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ABSTRACT Parameter estimation of chirp signals plays an important role in the field of radar coun-

termeasures. Compressed sensing (CS) based sub-Nyquist sampling and parameter estimation methods

alleviates the pressure on hardware systems to acquire and process chirp signals with large time-bandwidths.

In this paper, a framework based on the fractional Fourier transform (FrFT) and alternating direction

method of multipliers network (ADMM-Net) is proposed to realize chirp signal parameter estimation under

sub-Nyquist sampling. The whole framework is composed of multiple parallel ADMM-Nets, where each

ADMM-Net is defined over a data flow graph, which is derived from the iterative procedures of the

ADMM algorithm for optimizing a CS-based p-order FrFT spectral estimation model. The chirp rate and

central frequency of chirp signals are obtained through a two-dimensional search on the spectrum image

output by the network group. Experiments demonstrate that the proposed ADMM-Net-based method can

achieve higher estimation accuracy and computational efficiency at lower signal-to-noise ratios and sampling

ratios than traditional CS methods. We also demonstrate that the proposed ADMM-Net-based framework

has strong generalization ability for multi-component chirp signals. Furthermore, we further generalize

ADMM-Net to GADMM-Net, in which the activation function is data-driven instead of model-driven.

Experiments demonstrate that GADMM-Net significantly improves on the basic ADMM-Net and achieves

higher spectral resolution with faster computation speed.

INDEX TERMS Alternating direction method of multipliers, chirp signals, compressed sensing, deep

learning, fractional Fourier transform, parameter estimation, sub-Nyquist sampling, unrolling method.

I. INTRODUCTION

Linear frequency-modulated (LFM) signals, which are also

called chirp signals, are widely employed in various appli-

cations, such as radar [1], sonar [2], ultrasonics [3], and

telecommunication [4]. Accurate estimation of the param-

eters of chirp signals, i.e., central frequency f0 and chirp

rate k , is essential in passive detection technology [5]. How-

ever, in the field of radar countermeasures, chirp signals

are usually accompanied by a large time-bandwidth, and the

estimation of itsmodulation parameters requires an extremely

high sampling rate, which puts tremendous strain on the

hardware systems used for signal acquisition, transmission,

and processing. Although some scholars have proposed the

The associate editor coordinating the review of this manuscript and

approving it for publication was Pietro Savazzi .

method of under-sampling combined with dechirping [6],

which reduces the sampling frequency requirement, there is

also frequency ambiguity [7]. Therefore, how to find a new

signal parameter estimation algorithm to reduce the pressure

caused by large time-bandwidth is an urgent problem to be

solved.

Compressed sensing (CS) has brought new ideas to chirp

signal processing. Most applications of CS theory for signal

processing are for accurate reconstruction of signals [8]–[11].

However, in the application of CS theory for signal parameter

estimation, with the help of a specific parameter matching

dictionary, the estimation task can be achieved without com-

plete reconstruction of signals [12]–[17].

CS has been a popular technique to acquire a decom-

position expression of the signal from sampled measure-

ments by solving an under-determined linear system [18].
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CS incorporates data compression by a measurement matrix

8 ∈ C
M×N(M ≪ N) and the solution of the coefficient

vector θ ∈ C
N of signal x ∈ C

N on the sparse basis 9 ∈
C
N×N frommeasurements y ∈ C

M by a non-linear mapping f

with lowest calculation error:
E = inf

8,9,f
sup ‖x− 9f (8x)‖, y = 8x, x = 9θ (1)

The measurement matrix 8, sparse basis 9, and non-linear

mapping f (·) are three key factors in CS. In this work,

we focus on learning a sparse basis and non-linear mapping.

A. MEASUREMENT MATRIX

The measurement matrix is commonly required to sat-

isfy some conditions, such as small autocorrelation

coefficients [19] or small restricted isometry constant (RIC)

[20], [21], to avoid aliasing effects by under-sampling. Ran-

dom Gaussian matrices, partial Fourier matrices, randomly

permuted coded diffraction, and Walsh-Hadamard operators

are popular measurement matrices for different practical

tasks.

B. SPARSE BASIS

The traditional chirp signal sparse representation is to decom-

pose the signal in some specific transformation domain and

express it with the known basis function in the form of

an atom-dictionary or transform matrix. Dictionary-based

bases [12]–[15] usually have local sparsity, which can rep-

resent the local time-frequency information of chirp signals.

However, as the super-resolution estimation of parameters

greatly increases the number of atoms in the dictionary, a high

computational complexity is required; besides, because of the

sparsity of single-frequency signals and narrow-band chirp

signals in the frequency domain, the inverse Fourier trans-

form matrix [16] can be selected as the sparse basis, whereas

it is not suitable for wide-band chirp signals. Based on the

energy concentration property of chirp signals in the proper

order Fractional Fourier transform (FrFT) domain [22],

a sparse dictionary is proposed in Ref. [17], where the dis-

crete inverse FrFT (DIFRFT) matrices of different orders are

adopted as the atoms. The solution of θ under each atom is

essentially a p-order FrFT spectrum estimation model, which

provides access for the detection and parameter estimation

of chirp signals based on the FrFT spectrum [23]. Besides,

the scale of the DIFRFT dictionary is much smaller than that

of the time-frequency dictionary.

C. NON-LINEAR RECONSTRUCTION MAPPING

The constrained standard CS model [18] is

θ̂ = f (y) = argmin
θ

1

2
‖89θ − y‖22 + P(θ ) (2)

whereP(θ ) is a penalty term enforcing the transform sparsity

of the signal, which is a regularization function derived from

the data prior, e.g., ℓq-norm (0 ≤ q ≤ 1) for a sparse prior.

Awide variety algorithms have been developed to optimize

the model, such as convex relaxation algorithms based on

the ℓ1-norm [24], [25], greedy algorithms based on the

ℓ0-norm [26], [27], and non-convex optimization

algorithms [28], [29]. Although they are effective with many

theoretical guarantees, most of them lack computational

efficiency, and how to determine the numerous uncertainties

in the model, such as regularization parameters and the

parameters involved in the optimization algorithm, is still a

challenging task.

Recently, deep neural network (DNN)-based supervised

learning methods have shown success in signal parameter

estimation, such as direction of arrival estimation [30], [31],

and channel estimation [32], [33], where a DNN recon-

structs a line spectral estimation model based on measure-

ment datasets. The basic idea of these works is taking a

DNN to directly model the non-linear mapping by learning

network parameters from massive training data. However,

although conventional data-driven DNNs are computation-

ally efficient, they have restrictive receptive fields. They use

conventional network architectures as black boxes without

explicitly modeling or investigating the domain knowledge,

such as transformation model or signal sparsity. Therefore,

it is difficult for a conventional black box network to auto-

matically learn the transform sparsity.

