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Abstract

Obstructive sleep apnea (OSA) is a common disorder associated with increased risk of cardiovascular disease and mortality.

Its prevalence and severity vary across ancestral background. Although OSA traits are heritable, few genetic associations

have been identified. To identify genetic regions associated with OSA and improve statistical power, we applied admixture

mapping on three primary OSA traits [the apnea hypopnea index (AHI), overnight average oxyhemoglobin saturation (SaO2)

and percentage time SaO2 < 90%] and a secondary trait (respiratory event duration) in a Hispanic/Latino American

population study of 11 575 individuals with significant variation in ancestral background. Linear mixed models were

performed using previously inferred African, European and Amerindian local genetic ancestry markers. Global African

ancestry was associated with a lower AHI, higher SaO2 and shorter event duration. Admixture mapping analysis of the

primary OSA traits identified local African ancestry at the chromosomal region 2q37 as genome-wide significantly

associated with AHI (P < 5.7 × 10−5), and European and Amerindian ancestries at 18q21 suggestively associated with both

AHI and percentage time SaO2 < 90% (P < 10−3). Follow-up joint ancestry-SNP association analyses identified novel variants

in ferrochelatase (FECH), significantly associated with AHI and percentage time SaO2 < 90% after adjusting for multiple tests

(P < 8 × 10−6). These signals contributed to the admixture mapping associations and were replicated in independent

cohorts. In this first admixture mapping study of OSA, novel associations with variants in the iron/heme metabolism

pathway suggest a role for iron in influencing respiratory traits underlying OSA.

Introduction

Obstructive sleep apnea (OSA) is characterized by recurrent

episodes of upper airway obstruction during sleep resulting in

oxygen desaturation and sleep fragmentation (1). OSA affects

more than 10% of adults (2) and increases risk of adverse health

outcomes, including hypertension and cardiovascular disease

as well as increased mortality (3–5). Candidate gene studies

have identified associations between the apnea hypopnea

index (AHI), the chief disease defining metric, measured conti-

nuously or dichotomized, with variants in genes associated

with inflammation, serotoninergic pathways and ventilatory

control (6–8). We have recently identified the first genome-wide

significant associations with objectively measured OSA traits

(9,10). However, the findings are limited by the statistical power

with the modest sample size of the available datasets.

One approach for increasing power while being robust

to allelic heterogeneity is admixture mapping (11,12), a powerful

analytic tool that can be applied to recently admixed populations

whose ancestral populationswere from isolated continents. This

method assumes that the ancestral populations have different

disease prevalence/severity and different allele frequencies
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(AFs), reflecting adaptations to different environments. Under

this assumption, local ancestry can be correlated with a

phenotype and such association can be detected using regres-

sion analysis.With the ability to accurately infer local ancestries,

admixture mapping has successfully identified risk genetic

variants associated with several complex disorders (11,13–15).

The potential for admixture mapping to identify genetic

association with OSA is supported by epidemiological stud-

ies of population differences: compared to European-Americans

(EAs), OSA prevalence is higher in Hispanic/Latinos (16), African-

American (AA) children and young adults (17–19) and Asians

(20,21). A genetic linkage study revealed differences in estimated

heritability and genomic regions associated with OSA traits in

AAs compared to EAs (22).

To explore these differences, we conducted admixture

analyses of three primary OSA phenotypes [AHI, overnight

average oxyhemoglobin saturation (SaO2) and percentage time

SaO2 < 90%], and a secondary heritable OSA measure (average

respiratory event duration) (22) in a large Hispanic/Latino

sample. To our knowledge, this is the first admixture mapping

study of OSA phenotypes.

Results

Sample characteristics

This study included 11 575 individuals from the Hispanic

Community Health Study/Study of Latinos (HCHS/SOL) with

self-identified Hispanic/Latino background (including Central

American, Cuban, Dominican, Mexican, Puerto Rican and

South American) (23,24) (Materials and Methods). The sample

characteristics varied across background groups (Table 1).

The Caribbean Islanders (Cubans, Dominicans and Puerto

Ricans) had higher average African ancestry proportion and

lower average Amerindian ancestry proportion compared to

the mainlanders (Mexicans, Central Americans and South

Americans) (25). OSA (defined as an AHI > 5) was present in

31% of the sample. Cubans had the highest prevalence of OSA.

