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1. Introduction

The dynamics of solitons in Kerr media are in gen-
eral described by the nonlinear Schrödinger (NLS)
family of equations with cubic nonlinear terms [1 – 5].
However, when the intensity of the incident light field
gets stranger and stranger, one can not neglect the
non-Kerr nonlinearity effects and NLS equations with
higher-order dispersion terms are needed to describe
the propagation of optical pulses in fibers [6, 7]. The
general higher-order nonlinear Schrödinger (HONLS)
equation models proposed in the literature are not com-
pletely integrable and cannot be exactly solved by the
inverse scattering transform method [8]. The noninte-
grability usually originates not only from the higher-
order nonlinear terms but also the higher dispersion
terms. The analytical and numerical solutions for the
NLS equations with higher nonlinearity and dispersion
have been actively investigated by many authors in sev-
eral different models [6 – 11].

In this paper we consider a higher-order NLS equa-
tion including fourth-order dispersion with a parabolic
nonlinearity law. This high dispersive cubic-quintic
nonlinear Schrödinger (HDCNS) equation can be writ-
ten in the form

iΨz =
β2

2
Ψtt + i

β3

6
Ψttt +

β4

24
Ψtttt −γ1|Ψ |2Ψ −γ2|Ψ |4Ψ ,

(1)
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with the initial condition

Ψ(t,0) = f (t),

where i =
√−1, Ψ(t,z) is the slowly varying enve-

lope of the electromagnetic field, t represents the time
(in the group-velocity frame), z represents the distance
along the direction of propagation (the longitudinal
coordinate), β2, β3 and β4 represent coefficients of
second-order dispersive (GVD), third-order dispersive
(TOD), fourth-order dispersive (FOD), respectively,
and γ1 and γ2 are coefficients of the cubic and quintic
nonlinearities, respectively. In [12] the modulational
instability of optical waves to (1) is investigated. For
picosecond light pulses, the higher-order terms of (1)
can be omitted, i.e., β3 = β4 = γ2 = 0, and (1) can
reduce to the NLS equation. The NLS equation in-
cluding only the GVD and the self-phase modulation
(SPM) is well known in the fiber, and it admits bright
and dark soliton-type pulse propagation in anomalous
and normal dispersion regimes, respectively. However,
for femtosecond light pulses, whose duration is shorter
than 100 fs, the higher-order terms are nonnegligible
and should be retained. When β3 = β4 = 0 in (1),
it was shown that the dark and bright solitary wave
solutions exist even in the normal dispersion regime.
Recently, dark and bright soliton solutions have been
proposed for (1) with third-order dispersion being nil
(β3 = 0) [13]. Besides, in the absence of the quintic
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nonlinear term (γ2 = 0) of (1), Shagalov [14] has inves-
tigated the effect of the third- and fourth-order disper-
sion terms on the modulational instability, and Karp-
man and Shagalov [15 – 16] have studied the time be-
havior of the amplitudes, velocities and other parame-
ters of radiating solitons.

For (1) with both the TOD and FOD and the cubic-
quintic nonlinear terms, an ordinary soliton moving
with constant velocity V0 (in application to the nonlin-
ear optical pulses having constant self-frequency shift)
has the form

Ψ = φ(z−z0 −V0t)exp(i[η(z−V0t)+σ t +ϕ0]), (2)

where V0 is a soliton velocity, η a soliton wave-number
and σ a nonlinear frequency shift. Arbitrary constants
z0 and ϕ0 will be omitted below for brevity. In particu-
lar, a solution with an amplitude that only depends on
the time and a phase only depending on the coordinate
in the direction of propagation such as [11]

Ψ = λ0 tanh(−V0t)exp(iηz),

where λ0,ν = −1/V0 and η are the parameters repre-
senting the amplitude, pulsewidth and wavevector per
unit length, respectively, is to be determined as

λ0 =
1
5

√
−15

γ2
(γ1 − β2√−β4/γ2

),

V0 = −3

√
−β2 + γ1

√−β4/γ2

15β4
,

η =
3(−β2 + γ1

√−β4/γ2)(3β2 + 2γ1
√−β4/γ2)

25β4
.

