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Abstract

Given the raising interest in light-field technology and

the increasing availability of professional devices, a feasi-

ble and accurate calibration method is paramount to un-

leash practical applications. In this paper we propose to

embrace a fully non-parametric model for the imaging and

we show that it can be properly calibrated with little effort

using a dense active target. This process produces a dense

set of independent rays that cannot be directly used to pro-

duce a conventional image. However, they are an ideal tool

for 3D reconstruction tasks, since they are highly redun-

dant, very accurate and they cover a wide range of different

baselines. The feasibility and convenience of the process

and the accuracy of the obtained calibration are compre-

hensively evaluated through several experiments.

1. Introduction

Due to their recent availability as off-the-shelf commer-

cial devices, light-field cameras have attracted increasing

attention from both scientific and industrial operators.

Traditional cameras are designed to capture the amount

of light radiation directed toward an image plane. The cap-

tured rays can converge to a common projection point (as

for the pinhole model), could go through a common axis

(as for the models including radial distortion), or can follow

any other distribution, even ditching any parametric model.

However, regardless of the camera model, the mechanics

remains basically projective, and the result of the imaging

process is a 2D image. Light-field cameras pursue a dif-

ferent goal: to capture the full plenoptic function generated

by each observed material point [1], which includes the in-

tensity of the light radiating from each point along all the

directions over the sphere. Of course, this goal is not practi-

Figure 1. A real-word light-field camera is no more than a tightly

packed array of very small (distorted) pinhole cameras sharing the

same imaging sensor.

cally achievable by any physical sensor, due to the technical

and theoretical problem involved. In practice, most, if not

all, the light-field devices ever built are made up of an ar-

ray (explicit or implicit) of traditional cameras, each one

contributing to capture a portion of the plenoptic function.

An example can be seen in Figure 1, where we show a de-

tail of the composite image captured by a Lytro light-field

camera [22]. The number, type and arrangement of such

cameras, as well as their calibration, has been a very active

topic in recent research. One of the main hurdles in plenop-

tic photography derives from the composite imaging forma-

tion process which limits the ability to exploit the well con-

solidated stack of calibration methods that are available for

traditional cameras. While several efforts have been done

to propose practical approaches, most of them still rely on

the quasi-pinhole behavior of the single microlens involved

in the capturing process. This results in several drawbacks,

ranging from the difficulties in feature detection, due to the

reduced size of each microlens, to the need to adopt a model

with a relatively small number of parameters.



1.1. Related Work

Light-field cameras have been recently popularized

thanks to the recent introduction of commercial devices

such as Lytro and Raytrix models. The idea of capturing the

plenoptic function, however, has been investigated by the

scientific community for at least a couple of decades, start-

ing with the seminal works by Adelson and Wang [1] and

exploring several alternative designs, including the adop-

tion of aligned pairs of attenuation masks through the whole

light path [33] or just before the camera sensor [30], the

introduction of hemispherical mirrors within the imaging

path [25], a time multiplexed multiple exposure schema

which allows to exploit the full sensor resolution [20] and

the use of a simple but quite effective arrays of traditional

cameras [32]. Such interest in light-field imaging devices

is well justified by its numerous applications, ranging from

depth map estimation [9, 13, 4] to super resolution [5, 31],

refocusing after shooting [22] and creation of virtual points

of view [19, 18].

Since most light-field devices are explained by a multi-

pinhole model, most calibration methods proposed in recent

literature exploit this fact and the related projective geome-

try properties. Such extension, however, is hardly straight-

forward. In fact, the narrow field of view and distribution of

micro-lens make it difficult to get a full view of the calibra-

tion target and to obtain a resolution high enough for feature

localization. Each method proposes a different solution to

solve these limitations.

One of the most recent approaches, proposed by Bok et

al. [6], where the difficulties in finding chessboard corners

have been overcome by resorting to adopt the linear features

resulting from the interface of white and black squares.

Such features are indeed more abundant, since the prob-

ability of a linear object to be fully captured by a single

micro-lens is much higher that the chance to properly ob-

serve a corner center and its surroundings. Differently, Cho

et al. [10] introduce a method to calibrate micro-lens cen-

ters by searching for local maxima in the frequency domain

over white images, that is images of uniform white targets.

