
Adopting a Social Network Perspective in Global Software Development

Christina Manteli

Dept of Computer Science
VU University Amsterdam

Amsterdam, The Netherlands
Email: cmanteli@cs.vu.nl

Hans van Vliet

Dept of Computer Science
VU University Amsterdam

Amsterdam, The Netherlands
Email: hans@cs.vu.nl

Bart van den Hooff

Faculty of Economics and Business Administration
VU University Amsterdam

Amsterdam, The Netherlands
Email: bhooff@feweb.vu.nl

Abstract—In the past few years, software engineering re-
searchers have adopted social network analysis techniques to
understand collaboration patterns in global software teams. In
this paper, we investigate current research in global software
development where social network theory is used as an analysis
technique. We do so through a systematic literature review
where we collect and analyze previous work that adopt a social
network perspective in distributed software development. We
use the 3C collaboration model to classify our results based
on the communication, coordination and cooperation aspects
of global networks. Our results reveal two main coordination
structures used in distributed teams, namely the clustering and
the core-periphery structure. The analysis of the cooperation
activities of the global networks reveal differences between
planning and practice. Finally, several tools have been identified
that aim to improve communication patterns among distributed
team members.

Keywords-global software development; social network anal-
ysis; distributed teams;

I. INTRODUCTION

In the past few years, software engineering researchers

started to adopt social network analysis (SNA) techniques to

understand collaboration patterns in global software teams

[1]. According to [2], SNA can be used to reveal collabora-

tion patterns that go beyond the organizational charts and the

project planning. Additionally, a social network perspective

can help locate expertise, raise communities of practice,

promote knowledge sharing, and improve strategic decision

making across distributed teams [3]. In previous research,

social network analysis has been used to help organizations

reveal hidden issues among the global software teams [1].

In this paper, we investigate current research in global

software development (GSD) where social network theory

is used as an analysis technique. We do so through a

systematic literature review study where we collect and an-

alyze previous work that adopt a social network perspective

in distributed software development. We explore the new

insights that both academics and practitioners can gain, by

investigating the collaboration of distributed teams in GSD

with the use of social network analysis techniques.

The results reveal new aspects in the coordination, co-

operation and communication patterns of the remote team

members and the impact of these structures to the team

awareness and collaboration. The “default” assumption is

that remote teams by and large operate independently. The

work is coordinated per site; team members communicate a

lot with other team members at the same site, and fairly

little with team members at another site. The coordina-

tion between sites is delegated to special intermediaries,

variously known as boundary spanners or brokers. Social

network analysis research in global software development

reveals interesting new patterns: the core-periphery structure

and the appearance of emergent team members. In a core-

periphery structure, people in the core – irrespective of site

boundaries – interact frequently with each other, and much

less so with team members at the periphery. Emergent team

members can be people that are not officially part of the

team, but yet heavily participate in the team communication,

or people that take on the role of boundary spanner or broker

unofficially. In both cases, social network analysis reveals

the actual collaboration, as opposed to the one from the

organization charts.

In the following section, we provide a theoretical back-

ground on the benefits of using SNA in global development

environments (Section II). Sections III and IV present our

research approach in conducting a systematic literature re-

view and the results of this study. In section V we present

the analysis of the results and we conclude in section VI

with suggestions for future research in the particular area.

II. SOCIAL NETWORK ANALYSIS IN GLOBAL SOFTWARE

DEVELOPMENT

Social network analysis provides a systematic way of

analyzing informal networks by mapping and assessing the

relationships between people, teams or organizations [4].

According to [5], an important attribute of SNA is that the

relationships between the actors of a network are viewed

as interdependent rather than as autonomous units. From

a knowledge management perspective, in social network

analysis the relationships between the actors are the chan-

nels through which communication occurs and information

“flows” [5]. For example, previous research suggests that

people connected with strong ties, through which a broad

set of knowledge flows, are more likely to trigger creative

ideas [6]. Cross et. al [4] apply social network analysis to

2012 IEEE Seventh International Conference on Global Software Engineering

978-0-7695-4787-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICGSE.2012.10

124

identify points of knowledge creation and sharing within an

organization that hold strategic relevance. Taking a social

network perspective to understand how a network of people

creates and shares knowledge, makes these interactions

within the network visible and as a consequence, related

actions and decisions can be taken [4].

The distributed nature of software development and the

use of computer-mediated channels for communication, are

particularly attractive for the use of social network analysis

to investigate software development activities [2]. An impor-

tant challenge among distributed teams in global software

environments is the aspect of awareness, or in other words,

to know who knows what, who works in which part of the

project and who is who in the remote teams [7]. In global

software development, awareness is defined as a means by

which team members become familiar with the work of their

colleagues, therefore enabling better coordination between

the distributed teams [8].

