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Summary. A formalism based on an analytical approximation for convection 
in a layered spherical shell leads to  the computation of the Green kernels 
for topography and gravity, and to  the admittance of gravity over topography 
for the harmonics of the Earth. We study the role of increasing viscosity with 
depth, of two layers of convection, and of the coupling with lithospheric 
plates. It is found that a planet with constant viscosity will have positive 
values for the admittance for all wavenumbers. However, when a step of 
viscosity between the lower and upper mantle is assumed, negative values for 
the first harmonics are achieved. This result explains some long-wave obser- 
vations and provides evidence for an increase of viscosity in the lower mantle. 

1 Introduction 

Transfer functions of gravity or geoid over topography have been used by many authors in 
order to understand the response of the lithosphere to loads (Watts 1978) or more recently 
to localized heat sources in the asthenosphere (Sandwell 1982) and then t o  discuss the 
relative importance of different compensation mechanisms within the lithosphere due to a 
local Airy or Pratt isostasy, to regional lithospheric deflection or to the thermal evolution 
of the lithosphere. 

McKenzie (1977) and Parsons & Daly (1984) extend these studies to  larger wavelengths, 
which are thought to  be associated with convection in the upper mantle. They prove using 
both numerical and analytical models that the admittance for small-scale aspect ratio 
(- 700 km of horizontal extent) convective cells in a constant viscosity upper mantle must 
be positive and close to 0.3, implying that gravity anomalies are respectively positive over 
the ascending limb of a convective cell and negative over the descending one. Such 
theoretical results are found to be in good agreement with some observed data. For example, 
the positive correlation between 5" x 5" mean gravity and residual depth anomalies over the 
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Hawaian swell has been explained by an upward warm flow within the mantle maintaining 
both the swell and the observed positive Iong-wavelength gravity anomalies (Watts 1976); a 
correlation between geoid height and bathymetry in the Pacific and Indian Oceans has been 
interpreted in the same way (McKenzie et al. 1980). 

Nevertheless one can question if these results can be extended to larger wavelength or 
convective modes. As emphasized by Runcorn (1972) and Kaula (1972) gravity anomalies 
over subduction zones deduced from satellite models present large positive values over the 
subduction zone, which are believed to  be downwelling regions of the convective circulation, 
implying that over these regions the sign of the admittance should be negative. 

A careful modelling of the convective flow driven by the subducting slab acting as a heat 
sink shows that the convective cells driven by the sinking slab in the upper mantle have a 
large aspect ratio, at least equal t o  5 ,  and thus have a horizontal extent of at least 3000 km 
(Rabinowicz, Lago & Froidevaux 1980; Nataf etal. 1981). It is shown that the shape of the 
gravity signal associated with these cells can be quite different from that of small aspect ratio 
cells (Rabinowicz, Lago & Souriau 1983). We showed that the negative admittance values 
necessary to explain the observed gravity signal landward of the subduction zones can be 
achieved if some dynamical support is given by convection in the lower mantle. These 
considerations lead us to estimate admittance in a multilayered spherical shell with a possible 
variation of viscosity versus depth, and to calculate the modal response of the plastic flow 
to a harmonic component of the temperature excitation, as well as the associated surface 
deformation and gravity kernels. General characteristics of the formalism are given in 
Section 3 with some complements in Appendices A and B, while a set of results are shown 
and commented on in Section 3 .  Certain geophysical implications are discussed in Sections 4 
and 5. 

B, Lago and M. Rabinowicz 

2 The formalism 

The proposed formalism generalizes McKenzie’s (1 977) approach and considers Green 
function and height and gravity kernels as in Parsons & Daly (1984). A relatively similar 
formalism can also be found in Ricard, Fleitout & Froidevaux (1984). 

Classical equations useful for our formalism can be found for example in Chandrasekar 
(1961, chaper VI). 

The very large value of the Prandtl number in the Earth’s mantle allows us to ignore 
the term in ‘dldt’ and, as the Boussinesq approximation is considered, perturbations to 
reference profiles of the pressure ( 6 p )  and temperature T allows us to write the equation 
of motion in Cartesian coordinates (xl ,  x2, x3) in the following form: 

where r is the distance to the origin, Ui the velocity components, p the density, 6V the 
disturbing gravity potential, cy the coefficient of volume expansion, g(r) the gravity and 
v the kinematic viscosity. 

To this equation is added the equation of continuity (a non-compressibility condition 
is assumed): 

3 aui 1 ---=o. 
i = l  axi 
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Convection in a layered shell 463 

Taking the curl of (1) allows us to eliminate the term in grad 6P/p  + 6 V ;  taking the 
curl' of (1) allows us to write: 

No equation concerning Twill be written; we will consider a component of the thermal 
field T of the form T(r) Y):(O, 4) where r, 8,  4 are the spherical coordinates, Y): a spherical 
harmonic and T ( r )  a test function. 