The unrolling method is a discriminative learning method

that unfolds an iterative optimization algorithm to a hier-

archical architecture. This category of methods links the

conventional model-based approach to the deep learning

approach. Model-based networks focus on learning a deep

cascade of multiple sub-networks by introducing a data

consistency (DC) layer. Each sub-network generates a pre-

diction using the predicted result of the preceding sub-

network. These unrolling networks are mainly used in

the field of image reconstruction, e.g., [34] unfolded an

AMP algorithm [11] for CS image recovery, where the

denoising operator in each AMP iteration was replaced with a

very deep CNN. Sun et al. [36] and Yang et al. [37] presented

an ADMM-Net derived from the iterative procedure of alter-

nating direction method of multipliers (ADMM) algorithm

[37] to solve a CS-MRI problem. Grefor and LeCun [38]

proposed learning an iterative soft thresholding algo-

rithm (LISTA) to approximate t sparse codes of the ℓ1 sparse

regularization problem in fixed steps. Wang et al. [39] and

Xin et al. [40] further unfolded the iterative hard thresholding

algorithm to feed-forward neural networks for an ℓ0 regular-

ized sparse coding model to obtain a sparser solution.

Inspired by the excellent performances of unrolling

methods in image reconstruction, we propose an effective

model-based deep learning method for parameter estimation

of chirp signals under sub-Nyquist sampling. The proposed

method is based on a CS model of the ℓ1-norm with the

DIFRFT dictionary as a sparse basis. Then, we design an

ADMM iterative algorithm to solve the above CS model.

By unrolling and the ADMM iterative procedures, we derive

a corresponding version of ADMM-Net, and the FrFT of

signals under each p-order inverse FrFT matrix are obtained.

Finally, the optimal transformation order is obtained through
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a two-dimensional search on the FrFT spectrum image, and

estimations of the chirp rate and central frequency of the chirp

signal are obtained.

Contributions: The main contributions of this work can be

summarized as follows:
1) We propose a novel deep learning-based framework for

chirp signal parameter estimation under sub-Nyquist

sampling. The whole framework is composed of mul-

tiple parallel ADMM-Nets, where each ADMM-Net is

defined over a data flow graph, which is derived from

the iterative procedures in the ADMM algorithm for

optimizing a CS-based p-order FrFT spectral estimation

model.

2) Extensive experiments demonstrate that the proposed

ADMM-Net-based method can achieve higher estima-

tion accuracy and computational efficiency at lower

signal-to-noise ratios (SNRs) and sampling ratios com-

pared with traditional CS methods. We also demonstrate

that the proposed ADMM-Net-based framework has

strong generalization ability for multi-component chirp

signals.

3) We further unroll the ADMM-Net to a generalized

one (GADMM-Net), where the activation function

is data-driven instead of model-driven. Experiments

demonstrate that GADMM-Net significantly improves

the basic ADMM-Net and achieves higher spectral res-

olution with higher computational speed.

The remainder of the paper consists of five parts:

Section II introduces the sparse representation based

on FrFT. Section III presents the details of unrolling ADMM.

Section IV presents an application of the proposed frame-

work in parameter estimation under sub-Nyquist sampling.

Section V presents the results of simulations to evaluate

the performance of the proposed framework with respect

to conventional ones, and then, a GADMM-Net structure

is proposed to improve the performance of the algorithm.

Finally, Section VI concludes the paper.

II. SPARSE REPRESENTATION BASED ON FrFT

In this section, we first study the sparsity of chirp signals in

the FrFT domain and then introduce the DIFRFT dictionary.

A. FrFT SPARSITY

A mono-component chirp signal s(t) with amplitude 1 and

duty ratio 1 can be expressed as

s(t) = exp
(

j2π f0t + jπkt2
)

t ∈ [−T/2,T/2) (3)

where T is pulse width. Referring to the Fourier transform

expression, the FrFT expression of s(t) can be defined as

Sp(u) = FrFT p [s(t)] =
∫ ∞

−∞
s(t)Kα(t, µ)dt (4)

where p is the transformation order of the FrFT, α is the

rotation angle of the signal on the time-frequency plane,

α = pπ/2, and FrFT [·] is the FrFT operator; Kα(t, µ)

represents the kernel function of the FrFT, which is expressed

as

Kα(t, u) =



















Aα exp
[

jπ
(

µ2 cotα

−2µt cscα + t2 cotα)], α 6= nπ

δ(t − µ), α = 2nπ

δ(t + µ), α = (2n± 1)π

(5)

where Aα = √
1-j cotα. By substituting Eqn. (3) into

Eqn. (5), the FrFT expression of the signal can be written as

Sp(u) =
∫ +∞

−∞
exp

(

j2π f0t + πkt2
)

Kα(t, u)dt (6)

Let rotation angle α = α0, cotα0 = −k , and α0 = πp0
2
;

then, the FrFT expression of a chirp signal at rotation

angle α0 can be calculated as

Sp0 (u)

= FrFTp[s(t)]

=
∫ +∞

−∞
Aα exp

[

jπ
(

u2 cotα0 − 2 ut cscα0 + t2 cotα0

)]

· exp
(

j2π f0t + jπkt2
)

dt

= 2πAα0 exp
(

−jπu2k
)

· 1

2π

∫ +∞

−∞
exp

[

−j2π (u cscα0 − f0) t
]

dt

= Aα0 exp
(

−jπu2k
)

δ (cscα0 − f0) (7)

Therefore, the FrFT of a chirp signal behaves as an impulse

function when rotated at an angle of α = α0 = − arccot (k),

and the impulse peak position is µ = µ0 = f0 sinα0.

Accordingly, the estimation process of chirp rate k and central

frequency f0 of the chirp signal can be described as
{

k̂ = − cot(α0)

f̂0 = µ0 csc(α0)
(8)

B. DIFRFT DICTIONARY

Sampling a chirp signal s(t) by interval TN = 1/Fs, we have

s[n] = s(nTN), n = 1, . . . ,N.

Pei [41] derived a sampling discretization-type DFRFT

computation algorithm. Let 1µ denote the sampling inter-

val in the FrFT domain. The sampling discretization-type

DFRFT of s[n] can be expressed as

Sp[n] =
N
∑

n=−N
Kα[n, n]s[n] (9)

where the default length of Sp[n] is N, and Kα[n, n] is defined

as

Kα[n, n] =



















Bα exp
[

jπ
(

n21u2 cotα

−2 n21uTN cscα + n2T 2
N cotα α 6= nπ

δ (nTN − n1u) α = 2 nπ

δ (nTN + n1u) α= (2n± 1)π

(10)
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where Bα =
√
S(sinα − j cosα)/N with S = sgn(sinα).

