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Abstract. Rainfall-induced landslides number among the

most devastating natural hazards in the world and early warn-

ing models are urgently needed to reduce losses and fatali-

ties. Most landslide early warning systems are based on rain-

fall thresholds defined on the regional scale, regardless of the

different landslide susceptibilities of various slopes. Here we

divided slope units in southern Taiwan into three categories

(high, moderate and low) according to their susceptibility.

For each category, we established separate rainfall thresh-

olds so as to provide differentiated thresholds for different

degrees of susceptibility. Logistic regression (LR) analysis

was performed to evaluate landslide susceptibility by using

event-based landslide inventories and predisposing factors.

Analysis of rainfall patterns of 941 landslide cases gathered

from field investigation led to the recognition that 3 h mean

rainfall intensity (I3) is a key rainfall index for rainfall of

short duration but high intensity; in contrast, 24 h accumu-

lated rainfall (R24) was recognized as a key rainfall index for

rainfall of long duration but low intensity. Thus, the I3–R24

rainfall index was used to establish rainfall thresholds in this

study. Finally, an early warning model is proposed by setting

alert levels including yellow (advisory), orange (watch) and

red (warning) according to a hazard matrix. These differen-

tiated thresholds and alert levels can provide essential infor-

mation for local governments to use in deciding whether to

evacuate residents.

1 Introduction

Rainfall-induced landslides number among the most per-

ilous natural hazards, causing severe casualties and economic

losses worldwide (Ayalew, 1999; Evans et al., 2007; Tsou

et al., 2011; Petley, 2012; Wang et al., 2015; Iverson et al.,

2015; Sassa et al., 2015; Fan et al., 2017). Therefore, much

efforts has been made to evaluate landslide susceptibility and

thereby set criteria for issuing alerts that can save lives and

property.

Landslides can be triggered by either rainfall or earth-

quakes (Dadson et al., 2003; Lee et al., 2004; Lin et al., 2008;

Chen et al., 2011). In Taiwan, monsoons and typhoons bring

great amounts of rainfall, up to 3000 mm year−1, and numer-

ous landslides cause casualties every year. Therefore, recog-

nizing the areas where rainfall-induced landslides might oc-

cur is an urgent issue. Here we adopted statistical method

for the analysis of landslide susceptibility based on the as-

sumption that the predisposing factors that cause landslides

in a region are similar and can be used for predicting the lo-

cations of landslides in the future (Guzzetti et al., 1999). In

previous research, several statistical models have been pro-

posed, as well as widely utilized in landslide susceptibility

analysis, and logistic regression was one of the most used

methods (Guzzetti et al., 1999; Lee et al., 2004, 2008a, b;

Lee, 2014).

Rainfall thresholds for landslides can be categorized as

either statistical approaches or deterministic approaches. In

Published by Copernicus Publications on behalf of the European Geosciences Union.



1718 L.-W. Wei et al.: Adopting the I3–R24 rainfall index and landslide susceptibility

the former method, thresholds are decided by collecting his-

torical landslide cases and analyzing their rainfall parame-

ters and the probability lines of rainfall conditions (Caine,

1980; Guzzetti et al., 2008). In the latter method, thresh-

olds are decided by calculating the safety factors of each

slope or grid with geomaterial and rainfall parameters (Ter-

lien, 1998; Kim et al., 2010). Statistical rainfall thresholds

for shallow landslides have been well discussed (Guzzetti

et al., 2007). They can be classified mainly into five cate-

gories: intensity–duration (Brunetti et al., 2010; Zhou et al.,

2014; Pradhan et al., 2017), accumulated rainfall–duration

(Martelloni, 2011; Rosi et al., 2012; Vessia et al., 2014;

Gariano et al., 2015; Rossi et al., 2017), accumulated rain-

fall (Corominas and Moya, 1999; Bell and Maud, 2000),

intensity–accumulated rainfall (Hong et al., 2005) and accu-

mulated rainfall–accumulated rainfall (Osanai et al., 2010;

Turkington et al., 2014).