This given component of the thermal field generates a poloidal component of the flow; a 
function W(r)  is associated with this poloidal component, such that: 

3 
C xi Ui = rUr = W ( r )  Y):(e,  4). 

i = 1  

This gives for the components of the velocity in the spherical tangential frame: 

In this case, (2) is automatically satisfied and (3) becomes: 

where 

d' 2 d Z(Z+l) g , = - + -  - - .  
dr2 r dr r' 

Expressions for the viscous stresses are: 

r ar 

1(Z+ 1) -2  

r2 ae 

I([+ 1)-2 1 a r y  J 
r' 
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Projection of (1) on the tangential plane of the sphere gives: 

B. Lago and M .  Rabinowicz 

where the VT operator has the following tangential components: 
i a  

By integration on the sphere, one obtains: 

V P  d 
Z(Z+1) dr 

6P= ~ - ( r  9 l W ) . Y ; " - p 6 V  

and finally: 

Equations (4), (6) and (7) allow us to write the conditions at the interfaces between 
layers and at the boundaries, whose explicit expressions for W(r) are given in Appendix A. 

In any cases U,, U8 , U,, Pro and pr4 have to be continuous across each interface; further- 
more, if an interface is crossed by the current, an additional condition concerns the 
continuity of prr .  When the interface is a limit of two layers of convection, the interface 
defined by r = r I  is a streamline and value of Ur(rI-) and Ur(rI+) has to be null. This last 
condition replaces the condition of continuity of prr and the resulting step of prr across 
the interface induces a deflection of the interface given by: 

where ApI is the step in density between the two layers. This deflection is due to the 
cumulative effect of the circulation in the two adjacent convective layers. 

The top boundary located at r = R 1  is the lithosphere/asthenosphere interface. Two 
situations are considered; either a free boundary ((I, = P r o  = p r $  = 0) or a rigid one 
(U, = U, = U, = 0). The core-mantle interface with r = rc will be a free bottom boundary 
(ur = P r o  = P r e  =O>. 

Deflection of the top boundary is given by: 

and of the bottom by: 

where Apl and Apc are the corresponding steps in density. 
It is classical to introduce non-dimensional variables denoted by - and defined by: 

r = R I P ,  f = ~ ~ i ,  T = T ~ ~ ,  v = v , v ^ ;  p = p 0 P ^  

and 

where R 1  is the external radius of the Earth's asthenosphere; TI  some reference 
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Convection in a layered shell 465 

temperature; vo and p o  values of these quantities in the upper mantle;go the value of 
g(r), assumed constant in the whole mantle and a. the value of a assumed the same in 
every layer; V, the harmonics component of 6 V .  

In the following, the A will be omitted and equation (5) becomes: 
7 9 2 W = -  

v r ’  
and for example, the non-dimensional ApItI is given by: 

where X is a non-dimensional parameter, defined in Appendix B. 
Solution of (5’)  can be written in terms of the Green’s function: 

where the Green’s function is solution o f  
9; w (r, r ‘) = 6(r - r ’) 

(5’) 

and 6 is the Dirac function. 
Information on the computation of the Green’s function is given in Appendix A. 
Now l I  can be expressed in terms of the temperature structure by substituting equation 

in (10): 

J rc 
If the disturbing gravity potential is neglected in (lo), one obtains: 

d d 

v r  ‘ 1  dr dr 
Hdr’ )  = 7 21(1+ 1) - W ( r ,  r ’ )  - -- [ r g 1  w ( r ,  r ’ ) ]  

More general expressions, taking account of the disturbing gravity potential are derived 

The component of order 1 of the gravity anomaly is made dimensionless by: 
in Appendix €3 for the H I ,  HI and Hc kernels associated with the corresponding deflections. 

The gravity kernel is given by: 

C ( r ’ )  = Hl(r’ )  + 1 r;+’HI(r’) + r:+’H,(r’) - ap(r ’ )  r r l+ ’ .  
interfaces 

In the second term of this expression, one finds in order, the contribution of the top 
boundary, that of each internal interface, that of the bottom boundary and finally that of 
the density contrast due to the thermal field; one obtains: 

1 
gl= [ G ( r ’ )  r ( r ’ )  dr’. 

JTC 

The component of the geoid height hl 

is made dimensionless by: 
h1= V , k o  

4nGpoffoTiRl 1 

‘ 2 1 + 1  g1 
hi = 

g o  

and no new kernel is needed. 
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466 B. Lago and M .  Rabinowicz 
If the interface involves a phase change, the formalism is able to take account of the 

distortion of the phase boundary, coupled with the density step between phases by a 
condition of the type: 

PR(W) I ‘I+ = S. 7(r1), 
‘I - 

where S is a non-dimensional number defined for example in Schubert, Yuen & Turcotte 
(1975). Reasonable values of physical quantities allow us to evaluate S as a few x lo-’ for 
the possible interfaces in the Earth - a negligible value - and thus this effect will not be 
considered further in the following. 

