
International Journal of Pure and Applied Mathematics

Volume 118 No. 3 2018, 501-510

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)
url: http://www.ijpam.eu
doi: 10.12732/ijpam.v118i3.1

PA
ijpam.eu

ADOMIAN DECOMPOSITION METHOD APPLIED

TO LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

Abdelouahab Bibi1, Fateh Merahi2 §
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Abstract: The paper deals with an application of Adomian Decomposition Method for

solving linear stochastic differential equations. We derive new formulas such as the analyt-

ical approximate solution which convergces rapidely to the exact solution. The numerical

experiments which are obtained show the efficiency of this method in the field of stochastic

differential equations.
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1. Introduction

Adomian Decomposition Method (ADM) is widely used to solve linear and
nonlinear equations of various kind [3, 2, 17]. The solution is found as an infinite
series wich converges quickly towards an accurate solution, and its terms can be
easily determined . The convergence of the ADM has been discussed by many
authors, in particular Cherruault [8] is the first who proved the convergence,
after that Abbaoui and Cherruault [1, 2], Himoun, et al. [11, 12], Hosseini
and Nasabzadeh [13], Lesnic [14, 15], and Rach [17, 18]. El-Kalla [9] gave the
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error analysis of the method, Babolian and Biazar [5], Boumenir and Gordon
[6] discussed the order and rate of convergence for ADM respectively.

The aim of this work is to extend the ADM for solving stochastic differential
(SDE) which play an important role in various field such as finance, automatic
control and physics, chemistry, astronomy, engineering, biology and others, the
SDE are the fundamental tool to solve some problems in mathematics and
finance stochastic modeling. The continuous-time models can be interpreted
as a solution of SDE, these models are often assumed to be linear and may be
Gaussian and continue to gain a growing interest of researchers (see for instance
Brockwell [7] and the references therein). On the other hand, SDE are the more
general framework of study and analysis of continuous-time random process.
The rest of paper is organized as follows. Having defined the linear SDE and
their properties. ADM is given in Section 3. The numerical experiments are
provided in Section 4 and conclusion is in Section 5.

2. Linear Stochastic Differential Equations

We consider the process (X(t))t∈R generated by the following linear SDE

dX(t) = (α1X(t) + α0)dt+ σdw(t) (1)

where (w(t))t≥0 is the standard Brownian motion (Bm) in R defined on some
basic probability space (Ω,A, P ), α1, α0 and σ are constants, with σ > 0. The
initial state X(0) = X0 is a random variable, defined on (Ω,A, P ), independent
of w such that E {X(0)} = m(0) and V ar {X(0)} = V (0). The existence
and uniqueness of the solution process (X(t))t≥0 of equation (1) is ensured by
the general results on stochastic differential equations [4] and under the above
conditions. So, the solution of equation (1) is interpreted as satisfying the
following integral equation

X(t)−X(0) =

∫ t

0
(α1X(s) + α0)ds + σw(t) (2)

The term (α1X(s) + α0) is referred to as instantaneous mean of the process,
and σ the instantaneous standard deviation .The solution of (1) can be written
as

X(t) = eα1tX(0) + α0

∫ t

0
eα1(t−s)ds+ σ

∫ t

0
eα1(t−s)dw(s) (3)

Let the mean of X(t) be denoted by m(t). It satisfies the equation

m(t) =
α0

α1
(eα1t − 1) + eα1tm(0). (4)



ADOMIAN DECOMPOSITION METHOD APPLIED... 503

R(t, s) is the covariance of X(t) given by

R(t, s) = eα1(t−s)V (s), for all t ≥ s (5)

where V(s) denotes the varians of X(s) given by

V (s) = e2α1sV (0) + σ2

∫ s

0
e2α1(s−u)du, for all s ≥ 0. (6)

2.1. Euler Approximation

We can approach

X(t+ h) = X(t) +

∫ t+h

t

(α1X(t) + α0)ds + σ

∫ t+h

t

dw(s), (7)

by
X(tj+1) ≈ X(tj) + (α1X(tj) + α0)h+ σ(w(tj+1)− w(tj)), (8)

where h = tj+1 − tj. The Euler approximation suppose that the integrals are
constant over the interval of integration. Since the variables (w(tj+1)−w(tj))are
independent and normal with variance h, we obtain the scheme

