
ni (5)

Property 2: The symmetric and positive definite inertia

matrix Mi(qi) is uniformly bounded, there exists lower limit

constant mi > 0 and upper limit constant mi > 0, and Mi(qi)
satisfies the following inequality

mi 6 ||Mi(qi)|| 6 mi (6)

Property 3: The matrix Ci(qi, q̇i) and the vector Gi(qi) are

bounded by ||Ci(qi, q̇i)|| 6 kci ||q̇i||, and ||Gi(qi)|| 6 kgi ,

respectively, where kci and kgi are positive constants.

C. RBFNN Constructure

According to the Weierstrass high order Approximation

Theorem [48], given sufficient basis nodes, every continuous

function F (Z) : Ωz → R over a compact set ΩZ ⊂ R
Nin

can be approximated as closely as desired by utilizing a basis

set {s(z)} [49]. In this paper, Gaussian radial basis function

is applied to approximate nonlinear function. The RBFNN

structure is represented as follows:

F (W,Z) = W ∗TS(Z) + ε(Z), ∀Z ∈ ΩZ (7)

where Z = [z1, z2, · · · , zNin
] ∈ R

Nin is NN input vector,

W ∗ = [w∗
1 , w

∗
2 , · · · , w∗

No
] ∈ R

Ns×No is an ideal constant

weight vector, S(Z) = [s1(Z), s2(Z), ..., sNs
(Z)]T is the

regressor vector with Gaussian radial basis function si(·),
ε(Z) ∈ Ωz is the approximation error and |ε(Z)| < ε∗ with

constant ε∗ > 0 for all Z ∈ ΩZ , Nin and No are control

input and output dimension, respectively, Ns is the number of

neural nodes.

The Gaussian function is chosen as follows:

si(‖Z − µi‖) = exp

[−(Z − µi)
T (Z − µi)

ϑ2
i

]

(8)

where µi = [µi1, µi2, · · · , µiNin
]T (i = 1, 2, · · · , Nin) is the

center of the neuron node, and ϑi is the width of the Gaussian

function.

It is noted that the ideal weight matrix W ∗ is usually

unknown in (7). In practice, the estimated weight Ŵ , which

can be trained by a weight updating law, is often used

to replace W ∗ to approximate an nonlinear function, thus

RBFNN in (7) can be represented as:

F̂ (Z) = ŴTS(Z) (9)

III. MODELLING PROCEDURE

A. Dynamics of Multiple Manipulators

The dynamics of the object is:

Mo(xo)ẍo + Co(xo, ẋo)ẋo +Go(xo) = Fo − Fd (10)

where Fo ∈ R
n is the resulting force exerted on the object,

Fd stands for the envirmonment force vector exerted on the

object.

From Assumption 2, let Ji(xo) ∈ R
ni×n be the Jacobian

matrix relating the the position of the end-effector xi ∈ R
ni
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with the mass centre of the object xo ∈ R
n, as shown in Fig.1,

we have

Fo = −J(xo)Fe (11)

where J(xo) = diag(Ji(xo)) ∈ R
n̄×n, Fe = [FT

1 , · · · , FT
m]T ,

here we denote n̄ =
∑m

1 ni.

From equation (3), the dynamics of m manipulators can be

written in a compact form

M(q)ẍ+ C(q, q̇)ẋ+G(q) = τe + Fe (12)

Since ẍi = J̇i(xo)ẋo + Ji(xo)ẍo, we can rewrite the

dynamics of the ith manipulator in the following form:

M(q)J(xo)ẍo +
(

M(q)J̇(xo) + C(q, q̇)
)

ẋo +G(q)