Eqn. (9) can be written in the form of a transformation matrix

Sp = Kαs (11)

where

Sp =
[

Sp[1], . . . , Sp[N]
]T

s = [s[1], . . . , s[N]]T

Kα =







Kα[1, 1] . . . Kα[1,N]
...

. . .
...

Kα[N, 1] . . . Kα[1,N]






(12)

The kernel functions of the FrFT and inverse FrFT (iFrFT)

have the following characteristics:

K−α(u, t) = K∗
α (u, t) (13)

∫ +∞

−∞
Kα(u, t)K

∗
α

(

u′, t
)

dt = δ
(

u− u′) (14)

Therefore, the iFrFT of a chirp signal can be understood as

the linear expansion of chirp signal s(t) in the space with the

inverse transformation kernelK−α(t, µ) as the basis function:

s = KH
αSp = K−αSp (15)

where K−α is still an orthogonal basis for the µ domain.

At this point, we can construct a dictionary based onKH
α , and

obviously, in the case where N is determined, the complexity

of the dictionary O(n) is uniquely determined by the density

of p, which is much smaller than the dictionary with parame-

ter matching O(nr), r > 2.

In this work, we use the DIFRFT dictionary as the sparse

basis for CS methods.

III. ADMM-NET FOR CS MODEL

Alternating direction method of multipliers (ADMM) [37]

is a widely utilized variable splitting algorithm for solving

the energy minimization problem. It adopts the augmented

Lagrangian function of the given model and splits variables

into sub-groups, which can be alternately optimized by solv-

ing a few simple subproblems.

A. ADMM SOLVER

Tibshirani [42] proposed the least absolute shrinkage and

selection operator (LASSO) model in 1996, adding the ℓ1
norm regularization term on the basis of the original fidelity

term, which is more conducive to selecting the ideal solution.

The LASSO model is

θ̂ = argmin
θ

{

1

2
‖89θ − y‖22 + λ‖θ‖1

}

(16)

where λ > 0 usually, and by adjusting λ, the sparsity of the

sparse solution can be adjusted, and good noise suppression

performance can be achieved.

In 2012, Boyd et al. [37] systematically proposed the

operation steps to solve the LASSO problem based on the

ADMM method and combined the dual decomposition and

augmented Lagrange multi-multiplier methods to solve the

optimization problem step by step, and they improved the

computational efficiency and obtained robust convergence

performance. The advantage of the ADMM method is that

a complex optimization problem is decomposed into several

sub-problems, and the global performance can be harmonized

while distributed optimization is realize to get closer to the

optimal solution. According to ADMM algorithm theory,

LASSO can be decomposed into two subproblems: f (θ ) =
1
2
‖89θ − y‖22 and g(z) = λ‖z‖1, where 89 is the observa-

tion matrix A.

The optimization problem can be solved efficiently by

introducing auxiliary variables z = [z[1], z[2], . . . , z[N]]T to

the transform domains, making Eqn. (16) equivalent to

min
θ

{f (θ ) + g(z)}, s.t. z = θ . (17)

Hence, an optimization equationwith augmented Lagrange

terms is established:

Lρ(θ , z, α) = f (θ ) + g(z) + α
H (θ − z) + ρ

2
‖θ − z‖22 (18)

where α represents Lagrangian multipliers and ρ is the

Lagrange multiplier coefficient. The introduced Lagrange

multiplier term adds an equality constraint to the optimization

of Eqn. (19), and the objective solution is limited to the

corresponding feasible region, which improves the solution

efficiency, i.e., the robustness of the algorithm. In this case,

the ADMM algorithm alternately optimizes {θ , z, α} by solv-
ing the following subproblems:






















θ
(k+1) = argmin

θ

{

f (θ ) + ρ
2
‖θ − z(k) + α

(k)‖22
}

z(k+1) = argmin
z

{

g(z) + ρ
2
‖θ (k+1) − z + α

(k)‖22
}

α
(k+1) = α

(k) + ρ

(

θ
(k+1) − z(k+1)

)

(19)

where k denotes the k-th iteration. θ and z are iteratively

updated in alternate directions to achieve joint minimization,

while the dual variable α is updated by the iteration values

of θ and z. In the solution process, the Lagrange multiplier

acts on each of θ and z and then indirectly acts on α through

the iteration of θ and z, thus improving the convergence rate

and robustness. The following three steps for Eqn. (19) are

explained as follows:

1) RIDGE REGRESSION

According to the first equation in Eqn. (19), the optimization

problem of variable θ is equivalent to the joint minimization

problem of the fidelity term and Lagrangian term, which can

be understood as a ridge regression problem, i.e,

θ
(k+1) = argmin

θ

{

1

2
Tr
[

(y − Aθ )H(y − Aθ )
]

+ρ

2
Tr

[

(

θ − z(k) + α
(k)
)H (

θ − z(k) + α
(k)
)

]}

(20)

where Tr[·] represents the trace operator. It can be seen from

Eqn. (20) that the minimized objective function is a convex
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function, so the optimal value can be obtained by taking the

derivative of the objective function

θ
(k+1) =

(

AHA + ρI
)−1 [

AHy + ρ

(

z(k) − α
(k)
)]

(21)

2) ℓ1 NORM REGULARIZATION

According to the second equation in Eqn. (19), the optimiza-

tion problem of variable z is equivalent to the regularization

problem of the ℓ1 norm, which is different from the LASSO

problem of Eqn. (16), where the regularization is oriented

to the augmented Lagrange term. The optimization problem

for z is the same as for θ :

z(k+1) = argmin
z

{

λ‖z‖1 + ρ

2
‖θ (k+1) − z + α

(k)‖22
}

= S λ
ρ

(

θ
(k+1) + α

(k)
)

(22)

where S λ
ρ
(xi) represents the soft thresholding of xi, which is

any element of x. When x ⊆ R, we can obtain

z(k+1) = max

(

∣

∣

∣
θ
(k+1) + α

(k)
∣

∣

∣
− λ

ρ
, 0

)

· sign
(

θ
(k+1)+α

(k)
)

(23)

where sign(·) denotes the sign function. A schematic diagram

of the soft threshold operator S λ
ρ
(xR) for a real value xR is

shown in Fig. 1(a). The real soft threshold can be regarded

as a piecewise linear filter that zeroizes smaller values of

|xR| ≤ | λ
ρ
| and linearly shrinks xR when |xR| > | λ

ρ
|.

