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Abstract

Motivated by prior data on local cortical shrinkage and intracortical myelination, we predicted age-related changes in

topological organization of cortical structural networks during adolescence. We estimated structural correlation from

magnetic resonance imaging measures of cortical thickness at 308 regions in a sample of N = 297 healthy participants,

aged 14–24 years. We used a novel sliding-window analysis to measure age-related changes in network attributes

globally, locally and in the context of several community partitions of the network. We found that the strength of

structural correlation generally decreased as a function of age. Association cortical regions demonstrated a sharp

decrease in nodal degree (hubness) from 14 years, reaching a minimum at approximately 19 years, and then levelling off

or even slightly increasing until 24 years. Greater and more prolonged age-related changes in degree of cortical regions

within the brain network were associated with faster rates of adolescent cortical myelination and shrinkage. The brain

regions that demonstrated the greatest age-related changes were concentrated within prefrontal modules. We conclude

that human adolescence is associated with biologically plausible changes in structural imaging markers of brain network
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organization, consistent with the concept of tuning or consolidating anatomical connectivity between frontal cortex and

the rest of the connectome.

Key words: adolescence, connectome, development, graph theory, MRI

Human adolescence is known to be a major phase of cortical

development. In particular, cerebral cortex becomes thinner

(Wierenga et al. 2014) and more densely myelinated (Miller

et al. 2012) in the transition from puberty to young adulthood.

Adolescent decreases in cortical thickness (CT) (thinning) are

variable between different areas of cortex (Raznahan et al.

2011), for example, thinning is greater in association cortical

areas than primary sensory areas (Whitaker, Vértes et al. 2016).

Motivated by these and other results, we predicted that

human adolescence should be associated with changes in the

architecture of structural brain networks. There are currently

only two experimental techniques, both based on magnetic res-

onance imaging (MRI), that are capable of providing data to test

this prediction: diffusion tensor imaging followed by tractogra-

phy; or structural MRI followed by structural covariance or cor-

relation analysis. Here we focused on the latter, measuring the

thickness of a set of predefined cortical regions in each individ-

ual MRI dataset and then estimating the correlation of thick-

ness between each possible pair of regions across participants.

Similar methods have been widely used and validated (Lerch

et al. 2006) in a range of prior studies (Alexander-Bloch, Giedd

et al. 2013; Evans 2013).

In particular, structural correlation (covariance) measures have

been used as a basis for graph theoretical modeling of the human

connectome (Bullmore and Sporns 2009; Fornito et al. 2016).

Considerable evidence has accumulated in support of the general

view that human brain structural correlation networks have a

complex topological organization, characterized by nonrandom

features such as the existence of highly connected (high degree)

hub nodes and a modular community structure (Alexander-Bloch,

Giedd et al. 2013; Evans 2013). Topological metrics on structural

correlation networks have demonstrated changes associated with

disease, development, and ageing (Alexander-Bloch, Giedd et al.

2013; Evans 2013). However, only two studies have investigated

adolescent changes in structural correlation networks. Zielinski

et al. (2010) demonstrated that the anatomical extent of structural

correlation networks, assessed using seed-based correlation of

voxel-wise grey matter intensity, changes in adolescence in a spa-

tially patterned manner. Specifically, primary visual and sensori-

motor networks, as well as the default mode network, expanded

in early childhood before being “pruned” in adolescence, while

higher-order cognitive networks showed a gradual monotonic

gain in spatial extent. Subsequently, Khundrakpam et al. (2013)

applied graph-theoretical analyses to a subset of the same data,

reporting childhood increases in topological integration (global effi-

ciency) and decreases in topological segregation (local efficiency

and modularity), as well as increases in regional integration in

paralimbic and association regions. While these studies constitute

interesting initial investigations, their ability to precisely describe

developmental changes is limited by their segregation of partici-

pants into four discrete age-defined strata, resulting in relatively

coarse-grained resolution of brainmaturational trajectories.

Here, we aimed to obtain a more precise description of adoles-

cent maturational trajectories of structural network architecture,

which were hypothesized to vary as a smooth and potentially

nonlinear function of age. We used a sliding-window analysis to

estimate structural correlations and structural network properties

for each of an overlapping series of nine age-defined windows or

strata of the sample (N ≈ 60 participants per window). We identi-

fied the cortical regions (nodes) and connections (edges) which

showed the most significant age-related changes in structural cor-

relation. We tested the related hypotheses that parameters of ado-

lescent change in structural correlation would be greater and

occur later in regions of association cortex, which show faster

rates of local cortical shrinkage and myelination. In addition, we

explored whether greater and later changes in structural correla-

tion during adolescence would be concentrated within or between

specific communities of regions. Specifically we mapped adoles-

cent changes in structural correlation to three brain community

structures: the topological modular partition of the age-invariant

structural correlation network; an atlas of cytoarchitectonic classes

(von Economo and Koskinas 1925); and functional intrinsic con-

nectivity or resting state networks (Yeo, Krienen et al. 2011).

Materials and Methods

Participants

A demographically balanced cohort of 297 healthy participants

(149 females) aged 14–24 years was included in this study, with

approximately 60 participants in each of 5 age-defined strata:

14–15 years inclusive, 16–17, 18–19, 20–21, and 22–24 years.

Participants were excluded if they were currently being treated

for a psychiatric disorder or for drug or alcohol dependence; had

a current or past history of neurological disorders or trauma; or

had a learning disability. Participants provided informed written

consent for each aspect of the study, and parental consent was

obtained for those aged 14–15 years. The study was ethically

approved by the National Research Ethics Service and was con-

ducted in accordance with NHS research governance standards.

MRI Acquisition and Processing

Structural scans were acquired at three sites using multipara-

metric mapping (MPM) implemented on three identical 3 T MRI

scanners (Siemens Magnetom TIM Trio). Intersite reliability of

the sequence was evaluated within a pilot study of 5 healthy

participants each scanned at each site (Weiskopf et al. 2013).

The MPM sequence includes maps of R1 (1/T1) and magnetiza-

tion transfer (MT), indicative of myelination. For details of MRI

acquisition parameters, see Supplementary Information.

Processing of individual scans using FreeSurfer v5.3.0

included skull-stripping, segmentation of cortical grey and

white matter and reconstruction of the cortical surface and

grey-white matter boundary (Fischl et al. 1999). All scans were

stringently quality controlled by re-running the reconstruction

algorithm after the addition of control points and white matter

edits (details in Supplementary Information). The cerebral cor-

tex of each participant was parcellated into 308 regions of inter-

est, based on a sub-division of the Desikan-Killiany anatomical

atlas (Desikan et al. 2006) into parcels of approximately equal

surface area (~5 cm2) (Romero-Garcia et al. 2012).