The correlations among the traits are provided in

Supplementary Material, Table S1. As expected, AHI increased

with age, male sex and body mass index (BMI), and was

negatively correlated with average SaO2 (ρ = −0.69) and

positively correlated with time% SaO2 < 90% (ρ = 0.77). Event

duration was weakly correlated with the other OSA traits

(Supplementary Material, Table S1).

Since the four OSA traits were skewed, they were rank nor-

malized and adjusted for age, sex, BMI, population structure and

relatedness in this study (Materials and Methods). The overall

estimated heritability for the OSA traits varied from 11 to 17%.

Global ancestry associations

The associations between rank-normalized OSA traits and

global African, Amerindian and European ancestries adjusted

for demographic variables and BMI are shown in Table 2. Global

African ancestry percentage was associated with lower AHI

(β = −0.0005, P = 0.023) and higher average SaO2 (β = 0.0006,

P = 0.015), suggesting a protective effect for OSA. European

ancestry percentage was associated with lower average SaO2

(β = −0.0007, P = 8.50 × 10−4). Respiratory event duration

was shorter in African and European ancestries (β = −0.0019

and − 0.0008, P = 7.52 × 10−9 and 6.20 × 10−4), and longer in

Amerindian ancestry (β = 0.0015, P = 6.20 × 10−4). Secondary

analyses using European ancestry as a reference group present

consistent estimated effects for African and Amerindian

ancestries (Supplementary Material, Table S2).

Admixture mapping

We performed admixture mapping analyses for each ancestry

group separately across the genome using linear mixed regres-

sion models, excluding the regions within 2Mb around the cen-

tromere and chromosomal boundary (Materials and Methods)

(26). OSA traits were rank normalized, adjusted for age,

sex, BMI (and interactions and non-linear terms as appro-

priate), top five principal components (PCs) and kinship

coefficient matrix (Materials and Methods). The admixture

mapping results are presented in Supplementary Material,

Figs S1–4. Previous permutation analyses suggested the genome-

wide significance level was 5.7 × 10−5 for admixture mapping

analysis in HCHS/SOL data (27) (Materials and Methods).

Our primary analysis of AHI and hypoxemia traits identified

African ancestry at chromosome 2q37 genome-wide signifi-

cantly associated with AHI (β = −0.079, P = 3.7 × 10−5) and

15 additional regions with suggestive admixture mapping

evidence including chromosome 18q21, with similar ancestry

associations for both AHI and percentage time SaO2 < 90%

(P < 10−3; Supplementary Material, Table S3). European ancestry

was positively associated with both traits (β = 0.048 and 0.049,

P = 2.74 × 10−4 and 2.01 × 10−4, for AHI and percentage time

SaO2 < 90%, respectively), whereas Amerindian ancestry was

negatively associated with both traits (β = −0.052 and − 0.058,

P = 4.46 × 10−4 and 9.15 × 10−5, for AHI and percentage

time SaO2 < 90%, respectively). Secondary analysis using

respiratory event duration additionally identified one genome-

wide significant region ([chromosome 16q12-21], P = 6.4 × 10−6)

associated with African ancestry and seven suggestive regions

(P < 10−3; Supplementary Material, Table S3).

Fine-mapping analyses

We then followed up 2q37, 18q21 and 16q12–21 by

single SNP association and joint SNP-ancestry analyses

(Materials and Methods). Since 18q21 was associated with

two correlated OSA traits, we further performed a com-

bined trait analysis incorporating their phenotypic correlation

(Materials and Methods). Significance level for this analysis was

determined as P < 8 × 10−6 accounting for multiple comparisons

in multiple traits (13,28) (Materials and Methods).

