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Adolescent idiopathic scoliosis (AIS), environment,
exposome and epigenetics: a molecular
perspective of postnatal normal spinal growth
and the etiopathogenesis of AIS with
consideration of a network approach and
possible implications for medical therapy
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Abstract

Genetic factors are believed to play an important role in the etiology of adolescent idiopathic scoliosis (AIS).

Discordant findings for monozygotic (MZ) twins with AIS show that environmental factors including different

intrauterine environments are important in etiology, but what these environmental factors may be is unknown.

Recent evidence for common chronic non-communicable diseases suggests epigenetic differences may underlie MZ

twin discordance, and be the link between environmental factors and phenotypic differences. DNA methylation is

one important epigenetic mechanism operating at the interface between genome and environment to regulate

phenotypic plasticity with a complex regulation across the genome during the first decade of life. The word

exposome refers to the totality of environmental exposures from conception onwards, comprising factors in external

and internal environments. The word exposome is used here also in relation to physiologic and etiopathogenetic

factors that affect normal spinal growth and may induce the deformity of AIS. In normal postnatal spinal growth

we propose a new term and concept, physiologic growth-plate exposome for the normal processes particularly of

the internal environments that may have epigenetic effects on growth plates of vertebrae. In AIS, we propose a

new term and concept pathophysiologic scoliogenic exposome for the abnormal processes in molecular pathways

particularly of the internal environment currently expressed as etiopathogenetic hypotheses; these are suggested to

have deforming effects on the growth plates of vertebrae at cell, tissue, structure and/or organ levels that are

considered to be epigenetic. New research is required for chromatin modifications including DNA methylation in

AIS subjects and vertebral growth plates excised at surgery. In addition, consideration is needed for a possible

network approach to etiopathogenesis by constructing AIS diseasomes. These approaches may lead through

screening, genetic, epigenetic, biochemical, metabolic phenotypes and pharmacogenomic research to identify

susceptible individuals at risk and modulate abnormal molecular pathways of AIS. The potential of epigenetic-

based medical therapy for AIS cannot be assessed at present, and must await new research derived from the

evaluation of epigenetic concepts of spinal growth in health and deformity. The tenets outlined here for AIS are

applicable to other musculoskeletal growth disorders including infantile and juvenile idiopathic scoliosis.
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Introduction

The principal aim of this paper is to examine the etio-

pathogenesis of adolescent idiopathic scoliosis (AIS)

from the standpoint of epigenetics. To our knowledge

this has not previously been addressed. Epigenetics, a

relatively recent field now vast and vigorous, evaluates

factors concerned with gene expression in relation to

environment, disease, normal development and aging,

with a complex regulation across the genome during the

first decade of life. Butcher and Beck [1] describe epige-

netics as follows:

“Although environmental measures are logical covar-

iants for genotype-phenotype investigations, another non-

genetic intermediary exists: epigenetics. Epigenetics is the

analysis of somatically-acquired and, in some cases,

transgenerationally inherited epigenetic modifications

that regulate gene expression, and offers to bridge the

gap between genetics and environment to understand

phenotype. The most widely studied epigenetic mark is

DNA methylation. Aberrant methylation at gene promo-

ters is strongly implicated in disease etiology, most nota-

bly cancer.”
There is controversy relating to the definition of epi-

genetics which we outline. Taking the broad definition,

a view of AIS etiopathogenesis and normal spinal devel-

opment is presented from an epigenetic standpoint, pre-

dicated on a model for other diseases.

Research into the causation of adolescent idiopathic

scoliosis (AIS) draws heavily from mechanical and biolo-

gical disciplines, but still lacks an agreed theory of etio-

pathogenesis [2,3]. Genetic factors are believed to play

an important role in the etiology of AIS with consider-

able heterogeneity [2,4,5]. Hence treatment is empirical

and not based on sufficient understanding of etiology to

support the current mechanically-based therapy [6]. The

research problem is complicated by the suspicion that

AIS may result not from one cause, but several that

interact. Genetic, and now genomic, research on AIS

has not yet provided the therapeutically-required etiolo-

gic understanding. In other diseases and particularly dis-

eases of developmental origin [7-13] and late-onset

chronic non-communcable diseases (NCDs) [14-22],

research on the role of environmental factors and epige-

netics after a slow start [23] has exploded in the last

decade [1,17,18,24-32]. Not so for AIS research where,

except for monozygotic twin studies and very recent

mentions on the net [33,34], there are only sporadic

reports suggesting that environmental factors are at

work in etiology.

Genotype-environment (GxE, nature/nurture) interac-

tions are being extensively researched in human growth

[35-40], behavioural studies [41-43], early-life conditions

[7-13,44,45], placentation [29] and gastrointestinal dis-

eases [46-48]. The increasing incidence of idiopathic

club foot in Denmark and Sweden has led to the specu-

lation that factors associated with population density

namely, environmental stress (traffic pollution, noise)

and stress of urban living (misuse of tobacco, alcohol,

drugs), could be reasons for this epidemiological change

[49].

DNA methylation (DNAm) is an important epigenetic

mechanism operating at the interface between genome

and environment to regulate phenotypic plasticity with a

complex regulation across the genome during the first

decade of life [50]. Recent data suggests that epigenetic

responses including DNAm is involved not only in cel-

lular differentiation but also in modulation of genome

function in response to signals from the various envir-

onments [45]. The window of developmental plasticity

extends from preconception to early childhood and is

exerted particularly during life-history phase transitions

[13]. Developmental origins of health and disease and

life-history transitions are purported to use placental,

nutritional, and endocrine cues for setting long-term

biological, mental and behavioural strategies in response

to local physical, biological and/or social conditions

[13,45,51].

Epigenetics is now generally defined as information

heritable during cell division but not contained within

the DNA sequence itself [14]. There are three major

ways organisms alter their DNAs inherited messages:

enzymes methylate DNA to modulate transcription; his-

tone modifications and nucleosome positioning to

induce or repress target sequences; and non-coding

small RNAs (including microRNAs and short interfering

RNAs) which attach themselves to messenger RNA to

modify the expression of specific genes [10,46,52,53].

DNA-cytosine methylation is a central epigenetic modi-

fication that has essential roles in cellular processes

including genome regulation, development and disease

[54]. According to Cropley et al [55] epigenetic mechan-

isms provide multicellular organisms with a system of

normal gene regulation that silences portions of the

genome and keeps them silent as tissues differentiate.