Regional changes in cortical thickness (CT) and MT (myelina-

tion) were characterized using the rate of change over adoles-

cence, evaluated as the slope of a linear model fitted to the
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cross-sectional values. Following Whitaker, Vértes et al.

(2016), myelination analyses were conducted at 10 fractional

depths between the pial surface and the grey/white matter

boundary, as well as 2 absolute depths into white matter.

Main analyses focused on MT estimates at 70% fractional cor-

tical depth from the pial surface. For details and results

across cortical depths, see the Supplementary Information.

While both CT and myelination maps were averaged within

parcels, for comparison between maturation of structural corre-

lation networks and morphology, only the CT values were used

to construct structural correlation networks.

Age-Invariant Structural Network

An age-invariant structural correlation network was constructed

using Pearson correlations in CT between pairs of regions across

all 297 participants, to serve as a reference for developmental

changes within the age-resolved structural networks (described

below; Fig. 1A). We used raw CT values, uncorrected for age, gen-

der, or intracranial volume. However, correcting for these covari-

ates had no effect on the results. For background reading on

graph theoretical methods and connectomics see Bullmore and

Sporns (2009) and Fornito et al. (2016).

The age-invariant structural network was thresholded using a

bootstrap approach, whereby 1000 sets of participants were

resampled with replacement and used to construct surrogate

structural networks. For each pair of regions, we examined

whether there is evidence of a nonzero correlation across

bootstraps: edges that were consistently positive or negative

across bootstraps (at a two-tailed, false discovery rate [FDR]-

adjusted level of α = 0.01) were retained; the remaining edges

were set to zero. Nodal topological organization of the thre-

sholded network was assessed using degree, defined as the num-

ber of retained correlations for each node, as well as the weighted

degree, or summed weight of retained edges for each node.

Further, the age-invariant network was partitioned into com-

munities of nodes showing higher structural correlations within

than between communities (Sporns and Betzel 2016). The com-

munity structure of the age-invariant network was decomposed

using the Louvain multiresolution algorithm (Blondel et al. 2008)

over the resolution parameter range 0.01 ≤ γ ≤ 4.00. As γ

increases, the community structure is decomposed to a progres-

sively larger number of modules. We used the concept of mini-

mizing versatility to identify those resolution parameter values

which reduce the uncertainty with which any node was affiliated

consistently to the same module (Shinn et al. 2017). The final

community partition was defined as a consensus across 1000

runs of the Louvain modularity algorithm (Lancichinetti and

Fortunato 2012) at the selected value of the resolution parameter

γ. For details regarding module generation, see Figure S1.

Development of Age-Resolved Structural Networks

Sliding Window Network Construction

Development of structural networks between 14 and 24 years was

evaluated using a sliding window method. Regional CT values

Figure 1. Construction of age-invariant and age-resolved structural correlation networks. (A) An age-invariant structural correlation network was constructed by

cross-correlating regional cortical thickness across all participants. This network was probabilistically thresholded using a bootstrap-based method. Network organi-

zation was evaluated using several measures, including the degree (both binary and weighted; respectively the number and sum of weights of retained edges con-

nected to a node) and modular architecture. For details regarding module generation, see Supplementary Information (Fig. S1). (B) Age-resolved structural correlation

networks were constructed using a sliding-window method. Participants were ordered by age, and structural networks were constructed by estimating correlations

between regional cortical thickness values across participants within overlapping windows iteratively slid across the age range. Correlations were probabilistically

thresholded using bootstrap, before developmental trajectories were fitted to summary window-derived measures as a function of the median age of participants

within each window.
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were cross-correlated within windows containing equal numbers

of participants, and incrementally slid across the age-range by

regular increments (Fig. 1B). The two parameters of the method,

the “window width” and the “step size” (in units of number of

participants) determine the number of windows, each of which

generates a structural correlation network. Exploration of the slid-

ing window parameter values suggests that results are qualita-

tively consistent across a range of parameter combinations. For

the (in)dependence of results on sliding window parameters, and

a discussion of the considerations involved in parameter selec-

tion, see the Supplementary Information.

Results presented below correspond to 9 half-overlapping win-

dows of 60 participants each, obtained by interpolating the 5 age

strata of the NSPN study, within which participants were

recruited. Gender was relatively balanced within the interpolated

bins, with the most imbalanced ratio being 34:26 = 57%:43% (M:F).

We investigated the effects of gender separately (see below).

Global maturation of structural networks was characterized

using the mean of the correlation distribution. At the regional

level, an analogous measure was used—nodal strength, the

mean of the pattern of regional correlations (rows, or equally,

columns of the correlation matrices).

Bootstrap Thresholding of Age-Resolved Structural Networks

Estimating structural correlation networks from a small num-

ber of participants is an inherently noisy process; therefore, our

principal analyses focused on networks probabilistically thre-

sholded using bootstrap (Fig. 2B). The bootstrap thresholding

procedure was identical to the one described above for age-

invariant networks, but in this case was applied within win-

dows. From the set of participants included in each window, an

equal number of participants was sampled with replacement

and the correlation structure was re-estimated 1000 times. For

each pair of regions, we examined whether there is evidence

of a nonzero correlation across bootstraps: edges that were

consistently positive across bootstraps (at a two-tailed, FDR-

adjusted level of α = 0.01) were retained (there were no consis-

tently negative edges); the remaining edges were set to zero.

The global topological organization of the thresholded graphs

was assessed using the edge density, defined as the percentage of

retained edges (relative to their possible total), as well as the dis-

tance spanned by retained edges, calculated as the average

Euclidean distance between centroids of corresponding nodes.

Nodal topological organization was assessed using (analogous)

measures of degree, defined as the number of edges connected to

a node, and average Euclidean distance spanned by a node’s

retained edges. We have focused on simple graph-theoretical

measures, such as edge density and node degree, for two reasons:

(1) our bootstrap-thresholded networks display variable edge den-

sity, which many “higher-order” graph-theoretical measures

show a strong dependence on (van Wijk et al. 2010), and (2) even

in correlation-based networks thresholded to fixed edge density,

graph theoretical properties display a dependence on more ele-

mentary statistics such as properties of the correlation distribu-

tion (van den Heuvel et al. 2017).

Fitting and Characterization of Developmental

Trajectories

Developmental trajectories were fitted to both global and local

measures as a function of the median age of participants in

each window. In addition to linear models, we fitted locally

adaptive smoothing splines. The nonparametric smoothing

spline was chosen to model nonlinear trajectories over

parametric alternatives as it was shown to be superior to qua-

dratic fits in studies of brain development (Fjell et al. 2010).

