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a multifactorial cascade concept for
pathogenesis and embryonic origin
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Abstract

This paper formulates a novel multifactorial Cascade Concept for the pathogenesis of adolescent idiopathic

scoliosis (AIS). This Concept stems from the longitudinal findings of Clark et al. (J Bone Miner Res

29(8):1729-36, 2014) who identified leptin body composition factors at 10 years of age associated with a

scoliosis deformity found at 15 years. We interpret these findings in the light of some concepts for AIS

pathogenesis. In particular, we speculate that the leptin body composition effect is linked to central

nervous system development and the initiation of the asynchronous neuro-osseous growth mechanism that

involves the creation of a neuraxis tether of relative anterior vertebral overgrowth. The latter mechanism in

combination with age and gender-related anatomical variants of vertebral backward tilt (dorsal shear

concept), human upright posture, adolescent growth factors, Hueter-Volkmann effect in vertebrae and

vertebral bone mass abnormalities, lead to AIS, possibly both initiation and progression of scoliosis

curvatures. Being multifactorial, while the Cascade Concept cannot be tested for all its components, some

components should be testable by the method of numerical simulation.

Clark et al. (J Bone Miner Res 29(8):1729-36, 2014) also suggested the origin of scoliosis was in the embryonic stages of

life from cell types, including adipocytes and osteoblasts, derived from the same progenitor cells, and myoblasts from

mesodermal somites. The involvement of cell types from different developmental origins suggests a process acting in

embryonic life at a similar time, probably environmental, as previously proposed from anthropometric studies. As a

Complex disease, AIS will involve genetic, environmental and life style factors operating in development and growth;

this possibility needs evaluating in epidemiological studies.
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Background
While there is no agreed theory for the pathogenesis

of adolescent idiopathic scoliosis (AIS), several con-

cepts attempt to do so, focusing on specific patho-

genetic processes [1–3]. Here, we suggest a novel

speculative multifactorial Cascade Concept for AIS

pathogenesis. It stems from the longitudinal findings

of Clark et al. [4] which we interpret here in the

light of some pathogenetic concepts for AIS (Fig. 1).

Preliminary accounts of the concept have been pre-

sented [3, 5, 6].

The Avon longitudinal study of parents and children

(ALSPAC) and idiopathic scoliosis

Clark et al. [4] identified factors at 10 years of age that

were associated with a scoliosis deformity identified at

15 years of age. These factors are low fat mass, low

lean mass, low circulating leptin and high circulating

adiponectin levels. We speculate that this leptin body

composition effect in AIS is linked to central nervous

system development, as shown in mice for the brain

[7] and, in particular to impaired neuraxis growth as it

stretches in adapting to vertebral column growth as

the child grows in height.
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Components of cascade concept
Leptin and central nervous system (CNS) development

We speculate that the leptin body composition effect of

Clark et al. [4] links spinal cord development to the

asynchronous neuro-osseous growth concept for AIS

pathogenesis [8] for four reasons. Firstly, the decreased

brain size of the ob/ob mouse is evidently due to a devel-

opmental defect that can be corrected by leptin adminis-

tration, indicating that leptin plays a role in brain

growth and development [7]. Secondly, leptin in ob/ob

mice is reported to regulate the myelination of oligoden-

drocytes [9]. Thirdly, in primates, brain mass increases

linearly with spinal cord mass, while neuron number in

the brain increases with neuron number in the spinal

cord raised to the power of 1.7 [10]. Fourthly, the low

leptin effect on the CNS in AIS subjects [3, 11] may ex-

plain the different thinning pattern of the cerebral cortex

observed in patients with AIS during adolescence, which

may be primary (i.e. pathogenetic) or secondary (i.e.

adaptation) to the development of scoliosis [12].