Long-term silencing can be reprogrammed by demethy-

lation of DNA which starts afresh in each generation in

germ cells and early embryos through which effects on

nutrition in utero may influence health in later life

[56-58] (Appendix I).

Errors in this complex system termed epimutations

arising from environmental and stochastic (random)

events, can give rise to abnormal gene silencing, that

may result in a great deal of phenotypic variation and

common disease, At present, there are only a handful of

clear examples; but importantly this can occur in the

absence of any underlying genetic defect [59]. Altera-

tions in the epigenetic status can be directly modified by

various environmental insults or maternal dietary factors

Burwell et al. Scoliosis 2011, 6:26

http://www.scoliosisjournal.com/content/6/1/26

Page 2 of 20



[44,60]. Epigenetics helps to explain the relationship

between an individual’s genetic background, environ-

ment, aging, and disease [17]. Sex differences in epige-

netic processes may alter the risk or resilience to

develop a particular disorder [61]. Increased understand-

ing of epigenetic-disease mechanisms could lead to

innovative diagnostic tests and disease-risk stratification

to targeted intervention and therapies [16,46].

The Human Epigenome Project (HE) and other epige-

nomic projects [62-66] are evaluating epigenetics in

developmental origins of human disease [9,11], and for

musculoskeletal disorders in bone development [67-69]

and dysmorphology [70].

Apart from the emerging role of epigenetic mechanisms

in the etiology of neural tube defects [60], Prader-Willi

syndrome [71,72], and the recent theoretical interpreta-

tions of Burwell and colleagues [73-76] and McMaster

[77], epigenetics does not figure in any causal analysis of

postnatal normal spinal growth, or in the etiopathogenesis

of AIS (Figure 1), This reflects current scientific opinion

that genetic rather than environmental factors determine

the etiology of AIS in accordance with the genetic variant

hypothesis of disease [17,78] (Appendix II).

In this paper we briefly evaluate postnatal normal

spinal growth and the etiopathogenesis of AIS in rela-

tion to the epigenetic explosion and the terminologic

disagreements; the latter arise from the different

requirements of geneticists, molecular biologists, devel-

opmental biologists and pathogetieticists. Our interpre-

tation for AIS attempts to overcome these difficulties. It

is predicated on the premise that in all scolioses, idio-

pathic, and secondary, spinal deformity cannot occur

without normal vertebral growth-plate function being

compromised ultimately in three dimensions by abnor-

mal processes. This focus on vertebral growth does not

imply that asynchronous ribcage growth [79-83], inter-

vertebral discs and vertebral bone may not contain fac-

tors in AIS pathogenesis. The tenets outlined here for

AIS are applicable to other developmental growth disor-

ders including infantile and juvenile idiopathic scoliosis.

The aims of this paper are:

1. To review sporadic reports suggesting that environ-

mental factors are involved in AIS etiology.

2. To note that the risks of developing late-onset

chronic non-communicable diseases (NCDs) including

cancer, diabetes, cardiovascular disease, respiratory

Figure 1 Venn diagram showing relationship between genetic variation, epigenetic variation and disease simultaneously (Modified

from Feinberg [18]).
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disease, obesity and schizophrenia, are attributed to

genetic and environmental factors.

3. To discuss the meaning of the word exposome. Cur-

rently, it refers to the totality of environmental expo-

sures, exogenous and endogenous from conception

onwards, some of which lead to occupational health

problems.

4. To use the word exposome also in relation to phy-

siologic and etiopathogenetic factors that respectively

affect normal spinal growth and may induce/promote

the deformity of AIS.

5. To suggest that the harmful effects produced by

exposome factors leading to dysfunction involve inter-

ference with normal cellular processes and molecular

pathways in cells, tissues, structures and organs.

6. To define epigenetics, its origin and two current

meanings, modification and interactions.

7. To outline epigenetics in relation to normal embryo-

nic development, involving epigenetic modification and

interactions.

8. To present a causal analysis of the normal postnatal

normal spinal growth putatively involving epigenetic

interactions and modification.

9. To apply a new collective term and concept, physio-

logic growth-plate exposome, to the mainly endogenous

(internal) environmental processes that affect normal

spinal growth.

10. To present a causal analysis of abnormal deform-

ing postnatal spinal growth in AIS, putatively involving

epigenetic interactions and modification.

11. To apply a new collective term and concept,

pathophysiologic scoliogenic exposome to abnormal pro-

cesses in developmental pathways particularly of the

internal environment that have putative epigenetic

deforming effects on the growth plates of vertebrae at

cell, tissue, structure and organ levels, and currently

expressed as etiopathogenetic hypotheses.

12. To consider that the pathogenesis of AIS may

involve a one–hit to multi-hit model.

13. To suggest research on chromatin modification

including DNA methylation (DNAm) which plays an

important role in gene expression, using tissues from

AIS subjects including vertebral growth plates excised at

surgery

14. To touch on network medicine and consider a net-

work approach to AIS etiopathogenesis by constructing

AIS diseasomes.

Environmental risk factors for adolescent idiopathic

scoliosis (AIS)

Thirty years ago Wynne-Davies [84] examining the

etiology of some common skeletal deformities including

infantile idiopathic scoliosis, concluded that all are likely

to have a common multifactorial genetic background

associated with differing intrauterine or postnatal envir-

onmental factors. Most authors state that genetics stipu-

lates the course of adolescent idiopathic scoliosis (AIS).

In the last 20 years, sporadic reports have suggested

environmental factors are involved in the etiopathogen-

esis and phenotypic expression of AIS. The evidence is

outlined here together with an interpretation of AIS

pathogenesis and the environment by some workers

[85-87].

Monozygotic (MZ) twins and spinal radiology in AIS

MZ twins have a significantly higher concordance for

AIS than dizygotic twins, with scoliosis curves in MZ

twins developing and progressing together. Based on

these data, Kesling and Reinker [88] concluded there is

strong evidence for a genetic etiology for AIS, and famil-

ial idiopathic scoliosis [89,90].