3 Results 

It is now possible to use the above formalism to obtain a better understanding of the 
contributions of the mantle convection to both gravity and residual depth anomalies. 
Although the formalism allows us to consider several transition layers, we propose to limit 
ourselves to one transition only; that associated with the spinel-post-spinel transition layer 
at 650-700 km depth, classically considered as the interface between the upper and lower 
mantles. 

This transition could have a notable influence on the circulation and thus inferred gravity 
by its possible role as a lower limit for the Benioff planes and as a boundary of two distinct 
geochemical reservoirs (Richter & McKenzie 198 1). 

An insight into this problem will be obtained by considering only cases with two layers; 
the possible patterns of the mantle convection will be studied by the choice of three major 
items: 

the dynamical coupling with the top plate: free (F) or rigid (R); 
a step of viscosity between the upper and lower mantle (N, if no step, S for a step); 
one layer of convection in the whole mantle (0) or two layers, one in the upper, the 

other in the lower mantle (T). 
This leads us to consider eight cases; each one is defined by three letters, for example, 

FSO is the case with a free top boundary, a step of viscosity across the post-spinel interface 
and only one layer of convection in the whole mantle. 

Let us consider the ratio of the lower mantle viscosity over the upper mantle one; a rapid 
increase of the viscosity of the mantle with depth (involving a value 104-106 of this ratio) 
was later supported by authors who interpreted the equatorial bulge of the Earth’s figure as 
a fossil bulge but now, from different considerations, the range of possible value of this ratio 
is believed more limited (between 1 and 100) and even, from an isostatic rebound model, 
close to one (Peltier 1976, I and 11). 

For the item ‘S’, the value of 100 for this ratio will be generally adopted, but in Fig. 3 
the intermediate value of 10 is also considered. 

Values of the physical parameters are shown in Table 1 .  In Fig. 1 are drawn the gravity 
and height kernels for four chosen values of I :  

1 = 2 and 3 ,  main values concerned by the planetary scale convection; 
1 = 6 ,  typical of the plate scale convection with a half-wavelength of 3333 km; 
I =  30, associated to small aspect ratio convective cells in the upper mantle, with a half- 

Parsons & Daly (1984) have made a very similar analysis in a planar two-dimensional 
geometry with a single layer of convection. The comparison of their results with ours, when 
possible, is very good and is shown in Table 2. 

wavelength of 667 km. 
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Convection in a layered shell 467 
Table 1. Numerical value of the physical parameters adopted in this study - indexes c ,  1, 2, 1 are relative 
to the core, lower and upper mantles and the lithosphere, respectively; value of y from Schubert et al. 

RI 

RC 
P 
Y 

S 

Physical parameter 

Value of the Earth gravity in the 
whole mantle 
Kinematic viscosity in the lower 
mantle 
Kinematic viscosity in the lower 
mantle 
Coefficient of volumic expansion 
Density in the mean mantle 
p I  - p 2  difference density between 
lower and upper mantle 
Pc-Pm 

External radius of the Earth’s 
asthenosphere 
Radius of the interface lower/upper 
mantle 
Radius of the Earth’s core 
Temperature gradient 
Slope of the Clapeyron curve at 
the post-spinel interface 
Dimensionless parameter, measure 
of the importance of the phase 
change instability to the Rayleigh 
one 

Value 

10 m s-2 

Non-dimensional 
value 

v 2 0 r  100 v 2  1 or 100 

3.31 x 10-50c-1 
4.5 x lo3 kg m-3 
0.4 X 10-3kg m-’ 

6 . 5 X 1 0 3 k g m - 3  
(for the computation 
of S )  
0 (for the compu- 
tation ofH1,H1,Hc) 
6.271 X 1 0 6 m  1 

5.721 X106m 0.9123 @I) 

3.479X106m 0.5548 (rc) 
1 0 - 3 0 C  m-’ 
- 1.3 X 106pascal m-’ 

- 2 x 1 0 - 2  

3.1 R E Q U I R E M E N T S  O N  T H E R M A L  P R O F I L E S  

For a component of the thermal field in ~ ( r )  YY(0 ,  @), with T(r) > 0, ascending hot limbs 
are centred over maxima of Y y  and descending cold limbs over minima. For this reason 
and at least for the fundamental wavelength component associated with a given convective 
pattern, T(r) apparently keeps the same sign in a whole stage of convection and is of the 
opposite sign inside adjacent layers. 

Generalization of these considerations to the harmonic components is questionable. The 
results shown in Fig. 7 of Parsons & Daly (1984) seem in favour of this generalization but 
our experiment, for a set of completely different cases, does not (Rabinowicz et al. 1983). 

Let us now define the function S(r)  by: 

case 0 (one convective layer): S(r) = + 1 in the whole mantle, 

case T (two convective layers): S(r) = + 1 in the upper mantle, 

S(r) = - 1 in the lower mantle. 