Asynchronous neuro-osseous growth mechanism for AIS

pathogenesis

Using the multi-planar reconstruction technique of mag-

netic resonance imaging, Chu et al. [8]:

“....investigated the relative length of spinal cord to

vertebral column, including ratios, in 28 girls with

AIS (mainly thoracic or double major curves) and 14

age-matched normal girls. Also evaluated were cere-

bellar tonsillar position, somatosensory evoked poten-

tials (SSEPs), and clinical neurological examination. In

severe AIS compared with normal controls, the verte-

bral column is significantly longer without detectable

spinal cord lengthening. They speculate that anterior

spinal column overgrowth relative to a normal length

Fig. 1 Cascade Concept for AIS pathogenesis based on the findings of Clark et al. [4] that place adipose tissue and energy control in relation to

the predisposition to AIS. It is speculated that leptin is linked to human central nervous system development, asynchronous neuro-osseous

growth mechanism, and the dorsal shear mechanism. NCS = neurocentralsynchondrosis, GP = growth plate
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spinal cord exerts a stretchintethering force between

the two ends cranially and caudally, leading to the

initiation and progression of thoracic AIS. They

support and develop the Roth-Porter concept of

uncoupled neuro-osseous growth in the pathogenesis

of AIS which now they prefer to term ’asynchronous

neuro-osseous growth’.

Lengths of the vertebral column were measured from

the tip of C2 down to the inferior end plate of L5, and

the spinal cord from the tip of C2 down to the conus

medullaris [8].

Conus medullaris and asynchronous neuro-osseous

growth – hypothesis of impaired growth response of

neuraxis to stretch with spinal growth creates a tether to

anterior spinal overgrowth

In AIS subjects, the mean and distribution of conus

medullaris locations are similar to controls [13, 14]. Dur-

ing normal development, because of different relative

rates of growth of the vertebral column and spinal cord,

the level of termination of the spinal cord is constantly

changing, particularly prenatally [15]. In the normal

spine of children, the conus is reported to reach its adult

level by 2 years of age at an average position of L1 to L2

[15, 16]. We interpret subsequent spinal cord and cauda

equina lengthening as a neural stretch adaptation to the

linear growth of vertebrae. In the scoliosis subjects,

measured by Chu et al. [8], where there was anterior

spine overgrowth, the scoliosis was attributed to tether-

ing of the relative anterior vertebral overgrowth by a

normal length spinal cord (caudal part of neuraxis); also

the seat of pathology which may extend into the brain

stem neuraxis [17]. We explain the normal length spinal

cord as resulting from impaired neuraxis growth in re-

sponse to stretch due to a low leptin effect on neuraxis

growth from age 10 years or earlier. This accounts for

the finding of a spinal cord of normal length in AIS sub-

jects with anterior vertebral [8] and skeletal overgrowth

[18] driven by the hormones of puberty.

Cranial expression of tension in the neuraxis

Though not reported in the AIS subjects studied by Chu

et al. [8], in the light of other findings [13, 14], the conus

location was probably normal. If this be the case, then

their finding of a normal length spinal cord with anterior

spinal overgrowth suggests that the tension created in a

relatively short spinal cord (neuraxis tether) by anterior

vertebral growth is expressed, not caudally at conus

level, but cranially in the upper cervical cord and me-

dulla oblongata (as disturbed white matter) [17] and

at the craniocervical junction (as low-lying cerebellar

tonsils) [19].

The evidence for thoracic AIS [8] is consistent with

the view that after 2 years of age, the cauda equina

stretches with lumbar spine growth to produce a normal

conus termination level. In contrast, the spinal cord

neuraxis does not stretch fully and grow with the cervi-

cothoracic spine, which causes traction on the upper

cervical cord and brain stem. In the latter connection

Kong et al. [17] write:

“The findings from this study are in agreement with pre-

vious findings showing abnormal somatosensory evoked

potential readings occurring only above the C5-6 level in

patients with adolescent idiopathic scoliosis; these findings

might partially explain the pathophysiology of the neural

pathway involved”.

Cascade concept and normal length of spinal neuraxis

This interpretation applies to the Cascade Concept in

which low circulating leptin levels impair growth of the

spinal neuraxis. But how does this explain the reported

normal length of the spinal cord [8]? Should the initial

growth potential of the spinal neuraxis be coupled to

that of the anterior spine for overgrowth [8], then im-

paired spinal neuraxis growth could produce a normal

length spinal cord with anterior spinal overgrowth as re-

ported by Chu et al. [8].