MZ twins have been used to demonstrate the role of

environmental factors in determining complex diseases

and phenotypes, but the true nature of the phenotypic

discordance remains poorly understood [24,50]. In AIS,

concordance rates in MZ twins are 0.73-0.92 [88,91,92]

with lower figures of 0.13 and 0.10 reported respectively

from the Danish Twin Registry [93] and Swedish Twin

Registry [94]. These findings are quite surprisingly dif-

ferent, and suggest that variation in diagnostic criteria is

important in the results of these studies [Armour J per-

sonal communication]. The Swedish Twin Registry

study revealed a unique environment effect of 0.60 [94]

suggesting environmental factors are important in the

etiology of AIS from different intrauterine environments

[88]. In 32 MZ twins, van Rhijn et al [95] found several

parameters - gender, direction of convexity, apical level

and kyphotic angle - were determined more by genetic

factors than the lateral Cobb angle, suggesting that

curve severity may be affected by the environment. Mir-

roring of curves was found in each of two MZ twin sets

with idiopathic scoliosis [88,96]. In another MZ twin

pair concordant for AIS, the twins had different apical

levels, curve magnitudes, and age at detection which

stress the importance of environmental (non-genetic)

factors in etiopathogenesis [97].

Concordance rate of less than 100% in MZ twins for

AIS may be explained not only from environmental

influences but also by other factors including, uneven

cytoplasmic cleavage of the fertilized egg - thought to

cause the scoliosis mirroring of one twin pair, mutation

after fertilization causing a genotype mosaic [88], differ-

ences in placentation, amniotic sac, and vascularization

of separate cell masses [24]. In MZ twins with congeni-

tal scoliosis, environmental factors are reported to play a

leading role in the development of the condition [98].

According to Fraga et al [24] epigenetic differences

may underlie MZ twin discordance for common dis-

eases, and represent the link between environmental
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factors and phenotypic differences. The patterns of epi-

genetic modification of twin pairs diverge as they

become older and their lifestyles become distinct reflect-

ing accumulated exposure to a wide range of external

and internal factors including environmental factors

such as physical (and perhaps mental) activity, diet,

drink, smoking and other habits [99]. They referred to

the phenomenon as “epigenetic drift“ and associated it

with the aging process [100].

A food and growth connection?

A sudden increase in the incidence of idiopathic scolio-

sis in Jamaica after 1965 was evaluated by Golding

[101]. Attention was directed to endocrine additives

used to promote the growth of livestock and the meat-

to-food conversion in cattle and broilers. Taking Into

consideration the 10-year delay in the onset of the idio-

pathic scoliosis, this fitted remarkably well with increase

frequency of the scoliosis which occurred up to 1983

and its decline since.

Nutrition in the etiology of idiopathic scoliosis (IS)

A review of American and European articles from 1955-

1990 evaluated nutrition as an environmental factor in

the etiology of idiopathic scoliosis [102]. These authors

concluded:

“...there is at least an anecdotal association of IS with

poor nutrition, there is strong evidence from an animal

model and there is a partial understanding of the bio-

chemical mechanisms explaining nutrition as an etiologi-

cal factor. Given the fact that nutrition is an

environmental factor which can easily be changed,

further investigation of the link between nutrition and IS

in humans is warranted.”

Relative osteopenia and life-style factors

Studies on Chinese girls with AIS have revealed relative

osteopenia [113,114] suggesting a contribution from life-

style factors including nutrition, diet, calcium, vitamin D

intake and exercise level [2]

Good dietary practices and optimal nutritional status

are known to promote growth and tissue development,

as well as disease prevention [39,53,103,104]. Nutritional

epigenetics has emerged as a novel mechanism underly-

ing gene-diet interactions [104] with the strongest evi-

dence for transgenerational inheritance coming from the

survivors of the Dutch Hunger Winter [105]. Dietary

modification can have a profound effect on DNAm and

genomic imprinting [16,106], with plant-derived micro-

RNAs entering the bloodstream [53]. A major focus of

research on dietary influences on epigenetic status has

been on nutrition in utero, because the epigenome is

probably malleable particularly during this life-course

window [60,107,108], and because epigenetic marking by

early exposures is a compelling mechanism underlying

effects on lifelong health [108,109]. DNAm depends on

dietary methionine and folate, both of which are affected

by the nutritional state [14,17,110]. Ford et al [108] have

published a Table summarizing specific dietary compo-

nents with effects on DNAm; these include methyl

donors, bioactive polyphenols, zinc, selenium,and vita-

min A. In AIS, prevention by diet is discussed specula-

tively [111,112], and on the net [34].

Physical activities of patients with AIS

McMaster et al [115,116] reported AIS to be negatively

associated with participation in dance, skating, gymnas-

tics/karate and horse riding classes. They asked the

question: Do children who develop AIS have a long-

standing proprioception defect which makes them less

likely to participate in sporting activities? If so, by

encouraging sport and increasing proprioceptive abilities

common to all joints [117] might make those at risk less

likely to develop spinal asymmetry.

Geographic latitude and the prevalence of AIS

In a review of peer-reviewed published papers, Grivas et

al [118] found that a later age at menarche is associated

with a higher prevalence of AIS. The prevalence

decreases as geographic latitude approaches the equator,

suggesting a possible role for environmental factors in

the pathogenesis of AIS in girls. A slight delay of

menarcheal age in northern countries by lengthening

the period of spine vulnerability to etiologic factors, was

suggested as a pathogenetic mechanism.

Maternal age and socio-economic status

In a study of 404 children with idiopathic scoliosis pre-

dominantly from New York State there was an excess of

propositi born to mothers at ages 30-39 years [119].

Wynne-Davies [89,120] reviewing 94 children with AIS

found in girls and boys, maternal but not paternal age

was significantly in excess of normal. In a Swedish study

of perinatal and environmental aspects of 551 adolescent

patients with thoracic idiopathic scoliosis, maternal age

was higher, birth weight normal, scoliosis commoner in

higher socioeconomic groups, and the illegitimacy rate

half that expected [121]. These findings from the USA,

Scotland and Sweden are consistent and reveal increased

maternal age as a risk factor for AIS, suggesting mater-

nal factors can predispose to it. The intra-uterine envir-

onment is crucial in programming the fetus for various

health and disease outcomes throughout life [44].

Heated indoor swimming pools infants and delayed

epigenetic effects

In a case-control study in Scotland, McMaster et al

[115,116,122] reported a statistically significant correla-

tion between the introduction of infants to heated

indoor swimming pools and the development of AIS. A

neurogenic hypothesis was formulated to explain how

toxins produced by chlorine in such pools may act on

the infant’s immature central nervous system; through

vulnerability of the developing brain to circulating tox-

ins and delayed epigenetic effects with the bony trunk
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deformity of AIS not becoming evident until adoles-

cence [77]. There may be many such environmental fac-

tors acting in the first year of life to initiate AIS and

differing around the world, with one environmental fac-

tor involving heated indoor swimming pools being

detected in Scotland [77]. Whatever effects the neuro-

toxic products may have on the immature brain, the

process of puberty with its increased growth velocity is

suggested to play a role in the delayed phenotypic

expression of AIS [77].