Above considerations allow us to write: 

S ( r )  T ( Y )  0 .  
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468 B. Lago and M. Rabinowicz 

Table 2. Comparison of the cases FF and RF from Parsons & Daly (1984), involving 
a free bottom and a free or rigid top boundary with our cases FNO and RNO, respec- 
tively. In our two cases, and for each 1,  the kernel G, null at r = rc and r = 1 achieves a 
maximum value, showed in the second column (for each I, up: case FNO, down: case 
RNO). The same behaviour is seen for Parson’s results. For each I ,  the associated value 
of the wavelength h = (40 x lo6 m)/Z allows us to compute an aspect ratio h/d (column 
3),  where d is the thickness of the mantle ( R ,  - R c )  and the closest value of this ratio 
in Parson’s study can often be found (column 4). The corresponding maximum of G is 
given in column 5 (up: case FF comparable to our FNO, down: case RF comparable to 
our RNO). The comparison shown by the extrema values of the kernel G can be con- 
sidered as very good, proving that the change of planar by spherical geometry is of 
limited importance but the factor ( I  -1)/(2Z+l) must not be forgotten in the dimen- 
sioned quantity. 

1 Extrema hld 
FNO 

of G- 
RNO 

2 
0.13 
0.30 1.2 

Closest value Extrema 
of h/d in FF 

of G- 
Parson’s study RF 

8 0.15 
0.38 

- 
- 

- 4.8 0.20 
0.34 3 

0.29 
0.37 6 

0.35 
0.36 30 

2.4 

0.48 

2 

0.4 

0.3 
- 

0.4 
- 

This gives to S(r) the meaning of the required sign of any acceptable thermal component 

Let us assume that the thermal profile verifies (A). Then interesting conclusions can be 
at the radius r for the fundamental mode. 

derived considering the kernels associated with each I value, as shown in Fig. 1. 

3.2 C O N C L U S I O N  1 

In every case, the contribution due to the deflection of the interface core/mantle to the 
gravity anomaly is either small for I =  2 and 3 (less than 10 per cent) or very small for I =  6 
(less than 1 per cent) to completely negligible for I = 30. 

3.3 CONCLUSION 2 

For Z =  30, any contribution of the lower mantle to both the lithospheric deflection and 
gravity anomaly is at most small and even negligible from the deep part. Changes in the value 
of the viscosity step, of the number of convective layers and, to a lesser extent, of the 
dynamical top boundary condition modify the relative importance of the gravimetric contri- 
butions for I = 30 but notably less than in cases relative to a small value of 1. Similarly, 
negative values of the admittance are never achieved for 1 = 30. 

Figure 1. For each case and for the values of I = 2, 3,  6 and 30 are shown the following kernels: (a) 
contribution to the total gravity kernel G of the deflection of the top boundary; (b) contribution to G 
of the interface upper-lower mantle, only given when non-null (two layers of convection); (c) contri- 
bution to G of the interface mantle-core (the bottom boundary); (d) contribution to G of the thermal 
density contrast; (e) G itself. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/77/2/461/695088 by guest on 21 August 2022



RNO RSO FNO FSO 
1,o 

a 0. 

-1.0 
1.0 0.90 0,55 

1.0 

0. 

-1.0 

1.0 

0. 
30 

-1.0 -1.0 
1,o 0.90 0.55 1.0 0.90 0.55 .55 

1.0 

0. 0. 0. 

-1.0 -1.0 -1.0 -1.0 

0.1 0.1 0.1 0.1 

0.2 0.2 

0. 0. 0. 

-0.2 -0.2 -0.2 

-0.1 -0. I -0.1 

0.2 

1.0 rn 1.0 TF!!l 1.0 

.55 O a 2  m 1.0 0.90 0.55 

0. 

C 

d 

.55 -55 .55 .55 

.55 

e O. 
-0.2 

-0.1 

1.0 

a o. 

-1.0 

e 

RNT RST MT FST ::pq 
-1.0 

1.0 0.90 0.55 

:om 
2 

I 
2 -1.0 -1.0 

1.0 0.90 0.55 1.0 0.90 0.55 1.0 0.90 0.55 

.55 

.55 

1.0 0.50 0.55 1.0 0.90 0.55 1.0 0.90 0.55 1.0 0.90 0.55 
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470 B. Lago and M. Rabinowicz 
3.4 C O N C L U S I O N  3 

As noted by Hager (I982), the gravitational effects of the surface deformation and the 
driving density contrast are of comparable magnitude and opposite sign and nearly cancel. 
This is illustrated in the cases with only one convective layer, where deflection of the 
upper-lower mantle interface is null and those of the core-mantle interface gives negligible 
contribution (conclusion 1), leaving alone the contributions of the lithospheric deflection 
and of the thermal density contrast; in order to evaluate the cancelling effect, one may 
choose the quotient of the extrema values for r in the range (rc, I), of the two kernels 

SUP I G I 
SUP IHI I 
to be rarely bigger than 0.15. 

In cases involving two layers of convection, the positive contribution due to the 
deflection of the upper-lower mantle interface is notable and has to be added to those of 
the lithospheric deflection before getting a sum of comparable magnitude with the effect of 
the thermal density contrast. 