Based on the complex value characteristics of chirp signals

in the time domain and transformation domain, we improve

the existing real-valued soft threshold operator to its complex

form [43], where any element zi in the complex vector z is

decomposed into a real part ℜ(zi) and imaginary part ℑ(zi),
and the same complex decomposition is performed for θ

and α. The complex form of Eqn. (23) is obtained by taking

derivatives of ℜ(z) and ℑ(z):

z(k+1) = ℜ(z(k+1)) + jℑ(z(k+1))

= S λ
ρ

(

ℜ
(

θ
(k+1)

)

+ ℜ
(

α
(k)
))

+jS λ
ρ

(

ℑ
(

θ
(k+1)

)

+ ℑ
(

α
(k)
))

= max

(

∣

∣

∣
θ
(k+1) + α

(k)
∣

∣

∣
− λ

ρ
, 0

)

·

(

θ
(k+1) + α

(k)
)

∣

∣

∣
θ
(k+1) + α(k)

∣

∣

∣

(24)

According to Eqn. (24), the complex soft threshold has the

same phase retention as the real soft threshold. For conve-

nience, the polar coordinate scheme of the complex xC soft

threshold operator S λ
ρ
(xC ) is shown in Fig. 1(b).

In Fig.1(b), the magnitude of xC is |xC |, compound angle
6 xC ∈ [0, 2π ), and the compound angle of complex S λ

ρ
is

also 6 xC . |x|, and 6 x are sufficient to represent all the values
of xC . The real-valued soft threshold can also be considered as

a special case of the complex-valued soft threshold at 6 x = 0.

FIGURE 1. (a) Real-valued soft threshold operator and
(b) complex-valued soft threshold operator.

FIGURE 2. Data flow graph of an ADMM-Net.

3) DUAL VARIABLE UPDATE

The updating of θ and z is the process of minimizing their

combined values. In the complex-valued ADMM algorithm,

the iteration of α is also the update process of the joint dual

variables of θ and z, i.e,

α
(k+1) = α

(k) + ρ

(

θ
(k+1) − z(k+1)

)

(25)

The process is iterated through Gauss-Selde until the stop

criterion is met, i.e., the set number of iterations or accuracy
∥

∥r(k)
∥

∥

2
≤ ε is reached, where r(k) = θ

(k) − z(k) denotes the

main residual, ε is the precision threshold set based on expe-

rience, and the algorithm terminates when the stop criterion

is met.

B. ADMM-NET

To design our deep ADMM-Net, we first map the ADMM

iterative procedures in Eqn. (19) to a data flow graph.

As shown in Fig. 2, this graph is comprised of nodes cor-

responding to different operations in ADMM, and directed

edges correspond to the data flows between operations. In this

case, the k-th stage of the data flow graph corresponds to the

(Ns + k)-th iteration of the ADMM algorithm, where Ns is

the number of stages. The whole data flow graph is multiple

repetitions of the above stages corresponding to successive

iterations in ADMM. In the k-th stage of the graph, there are

three types of nodes mapped from three types of operations

in ADMM, i.e., coefficient solving layer (X(k)), nonlinear

transform layer (Z(k)), and multiplier update layer (M(k)) in

Eqn. (19). Given an under-sampled signal, it flows over the

graph and finally outputs a spectrum.

1) COEFFICIENT SOLVING LAYER X(k)

This layer solves the sparse vector θ (k) according to Eqn. (21).

Given α
(k−1) and z(k−1), which are outputs of previous layers
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FIGURE 3. Illustrations of three types of graph nodes (i.e., layers) and their data flows in the k-th stage. The rectangular box represents the layer of
interest, and the circles represent the layers that have data communication (i.e., connections) with that layer. The solid arrow indicates the data flow
in the forward pass and dashed arrow indicates the backward flow in the backward pass when computing gradients in back-propagation.

in stage k − 1, the output of this layer is defined as

θ
(k) =

(

AHA + ρ(k)I
)−1 (

ρ(k)z(k−1)+AHy−ρ(k)
α
(k−1)

)

(26)

where y represents the input measurements and ρ(k) is a

learnable penalty parameter in the k-th stage. We do not

constrain the parameters to be the same in different stages

to increase the network capacity. The output θ (k) in this layer

is the input for subsequent multiplier update layer (α(k)) and

nonlinear transform layer (z(k)) in stage k . In the first stage

(i.e., k = 1), θ (1) =
(

AHA + ρ(1)I
)−1 (

AHy
)

.

2) NONLINEAR TRANSFORM LAYER Z(k)

This layer performs a nonlinear transform inspired by a

complex-valued soft threshold operator Sτ (·). Given θ
(k) and

α
(k−1), the output of this layer is defined as

z(k)=max
(
∣

∣

∣
θ
(k)+α

(k−1)
∣

∣

∣
−τ (k), 0

)

·

(

θ
(k)+α

(k−1)
)

∣

∣

∣
θ
(k)+α(k−1)

∣

∣

∣

(27)

where τ (k) is a learnable threshold parameter in the k-th stage.

3) MULTIPLIER UPDATE LAYER M(k)

This layer is defined by the Lagrangian multiplier updating

procedure α
(k) in Eqn. (25). Given the three inputs α

(k−1),

θ
(k), and z(k), the output of this layer in stage k is defined as

α
(k) = η

(k)
1 α

(k−1) + η
(k)
2 θ

(k) − η
(k)
3 z(k) (28)

where η
(k)
1 , η

(k)
2 , and η

(k)
3 are learnable update rate parameters

in the k-th stage.

4) NETWORK PARAMETERS

These layers are organized in the data flow graph shown

in Fig. 2. In the deep architecture, we aim to learn the follow-

ing parameters: ρ(k) in the coefficient solving layer, τ (k) in the

nonlinear transform layer, η
(k)
1 , η

(k)
2 , and η

(k)
3 in the multiplier

update layer, where k = 1, 2, . . . ,Ns are the indexes for

each stage. All of these parameters are taken as the network

parameters to be learned. Obviously, the data set size of the

CS model-based network is much smaller than that of the

data-driven network.

C. NETWORK TRAINING

1) LOSS FUNCTION

The sparse vectors from fully sampled data are taken as

the ground-truth labels θ
gt and the under-sampled measure-

ment data y as the input. Then, a training set with size Ŵ

is constructed containing pairs of under-sampled data and

ground-truth labels. We choose averaged normalized root

mean square error (NRMSE) as the loss function to train the

networks. Given pairs of training data, the loss between the

network output and ground-truth is defined as

E(2) = 1

|Ŵ|
∑

(y,θgt)∈Ŵ

√

∥

∥

∥
θ̂ (y, 2) − θ

gt
∥

∥

∥

2

2
√

∥

∥θ
gt
∥

∥

2

2

(29)

where θ̂ (y, 2) is the network output based on network param-

eter 2 and under-sampled measurement data y. We learn the

parameters2 =
{

ρ(k), τ (k), η
(k)
1 , η

(k)
2 , η

(k)
3

}Ns−1

k=1
∪
{

ρ(Ns)
}

by

minimizing the loss w.r.t. them using L-BFGS [44] and learn

the gradients of the loss function E(2) w.r.t. parameters 2

using backpropagation over the network.