Figure 1: The 3C collaboration model (adopted from [9])

In the field of Computer-supported cooperative work

(CSCW), awareness is defined as the intermediate between

coordination, cooperation and communication (the 3C Col-

laboration model; see Figure 1) [9]. During communication

people negotiate and make decisions, while coordination

is the management of these people and their activities.

Cooperation is the joint operation in order to execute tasks.

Additionally, awareness is the element that offers feedback

to the team members about their actions and gives them

information about the other participants [10].

In this paper, we use the 3C model to examine how

distributed collaboration can be analyzed from a social

network perspective and what are the implications in team

awareness. We do so by reviewing current social network

approaches which focus on the coordination, cooperation

and communication structures of the distributed software

teams. We argue that a social network perspective can raise

new insights into the distributed collaboration and foster

team awareness of global software projects.

III. RESEARCH APPROACH

In order to investigate the potential benefits of a social

network perspective in GSD, we performed a systematic

literature review. According to [11], a systematic review is

a way to identify, evaluate and interpret previous research

on a particular topic, with specific research questions. In

this study, we investigate the current approaches to analyze

collaboration in global software development, from a social

network perspective.

To frame the research questions, we used the PICO

criteria, suggested by [12]. According to these criteria, a

research question should include a Population, an Inter-
vention, a Comparison, and an Outcome. In this research,

a Population is defined as the area of global software

development. The Intervention is the use of social network

analysis. The Comparison is the evaluation of the social

network analysis as an approach to tackle challenges in

global software development. And finally, the Outcome is the

analysis of the current practices of social network analysis

in global software development and the identification of the

new insights we can gain in the distributed collaboration,

by using a social network perspective. Therefore, the scope

of our systematic review focuses on the following research

questions:

1) Which aspects in global software development col-
laboration do the social network analysis approaches
address?

2) What new insights does social network analysis bring
to global software development collaboration?

A. Research Strategy

According to [11], when starting the search of primary

studies, a strategy should be used by defining the keywords,

the search query and the digital libraries used as a search

source. We have therefore defined a review protocol, based

on the research questions (Section III). The review protocol

that we used includes two main keywords, namely: global
software development and social network analysis . Based

on these search terms, we constructed a list of related

keywords, as shown in Table I.

Table I: Search Keywords

Main Terms Related Terms

Global Software Development
Global Software Engineering

Distributed Software Development
Distributed Teams

Social Network Analysis Social Networks

Based on the derived keywords, a search string was

constructed. We used the basic boolean operator OR to

broaden the search and retrieve papers containing any of the

terms it separates, and the boolean operator AND to narrow

125

the search and retrieve papers containing all of the terms it

separates.

(social networks OR social network analysis) AND
(global software development OR global software engineer-
ing OR distributed software development OR distributed
teams)

Finally, we applied the search string to the following

libraries, as we believe that they provide a confident source

for retrieving results in the particular field:

• IEEE Xplore Digital Library

• ACM Digital Library

• Elsevier ScienceDirect

• SpringerLink

• EBSCO

• Wiley Interscience

B. Study Selection

As part of the systematic literature review (SLR) research,

a study selection was performed in order to filter the results

and to make sure that we include only studies that contain

useful information for answering the research questions. For

this purpose, we have decided upon some inclusion and

exclusion criteria that will limit biased or irrelevant results.

Table II shows all the search criteria used during the study

selection.

Overall, we are looking for full text papers published in

english. We accept papers that describe primary studies,

and consequently we reject papers that are a secondary

source, that is studies that cite, comment on, or build

upon other researches. Additionally, a main inclusion criteria

refers to papers that they focus primarily to global soft-

ware development challenges. Therefore, we include papers

that use case studies of software development projects in

global/distributed environments.

The evaluation of the final papers to be selected is based

first on the relevance of the title of the paper. If the title

does not include any of the selected keywords, or it does

not clearly reflect the context of the paper, we look at the

abstracts which usually present a brief summary of the paper.

If no satisfied decisions can be made for the inclusion or

exclusion of the publication, based on the abstract then we

scan the full text of the paper (Figure 2). These steps were

done independently by two researchers. After the filtering

by abstracts and by full text, the results were compared and

the final papers for inclusion were selected.

IV. OVERVIEW OF THE RESULTS

By applying the search strategy described in the previous

section (III-A) we concluded in 23 primary studies, in total.

Given that we are only looking for primary studies in

global software development, and the dedicated attention in

IEEE Conferences on global software development (ICSE,

ICGSE), it is not a big surprise that there was a 56% accep-

tance rate from the IEEE results. The overall acceptance rate

Table II: Inclusion and Exclusion criteria

Inclusion criteria Exclusion criteria
Papers that are available online as
full texts.

Papers that are not available
online as full texts.

Papers that are written in English
language.

Papers written in any language
other than English.

Papers that describe primary stud-
ies.