3.5 C O N C L U S I O N  4 

As an a posteriori statement, the kernel H l ( r ‘ )  has in every case and for the whole range of 
r’, the same sign as S ( r ’ ) .  This can be written: 
HI@’) . S ( r ’ )  2 0.  

This point has an important consequence: for any acceptable thermal profile, verifying 
condition (A), every contribution of any elementary layer gives a positive contribution to .:. 
3.6 C O N C L U S I O N  s 

Concerning G, it can have the same sign of S or not. More precisely, let us define the sub- 
interval I of { r c ,  1) of value r r  giving a negative contribution to the admittance such that 
r ’ E I if and only if: 

Table 3 shows the sub-interval I for every case. Three situations are possible: 
C ( r ’ )  . S ( r ’ )  < 0. 

(a) I =  q5 (the void set). This occurs in cases R or F, N, 0 (every I); R, N, T (every I); 
F, N, T ( I  = 6 and 30) and also R, S, 0 (I = 2). 

In such cases and for the very large class of acceptable thermal profiles, verifying condi- 
tion (A), every contribution to AgT from every elementary layer is positive and the 
admittance is always positive. 

Table 3. Sub-interval I for every case - @ holds for the void set. In the definition of a given case: R is 
for a rigid top boundary, F for a free one; N for a condition of no  step of viscosity, S for a factor 100 
between viscosities of the upper and lower mantles; 0 for one convection layer and T for two layers. 

3 6 30 

RNO 
FNO 
RSO 
FSO 
RNT 
FNT 
RST 
FST 

9 
# 
9 
0.79, 1 
@ 
rc, 0.84 
rc, 0.93 
rc, 1 

# 
9 
0.90, 0.94 
0.70, 1 
9 
rc, 0.76 
rc, 0.93 
rc, 1 

9 
# 
0.74,0.965 
rc, 1 
9 
9 
rc, 0.93 
rc, 1 

9 
@ 
rc ,  0.925 
rc, 0.94 
# 
9 
rc, 0.91 
rc, 0.91 
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Convection in a layered shell 47 1 
(b) I =  { r,, 1)  this occurs in cases FST (for I =  2 ,  3 ,  6) and FSO ( I =  6). One gets the 

inverse result from (a). For the same class of acceptable thermal profiles, every contribution 
to AgT is negative and so is the admittance. 

(c) I f  0 and # { r,, I}  . In such a case it is possible to get either positive or negative 
value of AgT and of the admittance, according to the details of the particular thermal 
profile. Negative admittances need relatively larger values of ~ ( r )  inside I than outside. A 
negative value of the admittance is likely to be found in case FSO ( I =  2, 3) if the driving 
density contrast is essentially in the upper mantle and alternatively for the cases RST 
( t = 2 ,  3 or 6) (cf. Fig. 5b) and FNT ( I = 2 ,  3) (cf. Fig. 5a) if this same contrast is 
preferentially in the lower mantle. But, of course, such a situation can favour small or even 
very small positive or negative value of the admittance. These points are illustrated in 
Figs 2-5, involving a choice of a few examples of different acceptable thermal profiles. 

For the value 1 = 30, despite a large interval I for some cases, the deep localization of this 
interval and the small value of G30 normally prevent a negative value of the admittance 
(cf. Figs 2-5). 

For the value 1 = 6, the conclusions are easily outlined: positive admittances are always 
found if no step of viscosity occurs; if a step of viscosity is associated with a free top boun- 
dary (cases F,  S, 0 or T), negative admittance is certain; if a step of viscosity is associated 
with a rigid top boundary (cases R, S, 0 or T), to get this negative value, the thermal driving 
contrast must be deep enough. 

With a few modification, the same kind of conclusions are also valid for I =  2 and 3. 
However, the negative admittance is still more difficult to achieve with a rigid top boun- 
dary and may even be impossible (case R, S ,  0, I =  2) .  With two layers of convection and 
without a viscosity step, the admittance is in any case very small for I = 2 and 3. 

4 Geophysical implications 

In a former study (Rabinowicz et al. 1983, hereafter denoted paper I), mean gravity 
profiles across Central and South America and Eurasia in the direction normal to the sub- 
duction zones deduced from the GEM 10B gravity models have been computed (see Fig. 6 ) :  
a strong similarity between these profiles can be noted. There exists: 

a linear slope towards the interrior of the plate; 
an absolute maximum close to and landward of the trench; 
an absolute minimum at a distance of the order of 3500km from the trench, followed 

by a small secondary maximum correlated positively with swells like the Bermuda Rise for 
Central America, or the Rio Grande at the latitude of Chile. 

Such a shape has been interpreted in paper I as a consequence of a large convective cell 
driven by the subducting slab acting as a heat sink. 

