

Adopting GQM-based measurement in an industrial
environment
Citation for published version (APA):
Latum, van, F., Solingen, van, D. M., Oivo, M., Hoisl, B., & Rombach, D. (1998). Adopting GQM-based
measurement in an industrial environment. IEEE Software, 15(1), 78-86. https://doi.org/10.1109/52.646887

DOI:
10.1109/52.646887

Document status and date:
Published: 01/01/1998

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1109/52.646887
https://doi.org/10.1109/52.646887
https://research.tue.nl/en/publications/d069620a-3f30-455b-b743-0796363377db

.

7 8 I E E E S o f t w a r e J a n u a r y – F e b r u a r y 1 9 9 8 0 7 4 0 - 7 4 5 9 / 9 8 / $ 1 0 . 0 0 © 1 9 9 8 I E E E]

Adopting GQM-Based
Measurement in an
Industrial Environment

lthough software engineers generally agree that software measurement

must be goal oriented, little has been published on the results of shift-

ing to goal-orientation and still less on how to systematically make that

transition. Thus, when we at Schlumberger RPS decided to adopt the

Goal/Question/Metric approach, we resolved to document each step and record

our experiences at each stage of the transition.This article is both a summary of our

experiences and a brief description of how the GQM approach has greatly improved

our measurement programs.

We have tried to describe the activities in our measurement programs in a way

that will help more organizations shift to goal-oriented measurement. We hope

that others will also document their efforts so that the software engineering com-

munity can better understand the benefits of the GQM approach.

A

Schlumberger RPS integrated the Goa l/Quest ion/Metr i c
approach into the i r ex i s t ing measurement programs to
improve the i r p rogram per formance. Key to the i r success
was the use o f feedback sess ions as a fo rum to ana lyze
and interpret measurement data .

Frank van Latum and Rini van Solingen, Schlumberger RPS,The Netherlands

Markku Oivo, Schlumberger SMR, France

Barbara Hoisl, Dieter Rombach, and Günther Ruhe, University of Kaiserslautern, Germany

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 21, 2010 at 10:01 from IEEE Xplore. Restrictions apply.

.

J a n u a r y – F e b r u a r y 1 9 9 8 I E E E S o f t w a r e 7 9]

Motivation and background

Schlumberger RPS,the Retail Petroleum Systems divi-
sion of Schlumberger,manufactures and services systems
for self-service petrol stations, such as fuel dispensers,
point-of-sale systems, and electronic funds-transfer sys-
tems.Since Schlumberger began a software process im-
provement program in 1989,1 the RPS division has
achieved a level 2 on the SEI’s Capability Maturity Model,
Version 1.1. It has also introduced reviews and inspec-
tions, structured project planning and tracking, defect
tracking, and product quality specification and evalua-
tion.Processes have been certified to ISO 9001 and TickIT.

In late 1993, we began a systematic evaluation of
the RPS division’s measurement databases to assess
the effectiveness of measurement practices.The data-
bases contained data from most projects from the late
1990s to the time of the evaluation,representing more
than 6,000 data points. Our evaluation revealed sev-
eral weaknesses: Data points were often inconsistent
and incomplete. Because each measurement was
being done in isolation from the others, the measure-
ments tended to lack context and an explicit purpose.
We found that we could not even draw conclusions
about the effectiveness of our practices.

Experiences with goal-oriented measurement in

other organizations2,3 seemed to offer a solution,so in
1994 Schlumberger RPS joined the Customized
Establishment of Measurement Programs (CEMP) pro-
ject,4 which was already investigating heuristics and
cost–benefit information on applying goal-oriented
measurement in several European companies (http:/
www.iese.fhg.de/Services/Projects/Public-Projects/
Cemp.html). In this context,we evaluated the feasibil-
ity of implementing the GQM approach.

Elements of the GQM approach

The GQM approach5,6 is a systematic way to tailor
and integrate an organization’s objectives into mea-
surement goals and refine them into measurable val-
ues. As Figure 1 shows, it is characterized by two
processes: a top-down refinement of measurement
goals into questions and then into metrics, and a bot-
tom-up analysis and interpretation of the collected data.