At chromosome 2q37, single SNP association analysis iden-

tified two SNPs in linkage disequilibrium (LD) associated with

AHI, led by rs6750391[T] [AC011286.1, effect AF (EAF) = 0.898,

β = 0.09, P = 1.78 × 10−6] (Table 3 and Supplementary Material,

Table S4, Supplementary Material, Fig. S5). The association effect

directions were positive across background groups (Fig. 1). The

T allele had a lower frequency in African ancestry populations

(AF = 0.49) relative to Amerindian (AF = 0.93) and European

ancestry populations (AF = 0.95) (Supplementary Material, Table

S5). The association P-value between local African ancestry and

AHI was more significant when only local African ancestry

was included in the regression model (P = 3.7 × 10−5) than

when both rs6750391 and local African ancestry were included

(P = 2.8 × 10−2) (Table 4, Fig. 2A), suggesting that rs6750391

partially accounted for the admixture mapping evidence.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
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Table 1. Sample characteristics of the analyzed samples from HCHS/SOL

All Cuban Dominican Puerto Rican Mexican Central

American

South

American

N 11 575 2105 1066 2031 4298 1246 829

African

Ancestry%,

mean (SD)

13.8 (16.1) 15.2 (0.7) 44 (1.5) 21.8 (1.6) 4.3 (0.5) 10.6 (0.9) 6.4 (0.7)

Amerindian

Ancestry%,

mean(SD)

30.5 (23.7) 5.8 (0.5) 6.5 (0.9) 13.7 (1.6) 49.1 (1.1) 45.4 (1.3) 45.3 (1.4)

European

Ancestry%,

mean (SD)

55.7 (20.9) 79 (0.9) 49.5 (1.6) 64.5 (2) 46.5 (1.1) 44 (1.3) 48.3 (1.5)

Male% 41 46.9 34.6 42.4 39.5 40.4 39.8

Age, years,

mean (SD)

46.09 (13.86) 48.68 (13.33) 45.25 (14.31) 47.57 (14.26) 44.66 (13.81) 44.71 (13.37) 46.46 (13.28)

BMI, kg/m2,

mean (SD)

29.82

(6.06)

29.32 (5.89) 29.34 (5.64) 30.81 (6.96) 29.86 (5.91) 30.06 (5.83) 28.66 (5.24)

AHI,

events/h,

median (IQR)

2.00

(0.41–6.62)

2.42

(0.53–8.33)

1.46

(0.32–5.35)

2.34

(0.51–7.37)

1.86

(0.38–6.35)

1.87

(0.39–6.31)

1.74

(0.42–5.69)

Average

SaO2, %,

mean (SD)

96.45

(0.94)

96.37

(0.97)

96.56

(0.78)

96.33

(1.07)

96.51

(0.9)

96.49

(0.98)

96.44

(0.88)

Percentage

time

SaO2 < 90%,

mean (SD)

0.82

(3.05)

1.05

(3.45)

0.65

(2.45)

0.86

(3.37)

0.74

(2.73)

0.96

(3.64)

0.69

(2.62)

Average

event

duration, s,

mean (SD)

23.65

(7.97)

23.92

(8.03)

23.3

(8.21)

22.76

(7.86)

23.89

(7.95)

23.31

(7.48)

24.78

(8.33)

Table 2. Associations between OSA traits and individual global ancestry percentage, adjusting for sex, age, age2, age × sex, BMI and BMI2

African Ancestry Amerindian Ancestry European Ancestry

Estimate per

1% change of

ancestry

SE P Estimate per

1% change of

ancestry

SE P Estimate per

1% change of

ancestry

SE P

AHI −0.0005 0.0002 0.023 0.0003 0.0002 0.09 −0.00004 0.0002 0.847

Average

SaO2

0.0006 0.0003 0.015 0.0002 0.0002 0.204 −0.0007 0.0002 8.50 × 10−4

Percentage

time

SaO2 < 90%

0.0001 0.0003 0.658 −0.0001 0.0002 0.607 0.0005 0.0002 0.805

Average

event

duration

−0.0019 0.0003 7.52 × 10−9 0.0015 0.0002 5.96 × 10−12
−0.0008 0.0003 6.20 × 10−4

We identified 20 significant SNPs in strong LD overlapping

NARS (asparaginyl-tRNA synthetase) and FECH (ferrochelatase) in

the 18q21 region, led by rs57403733[G] (EAF = 0.803, associated

with the combined AHI and percentage time SaO2 < 90% traits

(P = 3.2 × 10−7) (Table 3 and Supplementary Material, Table S4,

Supplementary Material, Fig. S6). Rs57403733[G] is positively

associated both with AHI and percentage time SaO2 < 90%

(β = 0.066 and 0.078, P = 1.47 × 10−5 and 3.98 × 10−7). The

association effect directions were highly consistent across

background groups (Fig. 1). The G allele had a lower frequency in

Amerindian ancestry populations (EAF = 0.79) relative to African

(EAF = 0.99) and European ancestry populations (EAF = 0.96)