It is worthwhile to investigate the numerical solu-
tions (in particular soliton solutions) for the HDCNS
equation. In this paper, we aim to introduce a reli-
able algorithm, the Adomian decomposition method
(ADM), to approach (1) with initial profile. Until now,
several studies in the literature have been conducted to
implement ADM to the NLS equation [17 – 23]. ADM
is a numerical technique for solving a wide class of
linear or nonlinear, algebraic or ordinary/partial differ-
ential equations. The method, which is well addressed
in [24 – 26], has a useful attraction in that it provides
the solution as an infinite series in which each term can
be easily determined. The series is quickly convergent
towards an accurate solution. It has been proved to be
a competitive alternative to the Taylor series method

and other series techniques. Several papers deal with
the comparison of the ADM with some existing tech-
niques in solving different types of problems. In [27],
it was found that, unlike other series solution methods,
the decomposition method is easy to program in en-
gineering problems, and provides immediate and visi-
ble solution terms without linearization and discretiza-
tion. Advantages of the ADM over the Picard’s method
have been proved by Rach [28]. He showed that the
two methods are not the same and the Picard’s method
works only if the equation satisfies the Lipschitz con-
dition. Edwards et al. [29] have introduced their com-
parison of the ADM and Runge-Kutta methods for ap-
proximate solutions of some predator prey model equa-
tions. Wazwaz introduced a comparison between the
ADM and Taylor series method [30]; he showed that
the ADM minimizes the computational difficulties of
the Taylor series in that the components of the so-
lution are determined elegantly by using simple inte-
grals, although the Taylor series method provides the
same answer obtained by ADM. In [31] the ADM and
wavelet-Galerkin method is compared. From the com-
putational viewpoint, the comparison shows that the
ADM is efficient and easy to use. In [32], a compar-
ison of the numerical results is obtained by using the
B-spline finite element method and ADM. From the
results, the ADM algorithm provides highly accurate
numerical solutions without spatial discretizations for
the nonlinear partial differential equation. The illustra-
tions show that the ADM is numerically more accu-
rate than the conventional numerical method of the fi-
nite element. Subsequent works in this direction have
demonstrated the power of the method for numerical
evaluations.

2. The Method of Solution

This section is devoted to review the ADM for solv-
ing the HDCNS equation with the initial condition
Ψ(t,0) = f (t). Following the Adomian decomposition
analysis, we rewrite (1) in the following operator form:

LzΨ = −i
β2

2
L2,tΨ +

β3

6
L3,tΨ − i

β4

24
L4,tΨ

+ γ1|Ψ |2Ψ + γ2|Ψ |4Ψ .
(3)

Similar to [17 – 19], we define for (1) the linear op-

erators Lz ≡ ∂
∂z

,L2,t ≡ ∂2

∂t2
,L3,t ≡ ∂3

∂t3
and L4,t ≡ ∂4

∂t4
.

By defining the onefold right-inverse operator L−1
z ≡
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0 (·)dz, we find that

Ψ(t,z) = Ψ(t,0)+ L−1
z [−i

β2

2
L2,tΨ +

β3

6
L3,tΨ

− i
β4

24
L4,tΨ + γ1|Ψ |2Ψ + γ2|Ψ |4Ψ ].

(4)

Therefore

Ψ(t,z) = f (t)+ L−1
z [−i

β2

2
L2,tΨ +

β3

6
L3,tΨ

− i
β4

24
L4,tΨ + γ1G1(Ψ)+ γ2G2(Ψ)].

(5)

The decomposition method suggests that the linear
terms Ψ (t,z) be decomposed by an infinite series of
components

Ψ(t,z) =
∞

∑
n=0

Ψn(t,z), (6)

where the components Ψ0,Ψ1,Ψ2, . . ., as will be seen
later, are to be determined individually in an easy way
through a recursive relation that involves simple inte-
grals. The nonlinear operators G1(t,z) and G2(t,z) are
defined by the infinite series

Gi(Ψ ) =
∞

∑
n=0

Ai,n, i = 1,2. (7)

That means that the nonlinear terms |Ψ |2Ψ and |Ψ |4Ψ
are represented series of Ai,n, (i = 1,2) which are called
Adomian polynomials. In next Ψn(t,z), (n ≥ 0) is the
component ofΨ(t,z) that will elegantly be determined.
Hence, upon substituting these decomposition series
into (5) yields

∞

∑
n=0

Ψn(t,z) = f (t)

−
[

i
β2

2

∞

∑
n=0

L−1
z L2,tΨn(t,z)+

β3

6

∞

∑
n=0

L−1
z L3,tΨn(t,z)

− i
β4

24

∞

∑
n=0

L−1
z L4,tΨn(t,z)+ γ1

∞

∑
n=0

A1,n + γ2

∞

∑
n=0

A2,n

]
.

(8)

The method suggests that the zeroth component Ψ0 is
usually defined as the terms arising from initial condi-
tions. Then we obtain the components series solution
by the following recursive relationship:

Ψ0(t,0) = f (t), (9)

Ψn+1 = L−1
z

[
− i

β2

2
L2,tΨn +

β3

6
L3,tΨn

− i
β4

24
L4,tΨn + γ1A1,n + γ2A2,n

]
,

(10)

where n ≥ 0.
The Adomian polynomials Ai,n can be generated for

all forms of nonlinearity which are generated accord-
ing to the following algorithm:

Ai,n =
1
n!