Further, they also suggest an interpolation method to recon-

struct subaperture images, i.e., images obtained by pixels

capturing rays that converge to a single point, that is pin-

hole subimages of the captured light-field. Dansereau et

al. [11] introduced a 15-parameters overall camera model

(including a 5 parameter distortion), leading to a lower di-

mensionality with respect to modeling individual pinhole

cameras. They also propose a rectification method that can

be adopted for multiview stereo. Other methods include

one proposed by Johannsen et al. [17], also using a 15-

parameters model, calibrated using a small pattern of regu-

lar dots, and the work by Vaish et al. [29], which can be used

to calibrate large arrays of discrete camera devices whose

projection centers lie on the same plane.

It should be noted that virtually all the calibration meth-

ods to be found in the recent literature are designed to be

used mainly to enhance the production of sub-aperture im-

ages. For this reason they are basically only concerned with

the reconstruction of the imaging process. This paper takes

a radically different path, focusing on the recovery of the

geometry of generalized sensor rays in order to exploit them

for accurate 3D surface triangulation.

1.2. Contribution

This paper makes two main contributions, that we feel to

be important to the light-field community.

First, we analyze the use of a calibration method that es-

capes the need to adopt a parametric model by exploiting

dense correspondences generated using phase coding tech-

nique [3]. While dense calibration has been already used

in literature, this is the first time that it is attempted with

light-field cameras and its correct behavior is not guaran-

teed. In fact both the initialization hurdles and the sparsity

of the micro-lenses pixel could hinder the process, leading

to unsatisfactory results. To this end, we perform an in-

depth study of the different aspect of calibration under var-

ious conditions.

The second contribution is related to the recovery of 3D

shapes. This is a common application of light-field cameras,

especially using multiway-stereo algorithms.Unfortunately,

most triangulation methods are based on epipolar geometry

constraints, that can only be exploited if pinhole cameras

are available. To this end, we propose a triangulation step

suitable for any camera model and we use it to compare our

method with the recent state-of-the-art.

2. Light-Field Calibration

All the calibration methods for a light-field camera must

deal with a common hurdle: Each micro-lens, being pin-

hole, could be calibrated independently using standard

target-based methods, ranging from the basic approach pro-

posed by Tsai [28], to more advance model that could ac-

count for the high distortion that micro-lenses usually ex-

hibit [16, 12]. However, these approaches would incur in

the disadvantage that the recovery of the target pose could

be very ill-posed when performed on the basis of a single

(a) (b) (c) (d)

Figure 2. A chessboard pattern captured by a Lytro lightfield cam-

era respectively at minimum and maximum zoom level.
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Figure 3. The non-parametric imaging model adopted in this paper

(see text for details).

micro-lens image. In fact, each micro-lens only counts few

pixels spanning a large view angle, resulting in poor angu-

lar resolution of each micro-lens in isolation. Furthermore,

most approaches adopt image space techniques to localize

target features, thus the limited span of each micro-lens im-

age would severely reduce the number of recoverable corre-

spondences and their accuracy. This problem can be better

understood by looking at Figure 2, where the images of a

chessboard acquired by a commercial Lytro lightfield cam-

era are shown. In Subfigure 2(a) and 2(b) we show an over-

all frame and a detail of the image created on the CCD when

the zoom of the main lens is set to the minimum value. The

overall frame (about 3000 pixels wide) appears similar to

what would be obtained using a standard projective camera.

However, by looking at the detail of each microlens (about

10 pixels wide), it can be observed that most of them capture

a fully black or fully white field and just a few see a chess-

board corner. Under these conditions, classical calibration

methods that need to relate target points to observed fea-

tures are useless, hence the need for specialized technique.

The behavior is even more extreme within Subfigure 2(d)

and 2(c), where we display images of the same chessboard

obtained with the maximum zoom level of the main lens.

Here, the overall frame lost any connection to a projective

transform and the images produced by the microlens are so

wide that they extend beyond the span of a single check.