When an oceanic slab subducts at an age of about IOOMyr, it has been considerably 
cooled by a mean value of 600°C over a depth of 60 km: the energy needed in order to 
warm it again is huge: 1O'W s-l for each metre of trench line, equivalent to the total heat 
production in the Earth along a section of 2000 km. A set of 2-D numerical convective 
models in the upper mantle in a vertical plane at right angles to the azimuth of the trench, 
incorporating the cooling action of the sinking slab by a cold vertical wall, shows the 
formation of a very large convective cell flowing downward along the cold interface of the 
sinking slab, and next horizontally along the post-spinel interface, before rising again 
3000 km away (Fig. 7) (Rabinowicz et al. 1980). 

We will now try to prove that most of the gravity signal landward of the trench can be the 
surface manifestation of the large convective cell driven by the sinking slab. Let us take 
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472 B. Lago and M .  Rabinowicz 
- - - - - - _ _ _ _ _ _ _ _ - - _ _ -  Ira 

/ 

I 1. 

b 

Figure 2. Non-dimensional admittance versus I for a one-layer convection across the whole mantle with 
constant viscosity. In (a) the top boundary is free (case FNO), in (b) it is rigid (case RNO). Different 
conductive thermal profiles are used, solution of 3 ! ( T )  = 0 with non-dimensional ~ ( 1 )  = m ,  and 
i ( r C )  = m , .  

(m ~ - m 2 r r 1 )  r f +  [ -m r r 1 +  m2rfc11 r-l-1 
1-r21+1 7 =  

Five cases whose values of m ,  and m 2  are (1,0), (2, l), (1, l ) ,  (1, 2) and (0 ,  1) respectively, relative to  an 
increasingly deep driving thermal contrast, are presented. The deeper the thermal contrast, the smaller is 
the admittance which always stays positive; the value being a little larger for a rigid top boundary than for 
a free one. With the exception of the first case (1, 0), all the profiles are very close and have a common 
asymptotic value for large I of about 0.35; this statement is still true in the other figures. 

into consideration, for example, the case of Central America (see Fig. 8) and propose, in 
accordance with the above remarks, that the flow driven by the sinking slab moves away 
normally to the Middle America trench, along the bottom of the upper mantle, crosses 
successively Honduras, Cuba, Bahama and ascends under the Bermuda swell, located at 
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Figure 3. Non-dimensional admittance for a one-stage convection with an increasing value of the viscosity 
ratio u , / u ,  equal to 1, 10 and 100. Same definition of the trial thermal function as in Fig. 2 with 
m i  = m 2  = 1. (a) and (b) are relative to cases FSO and RSO respectively. The increase of the viscosity ratio 
favours a decrease of the admittance chiefly for values of i close to  6 but the negative values are more 
easily achieved with a free top boundary. 

4000 km from the trench. Now, one has to check if the gravity and topography data are 
compatible with results of our models. 

Since the sediment and crustal thicknesses over most of these regions hide most of the 
dynamical deflection of the lithosphere due to the convection, one is unable to compute the 
value of the admittance. However, in the vicinity of the subduction slab, one can assert that 
the long-wave component of the temperature field and of the observed gravity anomaly 
reach respectively a minimum and a maximum close to the subducting plane, inferring that 
the unknown dynamical contribution to the gravity field is weaker than the one due to the 
thermal field, from which one infers a negative value of admittance. 
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Figure 4. Non-dimensional admittance for a two-stage convection in the mantle with constant viscosity; 
(a) and (b) are relative to cases FNT, RNT respectively. The physical situation involving the localization 
of the hot and cold currents in each layer and the pressure of two thermal boundary layers on both sides 
of the interface (see text) leads us to impose the following condition for the trial thermal function: 
s(rI-) + n r ( r ~ + )  = 0; 

and r ( l ) = l . T h u s ,  s(r)=k(a+r*+b+r- ' - ' )  f o r r I < r - 1  and k ( a _ r ' + b _ r - I - l ) f o r v c ~ r , r I w i t h  
Q+ = 1 ( 1 - - p 2 )  + I + (1 + n)l (rc/r#l+' 

b+ = 1(1+ n) + [ / I +  1 -n  r,2'+1 
(21 +-1) I 

a -  = - (21 + 1) n, b- = - __ 2f+1 
I +  1 rC 

and k = l / (a+  - b+). These functions are shown for 1 = 2 (c). The values of n have to be positive in order 
to satisfy condition (A) of Section 3; the proposed values of n are 0, 0.25, 0.5, 1 .  The admittance is 
quasi-null of I < 8 for a free top boundary in agreement with the very small amplitude of the correspond- 
ing G kernel (case FNT of Fig. 1). 
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0 
I "  

Figure 5. The same situation as in Fig. 4 but with a ratio of viscosity u,/v, of' 100 (a) and (6) are relative 
to cases FST and RST respectively. Negative values of the admittance for I < 8 are now easily achieved as 
soon as the thermal contrast concerns the lower mantle but, as usual, more easily with a free top boundary 
than with a rigid one. 