Papers that are secondary
sources, i.e. studies that cite,
comment on, or build upon
other studies.

Studies that refer primarily to
global software development. We
include papers that use case studies
of software development projects
in global environments or other-
wise in a distributed manner. We
include case studies that refer to
development teams that are re-
motely located.

Studies that do not refer to
global software development
cases or distributed software
teams.

Studies that use a case study from
open source software development,
in order to address general global
software development issues.

Studies that use a case study
from open source projects, in
order to address issues in OSS
communities only, without tak-
ing into consideration the gen-
eral topic of global software
development.

Studies that use social network
analysis metrics and techniques or
studies that they take a qualitative
approach to social networks per-
spective.

Studies that they do not use so-
cial network analysis metrics
and techniques, but other ap-
proaches such as basic statisti-
cal analysis metrics and tech-
niques.
Studies that refer to the use
of social media applications
(such as Facebook, Twitter and
others).

Figure 2: Search Strategy

is calculated at 4% (23 accepted papers out of the 606 total

results). The total accepted papers are limited in number

due to the particular area in which this systematic literature

review study focuses and because of the definite research

questions that bound our inclusion criteria.

While applying the search query and filtering the results,

we identified the following categories of research papers:

1) Papers that address GSD challenges using a social net-

126

Table III: Results of primary papers per online source

Total Query
Results

Total Included
Papers

Acceptance
Rate

IEEE 16 9 56%
SpringerLink 123 2 2%
ACM 149 9 6%
ScienceDirect 121 0 0%
EBSCO 94 1 1%
Wiley 130 2 2%
Total 606 23 4%

work perspective and a case study from a commercial

software company.

2) Papers that address GSD challenges using a social

network perspective and a case study from open source

software company.

3) Papers that use a social network perspective to address

challenges in Open Source Software (OSS) commu-

nity.

4) Papers that use a social network perspective to address

challenges in virtual or distributed teams as a general

business issue, and they use a commercial or open

source GSD case study.

In the third category, we identified a number of studies

that use a social network perspective to address challenges

in OSS community. These case studies focus on the design

and development of open source software, rather than on

the collaboration of distributed teams. For this reason, we

choose to exclude this type of papers from our analysis

and include only those that explicitly center their attention

to global software teams and their collaboration, regardless

of the nature of the case study project (open source or

proprietary). We admit that, without an explicit link to global

software development, many of the issues we identify also

surface in publications on OSS.

Additionally, we look at the data collection methods

that the selected papers use for their case studies. One

of the most commonly used practices is to collect data

from surveys (48% of the selected papers use this ap-

proach). The researchers collect social network data by

conducting interviews with the participants or distributing

questionnaires. According to [5], this is the most common

method for collecting social network data (i.e. data about

the relationships or ties between people within a network),

where the questionnaire usually contains questions about

the respondents’ ties to the other people of the network.

The second most common data collection method that we

observed in our review is from mining various repositories

(35% of the selected papers use this approach). In this case,

data are collected either from communication repositories

such as emails and chat logs, or from software reposito-

ries such as change logs and defects libraries. During the

analysis, we recognized an essential difference between the

two data collection methods; studies that collect data from

mining repositories limit the social network participants to

the roles of software developers, testers and occasionally

architects and/or designers. The reason is that only team

members that appear in software documents can be traced as

network participants, when data are collected from mining

repositories. On the other hand, studies that collect social

network data through questionnaires are more broad in

the role participation, since more managerial roles of the

software development project can be taken into account

in the networks analysis, such as project managers, team

leaders and others. Finally, we found a small number of

papers that used other approaches such as experiments, or

a combination of two or more methods to collect data, e.g.

questionnaires, documents and observations.

V. ANALYSIS OF THE RESULTS

As discussed in section II, a popular model to analyze the

collaboration between distributed teams is the 3C collabora-

tion model, introduced in the CSCW field. In this research,

we use this model to classify whether the selected papers

from the systematic literature review, use SNA to tackle

challenges in GSD related to communication, coordination

and/or cooperation of the remote teams. We choose the 3C

model to classify the results because this theory fits the

global software development environments where distributed

teams need to remotely collaborate through communication,

cooperation and coordination activities, and where team

awareness remains a great challenge.

Table IV presents the classification of the 23 selected

primary studies, based on which aspect of the collaboration

model they focus on. In the following paragraphs, we ana-

lyze this selection and classification of the primary studies.

A. Coordination

In global software development, coordination among the

distributed teams is a challenge due to time, geographical

and cultural differences [16]. The difficulties of knowing

who to contact about what and communicating effectively

across sites, leads to a number of coordination problems

[35]. From the analysis, we observe that a social network

perspective can bring new insights into the coordination

issues in GSD. More specifically, we see that previous

researches use social network analysis to investigate the way

people are structured within the team and the role that they

play in the coordination of the remote groups. Summarizing

the results, we identified two main coordination patterns; the

core-periphery pattern and the clusters.