2) BACKWARD PROPAGATION

In the forward pass, the data of the k-th stage is processed

in the order of X(k), Z(k), and M(k). In the backward pass,

the gradients are computed in an inverse order. For stage k ,

Fig. 3 shows three types of nodes (i.e., network layers) and the

data flow over them. Each node has multiple inputs and (or)

outputs. We next introduce the gradient computation for each

layer in a typical stage k (k < Ns).

a: MULTIPLIER UPDATE LAYER M(k)

As shown in Fig. 3(a), this layer has three sets of inputs:

α
(k−1), z(k), and θ

(k). Its output α(k) is the input to compute
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α
(kC1), z(k+1), and θ

(kC1). The parameters of this layer are

η
(k)
1 , η

(k)
2 , and η

(k)
3 . The gradients of loss w.r.t. the parameters

can be computed as

∂E

∂η
(k)
l

= ∂E

∂α(k)

∂α
(k)

∂η
(k)
l

, (30)

where l = 1, 2, 3, and

∂E

∂α(k)
=







































∂E

∂α(k+1)

∂α
(k+1)

∂α(k)
+ ∂E

∂z(k+1)

∂z(k+1)

∂α(k)

+ ∂E

∂θ
(k+1)

∂θ
(k+1)

∂α(k)
, k ≤ Ns − 2

∂E

∂α(k)
= ∂E

∂θ
(k+1)

∂θ
(k+1)

∂α(k)
, k = Ns − 1

(31)

where ∂E
∂α(k) is the summation of gradients along the three

dashed blue arrows in Fig. 3(a). The gradients of the out-

put in this layer w.r.t. its inputs, ∂α
(k)

∂α(k−1) ,
∂α

(k)

∂z(k)
, ∂α

(k)

∂θ
(k) , and

parameters, ∂α
(k)

∂η
(k)
l

, can be computed from the partial derivative

of Eqn. (28).

b: NONLINEAR TRANSFORM LAYER Z(k)

As shown in Fig. 3(b), this layer has two sets of inputs: α(k−1)

and θ
(k). Its output z(k) is the input for computing α

(k) and

θ
(k+1) in the next stage. The parameter of this layer is τ (k).

The gradient of loss w.r.t. parameters can be computed as

∂E

∂τ (k)
= ∂E

∂z(k)
∂z(k)

∂τ (k)
, (32)

where

∂E

∂z(k)
= ∂E

∂α(k)

∂α
(k)

∂z(k)
+ ∂E

∂θ
(k+1)

∂θ
(k+1)

∂z(k)
, k ≤ Ns − 1 (33)

Similarly, we can also compute the gradients of layer

output to its inputs, ∂z(k)

∂α(k−1) ,
∂z(k)

∂θ
(k) , and parameters ∂z(k)

∂τ (k)

from Eqn. (27).

c: COEFFICIENT SOLVING LAYER X(k)

As shown in Fig. 3(c), this layer has two sets of inputs: z(k−1)

and α
(k−1), and the output θ

(k) is the input to compute z(k)

and α
(k) in the subsequent layer. The parameter of this layer

is ρ(k). The gradients of loss w.r.t. parameters are computed

as

∂E

∂ρ(k)
= ∂E

∂θ
(k)

∂θ
(k)

∂ρ(k)
, (34)

where

∂E

∂θ
(k)

= ∂E

∂α(k)

∂α
(k)

∂θ
(k)

+ ∂E

∂z(k)
∂z(k)

∂θ
(k)

, k ≤ Ns − 1 (35)

Similarly, we can also compute the gradients of a layer

output to its inputs, ∂θ
(k)

∂α(k−1) ,
∂θ

(k)

∂z(k−1) , and parameters ∂θ
(k)

∂ρ(k)

from Eqn. (26).

FIGURE 4. Data flow of the framework.

IV. ADMM-NET APPLIED TO CHIRP SIGNAL

PARAMETER ESTIMATION

In this section, we use ADMM-Net to output the FrFT spec-

trum of chirp signals under sub-Nyquist sampling. First,

the data flow diagram of the whole framework is introduced,

and then the training details of ADMM-Net are introduced.

A. DATA FLOW

Eqn. (15) shows the decomposition form of a chirp signal

on the p-order DIFRFT matrix KH
α

(

KH
p

)

, i.e., s = KH
p Sp.

Therefore, we can obtain a p-order FrFT spectrum estimation

model based on CS:

Ŝp = argmin
Sp

{

1

2
‖8KH

p Sp − y‖22 + λ‖Sp‖1
}

, (36)

where8 is a randomGaussian matrix. Obviously, the essence

of the above CS model based on the p-order DIFRFT matrix

is to obtain the p-order FrFT spectrum of the sequence

under fully-Nyquist sampling through the measurement

sequence under sub-Nyquist sampling. Therefore, each Ŝp
under KH

p must be solved by a p-order ADMM-Net, p =
p1, p2, . . . , pL. Then, a network framework consisting of L

parallel ADMM-Nets sharing input y is obtained. The data

flow diagram based on ADMM-Nets is shown in Fig. 4.

All Ŝp constitute the spectrum image of (p, µ) ∈ G =
[

Ŝp1 , . . . , ŜpL

]T
, G ∈ C

L×N, and then, a two-dimensional

extreme value search is conducted on abs(G). The coordinate

information of the peak can be substituted into Eqn. (8) to

obtain the parameters of the reference chirp signal.

Different from the ADMM-Net [36] used for MRI image

recovery, the ADMM-Net in our work is used to solve θ rather

than restore x. In [36], ADMM-Net is further generalized,

where sparse bases are learned by neural networks through

data. This is because the contour of the reconstructed image

is known; however, in parameter estimation, it is difficult to

highlight the parameter characteristics of the signal without

defining a standard without a known transformation domain.

Instead, we use the predefined FrFT spectrum estimation

model (Eqn. (36)) to complete the task of parameter estima-

tion. Besides, formally, though, the output of ADMM-Net in
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our work looks like an image, it is a matrix of coefficient

vectors G =
[

Ŝp1 , . . . , ŜpL

]T
, which is completely different

from an RGB image. Therefore, what we propose is in fact a

‘‘network group’’ structure as shown in Fig. 4, in which each

sub ADMM-Net is used to solve a Ŝp.