Most of the studies set only one threshold for their study

areas despite differences in the physical settings (geology,

geomorphology and meteorological conditions) of the re-

gions. Recently, some studies have subdivided their study

areas into several homogeneous sub-zones to discuss the in-

fluence of physical settings on thresholds (Hong and Adler,

2008; Segoni et al., 2014, 2015; Lee et al., 2015; Rosi et al.,

2015, 2016; Peruccacci et al., 2017). However, for a smaller

area such as slope units, differences in susceptibility may

lead to different warning thresholds (Yang and Adler, 2008;

Segoni et al., 2015; Lee et al., 2015). For example, the warn-

ing threshold of a high-susceptibility slope is likely to be

lower than that of a low-susceptibility slope. To reduce this

gap in knowledge, we focused on shallow landslides of the

debris fall, debris topple, debris slide, earth fall, earth topple

and earth slide types proposed by Varnes (1978) and divided

slope units according to three different landslide susceptibil-

ity levels (high, moderate and low). After that, we established

their rainfall thresholds separately. Furthermore, we set alert

levels by adopting a hazard matrix and examined whether

differentiated warning thresholds for different degrees of sus-

ceptibility existed. Moreover, given the importance of vali-

dating the performance of a landslide early warning model,

especially the false alarms and missed alarms, to make it fea-

sible for further practical application (Calvello et al., 2015;

Devoli et al., 2015; Piciullo et al., 2017; Segoni et al., 2018),

we also adopted skill scores to verify our results.

2 Study area

Taiwan is located in the western Pacific Ocean, on the con-

vergent plate boundary zone of the Philippine Sea Plate and

the Eurasian Plate. The orogenic uplift rate is 5–7 mm year−1

(Willett et al., 2003); however, the exhumation rate is also as

high as 3–6 mm year−1 (Dadson et al., 2003) due to the frac-

tured geological materials and the high mean annual precipi-

tation of 2500–3000 mm brought by typhoons and monsoons

Figure 1. Geomorphological and geological settings of the study

area. The elevation ranges from 3243 m in the eastern mountain area

to sea level in the western plains area. Lithological units are mainly

metamorphic rocks in the Central Range and sedimentary rocks in

the Western Foothills. Rainfall data of 423 stations in Taiwan (96 of

which are located in the study area) were collected for the interpo-

lation and analysis of the triggering rainfall of landslides.

every year (Hsu, 2013). The frequent natural disasters and

high population density (23 million people in 36 000 km2) of

Taiwan make it one of the most exposed countries to multiple

hazards (Dilley et al., 2005).

The study area, located in southern Taiwan (red box in

Fig. 1), includes a mosaic of 47 1 : 25 000 scale maps (about

7258.5 km2) and covers densely inhabited and landslide-

threatening hillslopes. The elevation ranges from 3243 m in

mountain areas to 0 m in plain areas, while the gradient

ranges from 87 to 0◦. The lithological units are mainly sedi-

mentary rocks composed of sandstone, shale, mudstone and

conglomerate in the Western Foothills, as well as metamor-

phic rocks composed of slate, argillite and metasandstone in

the Central Range.
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Table 1. List of landslide inventories generated in this study.

Year Event

2004 Before Typhoon Mindulle

2004 After Typhoon Mindulle

2005 After Typhoon Haitang

2006 After 0609 torrential rainfall

2007 After Typhoon Sepat

2008 After Typhoon Sinlaku

2009 After Typhoon Morakot

3 Available data

3.1 Landslide inventory

Landslide inventories are essential for the assessment of

landslide susceptibility or spatiotemporal land changes (Van

Westen et al., 2003; Guzzetti et al., 2012; Samia et al., 2017;