Dorsal shear concept for AIS pathogenesis

The speculation of Chu et al. [8] that the initiation and

progression of AIS results from anterior vertebral col-

umn overgrowth through a lordoscoliotic maladaptation

of the spine to the subclinical tether of a relatively short

spinal cord, suggests that the neuraxis tethering may

also act by altering the backward tilt of vertebrae in the

lower spine within the dorsal shear concept of pathogen-

esis for AIS [20].

Castelein et al. [20] postulated that:

“… dorsal shear forces, acting exclusively upon specific

regions of the human spine, contribute to rotational

instability of the spine. Asymmetric loading of the

posterior parts of the vertebrae then would lead to

asymmetrical growth in all three planes of specific parts

of vertebrae, according to the Hueter-Volkmann’s law.

Asymmetrical growth of the neurocentral cartilage of

the vertebra, for instance, has been shown to lead to

AIS-like deformities in growing pigs, and could explain

the development and progression of the deformity in

humans”.

Schlosser et al. [21] conclude:

“.....the spines of girls during the growth spurt are

more posteriorly inclined, and thus rotationally

less stable, compared to boys at the same stage of

development, as well as compared to girls after the
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growth spurt. This may explain why initiation and

progression of adolescent idiopathic scoliosis are

more prevalent in girls around puberty”.

We speculate that the leptin body composition effect is

linked to central nervous system development and the

asynchronous neuro-osseous growth mechanism. The lat-

ter, in combination with human upright posture, age and

gender-related anatomical variants of vertebral backward

tilt (dorsal shear concept), adolescent growth factors, the

Hueter-Volkmann effect in vertebrae and vertebral bone

mass abnormality, lead to AIS, possibly both initiation and

progression of scoliosis curvatures.

Hueter-Volkmann law

The Hueter-Volkmann Law states that increased mechan-

ical compression acting on growth plates impairs skeletal

growth and reduced loading increases skeletal growth.

Several concepts of AIS pathogenesis use the Hueter-

Volkmann effect in their mechanisms [1, 22–24], each of

which requires an initiating mechanism to deform the

spine. The Cascade Concept for AIS includes the Hueter-

Volkmann effect in its pathomechanisms (Fig. 1). This

mechanism lies within the field of mechanobiology that in

the skeleton includes the effects of Hueter-Volkmann,

Pauwels and Wolff [24].

Vertebral bone mass

Once a scoliogenic mechanism, such as in the Cascade

Concept, has initiated a spinal deformity, the presence

in that subject of any reduced vertebral bone mass from

known, (e.g. osteopenia, [25], melatonin-signalling dys-

function [26, 27], vitamin D [28] and possible calcium

[29] deficiency), or from unknown causes, will facilitate

progression of the scoliosis deformity.

In healthy subjects, both low fat mass and low lean

mass are independent predictors of low bone mass [30,

31]. In individuals with scoliosis, Clark et al. [4] linked

low lean mass to abnormalities of paravertebral muscle

histology and electromyographic function. Here, we in-

terpret the associations between low fat mass, low lean

mass, bone mass and scoliosis as causal and determined

in embryonic life.

Developmental axial vertebral rotation

The normal human spine in the transverse plane is not

symmetrical. Between infancy and adolescence in the

mid and lower thoracic spine, axial vertebral rotations

(AVRs) convert from left to right [32, 33]. We term this

the left-right AVR conversion [34]. It reflects the most

prevalent curve patterns in idiopathic scoliosis at differ-

ent ages [32, 33].

Hypothesis of oscillating axial torsion and AVR

conversion in normal development

We formulated the oscillating axial torsion hypothesis

[35] in a study of upper limb length asymmetry in

idiopathic scoliosis [36, 37]. The hypothesis is based on

torsions of neural and skeletal structures in normal, pre-

and post-natal human development. The postnatal left-

right AVR conversion of the normal spine is contained

within this oscillating axial torsion hypothesis where it is

viewed as being determined by intrinsic developmental

processes within growing axial structures; this is in con-

trast to the AVR conversion being interpreted as a

mechanical adaptation of the spine to visceral asym-

metry in the trunk [32, 33].

This controversy of mechanisms determining the AVR

conversion was identified by Schlosser et al. [38] who

suggested that while neurocentral synchondrosis (NCS)

asymmetry and their fusion is related to pre-existent ro-

tation of the spine; whether the NCS asymmetry is the

cause, or is caused by, the pre-existent vertebral rotation,

could not be determined. This controversy needs further

consideration because, if normal intrinsic mechanisms

determine the AVR conversion, then abnormality of

these intrinsic mechanisms could be scoliogenic, not

only in adolescence, but also in infancy [34].