X(j+1)h = Xjh + (α1Xjh + α0)h+ σ
√
hZj (9)

where (Zj)j∈N is a Gaussian white noise process with 0 mean and finite variance.
Phillips [16] showed that the exact discrete model corresponding to (1) is given
by

X(j+1)h = eα1hXjh +
α0

α1
(eα1h − 1) + σ

√

1− e2α1h

−2α1
Zj. (10)

3. First Application of Adomian Decomposition Method

Adomian’s method consists in calculating the solution X(t) of (1) in a series
form

X(t) =

∞∑

j=0

Xj(t) (11)

Putting equation (11) into (1) gives

∞∑

j=0

Xj(t) = X(0) + α0t+ L−1



α1

∞∑

j=0

Xj(t)



+ L−1

(

σ
dw(t)

dt

)

, (12)
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where L = d
dt

is the derivative of 1-order, then the corresponding L−1 operator

can be written in the form L−1[.] =
∫ t

0 (.)ds. The iterates are determined by
following recursive way

X0(t) = X(0) + α0t+ σw(t) (13)

and ∀n ≥ 0,
Xn+1(t) = α1L

−1[Xn(t)], (14)

we get

X1(t) = α1tX(0) +
α1α0

2
t2 + σα1

∫ t

0
w(t)dt

X2(t) = α2
1

t2

2
X(0) +

α2
1α0

6
t3 + σα2

1

∫ t

0

∫ t

0
w(t)dtdt

X3(t) = α3
1

t3

6
X(0) +

α3
1α0

24
t4 + σα3

1

∫ t

0

∫ t

0

∫ t

0
w(t)dtdtdt

...

Xn(t) = αn
1

tn

n!
X(0) +

αn
1α0

(n+ 1)!
tn+1 + σαn

1

∫ t

0
· · ·
︸︷︷︸

n−fold

∫ t

0
w(t)dt · · ·

︸︷︷︸

n−fold

dt

Finally, we approximate the solution by the truncated series

∀N ≥ 1,ΦN (t) =
N−1∑

n=0

Xn(t). (15)

In order to show the convergence almost sure (a.s) of the series to the exact
solution we need the following Theorem which is given and proved by I. El-Kalla
[10].

Theorem 3.1 (Theorem 1, I. El-Kalla [10] ). If q(t) is integrable and at
least the derivative of 1-order of r(t) exists then we can prove that

e−r(t)

∫

er(t)q(t)dt =
∞∑

k=0

(−1)k
∫

dr(t)

dt
· · ·
︸︷︷︸

k−fold

∫
dr(t)

dt

∫

q(t)dtdt · · ·
︸︷︷︸

(k+1)−fold

dt.

In particular, if dq
dt

exists then we have

e−r(t)

∫

er(t)dq(t) =
∞∑

k=0

(−1)k
∫

dr(t)

dt
· · ·
︸︷︷︸

k−fold

∫
dr(t)

dt

∫

q(t)dtdt · · ·
︸︷︷︸

k−fold

dt.
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Proof. See the proof of Theorem 1 in [10].

Then the convergence of the approximate solution ΦN (t) to the exact solu-
tion process is given by the folowing theorem :

Theorem 3.2. Let ΦN (t) is the approximate solution given by Adomian
decomposition method of the linear SDE (1), then we have with probability 1

lim
N→+∞

ΦN (t) = X(t) (16)

Proof. First, ΦN (t) can be written as follow

ΦN (t) = X(0)
N−1∑

k=0

(α1t)
k

k!
+

α0

α1

N∑

k=1

(α1t)
k

k!