The solution we are proposing is to refrain to use any global

parametric model and to independently assess the character-

ization of every single imaging ray that insists on the cam-

era sensor. To this end, we apply a dense target localization

method which works in the time rather than the space do-

main, thus escaping the aforementioned hindrances. Such

dense correspondences, in turn, enable the adoption of a

parameter-free optimization for non-central cameras.

2.1. The Parameter­Free Camera Model

Following [3], we adopt a non-parametric camera model

where each ray is modeled as an independent line within a

common reference frame. Such reference frame is not di-

rectly related to the physical sensor. In fact, according to

this model, image coordinates can be considered just labels

for the imaging rays, which are not related to them by means

of any analytic function (see Figure 3). More formally, in-

dex i ∈ {1..n} ranges over all the n pixels of the camera

sensor (in no particular order). The ray associated to pixel i

can be written as ~ri = (~di, ~pi), where ~di, ~pi ∈ IR represent

direction and position of the ray respectively. These vec-

tors satisfy ||~di|| = 1 (normalized direction) and ~di
T
~pi = 0

(orthogonal position vector). Any point ~x in the ray ~ri sat-

isfies the parametric equation ~x = ~dit+ ~pi for some t ∈ IR.

Lacking any explicit structural relation between rays, this

model counts 4 degrees of freedom for each pixel, resulting

in several millions unknowns.

A solution space this large needs an exceptional num-

ber of observations, and this can only be obtained using a

dense coding strategy, which assigns to each image pixel

(i.e. to each ray) a pair of coordinates on the calibration

target. There are several ways to do this, in this paper we

follow [3] adopting a flat monitor as the target [14, 24] and

using a multi period phase shift coding [21] in order to ob-

tain dense target coordinates on a Lytro camera sensor. The

coding has been performed both horizontally and vertically.

In Figure 4 an example of such dense coding can be seen.

We used a scale of red and green values to show the re-

covered horizontal and vertical coordinates of the monitor

overlaid to a white light imaging of the scene (resulting in

a color blending). The code appears to be smooth, but of

course this is an effect due to detail level of the figure, in

practice the image presents the same repetition effects that

can be seen in Figure 2 and that will be discussed in detail in

the next section. The dense correspondences acquired over

several poses of the target can be used to feed the iterative

optimization method presented in [3] obtaining the charac-

terization of each ray that has been correctly codified within

a large enough number of different poses. Such method,

however, has been designed to work on quasi-pinhole cam-

eras and there is no guarantee that it works with a plenoptic

camera. Neither it is obvious that the dense coding would

work well with the considered imaging process, especially

for the higher camera zoom levels shown in Subfigures 2(d)

and 2(c).

Figure 4. Dense calibration requires the user to acquire a sequence

of horizontal and vertical patterns from a standard monitor.



Figure 5. Behavior of the dense coding method applied to a Lytro lightfield camera at different zoom levels (see text for details).

In the next two sections we will study in detail the per-

formance of the dense coding and of independent rays cali-

bration when applied to a lightfield camera.

2.2. Dense Target Acquisition

All our experiments have been performed using a

first generation Lytro plenoptic camera, equipped with a

3280x3280 pixels sensor. Throughout all the tests we used

two zoom levels for the main lens, which we will refer to

as minzoom, corresponding to the 1.0 level on the camera,

and maxzoom corresponding to the 5.5 level (the reader can

refer to Figure 2 to get an idea about what results can be

obtained at such zoom levels).

Horizontal and vertical coding of the target has been per-

formed using multi-period phase shift on a 21 inches mon-

itor place at about 1 meter from the camera, with period

lengths respectively 11, 13 and 17 monitor pixels and cap-

turing 15 samples for each period (see [21] for details).

In Figure 5 we show the acquired codes within a small

portion of the imaging sensor measuring about 50x50 pixels

respectively for minzoon (upper row) and maxzoom (lower

row) (note that the code has been normalized from 0 to 1 for

better visualization). The first column shows the coding er-

ror according to [21], a lower value means a more accurate

target position recovery, a value of 1 means that no recov-

ery has been possible for that particular pixel. At minzoom

level the coding error is low and isotropic, this is due to the

low distortion of the microlens images and to the overall

quasi-pinhole behavior of the camera. Note that, although it

may be counter-intuitive, at minzoom even the usually dis-

regarded space between microlens is correctly coded, thus

recovering the intersection between the associated ray and

the target.