Still, the spline fits were constrained to be (approximately) at

least as smooth as a quadratic fit (i.e., effective degrees of free-

dom, df ≤ 3.5), based on the hypothesis that adolescent devel-

opmental trajectories over a 10-year age range should not

display greater complexity. The specific smoothing spline used

was a weighted sum of 6 cubic b-splines with knots placed at

quantiles of the data and smoothing optimized using restricted

maximum likelihood (REML) (Reiss et al. 2014). The relative

quality of linear and spline fits, given their parsimony, was

assessed using Akaike’s information criterion (AIC).

Classification using the Bayesian information criterion (BIC)

yielded consistent results.

Regional changes were summarized using measures of max-

imum change in degree Δkmax, quantified as the difference

between maximum and minimum degree, and the age at mini-

mum degree age(kmin). Further, we classified regional changes

in degree as linear or nonlinear (using the AIC), and as increas-

ing or decreasing (using the direction of maximum change). As

an alternative measure of the magnitude of regional changes in

structural correlation, we extracted linear rates of change of

degree; the results were qualitatively consistent with the mea-

sure of maximum change, which is more suitable for nonlinear

trajectories (Supplementary Information).

Relationship of Structural Network Development

to Age-Invariant Network Architecture

Given our previous finding, that highly correlated “hub nodes”

of the age-invariant structural network (derived from all parti-

cipants) are regions which thin and myelinate most over ado-

lescence (Whitaker, Vértes et al. 2016), we were interested in

studying the relationship of structural network development to

age-invariant structural network architecture.

We evaluated Spearman’s rank correlations between node

degree in the age-invariant structural network, and parameters

of change in node degree within the age-resolved structural

network—including the amplitude of maximum change in

degree Δkmax as well as the age at minimum degree age(kmin).

Finally, we studied changes in structural network organiza-

tion relative to three sets of node communities, including the

partition of the age-invariant network into modules, the von

Economo atlas of cytoarchitectonic classes (von Economo and

Koskinas 1925), and a set of functional intrinsic connectivity

networks (Yeo, Krienen et al. 2011). For each community tem-

plate and each age-window, we calculated the density of edges,

D, within each community as well as between each pair of com-

munities (within the same template), as the ratio of existing

edges relative to the maximum number of possible edges in

this within or between-community edge set. We then charac-

terized changes in edge density within and between commu-

nities using measures analogous to the nodal trajectories—

maximum change in edge density ΔDmax and age at minimum

density age(Dmin). For details regarding the matching of the

community templates to our 308-region parcellation, see the

Supplementary Information.

Spatial Permutation Test

In several analyses in the current study, measures were related

to each other across regions. While numerous studies have

reported significance based on the assumption that the number

of samples is equal to the number of regions, this is technically

284 | Cerebral Cortex, 2018, Vol. 28, No. 1
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inaccurate, as the number of regions is both arbitrary (due to

the resolution of the chosen parcellation) and non-independent

(due to spatial autocorrelation amongst neighboring parcels). To

address this issue, spatial permutation tests have been imple-

mented in past studies (Alexander-Bloch, Giedd et al. 2013;

Alexander-Bloch, Raznahan et al. 2013; Vandekar et al. 2015),

which consist in comparing the empirical correlation amongst

two spatial maps to a set of null correlations, generated by ran-

domly rotating the spherical projection of one of the two spatial

maps (as generated in FreeSurfer or Caret) before projecting it

back on the brain surface. Importantly, the rotated projection

preserves spatial contiguity of the empirical maps, as well as

hemispheric symmetry. Such tests were previously implemen-

ted at the vertex level (Alexander-Bloch, Giedd et al. 2013;

Alexander-Bloch, Raznahan et al. 2013; Vandekar et al. 2015);

here we implemented an analogous permutation test at the

regional level. Thus, each analysis correlating values from two

cortical maps is reported with both the P-value corresponding to

the Spearman correlation (PSpearman), as well as a P-value

derived from the spherical permutation (Pperm), obtained by

comparing the empirical Spearman’s ρ to a null distribution of

10 000 Spearman correlations, between one empirical map and

the randomly rotated projections of the other map. For full

details on the spherical permutation test, see Supplementary

Information.

Sensitivity Analyses

To ascertain the robustness of obtained results to sliding win-

dow parameters and other methodological decisions and to

rule out effects of potential artefactual causes, we conducted

several ancillary studies.

We first investigated effects of sliding window parameters

by systematically varying the window width and step size over

ranges of {40,60,80} and {5,10,20} participants, respectively.

Further, we examined potential effects of gender by repeat-

ing sliding window analyses separately for each gender (149

female and 148 male participants). This resulted in 9 windows

of ~30 participants each. Following estimation of global and

nodal sliding window statistics separately for each gender

within both unthresholded and bootstrap-thresholded net-

works (as described for all participants above), we fitted linear

and spline models to the combined data, separately modeling

effects of age, gender, and the age-by-gender interaction.

Finally, we studied the effect of several potential artefacts,

including the presence of regions with low reliability of struc-

tural correlations as well as irregularities in the age distribution

of participants.

For full results and discussion of these additional studies,

see Supplementary Information.

Results

Age-Invariant Structural Network

We first considered the structural correlation network constructed

by thresholding the pairwise inter-regional correlations esti-

mated from CT measurements on all (297) participants, age

range 14–24 years (inclusive). Since this analysis combines data

from all ages in the sample, we can refer to the result as an age-

invariant structural correlation network (Fig. 1A).

The distribution of structural correlations had a positive mean

value and was approximately symmetrical. The structural corre-

lation matrix was thresholded probabilistically, using a bootstrap-

based resampling procedure (Materials and Methods), to control

the edge-wise false positive rate. Since this thresholding opera-

tion entailed approximately 47 000 hypothesis tests, we used

the FDR algorithm to adjust for multiple comparisons. The

resulting graph was densely connected (connection density ≈

90%) and exhibited a modular community structure (Fig. 1A).

The community partition consisted of 7 modules, including

three primary cortex modules: somatosensory (anterior parie-

tal cortex), motor (posterior frontal cortex), and visual (occipi-

tal cortex), as well as an inferior-frontal/temporal module, a

superior frontal module, a superior temporal/insular module

and a parieto-occipital module. For details on this community

structure and other modular partitions comprising different

numbers of modules see Figure S1 and Table S1.