(Supplementary Material, Table S5). Conditional on rs57403733,

the association P-values between Amerindian/European ances-

tries and the AHI and percentage time SaO2 < 90% became less

significant (P > 10−2) (Table 4, Fig. 2B and C).

At chromosome 16q12-21, single SNP association analysis

identified four SNPs in RP11-96H17.1 associated with our

secondary trait, event duration (Table 3 and Supplementary

Material, Table S4). Rs74021948[A] (EAF = 0.984, β = 0.302,

P = 3.07 × 10−7) was in weak LD with rs12935339[G] (EAF = 0.308,

β = −0.074, P = 3.44 × 10−6) and two other SNPs (r2 < 0.2)

(Supplementary Material, Fig. S7). Therefore, we investigated

rs74021948 and rs12935339 separately. The association direc-

tions were consistent among background groups for both

SNPs (Fig. 1). Conditioning on rs74021948 or rs12935339, the

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
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Table 3. Significant independent SNPs (P < 8 × 10−6) under the candidate regions associated with OSA traits in HCHS/SOL

SNP B37 position Nearest

gene(s)

Alleles (E/A) EAF Info Trait β (se) P

rs6750391 2:237635300 AC011286.1 T/C 0.898 0.998 AHI 0.090 (0.019) 1.78 × 10−6

rs74021948 16:63065908 RP11-96H17.1 A/C 0.984 0.956 Event

duration

0.302 (0.059) 3.07 × 10−7

rs12935339 16:63132772 RP11-96H17.1 G/A 0.308 0.999 Event

duration

−0.074

(0.016)

3.44 × 10−6

rs57403733 18:55281709 NARS, FECH G/A 0.803 0.999 AHI 0.066 (0.015) 1.47 × 10−5

Percentage

time

SaO2 < 90%

0.078 (0.015) 3.98 × 10−7

Combineda 3.20 × 10−7

CPASSOC was performed to combine the effect of AHI and percentage time SaO2 < 90%.

Table 4. Comparison between ancestry-OSA association model with and without adjusting for lead SNPs in the three significant regions

Genomic region

(Mb)

Ancestry Trait SNP covariate Est SE P

2:237.54–238.39 African AHI No SNP (baseline) −0.079 0.019 3.70 × 10−5

rs6750391 −0.047 0.021 2.80 × 10−2

18:51.81–57.12 Amerindian AHI No SNP (baseline) −0.052 0.015 4.46 × 10−4

rs57403733 −0.032 0.016 4.27 × 10−2

European AHI No SNP (baseline) 0.048 0.013 2.74 × 10−4

rs57403733 0.032 0.014 2.02 × 10−2

Amerindian Percentage time

SaO2 < 90%

No SNP (baseline) −0.058 0.015 9.15 × 10−5

rs57403733 −0.024 0.018 1.63 × 10−1

European Percentage time

SaO2 < 90%

No SNP (baseline) 0.049 0.013 2.01 × 10−4

rs57403733 0.027 0.014 5.46 × 10−2

16:51.14–64.12 African Average event

duration

No SNP (baseline) −0.113 0.025 6.42 × 10−6

rs74021948 −0.094 0.025 2.11 × 10−4

rs12935339 −0.095 0.025 2.00 × 10−4

rs74021948 and

rs12935339

−0.080 0.026 1.82 × 10−3

significance of association between local African ancestry and

event duration decreased from P = 6.4 × 10−6 to P = 2 × 10−4.

When conditioning on both SNPs, the significance level further

decreased (P = 1.82 × 10−3) (Table 4, Fig. 2D).