The structure of the network framework is determined

by parameters {N,M,Ns,L}. Obviously, {N,L} affects the

resolution of the output spectrum image, M represents the

sampling ratio, and Ns reflects the depth of the network.

Because the resolution of the spectral image is determined

by the properties of the FrFT, which represents the upper

limit of the estimation accuracy, we fix {N,L} as a con-

stant and only set {M,Ns} as variables in the following

sections.

B. NETWORK TRAINING

In this subsection, we train a basic ADMM-Net to realize

parameter estimation of chirp signals.

1) DATA SETS

Set N = 512, L = 200, fully sampled frequencyFs = 2MHz,

and construct the DIFRFT matrix KH
p with step size 0.01 in

the interval [0.01, 2].

We take the Sp[n] from fully sampled s[n] as the label and

the under-sampled measurement data y[m] = 8s[n] as the

input. Then, a training data set is constructed containing pairs

of y[m] and Sp[n].

The y[m] in the data sets is taken from the mono-

component chirp signals s[n] within the specified frequency

range. For each chirp signal s of the training example, the cen-

tral frequency f0 is in the range of 10 KHz to 1000 KHz with

intervals of 1f0 = 10 KHz, while the chirp rate k is in the

range of 0 to 3.9 GHz/s with intervals of 1k = 0.1 GHz/s.

The testing examples have intermediate values of parameters,

i.e., parameters are separated from values in the training

examples by 0.5 · 1. By not having overlapping values in

the training and testing sets, one can ensure that the network

is not overfitting, i.e., memorizing only the inputs shown to

it without learning to generalize to new inputs. Furthermore,

to satisfy Nyquist’s sampling law, a constraint was added

to {f0, k}: kT
2

6 f0 6
Fs
2

− kT
2
. The number of parameter

templates that satisfy this constraint is 1904 for training and

1954 for testing. The distribution of the modulation param-

eter of s[n] for 3858 templates from the training and testing

examples is shown in Fig. 5.

A sequence of measurement data y[m] is generated under

each training template, which constitutes the final training

set, containing all 1,904 sets of reference parameters. Accord-

ingly, the testing set consists of 1,954 templates, of which

10% are used as the validation set.

Note that all data sets are noiseless. Considering that

Gaussian white noise does not show energy accumulation in

any FrFT domain, we can obtain the output with excellent

noise resistance without adding additional noise resistance

processing to the data sets or network.

FIGURE 5. Parameter distribution of s[n].

FIGURE 6. E

(

2
(1.20)

)

for increasing L-BFGS iterations.

2) TRAINING

We learn the parameters
{

2
(p1), . . . ,2(pL)

}

of the paral-

lel ADMM-Nets group by minimizing the loss E
(

2
(p)
)

using gradient-based algorithm L-BFGS. We implement the

ADMM-Nets using Tensorflow, and all experiments were

conducted in Python (3.7) on a macbook with an 2.6 GHz

Intel Core i7 CPU and a GTX1080 GPU. It should be noted

that M and Ns are predefined and determine the structure of

the parallel ADMM-Nets group. Once M and Ns are deter-

mined, these networks have similar loss curves. Fig. 6 shows

the loss curve with L-BFGS iterations of an ADMM-Net

corresponding to p = 1.20 under the settings of 30% sam-

pling ratio, i.e., M = 153, and Ns = 7. It is satisfactory

that E
(

2
(p)
)

converges to the ideal value after 22 L-BFGS

iterations.

V. SIMULATION AND RESULTS

In this section, we report several quantitative experiments

on the estimation performance of the proposed framework.

Based on the DIFRFT dictionary, we first compare the

sensitivity of our deep ADMM-Net with conventional

CS methods in terms of sampling ratio and SNR. Then,

we further study the generalization ability of the framework

on multi-component chirp signals. Finally, we observe the
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influence of different network structures on the results and

propose a more generalized network model.

A. PERFORMANCE COMPARISON

In this subsection, we compare the sensitivity of our deep

ADMM-Net with conventional CS methods in terms of

sampling ratio and SNR. Conventional methods include

convex relaxation algorithms based on ℓ1, basis pursuit

denosing (BPDN) [24], fast iterative shrinkage thresholding

(FIST) [25], greedy algorithms, orthogonal matching Pur-

suit (OMP) [26], and iterative hard thresholding (IHT) [27]

and non-convex optimization algorithm, iterative reweighted

least squares (IRLS) [28], Bayesian compressive sensing

(BCS) [29]. In the following experiment, we continue with

the ADMM-Nets group trained in Section IV-B. The DIFRFT

dictionary is used as the sparse basis 9 ∈ C
N×N, and the

random Gaussian matrix is used as the measurement matrix

8 ∈ C
M×N for all CS methods in this work.

The experimental sample in Experiment 1 is a discrete

complex-valued mono-component chirp sequence with white

Gaussian noise with signal length N = 512, sampling fre-

quency Fs = 2 MHz, chirp rate k = 1.17 GHz/s, and

central frequency f0 = 0.505MHz. Under different sampling

ratios and SNRs, the above CS methods are used to solve the

coefficient vectors θ
(p) ∈ C

N of the signal under each KH
p ∈

C
N×N. Then, the coordinates of the peak can be obtained by

two-dimensional peak search on G =
[

θ
(p1), . . . , θ (pL)

]T
,

L = 200, p = 0.01 : 0.01 : 2, and k̂ and f̂0 are obtained

through Eqn. (8). The evaluation criterion is the mean abso-

lute percentage error as follows:

δε = 100

Mt

Mt
∑

1

|ε̂ − ε|
ε

, ε ∈ {f0, k} (37)

where Mt denotes the trials of a Monte Carlo simula-

tion (MCS).

Experiment 1: We first compare the sensitivity of our

deep ADMM-Nets group with conventional CS methods in

terms of sampling ratio under SNR = 10 dB. The com-

pression sampling ratio was changed from 5% to 30% in

steps of 5%. An MCS with 200 trials is conducted at each

sampling ratio. Because parameter estimation based on the

DIFRFT dictionary is a spectral peak estimation, there is

a synchronous detection threshold before the peak is over-

whelmed by clutter. Thus, the estimation error of k̂ and f̂0
of a mono-component chirp signal has the same variable

threshold. Therefore, we can compare the performance of

these CS methods only through the performance of δk .

Fig. 7(a) shows the quantitative results of the CS methods

under different sampling ratios with SNR = 10 dB, and

Tab. 1 shows the average time taken by these CS methods

to complete a trial.