Age-Resolved Structural Networks

To resolve age-related changes in structural networks, we used

a “sliding window” analysis to estimate the structural correla-

tion matrix separately for each of a series of subsets of the

sample defined by overlapping age ranges or windows (Fig. 1B).

The results of this analysis are naturally somewhat dependent

on the sliding window parameters: the age-range spanned by

each window and the incremental step between windows.

Below we focus on results obtained with 9 windows of ~60 par-

ticipants each, ranging from [14.1–16.0 years] to [22.0–25.0

years] with an incremental step of 30 participants (~1 year). We

also explored a range of alternative sliding window parameters

and demonstrated that our key results were robust to this

methodological variation (Supplementary Information).

Globally, over the whole brain, there was a nonlinear trend

of reducing structural correlation from the youngest age win-

dow to the oldest age window (Fig. 2A). Relatively strong posi-

tive correlations at age 14 (>0.31) decreased sharply over the

next few windows, with minimum mean correlation (~0.22)

occurring at 19.59 years (95% confidence interval (CI) [19.37,

19.76] years) and then slightly increasing again towards age 24

(AICspl < AIClin, r
2
adj = 0.52, P = 0.098; Fig. 2Aii). Both the mean

inter-regional covariance, and the mean product of regional

standard deviations (respectively the numerator and denomi-

nator of the Pearson correlation coefficient), showed similar

nonlinear processes of decline in younger windows followed by

levelling off in older windows (Fig. S4).

A potential drawback of the sliding window analysis is that

it inevitably involves estimating inter-regional correlations on

a subset of the sample (N ≈ 60 per window), with commensu-

rately reduced precision of estimation and therefore noisier

graphs. We used a probabilistic threshold to control the edge-

wise FDR at 1%, thus ensuring that the age-resolved graphs

only included edges that were unlikely to represent false posi-

tive noise (Fig. 2B).

Focusing on the most statistically robust subset of edges

(which passed the FDR threshold for significance), we found

similar but clearer evidence for age-related global changes in

structural network organization. The structural correlation dis-

tributions of the bootstrap-thresholded network became

sparser over the course of adolescence (Fig. 2Ci). The edge den-

sity demonstrated a nonlinear decrease (AICspl < AIClin) from

33.9% to a minimum of 8.2% at 19.45 years (95% CI [19.32, 19.59]

years; r2adj = 0.81, P = 0.0069), which was similar in shape to the

global trajectory of unthresholded correlation (Fig. 2Cii).

The global connection distance of the thresholded net-

works (the mean Euclidean distance subtended by bootstrap-

thresholded edges) also demonstrated a nonlinear trajectory

(AIClin < AICspl, r
2
adj = 0.67, P = 0.049) characterized by a phase
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of relatively rapid decrease from 14 years to reach a minimum

at 18.72 years (95% CI [18.68, 18.77] years), followed by a phase

of more stable connection distance (Fig. S7A).

Regional Development of Age-Resolved Structural

Networks

Regional maturation of structural correlation networks was

assessed by estimating the trajectories of changes in node

degree, which is the number of correlations retained at each

node (following bootstrap thresholding). Although there was

regional heterogeneity in the trajectories of node degree

(Fig. 3A), all regions that demonstrated significant evidence of

nonzero change (linear or spline fit PFDR < 0.05; 82 regions) fol-

lowed a nonlinear trajectory (AICspl < AIClin), which for most

regions (75/82) could be summarized by a younger phase (from

14 to 19 years approximately) of more-or-less rapid decrease in

structural correlation followed by a levelling off or slight

increase of structural correlation in an older phase (from 19 to

24 years approximately). This process could be summarized by

two parameters: Δkmax, the difference between maximum and

minimum degree; and age(kmin), the age at which node degree

reached its minimum value (Fig. 3B).

Decreases in node degree were greatest in association cortical

areas, such as bilateral dorsolateral prefrontal cortex, medial fron-

tal cortex and supramarginal gyrus, as well as precentral and post-

central gyri and several temporal cortical regions. Increases in

node degree were less spatially clustered, occurring in isolated

nodes within the right cingulate, superior frontal and parietal cor-

tices as well as left cuneus (Fig. 3Ci). Association cortical areas also

showed more prolonged decreases in structural correlation, reach-

ing the minimum value of node degree later (Fig. 3Cii). Predictably,

it follows that the extent of degree shrinkage Δkmax was negatively

correlated with the age at which degree reached its minimum

value age(kmin), whether considering all regions (Spearman’s

ρ = −0.38, PSpearman < 10−10, Pperm < 10−5) or excluding regions

whose minimum occurred at one of the limits of the age range

(Spearman’s ρ = −0.45, PSpearman < 10−10, Pperm = < 10−5; Fig. 3D).

Age-related nonlinear changes in nodal connection distance

(the mean Euclidean distance of all edges connecting a node

within the bootstrap-thresholded network) were summarized

using analogous parameters to node degree: Δdmax, the difference

between maximum and minimum distance; and age(dmin), the

age at which nodal connection distance reached its minimum

value. Nodes that demonstrated significantly reduced connection

distance (PFDR < 0.05) were located in left dorsolateral prefrontal

cortex, left supramarginal gyrus and right superior parietal cortex

Figure 2. Global trajectories of age-resolved structural correlations and network connection density. (A) Global trajectories of unthresholded structural correla-

tions. (i) Development of the distribution of unthresholded correlations across age windows. Thin lines represent bootstrapped estimates, white lines represent

the bootstrap mean. (ii) Changes in the average correlation. Black markers represent empirical data (error bars indicate the interquartile range across boot-

straps), with corresponding regression line; the white marker indicates the trajectory minimum. Grey lines represent bootstrapped trajectories; the white

dashed line represents the bootstrap mean. (B) Each windowed matrix was thresholded using bootstrap. Within each window, 1000 sets of participants were

resampled (with replacement) and used to construct correlation matrices. For each edge (correlation) within each window, the presence of a significant nonzero

correlation (across bootstraps) was tested at the FDR-adjusted level of αFDR = 0.01. Consistent correlations were retained, while inconsistent correlations were

assigned a value of 0. (C) Global trajectories within thresholded structural correlation networks. (i) Development of the distribution of correlations retained after

probabilistic thresholding across age windows. (ii) The number of edges retained after probabilistic thresholding, or edge density. The shaded area represents

the 95% confidence interval of the spline fit.
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(Fig. S7C). Decreases in node connection distance were negatively

correlated with age at minimum connection distance, whether

considering all nodes (Spearman’s ρ = −0.38, PSpearman < 10−10,

Pperm < 10−5) or excluding nodes whose minimum occurs at one

of the limits of the age range (Spearman’s ρ = −0.25, PSpearman =

0.0027, Pperm = 0.0036) (Fig. S7D). Finally, decreases in node con-

nection distance were positively correlated with decreases in

node degree (Spearman’s ρ = 0.32, PSpearman = 1.9·10−8, Pperm =

<10−5) (Fig. 7E). In other words, nodes that had the greatest

reduction in hubness during adolescence also tended to have

the greatest reduction in connection distance.