Putative thoracic axial rotation factors

The Cascade Concept for AIS pathogenesis posits that

the quantum of developmental axial vertebral rotation

can be increased by one of at least four factors

(Fig. 1): 1) contralateral cerebral hemisphere dysfunc-

tion [39, 40]; 2) rib length asymmetry [41, 42]; 3)

shallow chest acting through the ribs [43]; and 4) pu-

tative speech exhalation-associated scoliogenic mech-

anism acting through the ribcage [44]. We suggest

that any such increase of axial vertebral rotation

(transverse plane) when combined with backward ver-

tebral tilt (sagittal plane) within the dorsal shear con-

cept for AIS pathogenesis [20, 21] will facilitate the

development of a scoliosis deformity.

Embryonic origin of cascade concept for AIS
pathogenesis
To explain the association of components of body com-

position identifiable before the onset of scoliosis, Clark

et al. [4] suggest that the origin of scoliosis affects a clus-

ter of cell types, namely adipocytes and osteoblasts de-

rived from the same progenitor cells (mesenchymal stem

cells), and myoblasts derived from different progenitor

cells (somitic myotome) (Fig. 2). Recent research sug-

gests consideration is also given to visceral white adipose

tissue arising from lateral plate mesoderm [45]. The

involvement of cell types from different developmental

origins suggests a process acting in embryonic life,
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probably environmental. This origin was also suggested

from anthropometric studies [36].

We focus here on low fat mass and low leptin in rela-

tion to the Cascade Concept of AIS pathogenesis. How

may abnormalities of adipocytes and other cell types

arise? Although long form leptin receptor mRNA was

expressed in the brain, pituitary, and other tissues, it was

not detected in the spinal cord of pigs (gilts) [46]. This

finding suggests the possibility that any such leptin effect

on spinal cord growth may be indirect involving un-

known factors.

Sporadic AIS as a complex disease – genes and
environment
Sporadic AIS has been termed a Complex disease by not

following the classical mode of Mendelian inheritance

and for other reasons [3]. Complex diseases are caused

by a combination of genetic, environmental, and lifestyle

factors, mostly not yet identified; the vast majority of

diseases fall into this category [47].

As a Complex disease, sporadic AIS will involve gen-

etic, environmental and life style factors in development

and growth [3]. Although environmental factors are in-

volved in AIS aetiopathogenesis, no specific factor(s) has

been identified [48, 49]. A possible environmental mech-

anism has been evaluated in the first year of life; it in-

volves a time lag (time-dependent reaction) between

exposure and expression of the scoliosis phenotype [50].

Conclusions
Here we focus on two basic questions posed by the re-

search of Clark et al. [4]:

� Does low fat mass and low leptin levels present at

10 years impair neuraxis growth between 10 and

15 years of age?

� May environmental factors acting on a susceptible

genotype in early embryonic life determine AIS

years later?

1. The observations of Clark et al. [4] relating to the

scoliosis phenotype and endophenotype need

confirming in other population or disease cohorts.

2. Rather than study the phenotype and

endophenotype from birth, or even conception,

knowledge may be facilitated by evaluating familial

AIS in younger unaffected siblings of AIS girls in

coordinated multicentre longitudinal studies.

3. Some biomechanical aspects of the Cascade

Concept may be testable by numerical simulation.

This method that involves three-dimensional

reconstructions of the scoliotic spine has been used

to study the effects of gravity loads, disc mechanical

stiffness and anterior vertebral growth [51].

4. The numerical simulation method may be applied to

components of the scoliotic spine in the sagittal and

transverse planes, relating to both the asynchronous

neuro-osseous growth mechanism and the dorsal

shear concept for AIS pathogenesis.

5. As in the research of McMaster et al. [50] which

focused on the first year of postnatal life, the process

leading, after a time lag, to AIS might also affect

susceptible embryos. This needs evaluating in

epidemiological studies. Further epidemiological

research is needed, including early pregnancy.

The latter should include consideration of the

perinatal microbiome [52].
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