Core-Periphery: In a core-periphery structure, “a particu-
lar group of developers are at the center of the coordination
activities. The rest of the developers (in the periphery) seem
to rely solely on interactions with the centrally positioned de-
velopers, for coordinating their tasks.” [24]. Core-periphery

coordination indicates that there is a group of active and

interconnected members, independent of geographic location

127

Table IV: SLR Results based on the collaboration model

Coordination Cooperation Communication
Herbsleb & Mockus, 2003 [13] x
Damian et. al, 2007 [8] x x
Damian, Marczak & Kwan, 2007 [14] x
Damian, Kwan & Marczak, 2010 [15] x
Avritzer et. al, 2010 [16] x x
Urdangarin et. al, 2008 [17] x x x
Fonseca, de Souza & Redmiles, 2006 [18] x
Nguyen, Wolf & Damian, 2008 [19] x
Wolf, Nguyen & Damian, 2008 [20] x
Ehrlich & Chang, 2006 [21] x
Sarker, Kirkeby & Chakraborty, 2007 [22] x
de Souza, Hildenbrand & Redmiles, 2007 [23] x
Cataldo & Herbsleb, 2008 [24] x
Cataldo & Herbsleb, 2008 [25] x
Boden & Avram, 2009 [26] x
Mikawa, Cunnington & Gaskins, 2009 [27] x
Trainer, Al-Ani & Redmiles, 2011 [28] x
de Souza et. al, 2007 [29] x
Sarma et. al, 2009 [30] x
de Souza, Froehlich & Dourish, 2005 [31] x x
Chang & Ehrlich, 2007 [32] x x
Sarker et. al, 2011 [33] x
Milewski et. al, 2008 [34] x x

[19]. Figure 3a illustrates an example of the core-periphery

structure. This coordination structure appears to be in con-

tradiction with the current theory of global software devel-

opment where remote locations often work as independent

groups and there is less cohesion between the teams, due to

proximity. Furthermore, the core structure indicates a dense

network which in turn, suggests increased collaboration ties

and better awareness. A core-periphery structure may also

be related to better performance because such structures

hold the potential to improve the speed and flexibility with

which information diffuses within a group [36]. Finally, the

identification and analysis of such coordination structures

can help manage the dependencies between the work of

core members and that of their peripheral colleagues, and

vice versa [31].
Clusters: In this coordination pattern, the network is

divided in sub-groups (clusters) which are often based on

the geographic location of the teams [32]. Figure 3b illus-

trates an example of a networks of clusters. A coordination

structure of clusters appears to be more in line with the

current global software development theories, indicating that

members in co-located teams are more connected with each

other than they are with their remote colleagues [17]. This

coordination structure has a negative effect on the team

awareness, since members of a team don’t know their remote

colleagues, they don’t know who works on which part of the

project and they often don’t know where to find important

information, when it is needed. In order to overcome the

difficulties that a cluster coordination brings, literature sug-

gests the positioning of a “bridging” role between the remote

teams [34]. This intermediate role is the focus of attention of

several studies, described in various terms such as “boundary

spanners”, “brokers”, “liaisons”, “gatekeepers” and others.

Bridging is perceived as a good coordination strategy in the

management of distributed collaboration, facilitating team

awareness and knowledge management [26]. Bridging roles

are also important within a network because they cover the

structural holes that might exist between people within the

network, or between sub-groups. Global software collabora-

tion is, by its nature, a situation where structural holes may

emerge between groups that are geographically, temporally

and cultural distant [34]. Chang & Ehrlich [32] conclude that

“individuals who are more central can exert more influence
by virtue of being connected with other powerful individuals
in the network, and have access to more resources than less
central counterparts.”

Another role positioning that gains attention in the anal-

ysis of distributed collaboration, both in the core-periphery

and the cluster coordination pattern, is the “star” which is de-

fined as “the individual who stands in the center of attention”

[22]. According to previous studies, a star plays an essential

role in the team coordination because he/she is in the center

of a network of distributed teams, coordinating activities

across the various geographical locations and facilitating

knowledge transfer [22]. It was also observed that the role an

individual plays in the network can highly benefit his or her

performance, mainly because that person can have “ample
access to information, rather than controlling the flow of
information” [24]. Researching the role positioning of the

people that participate in a distributed software development

project can help us understand who are those individuals that

are more likely to coordinate the distributed activities, how

do they perform and what can be done to foster their role

within the network.

128

(a) Core-periphery (b) Clusters

Figure 3: Coordination structures in Global Software Development

Coordination is analyzed here from a network perspective.