To contextualize changes in structural network architecture

with respect to maturation of cortical morphology, we related

regional measures of cortical network development to rates of

change of CT and MT (a measure of myelination), evaluated as

the slope of a linear model fitted to the cross-sectional values.

The maximum change in node degree was (weakly) positively

correlated to the rate of thinning (ΔCT; Spearman’s ρ = 0.16,

PSpearman = 0.0050, Pperm = 0.023; unaffected by excluding 3 out-

lier regions which showed ΔCT > 0, Spearman’s ρ = 0.15,

PSpearman = 0.0070, Pperm = 0.028; Fig. 4Ai), and more strongly

negatively correlated to the rate of intracortical myelination

(ΔMT; Spearman’s ρ = −0.32, PSpearman = 6.6·10−9, Pperm = 7·10−4;

Fig. 4Aii). Following Whitaker, Vértes et al. (2016), myelination

analyses were conducted at 10 fractional depths between the

pial surface and the grey/white matter boundary, as well as 2

absolute depths into white matter. The strength of association

between local adolescent myelination (indexed by ΔMT) and

adolescent decrease of node degree (indexed by Δkmax) was

greatest when ΔMT was measured at about 70% of cortical

depth from the pial surface to the grey/white matter boundary

(Fig. 4B).

Figure 4. Relationship between maturation of cortical morphology and structural

correlation networks. (A) Relationship between regional trajectories of cortical

morphology and node degree. Maximum changes in nodal degree are only very

weakly related to regional rates of (i) thinning and (ii) myelination (PU = percent-

age units). The direction of the relationships is such that cortical regions that

myelinate more during adolescence are more likely to decrease in node degree

and connection distance in the same period. (B) Spearman correlation of rate of

change myelination to maximal change in degree as a function of cortical depth,

including 10 fractional depths from the pial surface to the grey/white matter

boundary (GM/WM), as well as 2 absolute depths into the white matter.

Figure 3. Regional development of structural correlation networks. (A) Cortical maps of node degree at 5 regularly sampled intervals of the developmental trajectories,

showing a regionally heterogeneous decrease from young age. (B) Definition of local measures of maturation, illustrated on a nonlinearly decreasing trajectory (from

the right dorsolateral prefrontal cortex). The maximum change in degree Δkmax corresponds to the (absolute) difference (decrease or increase) in degree between the

maximum and the minimum of the trajectory. The age at minimum degree age(kmin) corresponds to the timing of the minimum of the trajectory. (C) Cortical maps of

regional maturation measures for trajectories showing evidence of nonzero change (at PFDR < 0.05), predominantly located in association cortex: (i) maximum change

in degree, and (ii) age at minimum degree. (D) Regions that show greater decreases in degree tend to reach minima of their trajectories later, whether considering all

regions (grey) or excluding regions where the trajectory minimum occurs at extrema of the age range (black).
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Age-Resolved Network Changes in Relation to the

Age-Invariant Network and its Communities

Given that most densely connected nodes (hubs) of the age-

invariant structural correlation network are predominantly

located in association cortex (Whitaker, Vértes et al. 2016),

which is also the location of greatest age-resolved decreases in

structural correlation, it is not surprising that there is an

inverse relationship between age-invariant (weighted) node

degree and maximum change in degree (ρ = −0.43, PSpearman <

10−10, Pperm = <10−5; Fig. S9Bi). Node degree of the age-invariant

network and age at minimum degree were not strongly related

(Fig. S9Bii).

We further studied adolescent changes in nodal topology in

relation to the community structures of the human brain. Many

community structures have been proposed to partition the cor-

tex into a set of modules or sub-networks, each comprising a

number of functionally and/or anatomically related cortical

areas. Here, we considered three complementary community

structures: (1) the modular decomposition of the age-invariant

structural correlation network (7 modules); (2) the classic von

Economo cytoarchitectonic partition of the cortex into classes

based on cortical lamination (we used a partition into 7 classes

by Vértes et al. (2016), extended from the original partition into

5 classes by von Economo and Koskinas (1925)); and (3) the prior

identification of 7 resting state networks derived from indepen-

dent components analysis of an independent resting state fMRI

dataset (Yeo, Krienen et al. 2011). The three classification sys-

tems had similar but not identical community structures; nor-

malized mutual information (NMI, a measure of correspondence

between two community structures) ranged from NMI = 0.39 for

the relationship between the structural network modules and

the resting state fMRI components to NMI = 0.29 for the relation-

ships between both neuroimaging-based community structures

and the von Economo classification (Fig. 5A).

In the context of (1) the age-invariant structural network

community structure, the greatest decreases in connection

density ΔDmax were concentrated within the superior frontal

module (blue) and within the superior temporal/insular module

(purple); or between the superior frontal module and other

modules (Fig. 5Biii). The age at minimum density age(Dmin)

tends to occur later within the same modules, as well as the

occipito-parietal module (pink; Fig. 5Biv). In the context of (2)

cytoarchitectonic atlas of von Economo and Koskinas (1925),

greatest decreases in edge density were concentrated within

and between association cortical areas with lamination types 2

and 3 (described as granular isocortex; blue and green respec-

tively) and particularly within class 3 (green; Fig. 5Bi).

Association cortical trajectories tended also to reach the age of

minimum edge density latest (Fig. 5Bii). In the context of (3)

Figure 5. Adolescent development of structural networks in relation to human brain communities. The modular partition used consisted of 7 modules, including a

parietal “somatosensory” module (yellow), a frontal “motor” module (orange), an occipital “visual” module (green), an inferior-frontal/temporal module (red), a super-

ior frontal module (blue), a superior temporal/insular module (purple) and a parieto-occipital module (pink). (A) Comparison of the modular architecture of the age-

invariant structural correlation network (middle) to two prior community structures—the von Economo atlas of cytoarchitectonic classes (von Economo and Koskinas

1925; left) and 7 functional intrinsic connectivity networks derived using an independent fMRI data (Yeo and Krienen 2011; right). The alluvial diagrams between sur-

face plots of community architecture indicate the amount of overlap between individual communities across templates. (B) Development of structural correlations

within and between corresponding pairs of communities—cytoarchitectonic classes (i, ii), age-invariant modules (iii, iv) and functional intrinsic connectivity net-

works (v,vi). Left: maximum change in edge density ΔDmax within and between all pairs of communities. Right: age at minimum edge density age(Dmin) within and

between all pairs of communities. Dot markers indicate statistical significance of developmental change; small: PFDR < 0.05, large: PFDR < 0.01.
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fMRI resting state networks outlined by Yeo, Krienen et al.