=τe + Fe

(13)

where q = [qT1 , · · · , qTm]T ∈ R
N̄ , J(xo) = diag(Ji(xo)) ∈

R
n̄×N , M(q) = diag(Mi(qi)) ∈ R

n̄×n̄, C(q, q̇) =
diag(Ci(qi, q̇i)) ∈ R

n̄×n̄, τe = [τT1 , · · · , τTm]T ∈ R
n̄×1, and

denote N̄ =
∑m

1 Ni.

By multiplying left side of the equation (13) by JT (xo),
integrating equation (10) and (11), we have

M(q, xo)ẍo+C(q, q̇, xo, ẋo)ẋo+G(q, xo, ẋo) = τ −Fd (14)

where M(q, xo) = JT (xo)M(q)J(xo) + Mo ∈ R
n×n,

C(q, q̇, xo, ẋo) = JT (xo)(M(q)J̇(xo) + C(q, q̇)J(xo)) +
Co(xo) ∈ R

n×n, G(q, xo, ẋo) = JT (xo)G(q) + Go ∈ R
n×1,

τ = JT (xo)τe ∈ R
n×1 .

B. Trajectory Generation

e
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Reference trajectory of

 th manipulatori
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Fig. 2. Admittance model. (a) the illustration of admittance model. (b) the
flowchart of trajectory generator

In this paper, a damping-stiffness system model (Fig.2) is

considered:

Ceẋ+Kex = Fe (15)

where Ce and Ke are damping and stiffness parameters of the

interaction system predefined by the experimenter, and Fe is

the impedance force exerted on the end-effector. In general, a

target admittance model in the Cartesian Space is depicted as

below:

Cei(ẋri − ẋdi
) +Kei(xri − xdi

) = Fei (16)

where xri and xdi
are reference trajectory and desired trajec-

tory of the ith manipulator, respectively, as shown in Fig.2(a).

Applying Laplace transformation on (16), we can obtain:

CeiS [Xri(S)−Xdi
(S)] +Kei [Xri(S)−Xdi

(S)] = Fei(S)
(17)

and we can further obtain that

Xri(S) =
Fei(S)

CeiS +Kei

+Xdi(S) (18)

Therefore, once the impedance force Fei and the desired

trajectory xdi
are obtained, the reference trajectory xri could

easily produced by the trajectory generator, the process can be

seen in Fig.2(b).

Remark 1: As shown in Fig.2(b), the inputs of trajectory

generator are force Fei(S) and desired trajectory Xdi
(S), the

output is reference trajectory Xri(S). Therefore, the generator

can be regarded as a filter, which means the reference trajec-

tory is obtained by filtering the impedance force and desired

trajectory.

According to the task that multi-manipulators system need

to perform, the desired trajectory of the object xd in the

Cartesian Space can be determined. Then the desired trajectory

for each manipulator xdi
could be specified by the experi-

menter in advance, which locates on the object and closer to

the centre than the actual contact point between manipulator

and the object does. It can be seen clearly in Fig.2(a), as

the reference trajectory xri and the desired trajectory xdi
is

different, the force between the manipulator and the object

Fei 6= 0. Once the force obtained from pressure sensors

mounted on the manipulators, the reference trajectory xri can

be derived by using admittance model. The relationship of

desire object trajectory xd, the desired manipulator trajectory

xdi
and the reference manipulator trajectory xri can be seen

in Fig.1.

Denoting erdi
= xri − xdi

, we have

ėrdi
= −Kei

Cei

erdi
+

1

Cei

Fei

, Aierdi
+BiFei

(19)

According to the knowledge of linear system, we can deduce

that

erdi
(t) = eAitx0i +

∫ t

0

eAi(t−τ)BiFei(τ)dτ (20)

where x0i is the initial state of the ith robot manipulator. Then

we could get the reference trajectory:

xri(t) = erdi
(t) + xdi

= eAitx0i +

∫ t

0

eAi(t−τ)BiFei(τ)dτ + xdi

(21)

Assumption 3: The parameters of the ith admittance model

is known, that means parameter matrix Ai and Bi also are

known.

Assumption 4: The external forces exerted on the ith ma-

nipulator Fei can be measured by the pressure sensor mounted

on the manipulator.