Based on this perspective, we can examine the coordination

aspect based on the network structure of the teams, i.e. the

way people are organized within and across teams and the

various roles they can play within the network. Additionally,

new insight into the coordination patterns in global software

development provide a means for comparison between the

different collaboration modes. In our study, we find that

the core-periphery is a relatively new structure. Current

literature suggests that a core-periphery as a coordination

structure has a positive effect in the collaboration between

distributed teams. Finally, the clustering structure is a more

common structure that conforms to the known disadvantages

and challenges of distributed collaboration. Nevertheless,

with the right strategic positioning of the team members

and the existence of “bridges” or “stars”, these challenges

can be surpassed [34].

B. Cooperation
Previous studies examine how social factors, such as or-

ganizational culture and history of the relationship between

the remote sites, play an important role in awareness of

changes in requirements and code that require effective

cooperation across sites [37]. Additionally, in another study

different approaches to support awareness between teams’

cooperation have been identified, by examining improve-

ments brought to the “shared space” between team members

or how they interact using shared artifacts [38]. From a social

network perspective, we examine how the analysis of the

distributed collaboration networks can bring new insights

into the cooperation aspects of the distributed teams.
A main observation in the teams’ cooperation, from a

social networking perspective, is the appearance of “emer-

gent” team members [15]. According to literature, emergent

members can be of two types; first, they can be people who

were not initially planned to participate in the development

project but in practice they emerge as contributing members.

Second is when a person emerges as the “bridge” between

remote teams, even though that position was planned for

someone else. A reason for this phenomenon is e.g. the role

of the specific person, or his/her position within the team,

which might constitute him/her as a better intermediate for

the cooperation among the distributed teams. Milewski et.

al. [34] note that “most of the bridges we have found in
our research and in the literature are not ones that were
developed intentionally as part of organization strategy, but
units that have grown out of organizational need, or of the
team positioning themselves in this role.”. As an example

in a study conducted among several distributed networks of

people working on requirements engineering, results showed

that on average, about one third of the team members were

emergent roles [14]. In another study, it was observed that

although teams were designed to communicate “freely”, i.e.

all members from the remote teams could communicate with

all of their colleagues in the central locations, in practice

only few members emerged as the intermediates between

teams at different locations [17].

Another observation is how cooperation between the

distributed teams is facilitated through familiarity and trust

[33]. People are more likely to cooperate with each other if

they have previously worked together in another project [21],

[32]. Furthermore, familiarity can also refer to the awareness

of each others’ cultural differences. Previous research in

team trust in GSD suggests that when people are familiar

with each others’ cultural differences, trust factors between

them are higher and consequently cooperation is facilitated;

“Developing positive shared experiences across geographic
sites leads to stronger team dynamics for distributed soft-
ware development teams, and stronger team dynamics build
trust.” [27]. Trust has also been researched as an influential

factor on the member’s cooperation performance. Previous

129

work revealed that when individual has a low trustworthiness

(indicated by low trust centrality), even if that person is

communicating a lot, he/she is not cooperating efficiently

with his/her colleagues, as opposed to individuals who

communicate a lot but at the same time, they also have high

trustworthiness [33].

The implication on team awareness that these cooperation

strategies have, varies. In some cases, it was observed that

the emergent members appearing in the projects, despite

the initial planning and documentation, negatively impact

team awareness. People within the team do not know who

they work with, with whom they need to communicate

and collaborate and consequently they are not aware of

who knows what in the project. On the other hand, case

studies were reported, where despite the appearance of those

emergent members, team awareness was high and team

members recognized the emergent members and efficiently

worked with them. It was also observed that people who are

central in the cooperation between the remote teams tend to

perceive that the teams are cooperating effectively, which in

turn creates a positive environment for cooperation among

the distributed team members [32].

C. Communication

According to the 3C Collaboration model, communication

is related to the exchange of messages and information

among people [9]. In the field of software engineering,

recent studies have turned their focus on the “fit” of the

communication patterns between the members of software

development teams (distributed or co-located) and the de-

pendencies between the modules/artifacts that each team

develops [39]. This “fit” is also referred to as the socio-

technical congruence i.e. the match between the social and

technical dependencies in a software development project

[40]. In global software development, the socio-technical

congruence is often studied as a means to analyze and im-

prove the communication and awareness between the remote

members, and therefore to improve their collaboration.

During the SLR analysis, we identified studies that use so-

cial network analysis to examine the communication patterns

of team members, and subsequently analyze and improve

the socio-technical congruence of the distributed software

development projects. Consequently, we recognized several

tools that use SNA techniques as a means to facilitate

communication between distributed team members, ease the

expertise identification, and increase team awareness. The

following paragraphs describe those tools:

Ariadne: This tool identifies automatically dependent

pieces of code and their authors, and it creates a social

network of developers. In other words, it can visualize and

present which developer depends on the code of another

developer. “The goal of the tool is to automatically iden-
tify situations where there is a “mismatch” between the
dependency and the communication networks.” [18]. From

the experiments conducted using Ariadne, it was noticed

that this tool can promote social network awareness among

virtual teams and consequently increase familiarity among

team members; “Ariadne provides developers an enhanced
awareness of interdependencies using a visual approach.
Interdependencies are one example of collaborative traces;
they describe relationships between developers based on
the source code they implement.” [28]. Additionally, it was

observed that Ariadne can support managers in monitoring

interactions among developers and taking the necessary

decisions [28].