This allows to effectively calibrate the full sensor, in-

cluding inter-lens pixels. In the next section we will show

that the resulting calibration exhibits a good accuracy. This

is in strong contrast with standard parametric light-field

camera calibration methods, which, even when capable of

capturing features between microlens, would still be unable

describe the behavior of those rays with their models.

Conversely, at maxzoom the coding error is lower around

the centers of the microlens and increases a bit when mov-

ing toward the edges. Note that outside the microlenses, the

code is not recovered. This is not due to measuring errors,

but rather to the low signals that reaches the sensor as a re-

sult of the strong vignetting (which can be observer also on

Subimage 2(c)). In the two central columns of Figure 5

we show respectively the recovered horizontal and verti-

cal codes. Both are dense and quite smooth, however the

Figure 6. Distribution of points with similar code over the imaging

plane.



Figure 7. Evolution of the RMS error of rays during the optimization and number of culled outliers (see text for details).

maxzoom setting clearly result in micro images that cover

a wider area of the target and include several repetitions of

the same code. This property, obviously, is very useful if

the data is to be used for surface reconstruction, since mul-

tiple and well separated observations of the same point will

result (in principle) in a more accurate triangulation. The

code distribution is even more apparent in the last column

of the figure, where a slice of the coding has been plotted

(corresponding to the black horizontal line on the third col-

umn of the figure).

The different distribution of codes can be understood

very well also by looking at Figure 6. In the first row we

overlay to a coded image obtained at minzoom the pixels

with a code less than one code unit far from a given pair

of coordinates, showing two level of details. In the second

row we plot the same information over a coded image ob-

tained at maxzoom setting. It can be seen that a minimum

zoom level a point can be observed at most by one or two

microlenses, while at the maximum level the same code is

repeated over ad over throughout a large number of differ-

ent microlenses spanning a (relatively) large portion of the

imaging sensor.

To this end we can affirm that, while lower zoom lev-

els can be used for tasks such as refocusing of subaperture

images creation, higher zoom levels are best suited for sur-

face reconstruction tasks, where the larger disparity of the

captured light rays results in a more accurate and robust

triangulation. Specifically, in such cases accuracy would

be granted by the wider angle between rays used for trian-

gulation and robustness can be achieved out of their large

number. In Sections 3.1 and 3.2 we will substantiate these

statements.

2.3. Rays Optimization

In order to apply the ray optimization procedure pre-

sented in [3] we first need an initial estimation for the poses

of the target and for the rays. We solved this problem by cre-

ating a quite raw sub-aperture image obtained by grouping

all the microlens centers. With a very coarse approxima-

tion, such image can be considered as if it were produced

by a pinhole camera, to this end we can get an initial esti-

mate using the standard calibration procedure made avail-

able by OpenCV [7]. The optimization procedure has been

performed using a total of 10 target poses. Since the non-

parametric model does not provide an image plane, the ray

optimization does not proceed by minimizing some repro-

jection error, as its common with standard calibration meth-

ods. Instead, [3] minimizes, with respect to ray and poses

parameters, the sum of the squared distances between the

3D coordinates of a target point and the ray that observed it.

Since our code advances of one unit for each monitor pixel,

the RMS error is a metric measure in the Euclidean spaces

expressed in units of pixels, that in our case, corresponds to

about 0.25mm.

In Figure 7 we show the trend of this RMS error with

respect to subsequent steps of the optimization process. As

for the previous section, the first row represents the min-

zoom and the second the maxzoom setup (note that both for

the plots and for the color-coded images the scales are dif-

ferent). In both cases the RMS error converges after just a

few iterations to a final value that is well below one moni-

tor pixel, representing in practice just a few hundredths of

millimeter. Such accuracy should be put in context, con-

sidering that during the calibration procedure the target is

placed about one meter far away from the camera. The col-



ored plots express the RMS error associated to each pixel of

the camera sensors. While with our model pixels are just in-

dexes, it is still interesting to see how the error is distributed

on the sensor, both at a global and microlens scale. Specif-

ically, we can observe that both zoom levels start with an

anisotropic error distribution (probably due to the incorrect

handling of the global distortion)and rapidly reach a lower

and better distributed RMS error. This is a well-known fea-

ture of parameter-free models, which are very well capable

at accommodating both local and global distortions.