SNP level replication generalization and bioinformatics
analysis

SNPs detected by admixture mapping and follow-up associ-

ation analyses were tested in 1935 AAs, 6490 EAs and 1240

Hispanic/Latino Americans (HAs) from the replication cohorts

(described in Supplementary Table S6). In the NARS/FECH region

on chromosome 18, 12 of the 20 significant SNPs had repli-

cation P-value <0.05 for percentage time SaO2 < 90% in EAs.

The smallest replication P-value was 1.6 × 10−3 for rs3745063

(Supplementary Material, Table S7).

Rs57403733 and rs3745063 are intronic variants of NARS.

Rs57403733 is associated with the expression of the gene FECH

in transformed fibroblasts cells. Rs3745063 is an expression

quantitative trait locus (eQTL) for FECH in lymphoblastoid (29),

monocytes andwhole blood cells and overlaps promoter histone

marks in five tissues (eight cell lines) and enhancer histone

marks in 14 tissues (51 cell lines).

We further observed a significant negative association

between FECH expression and average SaO2 in 203 HAs from

MESA (β = −0.552, P = 0.003), adjusting for age, sex and BMI.

Associations of SNPs at AC011286.1 or RP11-96H17.1 were not

replicated.

Discussion

In this first admixture mapping analysis of sleep apnea traits,

we leveraged information on diverse ancestral backgrounds

available in the largest cohort with objectively measured

sleep apnea phenotypes and genome-wide data, identifying

several novel signals in regions that differ in local ancestry.

Primary analyses identified a genome-wide significant region

at chromosome 2q37 that showed a negative association

between African ancestry and AHI. Amerindian ancestry and

European ancestry at chromosome 18q21 were also suggestively

associated with both AHI and degree of hypoxemia during

sleep. Secondary analysis identified that African ancestry at

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
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Figure 1. Associations between identified independent variants and OSA traits among background groups.

chromosome 16q12-21 was also negatively and significantly

associated with respiratory event duration. Follow-up joint

association analyses in three of the regions which were

associated with OSA traits identified variants in AC011286.1,

NARS/FECH and RP11-96H17.1(P< 8× 10−6) that explained part of

the admixturemapping evidence. The association ofNARS/FECH

for percentage time SaO2 < 90% was replicated in independent

European cohorts. Notably, bioinformatics and expression data

indicated that the variants in chromosome 18 associated with

AHI and hypoxemia are also associated with expression of FECH.

Furthermore, analysis of available expression data showed that

increased FECH expression is associated with lower nocturnal

SaO2. Since FECH catalyzes the insertion of iron as part of

heme B biosynthesis, these data suggest a novel biological

pathway linking OSA with pathways associated with iron/heme

metabolism.
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Figure 2. Admixture mapping results of significant ancestry and OSA traits with and without adjusting for target SNPs.

We used local ancestry information sampled across the genome

to estimate global ancestry as well as to detect risk genomic

regions using admixture mapping. Two previous studies have

used information on genetic ancestry to study sleep-related

traits in recently admixed populations. A study from an admixed

Brazilian population identified a negative association between

African genetic ancestry and OSA (30), consistent with our

results. Halder et al (31) also reported an association between

African ancestry and fragmented sleep. This finding also is

consistent with our findings that shorter event duration—a

marker of low arousal threshold—associatedwithAfrican ances-

try. However, these studies only investigated the association

with average individual ancestry proportions (global ancestries)

calculated from ancestral informative markers and did not

perform admixturemapping or finemapping to identify specific

genetic variants.

Studies of OSA genetics have lagged behind those of other

diseases. This partly reflects a need for objectively measur-

ing sleep traits in large samples that are genotyped. Studies

have been relatively small and have mostly examined candidate

genes and focused on the AHI or the dichotomous trait defined

by AHI thresholds, reporting associations with a variety of genes

in inflammatory, metabolic and other pathways, that largely

were not replicated (6,7,32–39). A genome-wide association anal-

ysis including HCHS/SOL identified associations between GPR83

and AHI, and between C6ORF183/CCDC162P and event duration

(9); however, independent samples were limited and did not

permit replication.