Gravity associated with the 2-D upper mantle flow model of Fig. 7 has been studied in 
detail in paper 1 (see Fig. 9). We have found that a negative admittance is achieved if the 
following boundary conditions are assumed: a free coupling with the top boundary and a 
rigid or semi-deformed lower interface. For such cases, the model is able to reproduce 
correctly the shape of the observed profiles: the long-wave decreasing slope away from the 
subduction zone; the local maxima of gravity observed over the Bermuda swell. 

Let us now consider the convective mode directly comparable to the large convective 
flow described above; it involves two layers of convection and a value of 1 equal to 6, 
corresponding to cells of 3300 km of horizontal extent. In such a case, the conditions 
favouring a negative admittance are: 

a free coupling with the top; 
an increase of viscosity across the post-spinel interface; 
eventually a deep thermal contrast. 
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a 
b 

d b 
a 
C 

C 

d 

Figure 6.  Average gravity profiles normal to the subduction (right) to the interior of  the plate (left) and 
across (a) Central America; (b) South America at the Peru latitude; (c) South America at the Chile 
latitude; (d) eastern Asia (from paper I). For (a), (b) and (c), the  geographical direction has been reserved 
for comparison. 
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Figure 7. isovorticity lines (a), streamlines (b), isotherms (c) for a convective circulation model; 
computation made in a 3 6 0 0 X 6 0 0 k m 2  box with a regular 1 5 O X  25 meshing (from Rabinowicz et al. 
1980). 

A good analogy can be established between the conditions needed respectively by the 
former and present studies. The condition of a free top boundary is directly comparable; 
a big increase in viscosity can be considered as nearly analogous to a rigid coupling at the 
bottom of the upper mantle; a powerful motor in the deep mantle induced by a deep 
thermal contrast is a way to counteract the dynamical effect of the upper mantle circulation 
on this same interface, achieved in paper I by a condition of semi-deformed or undeformed 
bottom face. 

With these interpretations in mind, the comparison is good, but the present study allows 
us to be more precise. For example, if our interpretation of the gravity profiles across 
Central and South America and Eurasia is correct, a constant value of the viscosity in the 
whole mantle can be ruled out for any choice of the number of layers of convection. 
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Figure 8. Geophysical interpretation of the mean gravity profile across Central America. 

Thus a big enough increase of viscosity versus depth of at least one order of magnitude 
and more likely of two orders seems needed. It can be progressive or steep, but it must 
concern a transition zone between the upper and lower mantles. 

This conclusion is not significantly affected by the absence of knowledge of the true 
temperature profile and as an interesting corollary its validity seems independent of the 
value of the Rayleigh number. This gain is due to the consideration of the height and 
gravity kernels; meanwhile, one must not forget the need of the condition (A) on the 
thermal profile and the possible limitation of the conclusions to the only fundamental 
component. 

Let us outline the limitations and difficulties of the study with regard to the data, the 
concern as mentioned before is the absence of observational data on the lithospheric 
deflection in any continental area and de facto in large parts of oceanic areas. But more 
important, one must assume that gravity, geoid and residual depth anomaly profiles are due 
to a common dynamical cause and not to a large wavelength thickness of the crust or any 
similar static cause (McNutt 1980; Rabinowicz & Lago 1984). Such an assumption seems 
more valid as the wavelength becomes larger, implying a greater importance for the first 
harmonic of the Earth’s gravity field. 

5 Other geophysical considerations 

We have no reason to limit our interest to the case I = 6. The value I = 30 corresponds to 
convective cells of aspect ratio close to 1 in the upper mantle. In such a case, our results do 
not differ from planar 2-D ones (McKenzie et al. 1980). To illustrate the possibility of the 
cases ( I  = 2 and 3), one can consider the results obtained by Menard & Dorman (1977). 
Taking into account the fact that the ridge crests are roughly 700m deeper at the equator 
than they are in the high northern latitudes, they attempted an exhaustive study of latitu- 
dinal variations in depth of the ridge crests of every ocean. As a result, they get a determi- 
nation of two non-zero admittances of -0.039mgalm-’ for Z =  2 ,  using for Ag, the 
difference between the terms of the Earth potential and those of the reference ellipsoid 
and of 0.029mgal m-* for I =  3. Let us note that these admittances strictly concern purely 
zonal terms and are deduced from data observed only in the vicinity of ridges; thus, they 
are not valid globally. Associated non-dimensional values of the admittance are -0.975 for 
I =  2 and +;0.332 for I =  3. They are very different values, never simultaneously found for 
value I = 2 and 3 in the cases shown in Figs 2-5.  To solve the difficulty, one can adopt only 
one of these values to account for mantle circulation of the kind studied in Section 3. 
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t83000 2000 1000 km \ 

b 

Figure 9. For the large right cell of the model presented in Fig. 7. (a) [ and q, deflections of the upper and 
lower faces respectively of the cavity due to dynamical effects; normalized values are computed with a 
density contrast across the interface equal to p ,  the density of the upper mantle. (b) Agt ,  Agq and A ~ T  
are contributions to the anomaly of gravity of the 6 and q deflections respectively and the thermal field. 
(c) Ag, ,  Ag, and Ag,, global gravity profiles with the undeformed, semi-deformed and deformed bottom 
face conditions respectively. 
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Let us start by adopting 1 = 2 ,  the contribution in 1 = 3 is then likely to be considered 
as a simple harmonic, just able to modulate a geometric pattern of a circulation essentially 
governed by a Pz,o term. This point of view favours our former conclusion of an increase 
of the viscosity versus depth. 