Finally, the histograms of Figure 7 report the total num-

ber of ray outliers that have been culled after each iteration.

Such culling happens when a ray received a valid code, but

it cannot be correctly justified using the estimated poses,

that is when it cannot pass close enough to the target codes

it has observed. This can happen for a variety of reasons, in-

cluding occlusions (especially on the border of the monitor)

or wrong code recovery due to measurement errors. Note

that, even at convergence, the removed rays are in a magni-

tude order between 104 and 105, since the overall number

of pixel is in the order of 107 we can conclude that more

than 99% of sensor elements are correctly calibrated.

3. 3D Shape reconstruction

Generally speaking, the 3D position of an observed point

can be recovered by triangulation [15] if it is observed by

different points of view by means of an imaging process of

known geometry. To this end, three sub-problems must be

addressed:

1. the point must be identified for each point of view;

2. all the viewing direction must be recovered;

3. an intersection between them must be computed;

Sub-problem 1 can be solved in many different ways, rang-

ing from image-based correspondences to structured light

coding. Since the goal of this paper is not to introduce a

matching method, and we are interested in factoring out

most error sources that are not related to calibration. To

this end, we solve the point identification problem using the

same phase shift coding described in the previous section,

which we have shown to be feasible and robust. On the

other hand, with respect to subproblems 2 and 3 we intro-

duce two task specific solutions.

3.1. Rays interpolation

One reason that makes constrained camera models such

as [6] effective in practice is that exists a continuous map-

ping between any point (u, v) in the image plane and the

corresponding ray exiting the camera. Consequently, 3D

point triangulation can be solved by searching multiple oc-

currences of the same feature among the micro-lenses and

intersecting the corresponding rays originating from the

feature coordinates. In the case of phase-shift structured

light coding, the set of projected codes is known but is ex-

tremely unlikely that the camera probing rays would sample

exactly such codes. However, under the assumption of lo-

cally planar 3D surface, each feature location (u, v) can be

recovered by interpolating the observed codes in the image

plane.

Conversely, if we model our camera as a generic sparse

bundle of unconstrained probing rays, there is no trivial way

to recover the ray ~rℓ exiting the imaging device at any (pos-

sibly sub-pixel) image point p. Further, there is not even

a concept of image plane but just some existing calibrated

rays in space each one sampling an intensity value or, if

we use a structured-light system, a two-dimensional phase

code. In other words, the interpolation cannot be performed

on the image plane but on a set of already known rays whose

contribution in the estimation of ~rℓ depends on what those

rays are observing.

In the following Section we give a solution to the rays

interpolation problem. Then, in Section 3.2 we describe

in detail our proposed triangulation process for light-field

cameras.

3.1.1 Rays manifold interpolation function

Let Rd = {~ri} a set of n known camera rays, and ~w =
(w1, . . . , wn) ∈ R

n,
∑n

i=1
wi = 1 a convex combination

of weights.

We pose the ray interpolation problem in terms of rigid

motions blending. Let K ∈ SE(3),K(~ra) = ~rb be a the

rigid motion that transforms a ray ~ra into ~rb. A famous re-

sult by Chasles [8] states that any rigid transformation is in

fact a screw motion, i.e., a rotation around an axis placed

anywhere in the 3D space, and a translation along the direc-

tion of the axis. when applied to rays ~ra and ~rb, the screw

motion of all the points under a pure translation is limited

by the length of the translation, while the motion induced

by the rotation in unbounded. For this reason, we chose

the rigid motion aligning ~ra to ~rb of minimal rotation as in-

terpolant Kab of the two rays. It is straightforward to see

that the best possible rotation angle is the one between the

two vectors ~da and ~db (i.e. acos(~dTa
~db)) that rotates the first

ray around the axis given by ~da × ~db. When the rotation

angle and axis is chosen, the optimal translation is the one

moving ~ra according to a vector T orthogonal to ~d′a = ~db
whose length is equal of the distance between the two rays.