[
dn

dαn Gi

(
n

∑
k=0

αkΨk

)]
α=0

, n ≥ 0. (11)

This formula is easy to be set in a computer code to
get as many polynomials as we need in the calculation.
We can give the first few Adomian polynomials of the
Ai,n as

A1,0 = |Ψ0|2Ψ0,

A1,1 = 2|Ψ0|2Ψ1 +Ψ2
0 Ψ̄1,

A1,2 = 2|Ψ0|2Ψ2 +Ψ̄0Ψ 2
1 + 2|Ψ1|2Ψ0 +Ψ2

0 Ψ̄2,

A1,3 = 2|Ψ0|2Ψ3 + 2Ψ̄0Ψ1Ψ2 + 2Ψ0Ψ̄1Ψ2

+ |Ψ1|2Ψ1 + 2Ψ0Ψ1Ψ̄2 +Ψ2
0 Ψ̄3,

A1,4 = 2Ψ 2
0 Ψ̄4 + 2Ψ̄0Ψ1Ψ3 + |Ψ2|2Ψ̄0

+ 2Ψ0Ψ̄1Ψ3 + 2|Ψ1|2Ψ2 + 2|Ψ2|2Ψ0

+Ψ2
1 Ψ̄2 + 2Ψ0Ψ1Ψ̄3 +Ψ2

0 Ψ̄4,

A2,0 = |Ψ0|4Ψ0,

A2,1 = 3|Ψ0|4Ψ1 + 2|Ψ0|2Ψ2
0 Ψ̄1,

A2,2 = 3|Ψ0|2Ψ̄0Ψ 2
1 + 6|Ψ0|2Ψ0|Ψ1|2

+ 3|Ψ0|4Ψ2 +Ψ3
0 Ψ̄2

1 + 2|Ψ0|2Ψ2
0 Ψ̄2,

A2,3 = Ψ 3
1 Ψ̄ 2

0 + 6|Ψ0|2|Ψ1|2Ψ1 + 6|Ψ0|2Ψ̄0Ψ1Ψ2

+ 3Ψ2
0 |Ψ1|2Ψ̄1 + 6|Ψ0|2Ψ0Ψ2Ψ̄1

+ 6|Ψ0|2Ψ0Ψ1Ψ̄2 + 3|Ψ0|4Ψ3

+ 2Ψ3
0 Ψ̄1Ψ̄2 + 2|Ψ0|2Ψ2

0 Ψ̄3,

A2,4 = 3Ψ0|Ψ1|4 + 6|Ψ0|2Ψ2
1 Ψ̄2 + 3|Ψ0|2Ψ̄0Ψ2

2

+ 6|Ψ0|2Ψ̄0Ψ1Ψ3 + 6Ψ2
0 |Ψ1|2Ψ̄2

+ 6|Ψ0|2Ψ0Ψ3Ψ̄1 + 6|Ψ0|2Ψ0|Ψ2|2
+ 6|Ψ0|2Ψ0Ψ1Ψ̄3 + 3Ψ2

1 Ψ̄2
0 Ψ2

+ 2|Ψ1|2Ψ2
1 Ψ̄0 + 3Ψ2

0 Ψ̄ 2
1 Ψ2

+ 3|Ψ0|4Ψ4 +Ψ3
0 Ψ̄2

2

+ 2Ψ3
0 Ψ̄1Ψ̄3 + 2|Ψ0|2Ψ2

0 Ψ̄4

+ 12|Ψ0|2|Ψ1|2Ψ2. (12)
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The rest of the polynomials can be constructed in a
similar manner. In case the nonlinear terms G1(Ψ) =
|Ψ |2Ψ and G2(Ψ) = |Ψ |4Ψ are real functions then the
Adomian polynomials are evaluated by first writing

|Ψ | = Ψ |H(Ψ)−H(−Ψ)|, (13)

where H(u) is the Heaviside (step) function. Hence,
(13) yields

G1(Ψ ) = |Ψ |2Ψ = Ψ3[H(Ψ)−H(−Ψ)]2,

G2(Ψ ) = |Ψ |4Ψ = Ψ5[H(Ψ)−H(−Ψ)]2.
(14)