The approach assumes that software development is
still an immature engineering discipline and thus much
is unknown about its characteristics and performance.Its
aim,therefore,is to create information that will help peo-
ple understand, monitor, evaluate, predict, control, and
improve software development. Users can identify the

Q1 Q2 Q3 Q4

Goal (object, purpose, quality focus, viewpoint, environment)

Re
fin

em
en

t

Variation
factors

Quality
models

M1 M2 M3 M4 M5 M6 M7 M8

A
nalysis and interpretation

Implicit
models

Figure 1. The GQM approach to goal-oriented measurement.

Steve McConnell’s most recent book, Software Project Survival Guide, starts with a drawing from Winnie-the-Pooh by A.A. Milne and the

following caption: “Here is Edward Bear, coming downstairs now, bump, bump, bump on the back of his head, behind Christopher Robin. It

is, as far as he knows, the only way of coming downstairs, but sometimes he feels that there really is another way, if only he could stop

bumping for a moment and think of it….”

This new section, From the Trenches, is about sharing experience stories with colleagues in the software industry. From my perspective,

one of the most effective ways to avoid bumping my own head repeatedly against the same problem is to learn from others. Case studies

can teach us valuable lessons. Whether the outcome is positive or negative, they provide a wealth of practical knowledge representing

years of experience and hard work.

In this section, we offer software professionals a forum to share experiences. Its pages will present practical experiences using some

new methodology or technology, or give update reports about established tools and methodologies. Think about your own war stories. If

you feel that your experiences could benefit others, please submit them.

Your story may just help others from bumping their heads the same way you did.

—Wolfgang Strigel, editor

Wolfgang B. Strigel is president of the Software Productivity Centre Inc., Vancouver, Canada; wstrigel@spc.ca; http://www.spc.ca.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 21, 2010 at 10:01 from IEEE Xplore. Restrictions apply.

information relevant to solve specific problems (goals)
and represent it in a way that others can easily interpret.
The basic ideas of the GQM approach5,6 have been
adopted in process improvement methods such as the
Quality Improvement Paradigm7 and AMI.8

Refinement
The GQM refinement steps are documented in a

GQM plan, which has three parts:
♦ A goal that describes the measurement’s pur-

pose. By stating explicit goals, the measurement pro-
gram is given a clear context.A GQM goal is described
according to a template with five dimensions that ex-
press the object to be measured, the purpose of mea-
surement, the measured property of the object (qual-
ity focus),the subject of measurement (viewpoint),and
the measurement’s context (environment).

♦ A set of questions that refines the goal and reflects
the implicit models of the software developers.
Questions related to quality models give a more detailed
definition of the goal’s quality focus.Questions related
to variation factors describe attributes that are believed
to affect the quality focus in that particular context.

♦ A set of metrics that serves to answer each ques-
tion. Metric data may result from objective or subjective

measurement and can be related to
different scales as long as it is se-
lected carefully.9

Data analysis and interpretation
The GQM approach also helps

analyze and interpret results by de-
scribing the measurement data
needed to answer the formulated
questions. Independent of which
analysis technique (statistical analy-
sis, quantitative analysis, decision
tree analysis) is applied, the results
must be interpreted in close col-
laboration with the viewpoint
team. Interpretation is generally
done in a feedback session.

Fitting GQM to a
measurement program

As part of the CEMP project, we
established goal-oriented measure-
ment programs in Schlumberger
RPS,working closely with the teams
who were running the projects the
measurement programs were to
support. We organized the GQM
team separate from the project
team to do all activities not directly
related to the project,such as docu-
menting the measurement program

and preparing analysis material. Our aim was to ensure
that project deadlines and stress would not endanger
the continuation of quality activities. In fact, we found
that close and confidential interaction between the pro-
ject and GQM teams was crucial to successfully applying
the GQM approach.

We have retained our initial composition and place-
ment of the GQM team,except that during the first mea-
surement program we had a GQM consultant acting as
the coach. We have since become GQM experts our-
selves so the coach is usually one of us.The GQM team
is embedded in the quality assurance group and in-
cludes the quality assurance manager,a GQM coach,and
a quality engineer.The team’s main activities are to

♦ initiate measurement programs within devel-
opment projects,

♦ carry out interviews and develop GQM deliverables,
♦ check data collection from the project team and

handle available data,
♦ prepare feedback sessions by creating analysis

slides,
♦ moderate feedback sessions,
♦ report progress to the project team and man-

agement, and
♦ disseminate results.

8 0 I E E E S o f t w a r e J a n u a r y – F e b r u a r y 1 9 9 8]

.