(2011), the greatest decreases in edge density were concen-

trated within the frontoparietal control network (orange) as

well as between this network and the other networks (Fig. 5Bv).

Minima of the trajectory were reached latest within the default

mode network (salmon red) and the ventral attention network

(pink), as well as between these two functional networks

(Fig. 5Bvi). In summary, across the three community partitions,

the greatest (and latest) decreases in connection density

occurred within association cortical communities, and (to a

lesser extent) between those association cortical communities

and the remainder of the network.

Sensitivity Analyses

While we had no hypotheses about the shape of the matura-

tional trajectories or the direction of the changes, the finding of

a nonlinear decrease in structural correlation (and derived

measures of edge density and degree), globally and locally, was

somewhat surprising. This is one of the reasons why we con-

ducted numerous sensitivity analyses, to ensure that our find-

ings are not caused or inflated by methodological choices or

artefacts.

Our principal findings on bootstrap-thresholded networks

were corroborated by similar results from analysis of unthre-

sholded structural correlation matrices (Fig. S6).

We evaluated robustness of our findings to parameters of

the sliding window method, varying the window width and

step size over ranges of {40,60,80} and {5,10,20} participants

respectively. Results were qualitatively consistent with the

above, showing a nonlinear decrease in structural correlation

both globally and locally (most prominently in association cor-

tex), as well as (weak) relationships of maximum local change

in correlation to regional rates of thinning and myelination

(Table S2 and Fig. S11).

Analysis of gender differences failed to identify effects of gen-

der or age-by-gender interactions in the trajectories of structural

correlation development (Supplementary Information).

We investigated the effect of several potential artefacts,

including the presence of regions with low reliability of struc-

tural correlations (Fig. S12) as well as inhomogeneities in the

age distribution of participants (Fig. S13). We found no substan-

tial evidence that the effect of such artefacts could inflate or

account for our main finding of a nonlinear age-related

decrease in structural correlation.

Finally, we investigated whether subtle nonlinearities in tra-

jectories of cortical thinning and myelination could be driving

nonlinearities in trajectories of structural correlation (Figs

S14–16). Although neither nonlinear CT or MT effects were

especially strong, subtle nonlinearities in trajectories of cortical

myelination appeared somewhat more related to structural

correlation trajectories than subtle nonlinearities in trajectories

of cortical thinning.

Discussion

In the current study we set out to examine the developmental

trajectories of human brain structural networks. To this end,

we used a novel “sliding window” method of network analysis

to resolve age-related changes in human brain structural corre-

lations and probabilistically thresholded brain graphs esti-

mated from MRI data on an age-stratified sample of healthy

adolescents and young adults (N = 297, aged 14–24 years). We

found that global strength of structural correlation and the

related topological property of edge density both decreased

nonlinearly as a function of age: an early phase (14–19.5 years

approximately) of rapid decrease in structural correlation was

followed by a later phase (20–24 years) of stable or slightly

increasing structural correlation. At a regional or nodal level of

analysis, cortical areas varied in the magnitude of age-related

decrease in nodal degree Δkmax and the age at which nodal

degree reached its minimum value age(kmin). The 75 cortical

areas with significantly decreasing degree tended to mature

later, that is, large negative Δkmax was associated with older

age(kmin). Further, cortical areas with the greatest shrinkage of

degree during adolescence also had the greatest shrinkage of

connection distance, that is, large negative Δkmax was associ-

ated with large negative Δdmax. To contextualize these results,

we showed that cortical areas with the greatest adolescent

changes in brain structural connectivity were anatomically

concentrated in regions of association cortex that had fast local

rates of increasing intracortical myelination; and were topologi-

cally concentrated on the edges within frontal communities

(von Economo classes 2 and 3 and the functional frontoparietal

control network) and the edges connecting frontal communi-

ties to the rest of the network. We propose that these results

are consistent with the existence of a developmental window

for tuning of association cortical connectivity by a combination

of parsimoniously pruning some long distance connections

while actively consolidating or myelinating the connections

which survive.

MRI Studies of Adolescent Structural Brain Network

Development

Adolescent changes in structural correlation networks have

previously been investigated, as pairwise changes across four

discrete (nonoverlapping) age-bins spanning the range 5–18

years (Zielinski et al. 2010; Khundrakpam et al. 2013). Zielinski

et al. (2010) reported largely nonlinear changes in the extent of

seed-based structural correlation networks. Both the executive

control network (seeded in the right dorsolateral prefrontal cor-

tex) and the salience network (seeded in the right frontal insu-

la), showed an increase in spatial extent, quantified as the

number of voxels whose grey matter intensity significantly cor-

related with the seed. Conversely, our approach suggests a

decrease in the structural correlation within association areas

and related structural, cytoarchitectonic, and functional com-

munities. Beyond the difference in methods (voxel-wise seed-

based vs. parcel-wise all-to-all regions), this discrepancy could

be due to the different morphometric measures used, known to

show differences in both trajectories of adolescent maturation

(Wierenga et al. 2014; Ducharme et al. 2015), and (age-invariant)

structural correlation (Sanabria-Diaz et al. 2010; Yang et al.

2016). Further, Khundrakpam et al. (2013) reported decreases in

regional efficiency of primary sensorimotor regions, alongside

increases in regional efficiency of paralimbic and association

regions. These results align with our own, through the strong

dependence of the properties of graphs thresholded to fixed

edge densities (as in Khundrakpam et al. (2013)) on the mean of

the correlation distributions from which they were derived.

Networks with lower correlations lead to more random topol-

ogy, exhibiting higher efficiency and lower clustering (Fornito

et al. 2013; van den Heuvel et al. 2017). Therefore, our finding of

decreases in structural correlation within association cortical

areas aligns with reports by Khundrakpam et al. (2013) of

increased regional efficiency in these regions. Beyond develop-

ment of structural networks resolved using distinct age-groups,

Adolescent Tuning of Structural Brain Networks Váša et al. | 289

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
rc

o
r/a

rtic
le

/2
8
/1

/2
8
1
/4

5
6
6
6
0
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



several studies have investigated coordinated maturation of

cortical morphology during adolescence (Raznahan et al. 2011;

Alexander-Bloch, Raznahan et al. 2013; Sotiras et al. 2017).