Therefore,

G1(Ψ ) =
∞

∑
n=0

[H(Ψ )−H(−Ψ)]2A′
1,n{Ψ3},

G2(Ψ ) =
∞

∑
n=0

[H(Ψ )−H(−Ψ)]2A′
2,n{Ψ5},

(15)

where A′
1,n{Ψ3} and A′

2,n{Ψ5} are the Adomian poly-
nomials given by

A′
1,0 = Ψ3

0 , A1,1 = 3Ψ 2
0 Ψ1,

A′
1,2 = 3Ψ 2

0 Ψ2 + 3Ψ0Ψ 2
1 ,

A′
1,3 = 3Ψ 2

0 Ψ3 + 6Ψ0Ψ1Ψ2 +Ψ3
1 ,

A′
1,4 = 3Ψ 2

0 Ψ4 + 6Ψ0Ψ1Ψ3 + 3Ψ2
1 Ψ2 + 3Ψ2

2 Ψ0,

A′
2,0 = Ψ5

0 , A2,1 = 5Ψ 4
0 Ψ1,

A′
2,2 = 10Ψ3

0 Ψ2
1 + 5Ψ4

0 Ψ2,

A′
2,3 = 10Ψ3

1 Ψ2
0 + 20Ψ3

0 Ψ2Ψ1 + 5Ψ4
0 Ψ3,

A′
2,4 = 5Ψ0Ψ4

1 + 30Ψ2
0 Ψ2

1 Ψ2 + 10Ψ3
0 Ψ2

2

+ 20Ψ3
0 Ψ1Ψ3 + 5Ψ4

0 Ψ4. (16)

The function Gi(Ψ ), (i = 1,2) is piecewise-different-

iablel with a singularity at the origin. Since [H(Ψ )−
H(−Ψ)]2 = 1 for Ψ 
= 0, it follows from (14) that, if

we avoid the origin, then G1(Ψ) = Ψ3 =
∞
∑

n=0
A′

1,n and

G2(Ψ) = Ψ5 =
∞
∑

n=0
A′

2,n.

3. Exemplification of the ADM

We first consider the application of the decomposi-
tion method to the HDCNS equation with the initial
condition

Ψ(t,0) =

λ sech

(
−
√

β4λ 2(5γ2λ 2 −6γ1)
3β 2

3 + 6β2β4
t

)
exp(−i

β3

β4
t),

(17)

where β2,β3,β4,γ1,γ2 and λ are arbitrary constants.
Applying the inverse operator L−1

z on both sides
of (3) and using the initial condition (17) and the de-
composition series (6) and (7) yields

∞

∑
n=0

Ψn(t,z) =

λ sech

(
−
√

β4λ 2(5γ2λ 2 −6γ1)
3β 2

3 + 6β2β4
t

)
exp(−i

β3

β4
t)

−
[

i
β2

2

∞

∑
n=0

L−1
z L2,tΨn(t,z)+

β3

6

∞

∑
n=0

L−1
z L3,tΨn(t,z)

−i
β4

24

∞

∑
n=0

L−1
z L4,tΨn(t,z)+ γ1

∞

∑
n=0

A1,n + γ2

∞

∑
n=0

A2,n

]
.

(18)

For simpleness, we take ω = [β4λ 2(5γ2λ 2 − 6γ1)/
(3β 2

3 + 6β2β4)]1/2 in the following. Proceeding as be-
fore, the Adomian decomposition method gives the re-
currence relation

Ψ0 = Ψ (t,0) = λ sech(−ωt)exp(−i
β3

β4
t), (19)

Ψn+1(t,z) = L−1
z

[
− i

β2

2
L2,tΨn +

β3

6
L3,tΨn − i

β4

24
L4,tΨn + γ1A1,n + γ2A2,n

]
, (20)

where n ≥ 0. The resulting components are

Ψ0 = λ sech(ωt)exp(−i
β3

β4
t),

Ψ1 = L−1
z [−i

β2

2
L2,tΨ0 +

β3

6
L3,tΨ0 − i

β4

24
L4,tΨ0 + γ1A1,0 + γ2A2,0] =

zλ
24cosh(ωt)2β 3

4

· [i(3β 4
3 +12β2β 2

3 β4−β 4
4 ω4−12β2ω2β 3

4 −6β 2
3 ω2β 2

4 )cosh(ωt)+(24β3ωβ 2
4 β2+8β 3

3 ωβ4)sinh(ωt)]exp(−i
β3

β4
t),



X.-J. Lai et al. · ADM for the High-Order Dispersive Cubic-Quintic Nonlinear Schrödinger Equation 209