The results show that when the sampling ratio is greater

than or equal to 20%, all CS methods used in this work can

achieve the estimation accuracy of the fully sampled FrFT.

FIGURE 7. (a)δk curves with sampling ratio and (b) δk curves with SNR.
The dotted line represents the estimated accuracy of the fully
sampled FrFT, which is used as a baseline reference.

TABLE 1. Average runtime of a trial.

The main difference of these error curves is that they have

different sampling ratio thresholds, which directly reflect the

resolution of the output FrFT spectrum image. Compared

with the conventional methods, our proposed ADMM-Net

produces the highest estimation accuracy under all sampling

ratios. In average, ADMM-Net achieves comparable estima-

tion accuracy (FrFT baseline) using sampling ratios in the

range of 2.5% ∼ 7.5% less than conventional methods.

Further, it achieves an approximate 20 times speed up in

running time (GPU time) compared with IST and IHT. Under

a 15% sampling ratio, ADMM-Net outperforms BCS by 1%

and runs more than 36 times faster.

Further, we also compare the sensitivity of our deep

ADMM-Net with conventional CS methods in terms of SNR.

Similarly, the above sample is still used for the experiment.

SNR is increased from −18 dB to 20 dB in steps of 2 dB,

and an MCS with 200 trials is performed for each SNR.

Fig. 7(b) shows the quantitative results of the CS methods

under different SNRs, where the sampling ratio is 30%.

The results show that when SNR>6 dB, all CS methods

used in this work can achieve the estimation accuracy of the

fully sampled FrFT. ADMM-Net has the best noise resistance

compared with other CS methods, which is embodied in

its lowest SNR threshold. With the comparable estimation

accuracy (FrFT base-line), ADMM-Net is 6 dB∼12 dB better

than BPDN and other conventional CSmethods.We conclude

that even in the training phase of the network, the data sets are

noiseless, but this does not affect the noise resistance of the

network, which is determined by the properties of the FrFT.

This gives CS model-driven networks a natural advantage

over data-driven networks.
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FIGURE 8. Examples of reconstructed FrFT spectrum images on the sample chirp signal using 30% sampling ratio and SNR=10 dB. (a) FrFT spectrum
image under full sampling. (b)-(h) Reconstructed FrFT spectrum images based on BPDN, IST, OMP, IHT, IRLS, BCS, and ADMM-Nets. Their PSNRs are
28.02 dB, 30.23 dB, 21.49 dB, 29.86 dB, 22.48 dB, 27.11 dB, and 33.79 dB, respectively.

The visual comparisons of reconstructed Ĝ =
[

Ŝp1 , . . . , ŜpL

]T
using 30% sampling ratio and SNR= 10 dB

are shown in Fig. 8. Peak SNR (PSNR) is introduced to

represent the quality of Ĝ:

PSNR(Ĝ) = 10 ∗ log

(

MAX2

Ĝ

MSE

)

(38)

MSE = 1

L × N

L−1
∑

i=0

N−1
∑

j=0

∥

∥

∥
Ĝ(i, j) − G(i, j)

∥

∥

∥

2
(39)

where MAX
Ĝ
indicates the maximum magnitude of the ele-

ments in Ĝ.

The visualization results show that ADMM-Net has the

highest FrFT spectrum image resolution.

B. DISCUSSION

In the above experiment, ADMM-Net produced the best

results for various SNRs and sampling ratios. In this

subsection, we further discuss the generalization ability

of ADMM-Net to multi-component chirp signals. Then,

the effects of different network architectures are evalu-

ated, and a generalized ADMM-Net (GADMM-Net) with

improved performance is proposed.

1) GENERALIZATION ABILITY

One advantage of model-driven networks is their abil-

ity to generalize. In previous experiments, the proposed

ADMM-Net was fed with a mono-component chirp sig-

nal dataset. Therefore, we test the generalization ability of

ADMM-Net by testing the learned networks group from

mono-component data to multi-component data.

TABLE 2. Performance of ADMM-Nets for estimating a three-component
chirp signal.

Experiment 2 A three-component chirp signal is used as

the input of the trained networks group, and the SNRs and

sampling ratios are used as the variables to conduct quan-

titative experiments. An MCS with 200 trials under each

variable unit is performed. Tab. 2 shows the results of the

three-component chirp signal as the input of the network.

In the experiment, we observed the robust estimation error of

each chirp component and recorded their SNR and sampling

ratio mutation thresholds.

Obviously, ADMM-Net has strong generalization ability

for the three-component chirp signal, and the spectral peak

of each chirp component in the plane (p, µ) can be accurately

detected. The difference in the estimation accuracy between

components is caused by the difference in modulation param-

eters, which is attributed to Eqn. (8). The threshold value

is nearly the same as that of the mono-component chirp

signal in Experiment 1, which indicates that ADMM-Net

still maintains high noise resistance and information recovery

ability to multi-component signals.

Fig. 9 shows the visualization results of the three-

component chirp signal processed by BPDN andADMM-Net

when the sampling ratio is 30% and SNR is 10 dB.
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FIGURE 9. Visualization results of three-component chirp signals
processed by (a) BPDN and (b) ADMM-Nets. Their PSNRs are 25.02 dB
and 33.80 dB, respectively.

FIGURE 10. Sensitivity of FrFT and ADMM-Net to chirp signal modulated
parameters.

The results clearly show that in the (p, µ) plane based

on BPDN, there is strong pseudo-spectral interference

between components, while the spectral peaks of the (p, µ)

plane based on ADMM-Net are cleaner, indicating that

ADMM-Net has better spectral resolution than BPDN.

Experiment 3 To verify the effectiveness of the method,

an experiment on the sensitivity of modulation parameters

was conducted to observe the performance of ADMM-Net

on other modulation parameters. Under each test template

(the red dot shown in Fig. 5, a mono-component chirp signal

with SNR= 10d̃Bwas generated as a sample. All the samples

made up the sample set. Then, each sample was processed in

an MCS with 200 trials using FrFT under full sampling and

an ADMM-Net with 30% sampling ratio.

We continue to use mean absolute percentage error as the

degree of deviation:

δε = 100

Mt

Mt
∑

1

|ε̂ − ε|
ε

, ε ∈ {f0, k} (40)

Fig. 10 shows the error matrix obtained by FrFT and

ADMM-Net. The triangular region represents the parameter

distribution of the sample set, which is same as the testing

set’s parameter distribution in Fig. 5. Different colors repre-

sent the magnitude of δε, whose upper bound shown in the

figure is 5%, i.e., for each point δε = 5% in the figure,

its true δε > 5%. Fig. 10(a) and 10(c) respectively show

the error matrix amplitude diagram of FrFT and ADMM-Net

estimating f0 on the sample set, whereas Fig. 10(b) and 10(d)

show the results for k .