Travis: Travis is a tool that creates traceability networks

by linking artifacts, activities and users. Travis also offers

different views of the communication network in role-based

criteria, i.e. based on whether the user is a developer,

a designer, a project manager etc. This option can help

eliminate the number of notifications that team members

receive, creating an overload of sent messages and avoid

over-communication among team members; “The goal here
is to reduce the number of notifications that software de-
velopers receive because a common problem was the over-
whelming flood of notification messages initiated by other
software developers or software tools due to changes in the
artifacts.” [23]. This has proven particularly useful for the

people acting as bridges between teams, or otherwise acting

as information brokers. Travis can help these information

brokers to manage the large amounts of information they

receive from the communication between the collaborating

teams; “TraVis provides increased awareness within offshore
software development projects based on a broad range of
traceability and rationale visualizations that are created
with information extracted from the collaborative develop-
ment platform.” [23].

Tesseract: It is a socio-technical dependency browser

specifically constructed to show “the social as well as the
technical relationships among the different project entities,
such as developers, source code, bugs etc” [30]. Tesseract

also calculates the communication behavior of the teams,

which is the social network of developers determined by

the communication records and it monitors progress over

time. Additionally, the tool “can highlight the “mismatches”
between technical dependencies and the communication
patterns of the developers” [30]. This approach can help

developers become aware of the other project activities and

improve communication with their colleagues; “Some inter-
viewees suggested that the developer-to-developer linkages
could serve as a means of creating an awareness of which
developers work closely- information that is missing in their
distributed work settings.” [30].

Augur: Augur “draws views of the network of contributors
to a project, relating them according to patterns in their
development activity” [31]. Additionally, this network view

property can use different visualizations to indicate different

features of the relationship between individuals. Similarly

130

to the above mentioned tools, Augur provides a way to

examine the communication patterns of the project partici-

pants, through the analysis of the technical dependencies of

the project; “It provides the technical means to explore the
extend to which software artifacts have inscribed into them
patterns of interaction and participation.” [31].

Communication relationships have proven important for

knowledge sharing and team awareness [22]. An essential

feature of the socio-technical congruence tools is the visual-

ization of the communication patterns and the relationships

between project participants. Previous work suggests that

this type of communication visualizations can help develop-

ers as well as managers to keep track of the project status,

be aware of the code dependencies and take the necessary

decisions and actions [29].

VI. CONCLUSION

In this paper, we examined how social network analysis

can provide researchers and practitioners with new insights

into the current global software development challenges.

Two different coordination structures of distributed teams in

a GSD context have been identified in this SLR study: the

core-periphery and the clusters. In terms of team awareness,

core-periphery appears the more beneficial structure, yet it

does not show up very often in GSD projects. Clusters come

with certain disadvantages due to the sub-grouping and the

independent work of the teams based on their geographic

location. Through the current SNA approaches, researchers

have identified strategies that can help tackle these disad-

vantages, such as the positioning of bridges between the

clusters.

Analyzing the cooperation structures from a social net-

work perspective we distinguished two new insights in

the current GSD practices: the emergent members and the

role of familiarity and trust in distributed cooperation. We

observed that through the use of social network analysis new

cooperation patterns were identified in projects that were

initially planned otherwise.

A social network perspective can help us reveal differ-

ences between what is planned and documented within a

project, and what happens in practice. These differences can

be studied over time, and the findings related to other met-

rics, such as the number of bugs found, the size of backlogs,

and the like, may lead to corresponding interventions.

Finally, communication patterns have been studied

through the lenses of socio-technical congruence, in an effort

to analyze communication and collaboration between project

participants and software artifacts dependencies. We identi-

fied several tools that have been introduced in the current

literature, with the aim of improving team communication

and at the same time to support team awareness and expertise

identification.

We conclude that more research is needed in the field of

global software development by taking a social network per-

spective. We argue that this kind of approach may bring new

insights into the distributed teams collaboration and promote

new solutions and collaboration processes or techniques,

to tackle the current global challenges. Social network

analysis can help researchers and practitioners examine the

coordination, cooperation and communication structures of

the remote and co-located teams, identify potential weak

points and support the organization and the decision-making

processes of the distributed activities.

REFERENCES

[1] S. Marczak, I. Kwan, and D. Damian, “Social networks in the
study of collaboration in global software teams,” International
Conference on Global Software Engineering (ICGSE ’07),
August 2007.