Non-surgical treatments for AIS

Publications on environmental effects induced in the

spine by physical exercises and brace treatments will not

be considered here.

Hypothesis of developmental instability for scoliosis

Speculation that genetic and environmental factors are

involved the etiopathogenesis of idiopathic scoliosis

[123,124] was developed by Goldberg and colleagues

[85-87] who suggested that scoliosis is caused by envir-

onmental stress causing developmental instability:

“....scoliosis is not a disease or group of diseases but a

symptom or sign of environmental stress, significant

enough to overwhelm the intrinsic stability of the mor-

phological genome. As such, there is no specific etiology

but a large number of precipitating stressors....”[87].

Such environmental factors could be hormonal, nutri-

tional, alcohol, smoking, viruses, drugs, medicaments,

radiation, maternal reactivity to male-specific features of

the fetus, hypoxia during birth [111], factors associated

with population density [49], toxins in heated indoor

swimming pool [77], and lack of physical activity.

[115,116].

The hypothesis of devevlopmental instability applied to

scoliosis is contained within both the developmental ori-

gins of health and disease concept (DOHaD) [9,12,13]

and the common disease genetic and epigenetic model

for late-onset chronic non-communicable diseases

(CDGE) [14,17]. Both the DOHaD and CDGE models

for disease invoke epigenetic mechanisms [125] (Appen-

dix III).

Chronic diseases, external and internal environments,

phnotypic plasticity, exposome

The risks of developing late-onset chronic non-commu-

nicable diseases (NCDs) including cancer, diabetes, car-

diovascular disease, respiratory disease, obesity and

schizophrenia, are attributed to both genetic and envir-

onmental factors; 70-90% of disease risks are thought to

be due to differences in environments [19,126]. Hanson

et al [20] comment that progress in this field has been

slow due to an excessive emphasis on fixed genomic

variations (hard inheritance) as the major determinants

of disease susceptibility. However, new evidence demon-

strates the much greater importance of early-life

developmental factors, involving epigenetic processes

and ‘soft’ inheritance in modulating an individual’s vul-

nerability to NCDs. According to Rappaport and Smith

[19] epidemiologists increasingly use genome-wide asso-

ciation studies (GWAS) to investigate NCDs, and rely

on questionnaires to characterize “environmental expo-

sures”. The risk factors for NCDs include smoking,

unhealthy diet, lack of physical activity and alcohol

abuse [21,22].

Exposome

The word exposome [127] refers to the totality of envir-

onmental exposures from conception onwards that cre-

ate dysfunction which in some individuals leads to

occupational health problems [128]. The exposome com-

prises exogenous and endogenous factors: exogenous

factors in the external environment - chemicals (toxi-

cants) entering the body from air, water and food, eg

diet, food supplements, life style, drugs, chemicals; and

endogenous factors in the internal environment - chemi-

cals produced in the body eg, oxidative stress, lipid per-

oxidation [111,112,129], gut flora, and other natural

processes, including biomarkers. Any harmful effects

leading to dysfunction evidently interferes with normal

cellular processes and molecular pathways in cells, tis-

sues, structures and organs with the individual response

to environmental factors being genetically influenced

[129]. There are likely to be critical periods of exposure

in development with vulnerability to the exposome

[126]. Human evolution through natural selection has

involved reduced exposure to challenges from external

and internal environments [130].

Definitiions: epigenetics, origin and its recent double

meaning in health and disease

Epigenesis in biology describes the morphogenesis and

development of an organism with organ systems that

are not preformed.

Epigenetics

The word epigenetics was coined by Waddington [131]

to link the two fields of developmental biology and

genetics, hitherto considered as separate disciplines

[132-134]. There are now several definitions of epige-

netics [14,18,25,135-140] (Appendix IV). Waddington’s

broad view of epigenetics fell out of favor in modern

biology to be replaced with a much narrower one defin-

ing epigenetics as:

“ ....modifications of the DNA or associated proteins,

other than DNA sequence variation, that carry informa-

tion content during cell division.” [10,14,17,25,29].

These changes result from chemical alterations to

DNA or associated histone proteins termed epigenetic

modification, occurring in health and disease from sto-

chastic (random) and environmental factors modulating

transcription from chromatin [29,141]. The best known
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example of epigenetic modification is DNA methylation

(DNAm). Cell type-specific DNAm patterns are estab-

lished during mammalian development and maintained

by tissue-specific gene expression in adult somatic cells

[142]. DNAm plays an important role in programming

gene expression, including the regulation of changes in

gene expression in response to aging and environmental

signals [104,143]. Loss of methylation, which may result

from enzymic mechanisms will lead to heritable

abnormalities in gene expression, and these may be

important in oncogenesis and aging [104,142-144].

Methylome refers to the genome-wide state of DNAm

[18]. Advances in sequencing methods have allowed

measurement of the first complete genome-wide DNAm

map (methylome ) in human cells [54,145,146].

Epigenotype refers to information in a cell that is

maintained through mitosis and/or meiosis but does not

involve DNA sequence itself [14].

Epigenome, is the sum total of all the epigenetic infor-

mation in a cell; there are as many epigenomes as there

are cell types [26]. It has been likened to an archive of

the prenatal environment [44]. The epigenome parallels

the word genome, and refers to the overall epigenetic

state of a cell. Although all (nucleated) human cells

effectively contain the same genome (and therefore the

same genetic instruction sets), they contain very differ-

ent epigenomes depending upon cell type, developmental

stage, sex, age, environmental cues, various other para-

meters and maintain different terminal phenotypes

[147,148]. Epigenomics refers to the genome-scale analy-

sis of epigenetic marks [18].

Epimutations and disease. According to Martin et al

[59], epigenetic silencing is a pervasive mode of gene

regulation in multicellular animals. Epigenetic silencing

is not irreversible and requires active maintenance. This

requirement for active maintenance of epigenetic states,

creates the potential for errors on a large scale. When

epigenetic errors - or epimutations - activate or inacti-

vate a critical gene, they may cause disease. They define

epigenetic disease as: “...one caused by stable alteration

in the epigenetic state of a gene (epimutation) without

any contributory genetic mutation.”