Admixture mapping analysis provided a strategy for improv-

ing the power to detect genetic variants associated with OSA,

including those that may underlie population differences. The

novel association for AHI on chromosome 2q37 maps to an area

implicated in a rare disorder, the 2q37 deletion syndrome. This

disorder is characterized by hypotonia, facial dysmorphisms

and obesity, traits often observed with OSA (40). About half

of the patients with this syndrome have sleep disturbances,

including one child with sleep apnea (40,41). Several regulatory

genes reside in this area, including ones that influence develop-

ment, such as HDAC4 and TWIST2. In our analysis, two variants

within AC011286.1, a linc RNA gene, in this region were associ-

ated with AHI. AC011286.1 is expressed in esophageal mucosa

(Supplementary Material, Fig. S8), a tissue that shares develop-

ment origins with the pharynx, which may differentially impact

airway collapsibility.

In addition to analyzing the AHI, we also examined two

measures of overnight oxygen saturation, which are key

features of OSA, that are heritable and predict, and likely

mediate, its associated cardiovascular risk andmortality (42–44).

We combined information on two highly correlated traits, AHI

and percentage time SaO2 < 90%, to further improve power in a

region associated with both traits.We also explored associations

with average event duration, another OSA trait that varies across

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
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ancestral backgrounds, is highly heritable, but not strongly

correlated with the AHI (22).

In the region on chromosome 18q21, we detected 20 variants

on NARS/FECH associated with both AHI and percentage time

SaO2 < 90%, with 12 also associated in independent cohorts.

Many variants are eQTLs for FECH in multiple tissues, suggest-

ing that this might be the relevant gene under this admixture

mapping and association peak. Furthermore, using available

expression data from monocytes, we found that increased FECH

expression was associated with lower nocturnal SaO2. FECH, the

last enzyme of the heme biosynthesis pathway which inserts

the iron atom into the porphyrin IX ring and generates heme

B, is largely expressed in whole blood (Supplementary Material,

Fig. S8) (45). Hemoproteins such as hemoglobin myoglobin have

diverse biological functions involved in oxygen transport and

oxygen storage (46,47). Intracellular free heme is toxic and is

degraded to carbon monoxide, biliverdin and iron via heme oxy-

genase. Heme degradation and its products (e.g. carbon monox-

ide) play key roles in many biological systems, including glucose

metabolism and carotid body oxygen sensing, a mechanism

implicated in ventilatory control and sleep apnea (48–50). Iron

homeostasis influences redox balance, inflammatory response

and energy metabolism (51). Iron chelation influences HIF1-α

(Hypoxia Inducible Factor) accumulation and may influence oxy-

gen sensing in the carotid body (52,53), where chemoreceptors

play a key role in ventilatory stability and the pathogenesis of

sleep apnea (54). Together, our admixture/association findings,

supported by bioinformatics and our own expression data, sug-

gest a role for iron/heme in influencing clinically important OSA

traits. Future research is needed to determine if our associations

reflect variations in hemoglobin and oxygen carrying capacity or

effects of iron on ventilatory control or metabolism.

In secondary analyses, we also examined respiratory event

duration, which is shorter in AAs than EAs, and partially reflects

respiratory arousability and chemoreflex sensitivity, which

when abnormal can lead to sleep fragmentation (55–57). In the

region of chromosome 16q12-21, we detected four variants on

RP11-96H17.1 associated with event duration. RP11-96H17.1 is

largely expressed in the brain (Supplementary Material, Fig. S8).

This analysis provides insight into differences in OSA sus-

ceptibility across ancestral groups. Notably, African ancestry

was associated with a lower AHI and shorter respiratory distur-

bances. Shorter events, and the reduced physiological tolerance

of ventilatory disturbances it reflects, may contribute to sleep

fragmentation and sleepiness for any given AHI level, consistent

with epidemiological studies reporting shorter sleep duration

and sleepiness in AAs (21). Although BMI-adjusted AHI levels are

higher in AA children and young adults compared to EAs, this

difference dissipates with advancing age (17).

Our study has several strengths. It was conducted on the

largest cohort of individuals with Hispanic/Latino background,

a highly admixed sample, with objective sleep recording. We

focused our analyses on clinically important phenotypes that

vary across populations. To gain power we also analyzed two

highly correlated traits (AHI and percentage time SaO2 < 90%)

by combining their summary statistics (58). Admixture mapping

can bemore powerful than traditional genome-wide association

analyses when trait distributions vary by ancestry. High reso-

lution local ancestries were used, enhancing the accuracy of

ancestral estimation. Follow-up two-step fine-mapping analy-

ses (single SNP association and joint SNP-ancestry association

analyses) efficiently targeted the variants both associated with

the trait and contributing to admixture mapping. Although our

replication samples were only modest in size, we were able to

replicate 12 of 26 variants in European cohorts,providing the first

replicated genetic association finding for OSA traits in a multi-

ethnic population.