Package analysis
results into

reusable models

Characterize
organization
and project

GQM

Analyze
and

interpret
data using
feedback
sessions

Define
goals

QIP

Package Characterize

Execute Choose
process

Analyze Set goals

Execute
measurement

program

Develop
measurement

program

Figure 2. The activities of fitting the Goal/Question/Metric approach into a measurement
program. We integrated the GQM approach into the Quality Improvement Paradigm.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 21, 2010 at 10:01 from IEEE Xplore. Restrictions apply.

We have selected the first project for which we es-
tablished a measurement program to illustrate our
transition to a GQM-based measurement program.
The project developed both software and hardware
for a real-time point-of-sale system.The system was a
second release and reused much of the software from
the first release as well as from other projects. At the
end of the project, the product contained more than
70,000 source lines of C code. The project team in-
cluded a project leader, two hardware engineers, and
two software engineers. Our measurement program
supported the project from the design phase until a
year after its release.

Figure 2 shows the sequence of six activities relative
to the six steps of the Quality Improvement Paradigm.
The QIP describes the improvement activities and can
be applied to different tasks within software develop-
ment (project level) and improvement (organization
level).Each step has a corresponding measurement ac-
tivity in the GQM approach, as the figure shows.

Characterize the organization and project
The primary tool for characterization is a question-

naire that includes both quantitative and qualitative
questions,such as:What percentage of software people
are within the organization? What life-cycle model does
the project use? What is the average number of software
product installations?

The GQM team has developed questionnaires,
which either the project team or upper management
fills in, depending on the kind of questions. If there is
any confusion about the answers, the GQM team con-
ducts a short interview to clarify points.We have used
answers to these questions to define,prioritize,and se-
lect goals, as well as to build the GQM models.

For the sample project, results from the ques-
tionnaire showed that the organization’s typical
project lasts six months; involves real-time, embed-
ded software products; and is developed using a
waterfall model with five steps: requirements analy-
sis and specification (REQ); high-level design (HLD);
detailed design and implementation (IMP); inte-
gration; and evaluation and release. A separate qual-
ity assurance department controls the fulfillment
of quality requirements.

Define measurement goals
Measurement goals can directly reflect business,

project, and/or personal goals and must be based on
selection criteria, such as priority to project or organi-
zation, risk, and time to reach the goal. Goals should
take the form of [object to be measured], [purpose of
measurement], [quality focus], [viewpoint], [environ-
ment]. In the sample goal below, the boldface words
correspond to these elements:

Analyze the delivered product to better under-
stand it with respect to reliability and its

causes from the viewpoint of the software pro-
ject team for the Schlumberger RPS Project A.

This product-oriented goal definition was the start-
ing point in the process of understanding the prod-
uct’s reliability.The project team could then investigate
how to describe that reliability quantitatively and de-
termine what influenced it.

Within a brainstorming session,a project team can
define many goals, but they may not know which are
the most critical to their organization’s business re-
quirements. To help us prioritize goals, we devised a
set of seven questions for the project team:

♦ What are your organization’s strategic goals?
♦ What forces have affected your strategic goals?
♦ How can you improve your performance?
♦ What are your major concerns (problems)?
♦ What are your improvement goals?
♦ How can you reach your improvement goals?
♦ What are possible measurement goals and their

priorities?
For the sample project,we selected measurement

goals that emphasized reliability (in keeping with the
characterization obtained in step 1) and reuse. The
goal just described, for example, would give us a bet-
ter grasp of reliability issues. Other goals gave us in-
formation about the cost and benefits of applying the
GQM approach.

We consulted all project team members in defin-
ing our measurement goals and checked their degree
of understanding and their motivation to reach them.
We also involved management by explaining how the

measurement goals would support their business ac-
tivities. This involvement is critical. Without manage-
ment support and commitment, the measurement
program may ultimately fail.

Develop the measurement program
The major activity here is to refine selected goals into

questions and metrics. The refinement itself has two
main parts.The first is knowledge acquisition, in which
the GQM team tries to capture the project team’s cur-
rent knowledge and represent it in quantitative or qual-
itative models. The second part is measurement plan-
ning, in which the team documents the GQM refinement
and corresponding measurement procedures.

Knowledge acquisition
We conducted structured interviews to make the

engineers’ implicit knowledge explicit, capturing the
project team’s definitions, assumptions, and implicit
models related to the goal.These interviews helped us

J a n u a r y – F e b r u a r y 1 9 9 8 I E E E S o f t w a r e 8 1]

.