Epigenetic modification and interactions. Very recently,

some workers have returned to using Waddington’s

more inclusive definition to bridge more fully the gap

between genotype and phenotype, introducing the term

epigenetic interactions [138-140,149]. This concept does

not entirely accord with the view that an epigenetic sys-

tem should be heritable, self-perpetuating and reversible

[141]. Whether or not the term epigenetics retains its ori-

ginal meaning or becomes restricted to chromatin modi-

fication remains to be seen [149]. Taken together both

terms, modification and interactions, enrich and broaden

our view of development, evolution and disease [149].

How may these new epigenetic concepts of modifica-

tion and interactions be related to normal development?

Epigenetics - relevance for normal development

Developmental biology and embryonic development. Fig-

ure 2 shows that in normal embryonic development,

epigenetic changes may occur at each of cell, tissue,

structure and organ levels. A cell’s environment, loca-

tion and surroundings provide epigenetic factors that

influence the cell’s identity and activities [119] as it rolls

down Waddington’s metaphorical epigenetic landscape

[150]. Francis [151] states that the fate of each cell is

largely determined by its position in the embryo and the

nature of its neighbour cells with which it chemically

interacts; this is termed patterning in skull development

[74,75,138,139]. These intercellular interactions influ-

ence the environment within the cell, which in turn

influences which genes are epigenetically activated or

inactivated. At organ level, the growing brain influences

the development of the skull presumably involving

mechanical interaction (mechanotransduction) as an epi-

genetic interaction [137,140].

Epigenetic modifications and regulation

Figure 3[152-154] shows predominant epigenetic modifi-

cations: DNA methylation (DNAm) modifications to

histones, non-coding RNAs and parent-of-origin

imprinting for placental development. (Appendix V)

[155-172] [see Figure 2, reference [10] and

[29,46,141,153]].

Epigenetic interactions

Figure 4 shows epigenetic interactions for normal ver-

tebral growth constructed mostly from the descriptions

of Herring [136,137] and Lieberman [138,139], and for

chemicals from other workers [173-175].(Appendices IV

& VI).

How may epigenetic modification and interactions

relate to normal postnatal spine growth?

Normal postnatal spine development - physiologic

growth-plate exposome

Figure 5 shows factors that affect growth of the normal

spine through vertebral growth plates. They are shown

as three groups: genetic, internal environment, and

external environment. Besides genetic control, the

growth of normal vertebral growth plates is influenced

by factors mainly within the internal environment; these

include hormones [133,136,176,177], growth factors

[176] chemicals [173-175] and mechanical forces

[133,136,137,178,179]; the latter are created by the ver-

tebral growth force [136,180], gravity (a weak force

[181-183], upright posture and muscular contractions

under central nervous system control acting against

gravity. External environmental factors include gravity,

nutrition and lifestyle.
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We propose the term, physiologic growth-plate expo-

some for the mainly internal normal environmental pro-

cesses that affect normal spinal growth. The effects of

this physiologic exposome on vertebral growth plates is

viewed as epigenetic. This will involve epigenetic interac-

tions. How much epigenetic modification is involved is

unknown.

Adolescent idiopathic scoliosis - pathophysiologic

scoliogenic exposome

Figure 5 shows etiopathogenetic hypotheses for AIS

which express abnormality(ies) in normal developmental

pathways of one or more of the normal internal envir-

onmental processes. Whether one (one-hit model) or

several (multi-hit model) abnormalities are involved in

Figure 2 Normal embryonic development over time initiated by genetic factors (green) and environmental factors (internal blue,

external orange ) leading to the normal phenotype (blue). Small arrows represent epigenetic interactions occurring at call, tissue, structure

and organ levels (Modified from Jamniczky et al [140]).

Figure 3 Epigenetic modifications in placental development and possible consequences of its disturbance which can be caused by

environmental factors. X-chromosome inactivation (lyonization) is not shown [152-154] (Modified from Nelissen et al [29]).
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pathogeenesis for different individuals with AIS is

unknown. We propose a new term and concept, patho-

physiologic scoliogenic exposome be applied to abnormal

processes in normal developmental pathways particularly

of the internal environment that have putative epigenetic

deforming effects on the growth plates of vertebrae

[184-191] at cell, tissue, structure and organ levels, and

currently expressed as etiopathogenetic hypotheses

(Appendix VII) [192-242]. This will involve epigenetic

interactions. How much epigenetic modification is

involved is unknown.

Figure 6 shows etiopathogenetic hypotheses acting at cell,

tissue, structure and organ levels linked to possible epige-

netic mechanisms affecting vertebral growth plates, possibly

in a diverse network of developmental pathways [243].

Trunk velocity of growth and asymmetric internal pressure

as environmental stress

Trunk growth, hormonally stimulated, provides an

important internal environment in which scoliosis curves

progress [96]. Likewise, asymmetric internal pressure of

the intervertebral disc and vertebral growth plate in sco-

liosis suggests an abnormal stress environment generates

a positive feedback of cellular changes, resulting in

curve progression due to a combination of factors

[244,245]. These will include cyclical loads and asymme-

trical changes in disc fluid content which affect vertebral

growth (deforming three joint complex) [222].

Pathogenic asymmetry inducing and exacerbating

processes

AIS asymmetry-inducing processes [238,240] - be they

mechanical or biological - affecting vertebral growth

plates, may render other factors including velocity of

growth and hormones, abnormally increased or physio-

logic [3,6], to exacerbate the scoliotic deformity [243].

The etiologic, and potentially therapeutic, problem is to

establish in each AIS girl, which process(es) in what

pathway(s), is (are) abnormal, or exacerbating the

deformity.

Longitudinal studies

In a cohort of normal individuals born in the UK in

1946 and surveyed longitudinally to the present,

research is in hand to analyse tens of thousands of pos-

sible methylation sites in the DNA looking for changes

that could explain the link between birth weight and

breast cancer risk [246]. A similar study could evaluate

AIS subjects.

Epigenetics at the epicenter of modern medicine

Feinberg [17] writes:

“Epigenetics, the study of non-DNA sequence-related

heredity, is at the epicenter of modern medicine because

it can help to explain the relationship between an indivi-

dual’s genetic background, the environment, aging, and

disease...” (see Appendix II).

Figure 4 Epigenetic interactions as applied putatively to normal vertebral growth. (Drawn from descriptions mostly of Herring [136] and

Lieberman [138]).
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The therapeutic potential of epigenetics for preventing

and treating common human illness is threefold [17].