This study also has several limitations. In-laboratory

polysomnography was not performed in the HCHS/SOL,

precluding our assessment of sleep architecture. The overall

ancestry-specific sample sizes were only modest. Despite this,

several top findings replicated in cohorts studied with full

polysomnography. Although multiple variants in NARS/FECH

were replicated in EAs, the SNP-level replication power was

limited by modest sample sizes in other replication cohorts. The

complex admixture history and genetic diversity among His-

panic/Latinos present challenges in identifying ideal replication

cohorts.

In summary, we identified three novel genomic regions asso-

ciated with OSA traits in a large Hispanic/Latino cohort using

admixturemappingmethods.Novel variants and genes detected

in those regions were identified that likely explain some of the

difference in OSA across ancestral groups. Further investigation

of the role of iron/heme pathways, a topic of growing interest

due to associations with diabetes, obesity, liver disease and

metabolism, and gene regulatory areas on chromosomes 2 and

16 may provide further insight into mechanisms underlying

OSA.

Materials and Methods

Sample

The primary sample was the HCHS/SOL, a community-based

study in the US, which includes 16 415 adults aged 18–74 with

self-identified Hispanic/Latino background (23,24). Individuals

were recruited from randomly selected households near four

centers in Miami, San Diego, Chicago and the Bronx area of

New York. Most participants identified themselves from one of

six ethnic background groups, including 1730 Central Ameri-

cans, 2348 Cubans, 1460 Dominicans, 6471Mexicans, 2728 Puerto

Ricans and 1,068 South Americans. A total of 14 400 individuals

had overnight home sleep apnea tests (HSATs) that met study

quality criteria and reported no regular use of overnight oxygen

or sleep apnea treatment devices. Of these, 11 575 had available

genotyping and comprised the primary study sample. The study

was approved by the Institutional Review Boards at each partic-

ipating institution and participants provided written informed

consent.

Phenotypes and covariates

During the baseline HCHS/SOL examination (2008–2011),

physical measures and questionnaires, blood and HSATs were

collected as previously described (24). Age, sex and background

were self-reported. BMI was derived from measured weight

(kg) and height (cm). Sleep apnea assessments were obtained

with the ARES Unicorder 5.2 (B-Alert, Carlsbad, CA) as described

before (59). The monitor measures airflow using a nasal cannula

and pressure transducer; blood hemoglobin oxygen saturation

(SaO2) and pulse rate using a forehead-based reflectance

oximeter; body position and movement by an actigraph and

snoring by a microphone. Sleep records were transmitted to

a central Sleep Reading Center where they were manually

scored as described before (60). Respiratory events (apneas or

hypopneas) were identified when airflow declined by ≥50%

for ≥10 s. Since thermistry was not collected, apneas were not

distinguished from hypopneas. In this paper, only respiratory

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy387#supplementary-data
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events associated with ≥3% oxyhemoglobin desaturation were

analyzed. The AHI was computed as the number of respiratory

events divided by the estimated sleep time; this measure

highly correlates with polysomnography-derived AHI (61). The

average SaO2 level and percent time when SaO2 was <90% used

oximetry-based SaO2 values measured continuously during

sleep. The average respiratory disturbance event duration was

derived by measuring the time between the first breath that

was reduced by ≥50% to the termination of the respiratory

disturbance event (in seconds).

Genotypes

Genotyping was conducted using an Illumina Omni2.5M SNP

array with additional customized content, including 2 536 661

SNPs. Local African, European and Amerindian ancestries were

inferred from quality controlled SNPs across the genome using

RFMix software (62,63).The global African,Amerindian and Euro-

pean ancestries for each individual, defined as the proportion of

each genome inherited from each ancestry, were calculated by

the average values of local ancestries at 14 815 uniformly dis-

tributed loci on autosomal chromosomes. OSA trait heritability

was estimated for the pooled sample and individual background

groups using the unbiased Haseman–Elston regression (64).