Adolescent development of structural connectivity has also

been investigated using diffusion imaging and tractography,

although such studies report heterogeneous findings. Lim et al.

(2013) showed decreases in structural connectivity from childhood

(4 years) to adulthood (40 years), concentrated predominantly on

strong tracts, located within modules—which qualitatively agrees

with our findings. However, Chen et al. (2013) reported increases

in the number of streamlines and edge density from childhood (5

years) to adulthood (30 years). Recently, Baum et al. (2017)

reported increases in within-module connectivity, and decreases

in between-module connectivity in tractography-derived white

matter networks. While tractography-derived structural connec-

tomes show some overlap with structural correlation networks

(Gong et al. 2012), interpretation of developmental changes in

white-matter connectivity relative to development of structural

correlations will require concurrent studies of both modalities in

the same datasets. It is worth noting that when grey and white

matter structural networks were both constructed using the same

method (structural correlation), both showed similar patterns of

correlation and similar developmental changes from 7 to 14 years

(Moura et al. 2017).

Adolescent development of brain connectivity has also been

investigated using fMRI. Early functional connectivity studies

have reported increases in the strength of long-range and

within-network functional connections (and decreases in the

strength of short-range functional connections) (Fair et al. 2009;

Supekar et al. 2009; Dosenbach et al. 2010). Later studies have

reported qualitatively similar findings, but with attenuated

effect sizes following control for the effects of motion

(Satterthwaite et al. 2012, 2013). While findings such as increas-

ing within-module functional connectivity may seem to dis-

agree with our findings of decreased within-network structural

correlation, these constitute disparate modalities that have not

always yielded concomitant results (Fornito and Bullmore

2015). Beyond studies concurrently investigating adolescent

development of structural and functional networks using the

same dataset(s), the combination of structural, diffusion, and

functional MRI data using methods such as multimodal fusion

(Calhoun and Sui 2016), computational modeling (Breakspear

2017) or morphometric similarity (Seidlitz et al. 2017) might be

useful to reconcile findings from diverse modalities.

Relationship to Axo-synaptic Connectivity (and its

Adolescent Pruning)

Our results extend previous studies of structural network

development (Zielinski et al. 2010; Khundrakpam et al. 2013) by

reporting smooth and nonlinear trajectories of structural net-

work development during adolescence. The early phase of

major decrease in structural correlation, nodal degree, and

nodal connection distance could represent loss of anatomical

connectivity to association cortical areas. The simplest inter-

pretation is that reduced structural correlation or degree repre-

sents pruning of synaptic connections or attenuation of axonal

projections. There is a large body of prior evidence in support

of the concept of synaptic pruning during adolescence

(Huttenlocher and Dabholkar 1997; Petanjek et al. 2011) and

this mechanism has been suggested to explain age-related cor-

tical shrinkage (Tau and Peterson 2009), which was correlated

with age-related degree shrinkage in these data. However, the

security of this interpretation rests on the more fundamental

assumption that structural correlation measured from MRI

data on multiple subjects is a reasonable proxy marker of the

average weight of axo-synaptic connectivity between regions

(Alexander-Bloch, Giedd et al. 2013). Beyond humans (Gong

et al. 2012), there is evidence of such correspondence from ani-

mal models (Yee et al. 2017).

The identification of structural correlation networks in mice

(Pagani et al. 2016) suggests that they might encompass general

features of cortical architecture. Specifically, up to 35% variance in

structural correlation in mice was explained by a combination of

tract-tracing-derived structural connectivity, gene expression and

distance (Yee et al. 2017), providing a link of the macroscopic

structural networks to underlying microscale cortical organiza-

tion. The relationship of structural correlation networks to gene

expression has also been investigated within humans using

the present data, demonstrating overlap between regional co-

expression of genes (Hawrylycz et al. 2012), particularly of a subset

of genes enriched in supragranular layers of cerebral cortex, and

structural correlation patterns (Romero-Garcia et al. 2017).

Moreover, association cortical hubs of the (age-invariant) struc-

tural correlation network showed the greatest expression of genes

related to synaptic transmission, oligodendroglia as well as

schizophrenia, suggesting a potential pathogenic role in abnormal

consolidation of association cortical regions (Whitaker, Vértes

et al. 2016). Generally, the profound adolescent maturational

changes in cortical architecture are thought to underlie the fre-

quent emergence of psychiatric disease in this period, as a result

of abnormal development (Paus et al. 2008; Silbereis et al. 2016).

Adolescent Maturation of Structural Correlation

and Regional Cortical Structure

We note that the association of changes in structural network

architecture to rates of cortical thinning is relatively weak. Given

that (age-invariant) structural correlation networks are thought to

emerge as a result of synchronized maturation (thinning) of corti-

cal regions over adolescence (Raznahan et al. 2011; Alexander-

Bloch, Raznahan et al. 2013), perhaps the changes in structural

correlation might be more closely related to changes in the “rates

of change” of cortical thinning, which in a longitudinal dataset

were shown to peak in adolescence (Zhou et al. 2015). An addi-

tional possible explanation for the adolescent decrease in struc-

tural correlation is a “decoherence” related to interindividual

differences in the timing of maturation of association areas—

although the verification of such a hypothesis would again

require longitudinal data. On a related note, recent work on func-

tional connectivity has shown an adolescent increase the “dis-

tinctiveness” of individual functional connectomes (Kaufmann

et al. 2017). We further note that the association of changes in

structural network architecture to rates of myelination is stronger

(than to rates of cortical thinning), and that subtle nonlinearities

in trajectories of myelination seem more strongly related to non-

linearities in trajectories of structural correlation, suggestive of

the idea that myelination may be a driver of (changes) in struc-

tural covariance. This could be further investigated through con-

current analysis of (adolescent) changes in structural correlation

and white matter architecture.

Generally, the weakness of association between rates of

change of morphology (ΔCT and ΔMT) and structural network

architecture (Δkmax) suggests that rates of change of structural

network properties explain substantial variation of brain structure

with age, above and beyond the rates of thinning and myelina-

tion. As an intrinsic regional measure, cortical thickness can be

considered less complex than a measure of relationships between
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regions (across participants) such as structural correlation; how-

ever, the biological hierarchy could well be the opposite, whereby

cortical thickness and its changes might be a signature of under-

lying changes in axonal connectivity (which is related to struc-

tural correlation). This hypothesis could be tested, using invasive

studies of concurrent development of axonal connectivity and

cortical thickness in model species. In humans, the differential

variance contained within cortical morphology and structural

network architecture could be investigated through further

within-population comparisons of these measures, in (1) their

ability to discriminate between case–control populations, (2)

their association to behavioral and cognitive measures, and (3)

their heritability. For example, patients with childhood-onset

schizophrenia have shown differences in adolescent trajectories

of both cortical thinning (Alexander-Bloch et al. 2014) and struc-

tural correlation (Zalesky et al. 2015) relative to healthy controls,

but the measures have not been explicitly compared.