[2] C. Del Rosso, “Comprehend and analyze knowledge networks
to improve software evolution,” Journal of Software Mainte-
nance and Evolution: Research and Practice, vol. 21, no. 3,
pp. 189–215, 2009.

[3] K. Ehrlich and I. Carboni, “Inside social network analysis,”
IBM Research, Tech. Rep., 2005.

[4] R. Cross, A. Parker, L. Prusak, and S. P. Borgatti, “Knowing
what we know: Supporting knowledge creation and sharing
in social networks.” Organizational Dynamics, vol. 30, no. 2,
pp. 100 – 120, 2001.

[5] S. Wasserman and K. Faust, Social network analysis: Methods
and applications. Cambridge University Press, 1994.

[6] M. E. Sosa, “Where do creative interactions come from? the
role of tie content and social networks,” Organization Science,
vol. 22, pp. 1–21, January 2011.

[7] C. Manteli, B. van den Hooff, A. Tang, and H. van Vliet, “The
impact of multi-site software governance on knowledge man-
agement,” in Global Software Engineering (ICGSE), 2011 6th
IEEE International Conference on, 2011, pp. 40 –49.

[8] D. Damian, L. Izquierdo, J. Singer, and I. Kwan, “Awareness
in the wild: Why communication breakdowns occur,” in
Global Software Engineering, 2007. ICGSE 2007. Second
IEEE International Conference on, 2007, pp. 81 –90.

[9] N. Kock, Encyclopedia of E-collaboration. Information
Science Reference, 2008.

[10] H. Fuks, A. Raposo, M. Gerosa, and C. Lucena, “Applying the
3c model to groupware development,” International Journal
of Cooperative Information Systems, vol. 14, no. 2-3, p. 299,
2005.

[11] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Engi-
neering, vol. 2, no. EBSE 2007-001, 2007.

[12] M. Petticrew and H. Roberts, Systematic reviews in the social
sciences: A practical guide. Oxford, 2006.

131

[13] J. Herbsleb and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,”
Software Engineering, IEEE Transactions on, vol. 29, no. 6,
pp. 481 – 494, 2003.

[14] D. Damian, S. Marczak, and I. Kwan, “Collaboration patterns
and the impact of distance on awareness in requirements-
centred social networks,” in Requirements Engineering Con-
ference, 2007. RE ’07. 15th IEEE International, 2007, pp. 59
–68.

[15] D. Damian, I. Kwan, and S. Marczak, “Requirements-driven
collaboration: Leveraging the invisible relationships between
requirements and people,” in Collaborative Software Engi-
neering, I. Mistrı́k, A. van der Hoek, J. Grundy, and J. White-
head, Eds. Springer Berlin Heidelberg, 2010, pp. 57–76.

[16] A. Avritzer, D. Paulish, Y. Cai, and K. Sethi, “Coordination
implications of software architecture in a global software de-
velopment project,” Journal of Systems and Software, vol. 83,
no. 10, pp. 1881 – 1895, 2010.

[17] R. Urdangarin, P. Fernandes, A. Avritzer, and D. Paulish,
“Experiences with agile practices in the global studio project,”
in Global Software Engineering, 2008. ICGSE 2008. IEEE
International Conference on, 2008, pp. 77 –86.

[18] S. B. Fonseca, C. R. B. de Souza, and D. F. Redmiles,
“Exploring the relationship between dependencies and coor-
dination to support global software development projects,” in
Global Software Engineering, 2006. ICGSE ’06. International
Conference on, oct. 2006, p. 243.

[19] T. Nguyen, T. Wolf, and D. Damian, “Global software de-
velopment and delay: Does distance still matter?” in Global
Software Engineering, 2008. ICGSE 2008. IEEE International
Conference on, 2008, pp. 45 –54.

[20] T. Wolf, T. Nguyen, and D. Damian, “Does distance still mat-
ter?” Software Process: Improvement and Practice, vol. 13,
no. 6, pp. 493–510, 2008.

[21] K. Ehrlich and K. Chang, “Leveraging expertise in global
software teams: Going outside boundaries,” in Global Soft-
ware Engineering, 2006. ICGSE ’06. International Confer-
ence on, 2006, pp. 149 –158.

[22] S. Sarker, S. Kirkeby, and S. Chakraborty, “Path to stardom in
globally distributed teams: An examination of a knowledge-
centered perspective using social network analysis,” in System
Sciences, 2007. HICSS 2007. 40th Annual Hawaii Interna-
tional Conference on. IEEE, 2007, pp. 189c–189c.

[23] C. de Souza, T. Hildenbrand, and D. Redmiles, “Toward
visualization and analysis of traceability relationships in
distributed and offshore software development projects,” in
Software Engineering Approaches for Offshore and Out-
sourced Development, ser. Lecture Notes in Computer Sci-
ence, B. Meyer and M. Joseph, Eds. Springer Berlin /
Heidelberg, 2007, vol. 4716, pp. 182–199.