+ σ

N−1∑

k=0

αk
1

∫ t

0
· · ·
︸︷︷︸

k−fold

∫ t

0
w(t)dt · · ·

︸︷︷︸

k−fold

dt (17)

and apply Theorem 3.1 on the third term of (17) we get

∞∑

k=0

αk
1

∫ t

0
· · ·
︸︷︷︸

k−fold

∫ t

0
w(t)dt · · ·

︸︷︷︸

k−fold

dt =

∫ t

0
eα1(t−u)dw(u) (18)

Then we obtain

lim
N→+∞

ΦN (t) = X(0)

∞∑

k=0

(α1t)
k

k!
+

α0

α1

∞∑

k=1

(α1t)
k

k!
+ σ

∫ t

0
eα1(t−u)dw(u)

= X(0)eα1t +
α0

α1
(eα1t − 1) + σ

∫ t

0
eα1(t−u)dw(u) = X(t).

and the proof is complete.

4. Second Application of Adomian Decomposition Method

In this section we give another approximate solution of the linear SDE (1). This
approach follows from the fact that a normalized Brownian motion w(t) can be
written in the form

w(t) =
Z0√
2π

t+

∞∑

k=1

√

2

π

Zk

k
sin(kt) for t ∈ [0, π]
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where Z0, Z1, ... be mutually independent random variables with identical nor-
mal distributions N (0, 1). Then The iterates are determined by following re-
cursive way

χ0(t) = X(0) + α0t+ σ
Z0√
2π

t+ σ

∞∑

k=1

√

2

π

Zk

k
sin(kt) (19)

and ∀n ≥ 0,

χn+1(t) = α1L
−1[χn(t)], (20)

we obtain

χ1(t) = α1tX(0) +
α1α0

2
t2 + α1σ

Z0√
2π

t2

2
+ α1σ

∞∑

k=1

√

2

π
Zk

(−1)

k2
cos(kt)

χ2(t) = α2
1

t2

2
X(0) +

α2
1α0

6
t3 + α2

1σ
Z0√
2π

t3

6
+ α2

1σ

∞∑

k=1

√

2

π
Zk

(−1)

k3
sin(kt)

χ3(t) = α3
1

t3

6
X(0) +

α3
1α0

24
t4 + α3

1σ
Z0√
2π

t4

24
+ α3

1σ

∞∑

k=1

√

2

π
Zk

(−1)2

k4
cos(kt)

...

χn(t) =
(α1t)

n

n!
X(0) +

α0

α1

(α1t)
n+1

(n+ 1)!
+

σ

α1

Z0√
2π

(α1t)
n+1

(n+ 1)!

+αn
1σ

(
∞∑

k=1

√

2

π
Zk

(−1)[
n

2
]

kn+1
sin(kt)

)

if n is even

χn(t) =
(α1t)

n

n!
X(0) +

α0

α1

(α1t)
n+1

(n+ 1)!
+

σ

α1

Z0√
2π

(α1t)
n+1

(n+ 1)!

+αn
1σ

(
∞∑

k=1

√

2

π
Zk

(−1)[
n

2
]+1

kn+1
cos(kt)

)

if n is odd

Finally, we approximate the solution by the truncated series

∀N ≥ 1, ΨN (t) =
N−1∑

n=0

χn(t). (21)
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5. Numerical Experiments

The obtained results for various values of the parameters α0, α1 and σ where
compared with the exact solution X and where shown graphicaly. Assume the
process X(t) is observed in the interval [0, T ] at points (t1, t2, ..., tm), where h =
ti+1 − ti is the fixed space scale. Then we have the sequence of m observations
Xh,X2h, ...,Xmh. In our experiment we choose T = 1. We use two kinds of
approximated solution Φ1(t) = X0 which is an approximation with one term,
and Φ2(t) = X0 +X1 using a two terms of approximation.