In other terms, the best translation is the vector that con-

nects the two nearest points ~s1 and ~s2 lying on ~r1 and ~r2
respectively. To summarize, given two rays ~ra and ~rb, we

choose the interpolant Kab as:

1. The rotation RK around the axis ~da × ~db with angle

acos(~dTa
~db)

2. The translation TK = ~s2 − ~s1



Given a set of interpolants mapping rays to rays, the

problem of ray interpolation can be cast as one of averag-

ing in the manifold of rigid transformations SE(3). This is

the path taken by Dual-quaternion Iterative Blending (DIB)

that interpolates roto-translations in terms of a screw mo-

tion represented in terms of dual quaternion[26] and can be

interpreted as computing a manifold averaging in SE(3) en-

dowed with the screw motion metric. More formally, DIB

takes a set of rigid motions Ki with i = 1, . . . , n, and a set

of weights wi and finds the unique motion K∗ that satisfies

n
∑

i=1

wi log
(

KiK
∗−1

)

= 0 , (1)

where log is the logarithm map of the group SE(3). This

interpolation approach exhibits many useful properties such

being constant speed, shortest path and coordinate system

independent. Adopting this approach, given a set of rays

{~r1, . . . , ~rn}, we initialize the interpolated ray ~rℓ = (~dℓ, ~pℓ)
as their weighted linear combination followed by a repro-

jection on the rays manifold:

~dℓ =

∑n

i=1
wi

~di

||
∑n

i=1
wi

~di||
(2)

~pℓ =

∑n

i=1
wi~pi

||
∑n

i=1
wi

~di||
− ~dℓ

(

~dTℓ

∑n

i=1
wi~pi

||
∑n

i=1
wi

~di||

)

(3)

Then, we compute the rigid transformations Kℓ,i as the

screw motion between ~rℓ and each ~ri according to the pro-

cedure stated before. Once computed, all the Kℓ,i are aver-

aged via DIB with the weights ~w to obtain Kavg . Finally,

Kavg is applied to ~rℓ to obtain a better estimate, and the

procedure is repeated until convergence.

3.1.2 Interpolation weights estimation

In the structured light case, we base the weights estimation

for the set of rays Rd in terms of the codes c1 . . . cn ∈ R
2

observed by each ~r1 . . . ~rn.

In this work, we cast the weight estimation as a regular-

ized barycentric interpolation. Following [23] we adopted

inverse squared distance weight, but add a regularization

factor λ. Specifically, let D be the n × n diagonal matrix

whose diagonal entries dii, i = 1 . . . n are the squared dis-

tances between each observed code ci and co. Then, the

weight vector w =
(

w1 . . . wn

)T
can be estimated as:

min
w

1

2
w

T (D+ λI)−1
w

subject to Cw = co,

1
T
w = 1

(4)

where C =





| |
c1 . . . cn
| |



.

Problem 4 can be solved as a generalized least squared

problem, yielding:

w = AC
∗
(

C
∗
AC

∗T
)

−1
co∗ (5)

where A = (D+ λI)−1, C∗ =

(

C

1
T

)

and co∗ =

(

co

1

)

.

3.2. Ray Selection and Triangulation

Since we are dealing with light-field cameras, we ex-

pect each known projected code co being visible in many

different micro-lenses (see Fig. 6). Therefore, we start by

searching in the acquired coded image all the pixel locations

u1 . . .um whose codes c(u1) . . . c(um) are closer than a

threshold dstc to the projector code co. Due to their pinhole

nature, we expect each ui to lie in a different micro-lens.

At this point, for each ui our aim is to create a new ray

~rui that would have observed the code co from the same

micro-lens where ui lies. Therefore, we look at the adjacent

8 neighbor pixels for valid codes and rays to be used as

interpolation data. Then the ray is interpolated as explained

above.