Alternatively, 1 = 3 can be adopted; in such a case, the term 1 = 2 can probably be 
governed by the circulation in the core and/or by the distortion of the core-mantle inter- 
face. Another possibility, often invoked 10 to 20 years ago, considers the excess of the 
measured second zonal harmonic as indicating that the mantle possesses a memory for the 
faster rotation of the Earth in the past. This statement has been proved untrue by Goldreich 
& Toomre (1969). In any case, if the value of the admittance given by the order 3 is 
considered as an answer to mantle circulations it is difficult, but not impossible, to balance 
this point of view with an increase in viscosity with depth (see Fig. 3b). 

In conclusion, this first short analysis of the known data at present in the light of the 
theory given above allows us to propose: 

long-wavelength gravity, geoid and residual depth anomaly profiles are able to give an 
insight into the behaviour of the viscosity of the mantle versus depth; 

these same profiles are less able to select between a one-layer or a two-layer convective 
circulation in the Earth’s mantIe, 

If one is confident in our interpretation of mean gravity profiles across continental plates 
normal to the trench line, one is lead to adopt an increase in the viscosity of at least one 
order of magnitude between the upper and lower mantle. 
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Appendix A 

Only cases with two layers will be considered in this appendix. Green's function is the 
solution of (1 

@ W ( r ,  r ' )  = 6 ( r - r ' ) .  ('41) 
For a given value of r' ,  one has to solve the equation: 
G$ w ( r ,  r r )  = 0, 
in three layers, involving the two interfaces defined by r = r I  and r = r '  (r' is assumed to 
be different from rI  but can be equal to rI t E or rI - E ) .  

In each layer, a determination of 7(r ,  r ' )  is obtained of the form: 
A, r' t Bc r-'-' + Cc 1''' + Dc r-'+' ('43) 
for the general solution of (A2) where the coefficients depend on r' ;  c = 1 ,  2, 3 are associated 
to each layer with an increasing value from inside to outside. 

Conditions at the interface r' are given by the presence of the Dirac function: 
r'+ d w  r'+ d 2 W  r'+ 

W ( r ,  r ' 1 I/- = dr l r . -  = 7 I/- = O ('44) 

and 

/ ' I +  = 1. 
r -  

In the case of an interface crossed by the current (cases with one layer of convection), 
conditions at the interface rI are given by: 

and 
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If the interface is limit of two adjacent layers of convection, the last condition (A5a) is 
replaced by: 

w ( r I - , r ’ ) =  W ( r I + , r ’ ) = O .  (A5b) 
Boundary conditions are: 

d 2 W ( r , ,  r ’ )  
~ ( 1 ,  r ’ )  = W ( r c ,  r ’ )  = = O  

dr2 
and 
d 2  
- W ( l , r ‘ ) = O  
dr2 
for a free top boundary or 
d 
- W ( l ,  r ’ )  = o 
dr 
for a rigid top boundary. 

solution gives the value of the 12 unknowns A c ,  B,, D ,  for any given value of r‘. 

from (1 2)* : 

2 
HT(r’) = -, 1(l + 1) [(l-l)A3--(Z + ~ ) B J ] +  [12--1-31 ( I  + 1 )  G 3 - [ 1 2  + 31-11 1 0 3 1  

v r  
where the following formula has been used: 

91 r = [k(k  + 1 )  - Z (  z + I ) ]  rk-’ . 

The 12 conditions given by (A4) ,  (A5) and (A7) constitute a linear system, whose 

Value of the different kernels at this value r’ are easily obtained; one gets, for example 

Appendix B 
By taking account of the contribution of the disturbing gravity potential in the computation 
of the kernels, it follows from equation (10)  that: 

where HT is the expression of the second member of (12)2 and q ( r ,  r ’ )  the Green’s kernel 
associated with the gravity potential, solution of 91 [ q ( r ,  r ’ ) ]  = - 6 ( r - r ‘ )  with q ( r ,  r ’ )  = 
&(m, r ‘ )  = 0, given by: 

-1 -1  

if r > r’, 

and h a non-dimensionalized number such that: 

A =  

Similarly: 

- 4nGprnR1- - 3 Pm 

go ( ~ c  - ~ r n ) ( ~ c / ~ 1 ) ~  + Prn . 
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For each r’,  the solution of the system (BI),  (B2), (B3) allows us to get the value of the 
three kernels. Adopted values of non-dimensional Ap,, ApI, Apc are 1, 0, ( p c - p m ) / p m  
respectively. The contrast of density between the upper and lower mantle has been 
considered a negligible amount. 
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