1) The possibility of new therapies because epigenetic

changes are by definition reversible, unlike sequence

mutations in disease.

2) Using medication to target biochemical pathways

that are disturbed epigenetically in disease.

3) To intervene at the junction between genome and

environment, to modify the effects of deleterious genes,

and to influence the effects of the environment on phe-

notypic plasticity - ie, cells’ ability to change their beha-

vior in response to internal or external environmental

cues.

The potential of these therapeutic and epigenetic epi-

demiologic approaches to AIS is at present unknown,

and is restricted by the absence of established environ-

mental factors involved in its etiopathogenesis.

Network medicine and AIS

Barabasi [247] introduced the term network medicine

which provides a network-based approach to human

diseases by constructing diseasomes. According to Bara-

basi et al [248] given the functional interdependencies

between the molecular components in a human cell, a

disease is rarely a consequence of an abnormality in a

single gene, but reflects the perturbations of the com-

plex intracellular and intercellular network that links tis-

sue and organ systems. Interactome describes the

complex biological systems and cellular networks within

cells [249].

Barabasi [247] states that network analysis is poised to

play its biggest role at the cellular level since most cellu-

lar components are connected to each other through

intricate regulatory metabolic and protein-protein inter-

actions with proteomic assessment where research is

Figure 5 Putative genetic and epigenetic approach to causal factors affecting vertebral growth plates (GPs) in health and AIS

pathogenesis (CNS = central nervous system). Moving from left-to-right in columns: 1) Exposome (yellow ); 2) external environment

(epigenetic, orange), internal environment (epigenetic, blue) and genetic (green); 3) factors controlling normal vertebral growth, genetic (green),

internal environment (blue) and external environment (orange) containing the physiologic growth-plate exposome; these factors are considered to

cause epigenetic changes (follow vertical arrows) in normal structures and contribute to the epigenome of vertebral growth plate cells; 4)

etiopathogenetic hypotheses for AIS containing the pathophysiologic scoliogenic exposome (pink) and genetic susceptibility (pink); 5) the resulting

AIS deformity (red); 6) the long vertical red arrow to the right represents craniocaudal pathophysiologic components affecting the trunk over

time leading to the AIS deformity. (Adapted to normal spinal growth and AIS pathogenesis from the multihit pathogenetic model for

inflammatory bowel disease of Maloy and Powrie [47] and the genetic/epigenetic model for common human diseases of Bjornsson et al [14]).
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needed [3,250]. The paradigm of network medicine is,

“think globally, act locally“.[248].

In AIS, consideration is needed for the possible crea-

tion of a network approach to etiopathogenesis by con-

structing AIS diseasomes.

Summary and Conclusions

1. Genetic factors are believed to play an important role

in the etiology of AIS in accordance with the genetic

variant hypothesis of disease.

2. Sporadic reports, particularly for monozygotic twins

but also other findings, suggest environmental factors

are involved in the etiopathogenesis and phenotypic

expression of AIS.

3. Research on the role of environmental factors and

epigenetics has exploded in the last decade but not so

for AIS (Figure 1).

4. Apart from the emerging role of epigenetic

mechanisms in the etiology of neural tube defects [60],

the Prader-Willi syndrome [71,72], and theoretical inter-

pretations of Burwell and colleagues [73-76] and

McMaster [77], epigenetics does not figure in any causal

analysis of postnatal normal spinal growth, or in the

etiopathogenesis of AIS (Figure 1).

5. There are three major ways organisms modify their

DNAs inherited messages without changing DNA

sequence: enzymes methylate DNA to modulate transcrip-

tion; histone modifications and nucleosome positioning to

induce or repress target sequences; and non-coding small

RNAs to modify the expression of specific genes where

there is therapeutic potential (Figure 3, Appendix V)

6. DNA methylation is an important epigenetic mechan-

ism operating at the interface between genome and envir-

onment to regulate phenotypic plasticity with a complex

regulation across the genome during the first decade of life

7. DNA methylation depends on dietary methionine

and folate, both of which are affected by the nutritional

state of the individual.

Figure 6 Postnatal development of AIS in the spine over time to puberty initiated by genetic factors (pink) and environmental factors

(internal pink for AIS, ? external orange) leading to AIS deformity (red). Etiopathogenetic hypotheses acting at cell, tissue, structure and

organ levels are linked to putative epigenetic mechanisms affecting vertebral growth plates. For example, in the asynchronous spinal neuro-

osseous growth concept [208-211] subclinical tether of a relatively short spinal cord causes a lordoscoliotic maladaption of the spine leading to

relative anterior spinal overgrowth (RASO) and the AIS deformity. These adaptive changes in the anterior spinal column are viewed as occurring

at cell, tissue and organ levels, and resulting from mechanically-induced effects in vertebral growth plates from epigenetic interactions and/or

epigenetic modification in vertebral growth-plates (Adapted from Jamniczky [140]).

Burwell et al. Scoliosis 2011, 6:26

http://www.scoliosisjournal.com/content/6/1/26

Page 11 of 20



8. Epigenetic modification provides multicellular

organisms with a system of normal gene regulation that

silences portions of the genome and keeps them silent

as tissues differentiate as epigenotypes (Figure 3).

9. Errors in this complex system from environmental

and stochastic (random) events termed epimutations can

give rise to abnormal gene silencing, that may result in a

great deal of phenotypic variation and common disease.

10. Epigenetic interactions operating at cell, tissue, struc-

ture and organ levels, have been defined very recently by

some workers in keeping with Waddington’s inclusive

definition of epigeneticss; the term is used to describe addi-

tional mechanisms for modulating cellular effects in

response to changes in the internal and external environ-

ments without altering DNA sequence (Figure 4).

11. A molecular perspective encompassing epigenetic

modification and interactions at vertebral growth plates

for normal postnatal spinal growth and the etiopatho-

genesis of AIS is given.

12. The word exposome, means the totality of environ-

mental exposures, external and internal, from concep-

tion onwards that create dysfunction leading in some

individuals to occupational health problems,

13. The woed exposome is used here also in relation to

physiologic and etiopathogenetic factors that respectively

affect normal spinal growth and may induce the deformity

of AIS namely, physiologic growth-plate exposome and

pathophysiologic scoliogenic exposome (Figures 5 &6).

14. The concept of a one-hit to multi-hit model for

AIS pathogenesis is mentioned.