Once all the virtual rays Rt = {~ru1 . . . ~run} are col-

lected, a robust least-square estimation is used to triangu-

late the 3D point Pco associated to the projected code co.

Specifically, we adopt a RANSAC scheme to select a sub-

set Rti ⊆ Rt producing a point Pco whose squared distance

between each ray in Rti is less than a threshold dsts.

3.3. Quantitative Analysis and Comparisons

To assess the accuracy of the 3D surface reconstruction

(and hence of the calibration) we need to define some proper

error measure with respect to a ground truth. Here we opt to

use the same monitor that has been used for the calibration

by creating a set of additional shots and by triangulating its

surface. This approach has the advantage of producing a

planar surface that can be easily fitted allowing to compute

the displacement error between the plane model and each

triangulated point.

We tested a total of four setups at the maxzoom level

(which is best suited for reconstruction for the reasons de-

scribed in previous sections). The first one adopted the full

method described in this Section. Subsequently, we dis-

abled respectively the RANSAC selection and the ray inter-

polation, to study their role in the overall accuracy.

Finally, we adopted the calibration method proposed in

[6], which has been introduced very recently and can be

considered among the state-of-the art for parametric light-

field calibration. This latter setup has been obtained using

the software made available by the authors to calibrate the

camera and, subsequently, by producing single rays ri ac-

cording to the imaging model presented in the original pa-



Figure 8. 3D reconstructions of the target plane using respectively our full method, disabling the RANSAC selection, disabling the inter-

polation and, finally, using the parametric calibration obtained with [6].

per. This way the obtained rays can be used directly within

our pipeline. Note also that we applied both RANSAC and

interpolation to these rays, in order to make the results com-

parable with the best results obtained with our method.

In Figure 8 we show the surfaces obtained from different

points of view. We also show the distribution of the fitting

errors for each method (note that the horizontal scales are

different). The first two columns show the results obtained

with our method with and without the RANSAC selection.

The error distribution is quite similar, in fact just a few mis-

placed points appear when the consensus between ray is not

enforced. This is somewhat expected since outlier culling

has already been performed during calibration and we think

that these inaccurate points result from coding errors that

happened during the reconstruction shot. Conversely, ray

interpolation is key to an accurate reconstruction. In fact,

since a microlens covers a wide angle, we expect to observe

quite large jumps in the codes between pixels (and rays),

thus making the observation of exactly the same code (or

a code near enough) from the different camera pixels very

unlikely.

Finally, the triangulation obtained using the rays cali-

brated with [6] has a performance that is very similar to

the one obtained without interpolation (even if, in this case,

we are indeed interpolating the rays before triangulation).

Moreover, a bit of global bending can be seen, probably due

to a non perfect compensation of the distortion of the main

lens. It should be noted that, while [6] is not really meant

for 3D reconstruction, but only for image synthesis, it is

still one of the most relevant and recent calibration methods

against which to compare.

4. Conclusions and Future Work

With this paper we studied the feasibility of the non-

parametric calibration of light-field cameras using phase

shift-based dense target coding and independent rays op-

timization. Despite the non conventional imaging process

that characterizes plenoptic cameras, both target coding and

rays calibration work well, to the extent that the complete

camera sensor can be calibrated for moderated zoom levels.

Additionally, we proposed specially crafted techniques for

interpolating, selecting and triangulating the several views

of the same material point that occurs in different microlens.

The combination of such techniques with the high accuracy

of the calibrated ray model enables the effective adoption

of the light-field camera for 3D applications [2, 27] which

could be unfeasible using parametric models. Such claims

have been validated by comparing the surface reconstructed

using the same correspondences respectively with our cal-

ibration and the one obtained using a state-of-the-art para-

metric method. Finally, this paper is focused on exploit-

ing light-field cameras for 3D reconstruction, thus no ef-

fort is made to define a suitable (virtual) imaging plane to

produce synthetic images for refocusing or subaperture syn-

thesis purposes. This, however, is not an inherent limitation

resulting from the adopted model and, indeed, the definition

of an optimal imaging plane could be an interesting venue

for further research.
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