Remark 2: According to the assumption 3 and 4, considering

the predetermined initial state x0i and desired trajectory xdi
,

we can conclude that the reference trajectory xri could be

generated by employing (21).



5

IV. CONTROL DESIGN

The objective of the NN control is to track the reference

trajectory generated from section III-B. The framework of the

multi-manipulator controller is shown in Fig.3.

Define the state variables x1 = xo, x2 = ẋo , thus the

kinetic equation in (14) can be rewritten as feedback form:

ẋ1 = x2

ẋ2 = M−1(x1) (τ − Fd − C(x1, x2)x2 − G(x1))
(22)

A. Controller Design using iBLF

The error variables are defined as follows

z1 = x1 − xd

z2 = x2 − α
(23)

where error vector z1 = [z1i, · · · , z1n]T , z2 = [z2i, · · · , z2n]T ,

α represents virtual control aiming to let the tracking error z1
converge to a small neighbourhood of zero.

Instead of using logarithmic Barrier Lyapunov Functions

(BLF), a modified BLF method is employed in this paper, i.e.

integral BLF, which allows the states constraints mixed with

errors. For system (22), consider the iBLF candidate

V =
n
∑

i=1

∫ z1i

0

σk2ci
k2ci − (σ + αi)2

dσ (24)

where kci is positive constant satisfying |xi| < kci. Then

V is positive definite and continuously differentiable in the

set |αi| < kci for i = 1, · · · , n. We denote the set X :=
{x ∈ R

n : |xi| < kci, i = 1, · · · , n} ⊂ R
n.

Remark 3: The iBLF candidate V satisfies

z2i
2

< V < z2i

∫ 1

0

βk2ci
k2ci − (βzi + sgn(zi)Ai)2

dβ (25)

where |xdi| 6 Ai < kci, which is helpful for the proof of

global stability. Additionally, a more useful conclusion can be

given
z2i
2

< V 6
k2ciz

2
i

k2ci − x2
di

(26)

The proof of (26) can be seen in APPENDIX A.

We use backstepping method to design the controller. It

consists of several steps.

Step 1 At the first step, we design the stabilizing function

αi. A positive Lyapunov Function is chosen as

V1 =
n
∑

i=1

∫ z1i

0

σk2ci
k2ci − (σ + xdi)2

dσ (27)

The time derivative of (27) is

V̇1 =

n
∑

i=1

k2ciz1i

k2ci − x2
1i

(z2i + αi − ẋdi)

+

n
∑

i=1

z1i(
k2ci

k2ci − x2
1i

− ρi)ẋdi

(28)

where

ρi(z1i, xdi) =
kci

2z1i
ln

(kci + z1i + xdi)(kci − xdi)

(kci − z1i − xdi)(kci + xdi)
(29)

Using L’Hôpital’s rule, it can be shown that

lim
z1i→0

ρi(z1i, xdi)

= lim
z1i→0

kci

2z1i
ln

(kci + z1i + xdi)(kci − xdi)

(kci − z1i − xdi)(kci + xdi)

=
k2ci

k2ci − x2
di

(30)

Since |xdi| < kci, ρi(z1i, xdi) is well-defined in a neighbour-

hood of z1i = 0 and singularity problem does not exist.

Then the virtual control αi, i = 1, · · · , n is designed as

αi = −κ1iz1i +
(k2ci − x2

1i)ẋdiρi

k2ci
(31)

where κ1i is a positive control gain and denote K1 =
diag(κ11, · · · , κ1n). Substituting (31) into (28), we obtain

V̇1 = −
n
∑

i=1

κ1ik
2
ciz

2
1i

k2ci − x2
1i

+

n
∑

i=1

k2ciz1iz2i

k2ci − x2
1i

(32)

Step 2 A positive iBLF is chosen as

V2 = V1 +
1

2
zT2 Mz2 (33)