Future potential

1. The potential of epigenetic-based medical therapy for

AIS cannot be assessed at present. It must await new

research derived from the evaluation of epigenetic con-

cepts for spinal growth in health and deformity.

2. Consideration is needed for the creation of a net-

work approach to AIS etiopathogenesis by constructing

AIS diseasomes,

3. These approaches, epigenetic and network, may possi-

bly lead through several approaches - screening, genetic

[195,198,199,251], epigenetic, biochemical [3,173-175,229,

230], metabolic phenotypes [251] and pharmacogenomic

[5,251], to the modulation of abnormal molecular path-

ways [108,179,252] by the development of novel preventive

and curative measures based on diet, novel epigenetic

drugs [13,108] and other approaches [52].

4. The tenets outlined here for AIS etiopathogenesis

are applicable to other musculoskeletal growth disor-

ders, including infantile and juvenile idiopathic scoliosis.

APPENDIX I

Dual inheritance. Holliday [58] points out that genetic

inheritance in higher organisms normally refers to the

transmission of information from one generation to the

next. Nevertheless, there is also inheritance in somatic

cells, characterized by the phenotypic stability of differ-

entiated cells that divide (such as fibroblasts and lym-

phocytes), and also mitosis of stem line cells, which

gives rise to another stem line daughter cell, and one

that will differentiate.

APPENDIX II

Feinberg [18] places epigenetics in perspective as follows

(Figure 1):

“Traditionally, the pathology of human disease has

been focused on microscopic examination of affected tis-

sues, chemical and biochemical analysis of biopsy sam-

ples, other available samples of convenience, such as

blood, and noninvasive or invasive imaging of varying

complexity, in order to classify disease and illuminate its

mechanistic basis. The molecular age has complemented

this armamentarium with gene expression arrays and

selective analysis of individual genes. However, we are

entering a new era of epigenomic profiling, i.e., genome-

scale analysis of cell-heritable nonsequence genetic

change, such as DNAm. The epigenome offers access to

stable measurements of cellular state and to biobanked

material for large-scale epidemiological studies. Some of

these genome-scale technologies are beginning to be

applied to create the new field of epigenetic

epidemiology.”

According to Feinberg [18] the new filed of epigenetic

epidemiology will measure and catalog epigenetic varia-

tion within and across populations in genome-scale ana-

lyses to characterize the correlation properties of

methylation, similar to the catalog of SNP/CNV and

linkage disequilibrium (non-random association of

alleles at different loci), already showing promise in neu-

ropsychiatric disease.

APPENDIX III

Phenotypic plasticity, time dependency and the CDGE,

model for chronic disease. A common theme to disease

epigenetics is the disruption of phenotypic plasticity; this

is the ability of cells to change their behavior in

response to internal or external environmental cues over

time [12,14-16]. Feinberg and colleagues [14,17,18] sug-

gested the hypothesis that epigenetics provides an added

layer of variation that might mediate the relationship

between genotype and internal and external environ-

mental factors which they termed the common disease

genetic and epigenetic hypothesis (CDGE). This conjec-

tural model overlies the genetic hypothesis of disease

with an epigenetic component interacting with it

[17,78]. The CDGE, model better explains the age degen-

eration of epigenetic patterns than does the genetic

hypothesis [14].
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Genetic variant hypothesis of disease and non-genomic

factors. Butcher and Beck [1] write:

“A spate of high-powered genome-wide association stu-

dies (GWAS) have recently identified numerous single-

nucleotide polymorphisms (SNPs) robustly linked with

complex disease. Despite interrogating the majority of

common human variation, these SNPs only account for a

small proportion of the phenotypic variance, which sug-

gests genetic factors are acting in concert with non-

genetic factors. Although environmental measures are

logical covariants for genotype-phenotype investigations,

another non-genetic intermediary exists: epigenetics.” [see

[125]].

APPENDIX IV

Haig [133] states that epigenetics has different meanings

for different sciientists. Molecular biologists are familiar

with the definition as:

“The study of mitotically and/or meiotically heritable

changes in gene function that cannot be explained by

changes in DNA sequence [135].

In contrast, functional morphologists would be more

familiar with the definition:

“... the entire series of interactions among cells and cell

products which leads to morphogenesis and differentia-

tion.” [136]. Herring continues, “Thus all cranial devel-

opment is epigenetic... Among the numerous epigenetic

factors influencing the vertebrate face is mechanical

loading. Loading seems to be particularly significant for

formation and growth of skeletal tissues... Epigenetic

influences range from hormones and growth factors to

ambient temperature and orientation in a gravitational

field.” [see [137-140]].

Feinberg [17] states that epigeneticss is at the heart of

developmental biology, with the modern definition and

Waddington’s definition having converged. That is

because “...the epigenetic state of an organism pro-

gresses from gamete to zygote to somatic tissue, all of

which have profoundly different epigenomes, while the

DNA is the same [18]. This view does not accommodate

the concept of epigenetic interactions [137-140].

A few scientists take a more relaxed, or stricter view,

either including RNA modification or limiting to vertical

(generational) transmission [17].

Epigenetics does not invoke inheritance of mutational

changes. leaving open what kinds of mechanism are at

work [17]. An epigenetic system should be heritable,

self-perpetuating and reversible [141]. Bird [25] wishing

to avoid the constraints imposed by stringently requiring

heritability in the definition of epigenetics, suggested the

following:

“...the structural adaptation of chromosomal regions so

as to register, signal or perpetuate altered activity states.”

APPENDIX V

DNA methylation (DNAm). The predominant epigenetic

mechanisms involve DNA methylation, modifications to

chromatin, genomic imprinting [106,155,156], and non-

coding RNAs [46,52]. DNAm in mammals occurs

almost exclusively as the covalent addition (or mark) of

a methyl (CH3) group mainly to the nucleotide cytosine

at cytosine-guanine dinucleotide sequences catalyzed by

DNA methyltransferases (CpG islands, where ‘p’ indi-

cates interstitial phosphate group between the DNA

bases [10,17,26,29,63,141]). Promoters are key targets for

epigenetic modification [63]. There are also covalent

modifications of DNA-bound histones [157,158], notably

acetylation, phosphorylation, methylation and ubiquiti-

nation [1,159-161]. Cytosine methylations of gene pro-

moters which are reversible, are generally associated

with silencing of genes, whereas histone acetylations are

generally associated with activation of genes [26,99].

Many groups have studied the genomic distribution of

DNA cytosine methylation and other chemical modifica-

tions of histone proteins to the epigenome [145,161].