Ψ2 = L−1
z [−i

β2

2
L2,tΨ1 +

β3

6
L3,tΨ1 − i

β4

24
L4,tΨ1 + γ1A1,1 + γ2A2,1] = − z2λ

1152cosh(ωt)3β 6
4

· [(β 8
4 ω8 + 120β2ω4β 2

3 β 5
4 + 144β 2

2 β 4
3 β 2

4 −100β 6
3 ω2β 2

4 −864β 2
2 β 2

3 β 4
4 ω2 + 144β 2

2 ω4β 6
4 + 72β2β 6

3 β4

− 600β 4
3 β2ω2β 3

4 + 24β 7
4 β2ω6 + 12ω6β 2

3 β 6
4 + 30β 4

3 ω4β 4
4 + 9β 8

3 )cosh(ωt)2

+ i(576β 2
2 ω3β3β 5

4 + 16β 3
3 ω5β 5

4 + 48β2ω5β3β 6
4 + 480β2β 3

3 ω3β 4
4 + 96β 5

3 ω3β 3
4 −48β 7

3 ωβ4 −336β2β 5
3 ωβ 2

4

−576β 2
2 ωβ 3

3 β 3
4 )sinh(ωt)cosh(ωt)+ 1152β 2

2 β 2
3 β 4

4 ω2 + 128β 6
3 ω2β 2

4 + 768β 4
3 β2ω2β 3

4 ]exp(−i
β3

β4
t),

Ψ3 = L−1
z [−i

β2

2
L2,tΨ1 +

β3

6
L3,tΨ2 − i

β4

24
L4,tΨ2 + γ1A1,2 + γ2A2,2] = − z3λ

82944cosh(ωt)4β 9
4

· [i(−1728β 3
2 ω6β 9

4 + 84β 6
3 ω6β 6

4 + 27β 12
3 −99β 4

3 β 8
4 ω8 + 1296β 8

3 β 2
2 β 2

4 + 1449β 8
3 ω4β 4

4 −25920β 4
3 ω2β 5

4 β 3
2

− 24192β 6
3 ω2β 4

4 β 2
2 + 30240β 4

3 ω4β 6
4 β 2

2 + 324β 10
3 β2β4 −738β 10

3 ω2β 2
4 + 1728β 3

2 β 6
3 β 3

4 −396ω8β 2
3 β 9

4 β2

− 432β 2
2 ω8β 10

4 + 25920β 2
3 ω4β 7

4 β 3
2 + 504β 4

3 ω6β 7
4 β2 + 11592β 6

3 ω4β 5
4 β2 −36β2ω10β 11

4 −β 12
4 ω12

−18ω10β 2
3 β 10

4 − 7380β 8
3 ω2β 3

4 β2)cosh(ωt)3

+ (1728β3ω7β 9
4 β 2

2 + 10368β3ω5β 8
4 β 3

2 + 12096β 3
3 ω5β 7

4 β 2
2 + 10368β 5

3 ωβ 4
4 β 3

2 + 5040β 5
3 ω5β 6

4 β2

+ 1440β 3
3 ω7β 8

4 β2 + 288β 5
3 ω7β 7

4 + 720β 7
3 ω5β 5

4 −1376β 9
3 ω3β 3

4 + 216β 11
3 ωβ4 + 8640β 7

3 ωβ 3
4 β 2

2

+ 72β3ω9β 10
4 β2 −36288β 5

3 ω3β 5
4 β 2

2 −12384β 7
3 ω3β 4

4 β2 −34560β 3
3 ω3β 6

4 β 3
2 + 2376β 9

3 ωβ 2
4 β2

+ 24β 3
3 ω9β 9

4 )sinh(ωt)cosh(ωt)2

+ i(−2304β 4
3 ω6β 7

4 β2 −2304β 8
3 ω4β 4

4 −3456β 2
3 ω6β 8

4 β 2
2 + 41472β 4

3 ω2β 5
4 β 3

2 −48384β 4
3 ω4β 6

4 β 2
2

+ 1152β 10
3 ω2β 2

4 −384β 6
3 ω6β 6

4 + 38016β 6
3 ω2β 4

4 β 2
2 −41472β 2

3 ω4β 7
4 β 3

2 + 11520β 8
3 ω2β 3

4 β2

− 18432β 6
3 ω4β 5

4 β2)cosh(ωt)+ (82944β 5
3 ω3β 5

4 β 2
2 + 27648β 7

3 ω3β 4
4 β2 + 3072β 9

3 ω3β 3
4

+ 82944β 3
3 ω3β 6

4 β 3
2 )sinh(ωt)]exp(−i

β3

β4
t),

. . . . . . . (21)

The other components of the decomposition series (6) can be determined in a similar way. Substituting (21) into
the decomposition series (6), which is a Taylor series, we obtain the closed form solution