Applying (14) and (23), the time derivative of (33) is

V̇2 =−
n
∑

i=1

κ1ik
2
ciz

2
1i

k2ci − x2
1i

+

n
∑

i=1

k2ciz1iz2i

k2ci − x2
1i

+ zT2
(

τ − Fd − Gi(x1)− Ci(x1, ẋ1)αi

−Mi(x1)α̇i

)

(34)

Design the control input F ∗
oi

as

F ∗

o = −











k2

c1z11
k2

c1−x2

11

...
k2

cnz1n
k2
cn−x2

1n











−K2z2 + Fd + G + Cαi +Mα̇ (35)

where K2 = diag(k21, k22, k23) is a positive gain matrix.

Substituting (35) into (34), we obtain

V̇2 =−
n
∑

i=1

κ1ik
2
ciz

2
1i

k2ci − x2
1i

− zT2 K2z2

6 −
n
∑

i=1

∫ z1i

0

σk2ci
k2ci − (σ + xdi)2

dσ − zT2 K2z2

6 −ρV2

(36)

where ρ = min
{

min16i6n(ki),
2λmin(K2)
λmax(M)

}

, with λmin(·),
λmax(·) denoting the maximum and the minimum eigenvalue

of (·), respectively. To ensure ρ > 0, parameters must satisfy

min16i6n(ki) > 0,
2λmin(K2)
λmax(M) > 0. Then V2 will converge

into a small neighbourhood near zero with the convergence

rate of e−λ.
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B. Global NN Control

In this paper, the switching functions Q(Z) ∈ R
n×n are

defined as follows:

Q(Z) = diag (M1(Z), · · · ,Mn(Z)) (37)

where Mi(Z) =
∏νi

k=1 m(zk) with Z = [xT
1 , x

T
2 , α

T , α̇T ]T ∈
R

νi , νi = 4n, and m(zk) is given as

m(zk) =



















1 |zk| < d1,k

d2

2,k−z2

k

d2

2,k
−d2

1,k

e

(

z2
k
−d2

1,k

ω(d22,k−d2
1,k)

)

2

otherwise

0 |zk| > d2,k

(38)

with positive constants 0 < d1,k < d2,k and positive constant

ω ≥ 1.

Noted that there are uncertainties in G(x1), C(x1, ẋ1),
M(x1), and Fd therefore F ∗

o cannot be obtained in a real

system. RBFNN are used to approximate the uncertainties in

terms G(x1), C(x1, ẋ1), M(x1), Fd. Define

F (Z) = G(x1) + C(x1, ẋ1)α+M(x1)α̇+ Fd (39)

where F (Z) = [f1(Z), · · · , fn(Z)], Z = [xT
1 , x

T
2 , α

T , α̇T ]T

is RBF neural network input.

Assumption 5: The functions fi(Z), i = 1, · · · , n are

unknown and bounded, and there exits known nonnegative

smooth functions fU
i (Z) satisfying

|fi(Z)| < fU
i (Z) ∀Z ∈ R

νi (40)

f̂i(Z) is the approximation of fi(Z) given by

f̂i(Z) = ŴT
i Si(Z) (41)

where Ŵi is the actual weight vector; Si(·) is the basis

function introduced by (8), Ŵ ∗
i is optimal weight vector,

W̃i = Ŵi − Ŵ ∗
i is error weight vector.

Then, the proposed adaptive neural network controller is

designed as

Fo =−











k2

c1z11
k2

c1−x2

11

...
k2

cnz1n
k2
cn−x2

1n











−K2z2 +Φa

+
(

1−Q(Z)
)

Φb +Kr sgn(z2)

(42)

where Kr = diag(kr1, · · · , krn) > 0, Φa and Φb are designed

as

Φa
i = f̂i(Z), Φb

i = fU
i (Z)Γi

(

fU
i (Z)zi
̟

)

(43)

with ̟ being a positive parameter, FU (Z) =
diag[fU

1 (Z), · · · , fU
n (Z)], Γi(·) = tanh(·).