To help us prioritize goals,
we devised a set of seven
questions for the project team.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 21, 2010 at 10:01 from IEEE Xplore. Restrictions apply.

.

see discrepancies in different team member’s views
and gave us a way to discuss and clarify views.The in-
terviews also helped us achieve buy-in for the mea-
surement program because people realized the data
to be collected is related to the very process and prod-
uct issues they have raised.

During each interview,we recorded information on
an abstraction sheet—a one-page presentation of the
main entries,relationships,and related hypotheses for
a goal in the GQM plan.Figure 3 shows an example for
the goal described earlier.The abstraction sheets pro-
vide a structured approach that helps the GQM team
focus on subjects relevant to the goal and to identify
issues they may have overlooked.

As the figure shows, the sheet contains four
quadrants:

♦ Quality focus.What are the measured properties
of the goal’s object? In the figure, the properties of in-
terest are the number of failures and faults, and the
cost. These are taken from reliability models that the
project team defined.

♦ Baseline hypotheses.What is the current knowl-
edge of measured properties? The baseline hy-
potheses are the project team’s expectations of, in
this case, the distribution of failures and faults, and

fault handling. Again, these are
based on the team’s own reliability
models. The failure classification
and expectations are based on in-
terviews of the team members or
on reuse of former project results.

♦ Variation factors. Which fac-
tors are expected to most influ-
ence the models defined in the
quality focus? An example is the
level of code reviews. If the team
plans to hold many code reviews,
they are likely to find fewer faults
during tests.

♦ Impacts on baseline hypothe-
ses. How do the variation factors in-
fluence measurements? What is
the principal kind of dependence
assumed? For example, the more
complex the module, the greater
the likelihood of faults.

We found several uses for the
abstraction sheet. The most fre-
quently used one is to fill it in with
the engineer, starting with the
quality focus and baseline hy-
potheses and moving to the varia-
tion factors and corresponding im-
pacts.After the GQM team and the
engineer fill in all the quadrants,
they repeat the process until the
sheet reflects a reasonable balance
between what is considered es-

sential and what the organization can realistically mea-
sure and analyze.

Another way to use the sheet is to train engineers
to fill it in themselves. This approach requires some
training investment.Many people find it is hard to dis-
tinguish between the quality focus and the variation
factors. Others find it hard to form hypotheses.

A third way is to fill in the abstraction sheet before
the interview so that you have a “draft”version for the
interview. The interview then serves to validate or in-
validate the draft. However, this approach risks bias
from the interviewers who are recording their implicit
models,and requires the interviewers to have sufficient
knowledge about the goal’s context and subject.

Finally, you can use abstraction sheets as a guide
when the team analyzes and interprets results. We
found that they helped structure the presentation and
interpretation of measurement data during feedback
sessions (described later) because they reflect the most
important questions.

Measurement planning
The aim of this stage is to produce a well-defined

measurement program,documented in the GQM,mea-
surement, and analysis plans. As we described earlier,

8 2 I E E E S o f t w a r e J a n u a r y – F e b r u a r y 1 9 9 8]

Object:
Delivered
product

Purpose:
Better
understanding

Quality focus:
Reliability and its
causes

Quality focus Variation factors

Number of failures
 • By severity (minor, major, fatal)
 • By detection (engineer, test group...)
Number of faults
 • By life-cycle phase of detection
 • By modules
Cost for fixing faults (effort in hours)
 • Cost by activity

Process conformance
 • Adherence to coding standards
 • Are the reviews done as prescribed in the
 process model?
Domain conformance
 • Experience level of engineers
Attributes
 • Complexity

Baseline hypotheses Impacts on baseline hypotheses

Distribution of failures by severity
 • Minor 60%
 • Major 30%
 • Fatal 10%
Failure detection
 • Engineer 10%
 • Test group 30%
 • OPCO 60%
 • Customer 0%
Faults by life-cycle phase of detection
 • REQ: 5%
 • HLD: 10%
 • DD&IMP: 15%
 • Test: 70%
Top six fault-containing modules (ranked)
 • DCT, DSS, MFT, MCF, MDS, TOT
Distribution of effort for fixing faults
 per introduced activities
 • Requirements analysis/spec: 9.5 hours
 • High level design: 3.6 hours
 • Design and implementation 1.8 hours
 • Integration 1.8 hours
 • Evaluation and release: 3.6 hours

 • Better process control results in:
 - Fewer failures
 - Fewer faults slipped through code review
 - Lower percentage of coding faults
 • Higher experience of software engineers
 results in fewer faults introduced
 • Better adherence to coding standards results in
 - Fewer faults in general
 - Less effort to locate and fix faults
 • Complex modules have more faults

Viewpoint:
Software project
team

Environment:
Schlumberger
RPS Project A

Figure 3. Abstraction sheet for the goal “Analyze the delivered product to better un-
derstand it with respect to reliability and its causes from the viewpoint of the software
project team for Schlumberger RPS Project A.”