Ψ = Ψ0 +Ψ1 +Ψ2 +Ψ3 +Ψ4 + . . . = λ sech

[
β3ω(3β2β4 + β 2

3 )
3β 2

4

z−ωt

]
exp

[
i(Kz− β3

β4
t)
]
, (22)

or equivalently

Ψ =
2λ exp[(Kz−β3t/β4)i+(β3ω(3β2β4 + β 2

3 )z/3β 2
4 −ωt)]

1+ exp[β3ω(3β2β4 + β 2
3 )z/3β 2

4 −ωt]2
, (23)

with

ω =

√
β4λ 2(5γ2λ 2 −6γ1)

3β 2
3 + 6β2β4

, K =
3β 4

3 −6ω2β 2
3 β 2

4 + 12β2β 2
3 β4 −12β2ω2β 3

4 −β 4
4 ω4

24β 3
4

, (24)

where β2,β3,β4,γ1,γ2 and λ are arbitrary constants.
From these values of the pulse parameters, it is simple to see that both the amplitude and the width of the

soliton are uniquely determined from the characteristics of the nonlinear medium, i.e. the second- and fourth-
order dispersion coefficients and the two nonlinear coefficients.
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For comparison, we consider another initial condition of (1) as

Ψ(t,0) =

√
−2γ1

5γ2
[JacobiSN(−ϖt,m)+ JacobiCN(−ϖt,m)]exp(−i

β3

β4
t) (25)

with ϖ =
√

(12β2β4 + 6β 2
3 )/(10β 2

4 −5β 2
4 m2), where JacobiSN(−ϖt,m) and JacobiCN(−ϖt,m) are the Jaco-

bian elliptic sine function and cosine function. They are periodic with period 2K(m), where K(m), K(m) =∫ π/2
0 dx/

√
1−m2 sin2 x, is the complete elliptic integral of the first kind, β2,β3 and β4 are arbitrary constants,

and the coefficients γ1,γ2 must have opposite signs (γ1γ2 < 0).
Rewriting (1) for initial condition (25) in a operator form as (3), then using (9) and (10) with (11), one can

construct the terms of the decomposition series. Some of the terms of the series are as follows:

Ψ0 =

√
−2γ1

5γ2
[JacobiSN(−ϖt,m)+ JacobiCN(−ϖt,m)]exp(−i

β3

β4
t),

Ψ1(t,z) =
∫ z

0
[−i

β2

2
L2,tΨ0 +

β3

6
L3,tΨ0 − i

β4

24
L4,tΨ0 + γ1A1,0 + γ2A2,0], . . . ,

Ψn+1(t,z) =
∫ z

0
[−i

β2

2
L2,tΨn +

β3

6
L3,tΨn − i

β4

24
L4,tΨn + γ1A1,n + γ2A2,n], (26)

where n ≥ 1, and the Adomian polynomials Ai,n, (i = 1,2) are the same as in the formulae (11). Performing the
calculations in (26) with (11) using Maple and substituting them into (6) give the exact solution

Ψ(t,z) =

√
−2γ1

5γ2
[JacobiSN(kz−ϖt,m)+ JacobiCN(kz−ϖt,m)]exp[i(Kz−Ω t)] (27)

with

Ω =
β3

β4
, k =

β3ϖ(3β2β4 + β 2
3 )

3β 2
4

(28)

and

ϖ =

√
12β2β4 + 6β 2

3

10β 2
4 −5β 2

4 m2
, K =

−3β 4
3 + ϖ2(9β 4

4 ϖ2m4 + 10β 2
3 β 2

4 −5β 2
3 β 2

4 m2 + 9β 4
4 ϖ2 −9β 4

4 ϖ2m2)
24β 3

4

, (29)

where β2, β3, β4, γ1 and γ2 are arbitrary constants.
When m = 1, the solution (27) degenerates to

Ψ(t,z) =

√
−2γ1

5γ2
[sech(kz−ϖt)+ tanh(kz−ϖt)]exp(iKz− iΩ t) (30)

with (28) and

K = −3β 4
3 −9β 4

4 ϖ4 −5ϖ2β 2
3 β 2

4

24β 3
4

, ϖ =

√
12β2β4 + 6β 2

3

5β 2
4

. (31)

In fact, we also obtain the result (30) from the initial condition

Ψ(t,0) = −
√
−2γ1

5γ2

[exp(2ϖt)−1−2exp(ϖt)]
[exp(2ϖx)+ 1]

exp(−i
β3

β4
t),ϖ =

√
12β2β4 + 6β 2

3

5β 2
4

. (32)

It is obvious from the above expression that the coefficients must be satisfy the restriction β 2
3 ≥−2β2β4.
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LE Fig. 1. (a) – (d) The module graphs of the exact (point) re-
sult (22) |Ψ | and approximate (line) result |ϕn| with the ini-
tial condition (17) at (a) N = 5, z = 1; (b) N = 10, z = 1;
(c) N = 20, z = 1; (d) N = 30, z = 1. (e) The surface shows
the module of numerical result ϕ30 for −6.7 ≤ t ≤ 6.7 and
−0.7 ≤ z ≤ 0.7.