To improve the performance of the control system, the

updating law is designed as

˙̂
Wi = −Θi

(

Qi(Z)Si(Z)z2i + σiŴi

)

(44)

where Θi is positive symmetric matrix; σi is positive constant.

ŴiSi(Z) is the estimated values of Ŵ ∗
i Si(Z).

Ŵ ∗

i Si(Z) = fi(Z)− ǫi (45)

where ǫi is approximating error satisfying ‖ǫi‖ 6 ǭi, ǭi is

positive constant.

Remark 4: In the adaptive NN controller proposed in (42),

the term K2z2 providing the error feedback, NN approxima-

tion function Φa
i , robust item Φb

i and switching function Qi(Z)
work together to ensure the global tracking performance.

The scheme is shown in Fig.4. Ω0 is the neural networks

approximation within the admissible region. It is noted that the

scale of smooth function m(·) is |m(·)| = 1 in the compact

set Ω1 and |m(·)| = 0 outside the set Ω2. Therefore, in the

compact set Ω1 (|x1| 6 d1), term Φa
i works to approximate

f̂i(Z). Outside the set Ω2 (|x1| > d2), robust term Φb
i works

to pull the state x1 back to Ω2. When d1 < |x1| < d2, term

Φa
i +

(

1−Qi(Z)
)

Φb
i will pull the state back to the compact

set Ω1.
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C. Stability Analysis

Choose a positive iBLF as

V3 = V2 +
1

2

n
∑

i=1

W̃T
i Θ−1

i W̃i (46)

Considering control input (42) and the derivative of (46), we

have

V̇3 =−
n
∑

i=1

κ1ik
2
ciz

2
1i

k2ci − x2
1i

− zT2 K2z2 + zT2

(

W̃T
i Si(Z)

− ǫi +Kr sgn(z2)
)

+
n
∑

i=1

W̃T
i Θ−1

i
˙̂
Wi

(47)

Let us define ǫi as Ei, i = 1, · · · , n for the interval t ∈
(0,+∞), where (·) is ith element of a vector. Therefore, we

obtain E = [E1, · · · , En]
T

.

Substituting the weight updating laws into (47), we have

V̇3 =−
n
∑

i=1

κ1ik
2
ciz

2
1i

k2ci − x2
1i

− zT2 K2z2 + zT2 (Kr sgn(z2)− E)

+ zT2 W̃
T
i Si(Z)−

n
∑

i=1

W̃T
i

(

Si(Z)z2i + σiŴi

)

(48)

Notice that

zT2 W̃
T
i Si(Z) =

n
∑

i=1

W̃T
i Si(Z)z2i (49)

and the gain matrix Kr are designed to satisfy |Ei| 6 kri, i =
1, · · · , n, we have zT2 (Kr sgn(z2)− E) 6 0, therefore

V̇3 = −
n
∑

i=1

κ1ik
2
ciz

2
1i

k2ci − x2
1i

− zT2 K2z2 −
n
∑

i=1

W̃T
i SiŴi (50)

Since−
n
∑

i=1

W̃T
i SiŴi 6 σi

2

(

n
∑

i=1

W ∗T
i W ∗

i −
n
∑

i=1

W̃T
i W̃i

)

,we

have

V̇3 6 −
n
∑

i=1

κ1ik
2
ciz

2
1i

k2ci − x2
1i

− zT2 K2z2

− σi

2

n
∑

i=1

W̃T
i W̃i +

σi

2

n
∑

i=1

W ∗T
i W ∗

i

6 −η3V3 + C3

(51)

where

η3 = min
{

κ11, · · · , κ1n,
2λmin(K2)
λmax(M̄i)

> 0, σi

λmax(Θ
−1

i
)
> 0

}

,

C3 = σi

2

n
∑

i=1

W ∗T
i W ∗

i . To ensure η3 > 0, C3 > 0, controller

parameters should possess some nature: κ1i > 0,
2λmin(K2)
λmax(M̄i)

>

0, σi

λmax(Θ
−1

i
)
> 0. Therefore, V̇3 is a negative definite function,

and as time increases, V3 will decay into a region close to zero.