The simulation shows that the sensitivity of ADMM-Net

and FrFT to chirp signal parameters are nearly the same.

It is not difficult to find that the estimation accuracy of chirp

signal oscillates with the parameter changes, which confirms

the reliability of the results in Tab. 2. Obviously, ADMM-Net

with iFrF matrix as sparse basis inherits the spectrum char-

acteristics of FrFT, which proves the effectiveness of the

proposed method for chirp signal parameter estimation.

2) EVALUATION FOR DIFFERENT NETWORK ARCHITECTURES

Generally, a common problem faced by neural network-based

methods is how to determine the network structure containing

the optimal solution.We next evaluate the performance of our

proposed ADMM-Net with varying network architectures.

Experiment 4: The depth of an ADMM-Net depends on

the number of stages (i.e., Ns) corresponding to the iterations

in the ADMM algorithm. To test the effect of the number of

stages, we train deeper networks by adding one stage at each

time with other parameters fixed, i.e., sampling ratio 30%.

Then, we select a mono-component chirp signal testing set at

SNR = 10 dB to conduct the experiment. Fig. 11(a) shows

the average testing PSNR values of ADMM-Nets using an

increasing number of stages.

The PSNR increases fast when Ns 6 7 and marginally

increases when further increasing the number of stages.

Therefore, in this work, Ns = 7 is optimal from the perspec-

tive of calculation efficiency and accuracy.

Experiment 5: In the nonlinear transformation layer,

ADMM-Net performs nonlinear transform inspired by the

shrinkage function S(·) defined by z(k) in Eqn. (24). Obvi-

ously, like ReLU, when |x| 6 | λ
ρ
|, the negative gradient

will be set to zero, which may lead to neuronal necrosis.

Therefore, instead of setting it to be a determined shrinkage

function, we aim to learn a more general function using a

piecewise linear function. Given θ
(k) and α

(k−1), the output

of this layer is defined as

z(k) = SPLF

(

θ
(k) + α

(k−1);
{

pi, q
(k)
i

}Nc

i=1

)

(41)

where SPLF (·) is a piecewise linear function determined by a

set of control points
{

pi, q
(k)
i

}Nc

i=1
:

SPLF (a)=























a+q(n)1 −p1, a<p1

a+ q
(n)
Nc

− pNc , a > pNc

q
(n)
r +

(a− pr )
(

q
(n)
r+1 − q

(n)
r

)

p2−p1
, p1≤a ≤ pNc

(42)
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FIGURE 11. (a) Average testing PSNRs using different numbers of stages
with 30% sampling ratio and SNR = 10 dB. (b) An example of an adaptive
piecewise function with Nc = 5. (c) Average testing PSNRs using different
Nc , with Ns = 7, with 30% sampling ratio and SNR = 10 dB.

where r =
⌊

a−p1
p2−p1

⌋

and {pi}Nci=1 are the uniform positions

located within
[

−τ (k), τ (k)
]

, and
{

q
(k)
i

}Nc

i=1
are the values

at these positions in the k-th stage. Fig. 11(b) presents an

illustrative example function. Thus, we get a more general-

ized ADMM-Net (GADMM-Net). Because a piecewise lin-

ear function can approximate any function, we can learn a

flexible nonlinear transform function from data beyond the

off-the-shelf hard or soft thresholding. Both real and imagi-

nary parts share the same piecewise linear function,

z(k) = SPLF

(

ℜ
(

θ
(k) + α

(k−1)
))

+jSPLF
(

ℑ
(

θ
(k) + α

(k−1)
))

(43)

Fig. 11(c) shows the average testing PSNR values of

ADMM-Nets using an increasing number of Nc. The PSNR

increases fast when Nc 6 10 and marginally increases

when further increasing the number of stages. To com-

pare the estimation performance of GADMM-Net against

that of ADMM-Net, we train and test a GADMM-Net and

ADMM-Net with the data sets in Experiment 1, with the

network parameters set as Ns = 7 and Nc = 10. Similarly,

the sample signal in Experiment 1 is used to test the perfor-

mances of the networks. Because the estimation accuracies

of k̂ and f̂0 of a mono-component chirp signal have the same

detection threshold, let us compare the performances of the

networks through the performance of δf0 . Fig. 12(a) shows

the quantitative results of the two networks under different

sampling ratios with SNR = 10 dB, and Fig. 12(b) shows

the quantitative results under different SNRs with sampling

ratio 30%.

FIGURE 12. (a) δf0
curves with sampling ratio and (b) δf0

curves

with SNR.

The computational efficiencies of the two networks are

similar; the average testing times (GPU) of one trial are

0.47 s and 0.45 s, respectively. The results in Fig. 12 show

that GADMM-Net has better estimation performance than

ADMM-Net, with a 2.5% reduction in the demand for sam-

pling ratio and better noise resistance. The SNR detection

threshold has been optimized to approximately 4 dB, which

is close to the estimation performance of the FrFT with full

sampling.

VI. CONCLUSION

In this paper, a deep learning-based framework was proposed

for chirp signal parameter estimation under sub-Nyquist sam-

pling. The framework was expanded into a neural network

group by a series of parallel ADMM algorithms, and its

forward propagation is an FrFT spectrum estimation model.

The framework can convert the measurement data under

sub-Nyquist sampling to a fully sampled FrFT spectrum

image, which can be used for chirp signal detection and

parameter estimation. The simulation results show that the

FrFT spectrum image obtained based on ADMM-Net has

higher spectral resolution with faster computing speed than

those obtained by other CS methods, which gives the param-

eter estimation of chirp signals better estimation accuracy at

low SNR and low sampling ratio.

The framework proposed in this paper is the application

of the CS unrolling method in chirp signal parameter esti-

mation. Although it has better robustness and generaliza-

tion capabilities than traditional data-driven neural networks,

it is limited by the selection of sparse bases. For example,

the FrFT basis used in this paper cannot directly estimate the

parameters of chirp signals with duty ratio η < 1. In much

of the literature on CS methods for image enhancement,

the unrolling method is further generalized, where sparse

bases are learned by neural networks through data. This is

because the contour of the reconstructed image is known;

however, in parameter estimation, it is difficult to highlight

the parameter characteristics of the signal without defining a

standard without a known transformation domain. Although

we further generalized ADMM-Net in the activation layer

in this work to improve its performance, we are still unable

to deal with η < 1 adaptively, which needs to be further

considered in future work.
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