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 21, 2010 at 10:01 from IEEE Xplore. Restrictions apply.

the GQM plan defines top-down what must be mea-
sured,moving from goal to question to metric. It is de-
rived from the abstraction sheets for each goal.Figure
4 gives a sample question and the corresponding met-
rics derived from the abstraction sheet in Figure 3.

Both the GQM and project teams must review the
GQM plan thoroughly to arrive at a set of standard
terms for the process and product models and to elim-
inate obscurities and ambiguities. We used several
short follow-up interviews and an extensive team re-
view to refine the plan. We also used the plan to in-
terpret and analyze the measurement data.Although
the plan is strongly associated with top-down refine-
ment, it is critical to the bottom-up interpretation ac-
tivity as well.

The measurement plan describes the metrics, pro-
cedures, and media needed to report, collect, and vali-
date data for each goal—basically embedding data col-
lection into product development. The measurement
plan contains

♦ a name and definition for each unique metric;
♦ the classification for each metric;
♦ an association point in product development

that identifies when and how data is to be collected;
♦ definitions of the data collection forms;
♦ the procedures for data reporting,collection,and

validation; and
♦ references to the metrics in the GQM plan.
The measurement plan let us integrate metrics into

current development practices, which was key to suc-
cessfully integrating the measurement program into
our existing environment. We can often reuse data,
measurement procedures, and measurement tools,
which lowers the development overhead. We com-
bined GQM-based metrics with existing metrics and
data collection procedures using both automated tools
and manual data collection forms.

The last deliverable in measurement planning is the
analysis plan, which describes how to analyze and ag-
gregate measurement data into presentation formats,
such as charts and tables, that others can easily inter-
pret and use to answer questions in the GQM plan.
Much of the analysis plan time is spent describing how
to compare actual data with the hypotheses defined
in the interviews.There are many ways to analyze mea-
surements, but not all will reflect
key issues. We use the GQM plan
during interpretation to help us
focus on what the project team
deems essential, which makes our
analysis more meaningful.

Execute the measurement
program

In this step, the GQM team col-
lects the measurement data ac-
cording to the procedures defined
in the measurement plan and pre-

pares the analysis material in line with the analysis plan.
Before presenting the measurement data to the pro-

ject team, the GQM team must thoroughly verify and
validate it, checking at a minimum for the data’s com-
pleteness, timeliness, and accuracy, and conformance
to the specified range, and ensuring that each case is
classified uniquely. As they did in other steps,the GQM
team worked closely with the project team while per-
forming these checks.

The project team used an existing defect tracking tool
to do most of the data collection. We also designed paper
forms to record several additional metrics on fault han-
dling, using Microsoft Excel to aggregate the measure-
ment data and represent it in charts and tables.

Analyze and interpret results
using feedback sessions

Regular and well-prepared feedback sessions have
been key to the success of our measurement pro-
grams.10 During these sessions, the GQM team meets
with the project team to analyze and interpret mea-
surement results.The session’s main objectives are to
discuss the measurement program results, have the
project team interpret the data,and define actions for
the next measurement period.

The feedback sessions must reflect the main prin-
ciples of goal-oriented measurement.That is,the mea-
surement program must address the interests of those
providing the data and must be based on the project
team’s knowledge because they are the ones who best
understand the measurement goals and the only ones
who can accurately interpret the collected data.

We generally schedule feedback sessions every six
to eight weeks. We found that this interval is long
enough to have new and interesting results for the next
session and short enough to keep people’s interest and
momentum. A typical session lasts about two to three
hours; the main results are typically presented in 15 to
25 slides. Because we cannot present all measurement
results in one session,we usually select a subset of slides
to present and distribute hard copies of the full set.