Notably, changes in structural network architecture were

more strongly related to the rate of myelination (at 70% depth)

than the rate of cortical thinning, suggesting that layer-specific

intracortical myelination might be a more sensitive marker of

corticocortical connectivity than cortical thickness (assuming, as

above, that structural correlation is a marker of connectivity).

Moreover, this finding echoes our earlier finding of the rate of

myelination being fastest at 70% depth between the pial surface

and the grey/white matter boundary, and the relationship between

rate of cortical thinning and rate of myelination being strongest at

this depth (Whitaker, Vértes et al. 2016). We have previously sug-

gested a link of these changes to histological evidence of greatest

rates of myelination at similar cortical depths in rodents (Mengler

et al. 2014; Tomassy et al. 2014; Hammelrath et al. 2016).

Methodological Considerations

Recently, a number of studies have pointed out effects of partici-

pant motion on the quality of structural MRI scans, including on

estimates of regional morphological measures such as cortical

thickness (Reuter et al. 2015; Alexander-Bloch et al. 2016; Savalia

et al. 2017). While we have carried out stringent quality control of

our structural scans and FreeSurfer reconstructions of cortical

thickness (details in Supplementary Information), we cannot

completely rule out potential artefactual effects of motion on our

results. Thus, further analysis of structural correlation develop-

ment in datasets including estimates of head motion from volu-

metric tracking (Tisdall et al. 2012, 2016) or novel automated

estimates of data quality (Shehzad et al. 2015; Pizarro et al. 2016;

Rosen et al. 2017) will be important in the future.

The estimated changes in structural network organization

are inevitably dependent on parameters of the sliding window

method used. The selection of sliding window parameters,

including window width and step size (in units of number of

participants) involves several trade-offs. On one hand, selecting

a wider window increases the robustness of correlations within

each of those windows, as they are estimated using more parti-

cipants; on the other hand, the median ages of participants

within each window will cover a narrower portion of the overall

age-range. Furthermore, while a smaller step size will provide a

greater density of windows and hence time-points for curve fit-

ting and trajectory characterization, a denser sampling of data

will exacerbate issues with the inevitably uneven distribution

of subjects across the age-range studied, which in effect corre-

sponds to an unevenly sampled time-series. Future develop-

ment of tools for the analysis of unevenly sampled time-series

(Eckner 2014) should help alleviate these issues.

Furthermore, depending on the sliding window parameters,

relatively few summary data points may be obtained. The subse-

quent fitting of nonlinear smoothing splines (with up to ~3.5

degrees of freedom) to such scarce data warrants care when

interpreting evidence of nonlinearity—despite evidence from

both the AIC and BIC that smoothing splines provide a better

quality of fit than linear models. Still, it is reassuring that trajec-

tories remain consistently nonlinear across bootstrapped sam-

ples (within unthresholded correlation networks) and that

evidence of a nonlinear trajectory seems more pronounced after

bootstrap thresholding. Changes in structural network architec-

ture remain qualitatively consistent in both their spatial location

and relationship to changes in morphology when simple, linear

models are used. The scarcity of data points may also lead to

uncertainties in measures used to characterize the maturational

trajectories, including the measures of maximum change and

age at minimum of the trajectory. Finally, it remains ambiguous

whether the tendency of the global trajectory of structural corre-

lation to slightly increase from the minimum around age 19

towards age 24 years is significant, or whether the trajectory can

be seen as levelling-off. It seems reasonable that the few nodes

presenting increases in structural correlation (e.g., within right

cingulate cortex) would be driving this effect. Thus, until these

results are validated in an additional dataset, care is necessary

in some aspects of their interpretation.

Further, practical applicability of structural correlation net-

works is limited by the fact that they represent a group construct.

Still, an advantage of structural correlation networks over struc-

tural connectomes derived from diffusion imaging using tracto-

graphy is the relative simplicity of the structural MRI acquisitions

compared with diffusion imaging, which in light of its longer

acquisition is more prone to motion artefacts (Yendiki et al. 2014),

and within which tractography presents considerable challenges

(Thomas et al. 2014; Reveley et al. 2015; Maier-Hein et al. 2016).

Efforts to derive measures of individual contribution to structural

correlation networks (Saggar et al. 2015) or fully individual net-

works from structural imaging (Tijms et al. 2012; Kong et al. 2014,

2015) including through the combination of multimodal features

(Seidlitz et al. 2017) should increase the practical applicability of

structural correlation network research.

In reporting a late maturation of association cortical

regions, our results are potentially compatible with the devel-

opmental mismatch hypothesis, which proposes that late

maturation of prefrontal regions (involved in cognitive con-

trol), compared with an earlier development of subcortical

regions (implicated in reward processing) results in adoles-

cent increases in risk-taking and sensation-seeking behaviors

(Mills et al. 2014). However, the verification of such a hypothe-

sis will require the inclusion of both subcortical regions and

behavioral data in future analyses.

Finally, structural network architecture is known to mature

across the lifespan (DuPre and Spreng 2017), including during

both early childhood (Geng et al. 2017) and late adulthood

(Hafkemeijer et al. 2014). Our focused age-range prohibits us

from conclusively ascertaining the specificity of these changes

to adolescence. For example, extending the analyses presented

herein to wider age-ranges would help disambiguate whether

the nonlinear decreases in structural correlation level off or

increase in young adulthood. In general, the wide applicability

of the methods used herein should enable investigations of the

maturation of structural brain networks, as well as other net-

works constructed in a similar manner (including for example

networks of relationships between psychopathological symp-

toms; Borsboom and Cramer 2013), across the lifespan.
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Conclusion

During adolescence, human brain structural correlation net-

works demonstrate a nonlinear reduction of connectivity of

association cortical areas, predominantly in frontal cortex, that

is compatible with a developmental process of pruning com-

bined with consolidation of surviving connections.

Availability of Data and Code

Data for this specific article has been uploaded to the

Cambridge Data Repository (https://doi.org/10.17863/CAM.8856)

and password protected. Our participants did not give informed
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available, and it is possible that they could be identified from

this data set. Access to the data supporting the analyses pre-

sented in this article will be made available to researchers with
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code used to conduct analyses is available from F.V.’s github:
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