Theorem 1: For the multiple manipulators system dynamics

(14), under the NN controller (42) with weight updating law

(44) and admittance trajectory generator (21), the system

(14) would obtain satisfying control performance through

environment-robot interaction force is imposed on (14). The

errors will converge into a small neighbourhood near zero

by designing appropriate controller parameters and updat-

ing laws. The system states still remain in the predefined

region and the tracking error z1 would converge into the

compact Ωz1 :=
{

z1 ∈ R
n| |z1i| 6

√
2B

}

, i = 1, · · · , n.

The tracking error z2 converge into the compact set Ωz2 :=
{

z2 ∈ R
n| |z2| 6

√

2B
λmax(M)

}

, where B := V3(0) +
C3

η3

.

The proof of Theorem 1 is given in APPENDIX B.

V. SIMULATION STUDIES

In this section, to illustrate the efficacy of the proposed

adaptive control method, two sets of simulation studies are

conducted and the results are compared, and the model of

planar 2-link manipulators are employed in this paper as shown

in Fig.5. The manipulators with force sensor on the end-

effector cooperate to move an object along a predefined desired

trajectory.

A. Robot Manipulator Model

Consider two homogeneous manipulators with 2 revolute

joints [50]. These manipulators with force sensor mounted on

the end-effectors share same parameters as listed in TABLE

I, where mi, li and Ii, i = 1, 2 are mass, length and inertia of

the ith link, respectively.

TABLE I
Parameters of the manipulator

Parameters Description Values

mi1 Mass of link 1 2.00 kg
mi2 Mass of link 2 0.85 kg
li1 Length of link 1 0.30 m
li2 Length of link 2 0.30 m

Ii1 Inertia of link 1 0.045 kg·m2

Ii2 Inertia of link 2 0.019 kg·m2
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The carried object are chosen as a cube with its length

lo = 0.1m, mass mo = 0.1kg and inertia Io = 0.1kg·m2.

The desired trajectory of the mass centre of the object xdo is

xdo =





xd1

xd2

θ



 =





0.2 ∗ cos(0.1t)
0.2 ∗ sin(0.1t)

0





which is a circle with the centre at [0, 0]T and radius being

0.1m and there is no rotation during the translation of the

object. xd1 and xd2 are the x-coordinate and y-coordinate of

the object, respectively, θ is the orientation of the object. The

parameters of dynamics for the object are given as

Mo =





1 0 0
0 1 0
0 0 1



 , Co =





1 0 0
0 1 0
0 0 1



 , Go =





0
−9.8
0



 .

Denote q1, q2 as the first and the second joint angles of

the first manipulator, respectively. The position of the end-

effector of the first manipulator in the Cartesian space are x1

and x2, respectively. Correspondingly, q3, q4, x3 and x4 are

joint angles and position of the end-effector for the second

manipulator. Therefore we have the following kinematic rela-

tionship
[

x1

x2

]

=

[

l1 cosq1 + l2 cos(q1 + q2)
l1 sinq1 + l2 sin(q1 + q2)

]

+

[

b1
0

]

[

x3

x4

]

=

[

l1 cosq3 + l2 cos(q3 + q4)
l1 sinq3 + l2 sin(q3 + q4)

]

+

[

b2
0

]

where [b1, 0]
T and [b2, 0]

T are the position of the bases of

two manipulators. Therefore, the Jacobian matrix between the

joint space of the manipulator and the corresponding Cartesian

space is

Je,1(q) =

[

−l1 sinq1 − l2 sin(q1 + q2) −l2 sin(q1 + q2)
l1 cosq1 + l2 cos(q1 + q2) l2 cos(q1 + q2)

]

Je,2(q) =

[

−l1 sinq3 − l2 sin(q3 + q4) −l2 sin(q3 + q4)
l1 cosq3 + l2 cos(q3 + q4) l2 cos(q3 + q4)

]

.