4. Numerical Results of the ADM

For numerical comparisons purposes, we construct
the solution Ψ(t,z) as

Ψ(t,z) = lim
N→∞

ϕN , (33)

where ϕN(t,z), the N-term approximation for Ψ(t,z),
is a finite series defined as

ϕN(t,z) =
N−1

∑
n=0

Ψn(t,z), N ≥ 1 (34)

and the recurrence relation is given as in (10) with (11).
It is worth pointing out that the advantage of the de-
composition methodology is the fast convergence of

Table 1. Numerical results (in z direction) for modules of
exact result |Ψ(t,z)|, approximate result |ϕ30(t,z)|, and ab-
solute error |Ψ(t,z)−ϕ30(t,z)|, where Ψ(t,z) = sech( 4

3 z−
t)exp[i(− z

6 − t)] for (1).

(ti,zi) Exact Approximate Absolute
solution |Ψ | solution |ϕ30| error |Ψ −ϕ30|

(0.01, 0.01) 0.9999944440 0.9999944447 7.000000E−10
(0.02, 0.02) 0.9999777785 0.9999777775 1.000000E−9
(0.02, 0.03) 0.9998000330 0.9998000336 6.000000E−10
(0.03, 0.04) 0.9997278391 0.9997278396 5.000000E−10
(0.05, 0.05) 0.9998611273 0.9998611270 3.000000E−10
(0.04, 0.01) 0.9996445494 0.9996445491 3.000000E−10
(0.05, 0.02) 0.9997278391 0.9997278388 3.000000E−10
(0.04, 0.03) 1.0000000000 0.9999999995 5.000000E−10
(0.05, 0.04) 0.9999944440 0.9999944450 1.000000E−9
(0.05, 0.05) 0.9998611273 0.9998611274 1.000000E−10
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Fig. 2. (a) – (c) The module graphs of the exact (point) result (27) |Ψ | and approximate (line) result |ϕn| with the initial

condition (25) at (a) N = 4, z = 2; (b) N = 7, z = 2; (c) N = 11, z = 2, respectively, where m =
√

2
2 . (d) The surface shows the

module of numerical result |ϕ11| with the initial condition (25) and m =
√

2
2 for −6 ≤ t ≤ 6 and −2 ≤ z ≤ 2.
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Fig. 3. (a) The module graph of the exact (point) result (30) |Ψ | and approximate (line) result |ϕ11| with the initial con-
dition (32), where z = 0.2. (b) The surface shows the module of numerical solution |ϕ11| of (1) for −6.7 ≤ t ≤ 6.7 and
−0.7 ≤ z ≤ 0.7.

the solutions in real physical problems [24]. The theo-
retical treatment of convergence of the decomposition

method has been considered in the literature [24 – 26].
The obtained results about the speed of convergence of
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Table 2. Numerical results (in z direction) for modules of absolute error |Ψ(t,z) − ϕ30(t,z)|, where Ψ(t,z) =[
JacobiSN

(
11
24 z− t,

√
2

2

)
+ JacobiCN

(
11
24 z− t,

√
2

2

)]
exp
(

i 15
32 z− it

)
for (1).

zi
ti 0.01 0.02 0.03 0.04 0.05

0.01 1.0000E−10 2.0000E−10 1.0000E−9 1.0000E−9 0.0000E+00
0.02 1.0000E−10 9.0000E−10 1.1000E−9 7.1000E−10 0.0000E+00
0.03 5.0000E−10 7.0000E−10 6.0000E−10 4.0000E−10 1.2000E−9
0.04 4.0000E−10 4.0000E−10 7.0000E−10 1.0000E−10 1.0000E−10
0.05 5.0000E−10 3.0000E−10 0.0000E+00 3.0000E−10 0.0000E+00

this method were enabling us to solve linear and non-
linear functional equations. In a recent work Ngarhasta
et al. [33] have proposed a new approach of conver-
gence of the decomposition series. The authors have
given a new condition for obtaining convergence of
the decomposition series to the classical presentation
of the ADM.