Global ancestry association analysis

We performed association analyses between OSA traits with

each of the global African, Amerindian and European ances-

try percentage using linear regression model. Since the OSA

traits were skewed, they were rank normalized. Sex, age, age2,

age × sex, BMI and BMI2 were adjusted as fixed-effect covari-

ates. We further used global European ancestry as a reference

and tested the association between each OSA trait with global

African and Amerindian ancestry percentage in one regression

model as a secondary analysis. This analysis was less powerful

because of larger standard errors introduced bymulticollinearity

(high correlation between African and Amerindian ancestries).

Admixture mapping analysis

We performed admixture mapping analyses for each ancestry

group separately across the genome using a linear mixed

regression model (GENESIS package in R). Regions within 2 Mb

around the centromere and chromosomal boundary were

excluded because of lower local ancestry inference accuracy

(26). OSA traits were rank normalized and then adjusted for sex,

age, age2, age × sex, BMI and BMI2 as fixed-effect covariates.

PCs and kinship coefficients were estimated iteratively, robust

to ancestry and population and family structure and admixture,

as described before (25,65,66). The top five PCs separated the

background group genetic structure well in this sample (25).

Population stratification was controlled for by adjusting for

fixed effects of five PCs, and family structure was allowed for

by adding a variance component proportional to the kinship

coefficient matrix. We performed another set of analyses

additionally adjusting for sampling weight, households and

census blocks. We did not observe significant change from our

primary model (Supplementary Material, Figs. S1–4). Admixture

mapping reduces the number of comparisons across the

genome; therefore, a significance level of 5 × 10−8 for traditional

GWAS is not applicable. Based on previous permutation analyses

using HCHS/SOL data, the significance level was determined to

be 5.7 × 10−5, corresponding to a family-wise error rate at 0.05

level (27).We defined a suggestive region as admixture mapping

signals of P < 10−3.

Single SNP association analysis

We further evaluated three regions with significant admixture

signals to identify SNPs in those regions that were significantly

associated with OSA traits, using genotyped and 1000G imputed

SNPs with minor AF >0.01 and imputation information scores

>0.4 (67). The boundary of those significant regions was defined

with admixture mapping P < 10−3. Linear mixed models were

usedwith the same set of covariates as in the primary admixture

mapping analysis. We estimated the number of independent

tests in admixture mapping and the single SNP association

analyses in each region (accounting for one trait at 2q37 and

16q12-21, and two traits at 18q21) using Li and Ji’smethod (13,28),

resulting in a Bonferroni significance level of P = 8 × 10−6. For

18q21 region significantly associated with AHI and percentage

time SaO2 < 90%, we performed multiple trait analysis by com-

bining the summary statistics for each trait and incorporating

the trait correlation using CPASSOC software (58), which pro-

vides a single test P-value of association for multiple traits.

Joint SNP and local ancestry analysis

To examine whether an SNP within a candidate region could

explain the admixture mapping signal, we performed a joint

SNP and local ancestry analysis, simultaneously modeling local

ancestry and SNP association. We compared the association P-

value between the local ancestry and the OSA trait with and

without adjusting for that SNP. This analysis was able to indicate

whether a SNP contributes to the admixture signal.

Replication analysis

Single SNP replication analysis was conducted using eight

independent cohorts comprising individuals of EA, AA and HA

(Supplementary Methods). Inverse-variance fixed-effect meta-

analyseswere performed to combine the results in each ancestry

group.

Epigenetic annotation and eQTL analysis

We used Haploreg (http://archive.broadinstitute.org/mammals/

haploreg/haploreg.php) to examine the epigenetic annotations

of SNPs (68). eQTL evidence and gene expression were queried

using the GTEx Portal (https://www.gtexportal.org/home/) (45).

We further tested the association for OSA traits on the gene

expression level of the genes associatedwith leading SNPs (NARS

and FECH) using Multi-ethnic Study of Atherosclerosis (MESA)

data (online supplement), adjusting for age, sex and BMI in each

population group.

Supplementary Material

Supplementary Material is available at HMG online.
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