All feedback sessions lead to slight or significant
updates in the analysis,measurement,and GQM plans.
The feedback sessions give us a better understanding
of the underlying models,often prompting more ques-

J a n u a r y – F e b r u a r y 1 9 9 8 I E E E S o f t w a r e 8 3]

.

Q_1

M_1.1

What is the distribution of failures by severity and detection mechanism?

for each detected failure: date, time, and unique number

M_1.2 for each detected failure: classification by severity (minor, major, fatal)

M_1.3 for each detected failure: classification by detection mechanism (engineer
(provide name), test group (provide name), acceptance test group
(provide name), OPCO (provide country), customer (provide name), other)

Figure 4. A sample question and corresponding metrics for the abstraction sheet in
Figure 3.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 21, 2010 at 10:01 from IEEE Xplore. Restrictions apply.

.

8 4 I E E E S o f t w a r e J a n u a r y – F e b r u a r y 1 9 9 8]

tions and occasionally even a new goal. For example,
in the sample project, the project team defined a new
GQM goal to analyze testing effectiveness.

The project team collected the measurement
data using data collection forms.The GQM team im-
ported the results into the quality assurance de-
partment’s metrics database. For the sample pro-
ject, we held nine feedback sessions to examine the
validity of the hypotheses.

Figure 5 shows the distribution of the severity of
failures within a seven-month period.The percentage
of minor failures was actually 39 percent as opposed
to the baseline hypothesis of 60 percent (see Figure
3).On the other hand,fatal failures appeared more fre-
quently than expected (26 percent versus 10 percent).

Graphs such as Figure 5 can be used to identify a

number of trends. In the sample
project, we graphed the distribu-
tion of faults over the top eight
faulty modules. The project team
used the graph to select the mod-
ules they needed to review.In fact,
they decided to rewrite one mod-
ule because of the measurement
results.We also graphed the distri-
bution of failure reports over time,
which gave the project team in-
sights into process-related aspects,
such as tests, releases, and holi-
days.In response to the data show-
ing a higher than expected fatal
failure rate (26 versus 10 percent),
the team conducted additional in-
vestigations on the effectiveness
of defect detection.

Armed with the measurement
data, the project team was able to

develop several rules of thumb:
♦ The average fault density is 1.9 per thousand

lines of source code.
♦ The fault density for management functions is

three times the fault density for dispensing functions.
♦ The fault density for console functions is two

times the fault density for dispensing functions.
♦ The average effort needed to correct a failure in

dispensing software is five times the effort needed to
correct a failure in management functions.

These rules served as baselines, which let the pro-
ject teams truly understand what “high” and “low”
meant. They knew when corrective action was re-
quired and could better plan for the next project
phases. Moreover, management could see that plan-
ning was accurate because the team had derived the
baselines from systematic and accurate measurements
in the same environment.

Package results into reusable models
An important benefit of the GQM approach is that

it lets you reuse results and experiences in future pro-
jects.To do this,however,you must be able to package
the results. This step is difficult because future needs
for measurement information are generally unknown.
Our project teams have been able to reuse certain
packages, but we can offer no general guideline for
reuse except that the more precisely you can describe
your concrete experiences and their specific context,
the greater your chances for adaptive reuse.

Our packaging effort consists mainly of developing
the measurement database, updating development
process definitions with the results of the GQM plan,
and disseminating the measurement program results.

We store all measurement data in our measurement
information system, which is available for all Schlum-
berger measurement programs. Entering new data in

2.5

2

1.5

1

0.5

0
No reuse Less

than
20%

changed

Full reuseMore
than
20%

changed

Figure 6. Fault density for the reuse categories.
The bars represent faults per thousand lines of
source code.

Minor failure Major failure Fatal failure

Septe
m

ber

Novem
ber

Ja
nuary

M
arc

h

Hypoth
esis

60

50

40

30

20

10

0

39%

60%

36%

30%
26%

10%

Pe
rc

en
ta

g
e

Septe
m

ber

Novem
ber

Ja
nuary

M
arc

h

Hypoth
esis

Septe
m

ber

Novem
ber

Ja
nuary

M
arc

h

Hypoth
esis

Figure 5. Trend of the severity of failures compared to baseline hypotheses.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 21, 2010 at 10:01 from IEEE Xplore. Restrictions apply.

.

the database automatically updates the feedback ma-
terial. Every development process task also describes
the metrics that can be collected after (or during) the
task.This additional description came about as a direct
result of the information in our measurement plan.