The Jacobian matrix between the end-effectors and the

object Jo is

J1(xo) =

[

1 0 lo
2 sinθ

0 1 − lo
2 cosθ

]

J2(xo) =

[

1 0 − lo
2 sinθ

0 1 lo
2 cosθ

]

The dynamic parameters of the ith(i = 1, 2) manipulator

are

Me,i =

[

Di11 Di12

Di21 Di22

]

, Ce,i =

[

Ci11 Ci12

Ci21 Ci22

]

,

Ge,i =
[

GT
i1 GT

i2

]T

where

Di11 = pi1 + 2pi2cos(qi2); Di12 = pi3 + pi2cos(qi2);

Di21 = pi3 + pi2cos(qi2); Di22 = pi3;

Ci11 = −pi2sin(qi2)q̇i2; Ci12 = −pi2sin(qi2)q̇i2;

Ci21 = pi2sin(qi2)(q̇i1 + q̇i2); Ci22 = 0;

Gi1 = (mi1lc2 +mi2li1)gcos(qi1) +mi2lc2gcos(qi1 + qi2);

Gi2 = mi2lc2gcos(qi1 + qi2);

pi1 = mi1l
2
c1 +mi2(l

2
i1 + l2c2) + Ii1 + Ii2;

pi2 = mi2li1lc2; pi3 = mi2l
2
c2 + Ii2;

where lc1 and lc2 are the centre of the first and the second

link of the manipulator, respectively. Here q11, q12, q21 and

q22 stand for q1, q2, q3 and q4, respectively.

B. Experimental Results

1) PD control: A conventional PD controller is designed

as τPD = KP z1 + KDz2, where the position error z1 =
x1 − xd and velocity error z2 = ż1 = x2 − ẋd, KP and

KD are positive gain matrices. In this simulation study, the

parameters are selected as KP = [5000, 5000, 1000]T and

KD = [450, 450, 350]T . The start position of the carried

object is [0.196, 0]. The environmental disturbance is chosen

as Fd = [0.02 ∗ sin(t), 0.02 ∗ cos(t), 0]. The total simulation

duration is 90s and the sample time is 0.03s. Simulation results

of PD control are shown in Fig. 6 - Fig. 10. Fig. 6 and 7 give

the tracking performance of the PD controller and we can

find that the tracking errors change with respect to time with

a relative high vibration, as shown in Fig. 8 and 9. In Fig.

10, we can also find the control force is not stable and the

amplitude is large.

2) Adaptive NN control:

For the neural network, the number of NN nodes are chosen

as 212, the centre of NN nodes are evenly distributed in [−1, 1],
and the variance is 50. The NN weights are all initialized as

zeros, the gain of NN adaptive law are chosen as Θ1 = 120,

Θ2 = 150, Θ3 = 120, and σ1 = σ2 = σ3 = 0.001.

The designed parameters of the controller are selected as

K1 = diag(15, 20, 15), K2 = diag(11, 15, 10) and Kr =
diag(0.01, 0.01, 0.01). The predefined bound of the position

of the end-effector are kc1 = kc2 = kc3 = 0.35. The initial

position of the mass centre of the object xo = [0.19, 0]T . The
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disturbance and the simulation time are the same as the case

for PD control.

The simulation results are shown in Fig. 11 - Fig. 16. Fig.

11 and 12 show the tracking trajectories of the NN control.