We can prove that the discrete models corresponding to Φ1(t) and Φ2(t)
are given respectively by

Φ1(tj+1) = Φ1(tj) + α0h+ σ
√
hZj,

and

Φ2(tj+1) = Φ2(tj) + (α0 + α1X(0)) h+
α0α1

2
(2j + 1)h2 + σ(α1j + 1)

√
hZj,

for all j ≥ 0 with t0 = 0 and (Zj)j∈N is a Gaussian white noise process with
0 mean and finite variance equal to 1. The table 1 shows the results from
t = 0.1 to t = 1 with an increment h = 0.1 where we compute the absolute
error of the both approximate solutions Φ1(t) and Φ2(t) with the parameters
α0 = 0.02, α1 = −0.05 and σ = 1.

t X(t) Φ1(t) Φ2(t) | Φ1(t)−X(t) | | Φ2(t)−X(t) |
0.1 -0.1348 -0.1348 -0.1348 0 0.0000
0.2 -0.6588 -0.6595 -0.6588 0.0007 0.0000
0.3 -0.6139 -0.6179 -0.6139 0.0040 0.0000
0.4 -0.5179 -0.5249 -0.5179 0.0070 0.0000
0.5 -0.8758 -0.8854 -0.8758 0.0096 0.0000
0.6 -0.4928 -0.5068 -0.4928 0.0140 0.0000
0.7 -0.1123 -0.1288 -0.1122 0.0165 0.0001
0.8 -0.1217 -0.1387 -0.1215 0.0170 0.0001
0.9 -0.0155 -0.0332 -0.0153 0.0176 0.0002
1 0.0418 0.0240 0.0420 0.0177 0.0003

Table 1: Absolut error of Φ1 and Φ2, with α0 = 0.02, α1 = −0.05,
σ = 1, h = 0.1.
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The table 2 shows the results from t = 0.1 to t = 1 but with an incre-
ment h = 0.01, we compute the absolute error of the approximate solutions
Φ1(t) and Φ2(t) with the parameters α0 = 0, α1 = −0.1 and σ = 1.

Finally, in oredr to show that Adomian series is a rapidly converging to the
exact solution process X(t). Figure 1, 2 present the plots of Φ1(t) and Φ2(t)
with the parameters α0 = 0, α1 = −0.1 and σ = 1.

t X(t) Φ1(t) Φ2(t) | Φ1(t)−X(t) | | Φ2(t)−X(t) |
0.01 -0.0687 -0.0687 -0.0687 0 0
0.02 -0.1200 -0.1201 -0.1200 0.0001 0
0.03 -0.2200 -0.2202 -0.2200 0.0002 0.0000
0.04 -0.1839 -0.1843 -0.1839 0.0004 0.0000
0.05 -0.2270 -0.2276 -0.2270 0.0006 0.0000
0.06 -0.1945 -0.1953 -0.1945 0.0008 0.0000
0.07 -0.1122 -0.1133 -0.1122 0.0010 0.0000
0.08 -0.2993 -0.3005 -0.2993 0.0011 0.0000
0.09 -0.4628 -0.4642 -0.4628 0.0014 0.0000
0.1 -0.3329 -0.3348 -0.3329 0.0019 0.0000
0.2 -0.7238 -0.7309 -0.7237 0.0071 0.0000
0.3 -1.3394 -1.3562 -1.3393 0.0168 0.0002
0.4 -1.4366 -1.4678 -1.4362 0.0312 0.0004
0.5 -1.4988 -1.5432 -1.4980 0.0444 0.0008
0.6 -1.2293 -1.2878 -1.2281 0.0584 0.0013
0.7 -1.3498 -1.4212 -1.3479 0.0714 0.0019
0.8 -1.2432 -1.3276 -1.2405 0.0844 0.0027
0.9 -0.9772 -1.0726 -0.9736 0.0955 0.0036
1 -0.8250 -0.9292 -0.8204 0.1042 0.0046

Table 2: Absolut error of Φ1 and Φ2, with α0 = 0, α1 = −0.1, σ = 1,
h = 0.01.

6. Conclusion

In this paper we propose an extension of the ADM for solving linear SDE.
The numerical results for different values of parameters confirm the theoretical
results obtained and illustrate the powerful of this method. We use Matlab for
the computations associated with the section of numerical experiments in this
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Figure 1: Exact solution X and approximate solution Φ1 for α0 = 0,
α1 = −0.1, σ = 1, h = 0.01.

Figure 2: Exact solution X and approximate solution Φ2 for α0 = 0,
α1 = −0.1, σ = 1, h = 0.01.

work.
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