Moreover, as the decomposition method does not re-
quire discretization of the variables time and space, it is
not effected by computation round off errors and one is
not faced with the necessity of large computer memory
and time. The accuracy of the decomposition method
for (1) is controllable and absolute errors |Ψ −ϕN | are
very small with the present choice of t and z which are
given in Tables 1 and 2. In most cases ϕN is accurate
for quite low values of N. For initial condition (25),
we achieve a very good approximation to the partial
exact solution by using only 11 terms of the decom-
position series, which shows that the speed of con-
vergence of this method is very fast. It is evident that
the overall errors can be made smaller by adding new
terms of the decomposition series. Both the exact re-
sults and the approximate solutions obtained by using
the formulae (33) with (34) are plotted in Figs. 1, 2
and 3 for (1) with different initial conditions (17), (25)
and (32), respectively. It is evident that when comput-
ing more terms for the decomposition series the numer-
ical results are getting much more closer to the cor-
responding exact solutions with the initial conditions
of (1).

5. Conclusion

In this paper, we considered a numerical treatment
for the solution of the HDCNS equation using the
ADM. To the best of our knowledge, this is the first
result on the application of the ADM to this equation.
This method transforms (1) into a recursive relation.

The obtained numerical results compared with the
analytical solution show that the method provides re-

markable accuracy especially for small values of the
space z. Generally speaking, the ADM provides an-
alytic, verifiable, rapidly convergent approximation
which yields insight into the character and the behav-
ior of the solution just as in the closed form solution. It
solves nonlinear problems without requiring lineariza-
tion, perturbation, or unjustified assumptions which
may change the problem being solved. The method can
also easyly be extended to other similar physical equa-
tions, with the aid of Maple (or Matlab, Mathematica,
etc.), the course of solving nonlinear evaluation equa-
tions can be carried out in a computer.

As we known, although the decomposition series (6)
obtained by using ADM is infinite, we often replace the
exact solution with a finite series

ϕN(t,z) =
N−1

∑
n=0

Ψn(t,z),

which is quickly convergent towards the accurate so-
lution for quite low values of N. On this account,
there is a common phenomenon in the related liter-
ature [24 – 32]. It can easily be noted, that no matter
whether the examples are from the related literature or
from this paper, the space or time variables in the pic-
tures are all taken in small scales. Since the Taylor se-
ries method provides the same answer obtained by the
ADM, we can proceed from the nature of the Taylor
series [34, 35] to study this phenomenon. The Taylor
series expansion of the function Ψ(t,z) about z = z0 is
given by

Ψ(t,z) =
∞

∑
n=0

Ψ (n)(t,z0)
n!

(z− z0)n, (35)

or, equivalently

Ψ (t,z)=
N−1

∑
n=0

Ψ (n)(t,z0)
n!

(z−z0)n +RN−1, N ≥ 1. (36)

Here, RN−1 is a remainder term known as the Lagrange
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Fig. 4. The module graph of the exact (point) result (22) |Ψ | and approximate (line) result |ϕ3| with the initial condition (17)
of (1) at different values of z.
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Fig. 5. The module graphs of the exact (point) result (22) |Ψ | and approximate (line) result |ϕ5| with the initial condition (17)
at different values of t.

remainder, which is given by

RN−1 =
∫

. . .
∫ z

z0︸ ︷︷ ︸
N

Ψ (N)(t,z)(dz)N

=
(z− z0)N

(N)!
Ψ (N)(z∗), z∗ ∈ [z0,z].

(37)

As we known, the decomposition series (6) is exactly
a Taylor series of exact solution Ψ about a point z = 0,
that is

ϕN =
N−1

∑
n=0

Ψn(t,z) =
N−1

∑
n=0

Ψ (n)(t,0)
n!

zn, N ≥ 1.

Then the remainder term RN−1, i.e. the error between
analytical and approximate solutions, is

RN−1 = Ψ −
N−1

∑
n=0

Ψ (n)(t,0)
n!

zn = Ψ −ϕN

=
∫

. . .
∫ z

0︸ ︷︷ ︸
N

Ψ (N)(t,z)(dz)N =
(z)N

N!
Ψ (N)(z∗),

z∗ ∈ [0,z], N ≥ 1 (38)

which can be obtained by using the mean-value theo-
rem. From the formula above, we know that the greater
the fetching value of |z| (z is farther and farther from
the point z = 0) is, the greater is the error RN−1 (see
Fig. 4), although the approximated solution can be cal-
culated for any t and z. Nearing zero for z, the approxi-
mate solution is almost according to the exact solution
at any value of time t (see Fig. 5). From Figs. 1 – 5 one
might find out that both the term number N and the
value of z influence the approximation precision of the
numerical solution (34) for the corresponding exact so-
lution of the HDCNS equation, whereas time t has only
a little effect on this.
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