We present measurement program results on com-
pany bulletin boards and through monthly updates
and project legacy reports to management. A fre-
quently used package is the effect of reuse on prod-
uct reliability. Although the project team considered
the effect of reuse on productivity as important, their
main concern was product reliability.We thus charac-
terized all modules according to their reuse level and
attributed every fault to new or reused software.

We classified all modules into four categories: no
reuse,more than 20 percent changed,less than 20 per-
cent changed, and full reuse. Figure 6 shows the fault
density for these categories. When we presented the
results during the feedback session, the project team
saw at a glance that the average number of faults in-
troduced in new software is significantly lower when
the module is reused than if a module is developed
from scratch. They also realized that existing faults in
a fully reused module are simply inherited from the
original. The figures helped them quickly identify
trends and needed changes. For example, because of
Figure 6, they decided to define stricter criteria for a
module to qualify as reusable.

Results

The GQM-based measurement approach has been
implemented as part of an organization-wide process
improvement program. As a direct result of the mea-
surement program, interest in software reuse has in-
creased and several other projects have renewed their
efforts to develop reusable modules.The reuse pack-
age described earlier is still frequently used within the
organization to show the benefits of reuse.

The GQM approach helped our organization avoid
many of the pitfalls we experienced in former mea-
surement activities:

♦ By characterizing the measurement context,we
avoid defining irrelevant (too ambitious, not of inter-
est, or unimportant) measurement objectives and
more effectively consider accompanying organiza-
tional and project-related context factors as part of the
measurement program.

♦ By formulating an explicit measurement pur-
pose,we avoid data “cemeteries”and more effectively
exploit measurement results.

♦ Through regular feedback of the measurement
results, we avoid misinterpreting data and more syn-
ergistically integrate human expertise and formally
derived analysis results.

♦ By actively involving the project team,we avoid
including irrelevant attributes and metrics and in-

crease the project team’s motivation (because they un-
derstand the program’s purpose).

We can’t say enough about the importance of the
feedback mechanism. It is essential to any successful
measurement program.The feedback sessions let the
project team really evaluate the critical project issues,
forgetting little details for the moment.They were able
to define actions and investigate problems.These ses-
sions let us initiate real process improvement on the
project level. Because our project teams met fre-
quently, they could evaluate progress and define im-
provements to their daily processes—which is what
software process improvement is really about.

Schlumberger RPS now has five measurement pro-
grams in its software engineering department,

and they are considered key to the division’s overall
software process improvement program.

We believe others can adopt a similar approach and
customize it to their own organizations. We also be-
lieve they can achieve results similar to ours, and we
look forward to reading about additional experiences
with the GQM approach. ❖

ACKNOWLEDGMENTS
We thank the Schlumberger RPS project team for their

support and the participants of the CEMP consortium for all
the useful discussions and suggestions during the project.
CEMP was funded by the European ESSI program as ESSI pro-
ject 10 358.

REFERENCES
1. H. Wohlwend and S. Rosenbaum, “Schlumberger’s Software

Improvement Program,” IEEE Trans. Software Eng., Nov. 1994,
pp. 833-839.

2. R. Grady, Practical Software Metrics for Project Management and
Process Improvement, Prentice-Hall, Upper Saddle River, N.J,
1992.

3. “Software Measurement Guidebook,” tech. report, NASA
Goddard Space Flight Center, Greenbelt, Md., 1994.

4. “CEMP: Customized Establishment of Measurement
Programs,” IESE-Report 001.96/E, FhG IESE Kaiserslauern, 1996.

5. V. Basili and D. Rombach, “The TAME Project: Towards
Improvement-Oriented Software Environments,” IEEE Trans.
Software Eng., June 1988, pp. 758-773.

6. V. Basili and D. Weiss, “A Methodology for Collecting Valid
Software Engineering Data,” IEEE Trans. Software Eng., Nov.
1984, pp. 728-738.

7. V. Basili, G. Caldiera, and D. Rombach, “Experience Factory,” in
Encyclopedia of Software Eng.: Vol. 1, J.J. Marciniak, ed., John
Wiley and Sons, New York, 1994, pp. 469-476.

8. K. Pulford, A. Kuntzmann-Combelles, and S. Shirlaw,“AMI, A
Quantitative Approach to Software Management,” The AMI
Handbook, Addison Wesley Longman, Reading, Mass., 1992.