In the proposed iBLF function based control method, positive

constant kci stands for the output contraints. In our simulation,

we set kc1 = kc2 = kc3 = 0.35. As shown in Fig. 12, the

tracking trajectories remain in the predefined bound (green

lines) during the whole simulation process, which validate

the effectiveness of output constraints functionality of the

proposed control scheme. From Fig. 13 and 14, the tracking

errors converge to a small neighbourhood of zero quickly

within 2 seconds, that is due to the learning process of the

neural networks. In Fig.15, we can find that the control torque

is stable at a relative low level when the NN weight matrix

reach the optimal value. As depicted in Fig. 16, it takes less

than 2 seconds for the estimated NN weight matrices to rapidly

converge to stable values. In general, the NN control can

make the controller more stable and efficient compared with

PD control. These results verify the efficacy of the proposed

method for the position tracking of the object carried by
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multiple robot manipulators.

VI. CONCLUSION

This paper presents an adaptive control methodology based

on admittance model for multiple manipulators transporting

an rigid object cooperatively along a predefined desired tra-

jectory. The admittance model is utilized to generate reference

trajectory online for each manipulator according to the desired

path of the rigid object. A type of iBLF is introduced to

tackle the constraints due to the physical and environmental

limits. As for the uncertainties of the manipulator dynamics,

adaptive neural networks are employed to approximate these

uncertain terms. The switching function provides the required

the global stability of the closed-loop. The simulation results

carried on planar 2-link manipulators validate the efficacy

of the presented method. Although the performance of the

adaptive NN control is better than that of the conventional

PD control when the weight vector W is stable, it is noted

that it takes a longer time for NN control to catch up with

the desired signal. To further validate the proposed method,

conducting some experiment is one of our future work.

APPENDIX

A. Proof of (26) in Remark 3

Step 1 (the left part of the inequality) Denote g(zi) =
∫ zi

0
σk2

ci

k2

ci
−(σ+αi)2

dσ − z2

i

2 =
∫ zi

0
σ(σ+αi)

2

k2

ci
−(σ+αi)2

dσ, the derivative

of g(zi) with regard to zi is ∂g
∂zi

=
zix

2

i

k2

ci
−x2

i

. It is noted that in

the compact set X we have k2ci − x2
i > 0.

For case zi > 0, we have ∂g
∂zi

< 0; For case zi < 0, we

have ∂g
∂zi

> 0. Since g(zi) = 0 at zi = 0, therefore we can

draw the conclusion that gi > 0 in the set X . That means
∫ zi

0
σk2

ci

k2

ci
−(σ+αi)2

dσ >
z2

i

2 holds in the set X .

Step 2 (the right part of the inequality) Define pi(σ, αi) =
σk2

ci

k2

ci
−(σ+αi)2

, we have

∂pi

∂σ
=

k2ci(k
2
ci + σ2 − α2

i )

(k2ci − x2
i )

2
(52)

which is positive in the set |σ + αi| < kci. Since pi(0, αi−1) =
0 for all |αi| < kci and pi(σ, αi−1) is monotonically in-

creasing with σ in the set |σ + αi| < kci, we further have
∫ zi

0
pi(σ, αi−1)dσ 6 zipi(σ, αi−1) for |σ + αi| < kci, which

leads to the right part of (26) after substituting for pi.

B. Proof of Theorem 1

Multiplying eη3t on both sides of V̇3 6 −η3V3 + C3, i.e.

(V̇3 + η3V3)e
η3t 6 C3e

η3t. After integration, there exists

V3(t) 6
(

V3(0)− C3

η2

)

e−η2t+ C3

η2

6 V3(0)+
C3

η2

. Considering

Remark 3, we know that
z2

1i

2 6
n
∑

i=1

z2

1i

2

∫ z1i

0
σk2

ci

k2

ci
−(σ+αi)2

dσ 6

V3(0) +
C3

η2

. Further there are |z1i| 6
√
2B, i = 1, · · · , n,

|z2| 6
√

2B
λmax(M) , where B := V3(0) +

C3

η2

.
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