[24] M. Cataldo and J. D. Herbsleb, “Communication patterns
in geographically distributed software development and en-
gineers’ contributions to the development effort,” in Proceed-
ings of the 2008 international workshop on Cooperative and
human aspects of software engineering, ser. CHASE ’08.
New York, NY, USA: ACM, 2008, pp. 25–28.

[25] M. Cataldo and J. Herbsleb, “Communication networks in
geographically distributed software development,” in Pro-
ceedings of the 2008 ACM conference on Computer supported
cooperative work, ser. CSCW ’08. ACM, 2008, pp. 579–588.

[26] A. Boden and G. Avram, “Bridging knowledge distribution -
the role of knowledge brokers in distributed software devel-
opment teams,” in Proceedings of the 2009 ICSE Workshop
on Cooperative and Human Aspects on Software Engineering,
ser. CHASE ’09. IEEE Computer Society, 2009, pp. 8–11.

[27] S. P. Mikawa, S. K. Cunnington, and S. A. Gaskins, “Re-
moving barriers to trust in distributed teams: understanding
cultural differences and strengthening social ties,” in Pro-
ceeding of the 2009 international workshop on Intercultural
collaboration, ser. IWIC ’09. ACM, 2009, pp. 273–276.

[28] E. H. Trainer, B. Al-Ani, and D. F. Redmiles, “Impact of
collaborative traces on trustworthiness,” in Proceeding of
the 4th international workshop on Cooperative and human
aspects of software engineering, ser. CHASE ’11. ACM,
2011, pp. 40–47.

[29] C. R. de Souza, S. Quirk, E. Trainer, and D. F. Redmiles,
“Supporting collaborative software development through the
visualization of socio-technical dependencies,” in Proceed-
ings of the 2007 international ACM conference on Supporting
group work, ser. GROUP ’07. ACM, 2007, pp. 147–156.

[30] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb,
“Tesseract: Interactive visual exploration of socio-technical
relationships in software development,” in Proceedings of the
31st International Conference on Software Engineering, ser.
ICSE ’09. IEEE Computer Society, 2009, pp. 23–33.

[31] C. de Souza, J. Froehlich, and P. Dourish, “Seeking the
source: software source code as a social and technical ar-
tifact,” in Proceedings of the 2005 international ACM SIG-
GROUP conference on Supporting group work, no. 10. New
York, NY, USA: ACM, 2005, pp. 197–206.

[32] K. T. Chang and K. Ehrlich, “Out of sight but not out of
mind?: Informal networks, communication and media use in
global software teams,” in Proceedings of the 2007 conference
of the center for advanced studies on Collaborative research.
ACM, 2007, pp. 86–97.

[33] S. Sarker, M. Ahuja, S. Sarker, and S. Kirkeby, “The role of
communication and trust in global virtual teams: A social
network perspective,” Journal of Management Information
Systems, vol. 28, no. 1, pp. 273–310, 2011.

[34] A. E. Milewski, M. Tremaine, F. Köbler, R. Egan, S. Zhang,
and P. O’Sullivan, “Guidelines for effective bridging in global
software engineering,” Software Process: Improvement and
Practice, vol. 13, no. 6, pp. 477–492, 2008.

[35] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter,
“An empirical study of global software development: distance
and speed,” in Proceedings of the 23rd International Confer-
ence on Software Engineering. IEEE Computer Society,
2001, pp. 81–90.

132

[36] J. N. Cummings and R. Cross, “Structural
properties of work groups and their consequences
for performance,” Social Networks, vol. 25,
no. 3, pp. 197 – 210, 2003. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0378873302000497

[37] P. Dourish and V. Bellotti, “Awareness and coordination
in shared workspaces,” in Proceedings of the 1992 ACM
conference on Computer-supported cooperative work. ACM,
1992, pp. 107–114.

[38] I. Steinmacher, A. Chaves, and M. Gerosa, “Awareness sup-
port in global software development: A systematic review
based on the 3c collaboration model,” in Collaboration and
Technology, ser. Lecture Notes in Computer Science, G. Kolf-
schoten, T. Herrmann, and S. Lukosch, Eds. Springer Berlin
/ Heidelberg, 2010, vol. 6257, pp. 185–201.

[39] I. Kwan, A. Schroter, and D. Damian, “Does socio-technical
congruence have an effect on software build success? a study
of coordination in a software project,” Software Engineering,
IEEE Transactions on, vol. 37, no. 3, pp. 307 –324, 2011.

[40] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M.
Carley, “Identification of coordination requirements: implica-
tions for the design of collaboration and awareness tools,”
in Proceedings of the 2006 20th anniversary conference
on Computer supported cooperative work, ser. CSCW ’06.
ACM, 2006, pp. 353–362.

133