9. N. Fenton and S. Pfleeger, Software Metrics: A Rigorous
Approach, 2nd ed., Chapman & Hall, London, 1996.

10. B. Hoisl et al., “No Improvement without Feedback:
Experiences from Goal-Oriented Measurement at
Schlumberger,” Proc. European Workshop Software Process
Technology, Lecture Notes in Computer Science, Vol. 1149,
Springer-Verlag, Berlin, 1996, pp. 168-182.

J a n u a r y – F e b r u a r y 1 9 9 8 I E E E S o f t w a r e 8 5]

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 21, 2010 at 10:01 from IEEE Xplore. Restrictions apply.

.

8 6 I E E E S o f t w a r e J a n u a r y – F e b r u a r y 1 9 9 8]

Rini van Solingen is a quality engineer at
Schlumberger RPS, where he is involved in the
quality measurement and improvement of
embedded products. He is also a researcher at
Eindhoven University of Technology, where
he is a PhD candidate in quality improvement
of embedded products.

Solingen received an MSc in computer
science from the Delft University of Technology.

Barbara Hoisl is a software architect at the
OpenView Software Division of Hewlett-
Packard in Germany. Her technical interests
include software architecture and systematic,
rigorous software development processes for
distributed, object-oriented systems. Her
work involves the application of these
methodologies to the architecture of large-

scale, globally distributed IT management solutions. When this arti-
cle was written she was involved in the CEMP project as a research
assistant at the University of Kaiserslautern, where she coached and
consulted for the industrial project partners on introducing GQM-
based measurement.

Hoisl received a master’s in computer science and business ad-
ministration from the University of Kaiserslautern.

H. Dieter Rombach is a professor of computer
science at the University of Kaiserslautern,
where he also holds a chair in software engi-
neering, is codirector of a basic engineering
research institute (SFB), and director of the
Fraunhofer Institute for Experimental Software
Engineering (IESE). His research interests are
software methodologies, modeling and mea-

suring the software process and resulting products, software reuse,
and distributed systems. He also heads several research projects and
consults on quality improvement, software measurement, software
reuse, process modeling, and software technology in general. He has
written more than 70 articles and papers. In 1990, he received the
Presidential Young Investigator Award for his research in software
engineering. He is an associate editor of Empirical Software
Engineering and is a member of the GI, IEEE and ACM.

Rombach received a BS in mathematics and an MS in mathe-
matics and computer science from the University of Karlsruhe, and
a PhD in computer science from the University of Kaiserslautern.

Günther Ruhe is deputy director of the
Fraunhofer Institute for Experimental
Software Engineering, Kaiserslauern. His soft-
ware engineering interests include
experimental analysis and design,
knowledge discovery and data mining, soft-
ware measurement, and industrial software
improvement. He has published one mono-

graph and more than 50 papers.
Ruhe received a master’s in mathematics with emphasis on op-

erations research from Leipzig University, a PhD in operations re-
search from Freiberg University, and an habilitation (Dr. Sc. Nat)
from the Leipzig University of Technology. He is a member of the
IEEE Computer Society, ACM, the German OR Society, and the
German Computer Society.

Frank van Latum is research and
development manager at Dräger Medical
Technology. The Netherlands, on leave from
Schlumberger RPS. His main interest is the
professional management of product devel-
opment with emphasis on product and
process quality. Other interests include real-
time system software development for elec-

tronic test systems, retail petroleum systems, and medical systems.
Van Latum received master’s degrees in mathematics and

computer science from the University of Nijmegen. He is a mem-
ber of the IEEE Computer Society.

Markku Oivo is a chief research scientist and
head of a software engineering group at VTT
Electronics. He is responsible for initiating
and managing both applied research
projects and industrial development projects
for a broad range of clients in software engi-
neering. His interests include software engi-
neering, software process improvement and

measurement, production of embedded software, object-oriented
methods, and quality assurance and improvement. He is also a
quality manager of VTT Electronics and a docent in software engi-
neering at the University of Oulu.

Oivo received an MSc in computer technology and a PhD in
software engineering, both from the University of Oulu. He is a
member of the IEEE Computer Society and ACM.

Send questions about this article to Rombach or Ruhe at Fraunhofer Institute for Experimental Software Engineering, Sauerwiesen 6, D-67661
Kaiserslautern, Germany; {rombach,ruhe}@iese.fhg.de.

About the Author

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 21, 2010 at 10:01 from IEEE Xplore. Restrictions apply.