Imprinting leads to the mono-allelic expression of cer-

tain genes depending on the parent origin of the allele

controlled by imprinting control regions marked by DNA

and histone methylation on one of the two parent

alleles, perturbations of which induce diseases, including

the Prader-Willi syndrome [52]. Recently it has become

appreciated that hydroxymethylation of cytosine is a

minor, but prevalent, form of base modification in addi-

tion to 5-methylation [162].

DNAm and folic acid. The source of methyl groups

for DNAm is methionine an essential amino acid that is

converted to a biologically active methyl donor state, S-

adenosylmethionine, through a pathway involving folic

acid, both of which are affected by the nutritional state

[17,108,110, see Figure 1 of [108]]. Findings in subjects

with chronic kidney disease and uremia have established

a link between the epigenetic control of gene expression

and xenobiotic influences, such as folate therapy [163].

Accoeding to Park et al [104] nutrients involved in one-

carbon metabolism, namely folate, vitamin B12, vitamin

B6, riboflavin, methionine, choline and betaine, are

involved in DNA methylation by regulating levels of the

universal methyl donor S-adenosylmethionine and

methyltransferase inhibitor S-adenosylhomocysteine.

Other nutrients and bioactive food components such as

retinoic acid, resveratrol, curcumin, sulforaphane and

tea polyphenols can modulate epigenetic patterns by

altering the levels of S-adenosylmethionine and S-adeno-

sylhomocysteine or directing the enzymes that catalyse

DNA methylation and histone modifications.

MicroRNAs, short interfering RNAs and potential for

therapy. MicroRNAs (miRNAs) are a class of short
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endogenous non-coding RNAs that act as post-tran-

scriptional regulators of gene expression by attaching

themselves to messenger RNA [52]. MiRNAs play fun-

damental roles in the control of many biological pro-

cesses such as growth, development, differentiation and

cell, death by repressing their target genes, and in rela-

tion to cancer and some other diseases [52]. Some miR-

NAs are regulated by epigenetic mechanisms, especially

by methylation [52]. Short interfering RNAs, are a class

of double-strnded RNA (dsRNA) molecules, that can

guide methylation to complementary DNA, were first

elucidated in plants, to enable the precise targeting of

gene action [164]. Plant-derived miRNAs which enter

the blood stream have been shown to muffle or amplify

gene expression by binding to strands of messenger

RNA with potential for therapy [53].

DNAmn and metals. Epigenetics may be the critical

pathway by which metals produce their health effects

[108,165]. Copper [166-168], zinc [168] and selenium

[168,169] have each been linked to the pathogenesis of

AIS. Other metals disrupt DNAm [170,171].

DNAm in MZ twins, aging and epigenetic drift. Recent

studies using mostly peripheral blood lymphocytes (also

skin, muscle and fat) and a battery of powerful molecu-

lar genetic methodologies coupled with competitive

chromosomal hybridizations, suggest that phenotypic

discordance between MZ twins is to some extent due to

epigenetic factors that change over the lifetime of a mul-

ticellular organism [24,99]. It has been proposed that

epigenetic drift during development can result from sto-

chastic mechanisms (independent of environmental per-

turbations), or determined by such environmental

perturbations [24,99,172]. Eckhardt et al [63] found no

age-related DNAm change but did not report longitudi-

nal data. In a longitudinal study, Bjornsson et al [14]

found methylation changes over time with familial clus-

tering suggesting that methylation maintenance may be

under genetic control. In 46 MZ twin-pairs and 45 DZ

twin-pairs Wong et al [50] found that DNAm differ-

ences are apparent already in early childhood, even

between genetically identical individuals; and that indivi-

dual differences in methylation are not stable over time.

Unlike the primary DNA sequence, methylation status

will depend on the tissue being analysed [Armour J per-

sonal communication]. Epigenetic mechanisms may be

causal in the aging process and be influenced by diet

providing opportunities to improve health in later life

[108].

APPENDIX VI

In connection with epigenetic interactions in normal

development, Lieberman [138] writes:

“In normal development, “ .... hormones and growth

factors bind with specific receptors in the cell membrane

or nucleus. Activated receptors then trigger a cellular

response through mechanisms such as altering gene tran-

scription, altering ion transport in and out of the cell,

activating or inhibiting intracellular enzymes, stimulat-

ing protein synthesis, or inducing cellular proliferation.”

“Regulation of local growth occurs through interactions

between the genes that cause skeletogenic cells to synthe-

size, resorb, or otherwise modify skeletal tissue, and sti-

muli from other genes or cells. Such interaction between

cells and their environment (which includes other cells)

are generally categorized as epigenetic interactions...

Additional categories of epigenetic interactions influen-

cing morphogenesis include systemic hormones, growth

factors, and the effects of mechanical loading.”

“Bones do have a strong genetic component to their

growth and development, but a set of complex and con-

strained interactions between bone cells and their

mechanical environment can influence bone morphology,

particularly while the skeleton is still growing.” (see Her-

ring [136] in Appendix IV]).

APPENDIX VII

Some hypotheses and concepts of AIS etiopathogenesis

[2,6,192]

(1) Genetics [2,4,5,92,193-199].

(2) Biomechanical spinal growth modulation [181,182].

(3) Relative anterior spinal overgrowth (RASO)

[200-203].

(4) Dorsal shear forces and axial rotation instability

[204,205].

(5) Asynchronous spinal neuro-osseous growth

[206-211].

(6) Postural abnormalities including vestibular and

CNS dysfunction [2,212,213].

(7) Motor control problem [214-217].

(8) Body-spatial orientation concept [218].

(9) Neurodevelopmental concept [219].

(10) Thoracospinal concept [79-83,220,221].

(11) Deforming three joint complex hypothesis [222].

(12) Systemic melatonin deficiency [223-226].

(13) Systemic melatonin-signaling pathway dysfunction

[173,174,177,227-230].

(14) Relative osteopenia [113,114,231,232].

(15) Systemic platelet calmodulin dysfunction

[233-236].

(16) Developmental instability & symmetry control

dysfunction [85-87,237-241].

(17) Intrinsic growth plate asymmetry hypothesis

[74,75,188,237-241].

(18) Collective and escalator models [192].

(19) Leptin-hypothalamic-sympathetic nervous system

(LHS) dysfunction with disharmony between somatic

and autonomic nervous systems in the spine and trunk

[[6], see [3,242]].
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