Valenzuela et al., 2017). Four procedures for the generation

of rainfall-induced landslide inventories were followed in

this study. First, barren lands were interpreted manually from

SPOT 5 images by drawing polygons in ESRI ArcGIS soft-

ware. Second, aerial photographs and satellite images from

Google Earth software were applied to identify whether the

barren lands were landslides or agricultural land. In addi-

tion, the polygons situated on slopes having gradients greater

than 55◦ were marked as rockfalls according to the classifi-

cation rules proposed by the Central Geological Survey, Tai-

wan (Central Geological Survey, 2008). Polygons marked as

agricultural land or rockfalls were deleted from the inven-

tories to ensure that only shallow landslides would be ana-

lyzed in the study. Third, we randomly selected landslides

from inventories and verified the correctness of the loca-

tions and boundaries by fieldwork. Finally, event-based land-

slide inventories, including newly generated landslides and

expanded landslides, were identified by comparing invento-

ries before and after each event. In the end, six heavy rainfall

events that triggered landslides were chosen and a total of

seven landslide inventories were generated in this study (Ta-

ble 1).

3.2 Landslide occurrence time and field investigation

Rainfall conditions such as intensity, duration and accumu-

lated rainfall that induced landslides are key data in applica-

tion of statistical methods to establish the rainfall thresholds

for landslides (Guzzetti et al., 2007, 2008; Brunetti et al.,

2010; Peruccacci et al., 2017). To analyze the rainfall con-

ditions for each landslide case used in this study, a flowchart

was proposed (Fig. 2). During field investigations, we ver-

ified the correctness of the landslide inventories and inter-

viewed local residents to try to acquire the landslide occur-

rence times, since this information is rarely included in land-

slide inventories. The accuracy of landslide occurrence times

is hard to evaluate due to the lack of video records; however,

we focused on interviewing as many residents whose rela-

tives were injured or houses were damaged or destroyed by

the landslides as possible. Given the deep impressions left

by such memories, we believe that the quality of landslide

occurrence times might be improved. In contrast, detailed

characteristics of the landslides, such as lithology, geological

structure, joint, strength, area, depth and mechanism, were

also recorded during the field work. Finally, 941 landslide

cases, including their occurrence times (date and hour) and

the characteristics of the landslides, were gathered for fur-

ther analysis.

3.3 Slope units

Slope units were used for the analysis of landslide suscepti-

bility in this study (Carrara, 1988; Carrara et al., 1991; Car-

rara and Guzzetti, 1995; Guzzetti et al., 1999; Schlögel et

al., 2017; Yang, 2017). To delineate the boundaries of slope

units, 5 × 5 m digital elevation models (5 m DEMs) were ac-

quired from the Ministry of the Interior, Taiwan. However,

to reduce noise, we developed a Fortran program to ob-

tain smoothed and resolution-reduced 10×10 m DEMs (10 m

DEMS) by calculating the average value of each 2 by 2 grid

in the 5 m DEMs. The resolution-reduced 10 m DEMs could

generate some differences in the morphological analysis, but

the expected scale of the landslide susceptibility in this study

was set to 1 : 25 000, so differences smaller than 12.5 m could

be ignored according to the relationship between mapping

scale and 5 % acceptable error.

This study followed the method proposed by Xie et

al. (2004) in delineating slope units according to gullies and

ridges. First, gullies and watersheds were analyzed by suc-

cessively using spatial analysis tools in ArcGIS: fill, flow di-

rection, flow accumulation, stream link (with 2000 used as

the threshold) and watershed. Second, reverse DEMs were

generated by multiplying DEMs by −1. In the reverse DEMs,

ridges became gullies and could be analyzed by the same

methods used in the first step. Third, the watersheds of the

DEMs and reverse DEMs were transformed from rasters to

polygons for further editing by using the “Raster to Poly-

gon” tool in ArcGIS and then cut by each other to delin-

eate the slope units. Finally, slope units were modified man-

ually according to aspect and gradient. It is suggested that

the aspect in a slope unit should be within three adjacent

directions; e.g., northwest, north and northeast. In contrast,

the difference in gradient should not be over 30◦ in a slope

unit, and slope units situated on flat areas, including alluvial

deposits and terraces, were deleted. In addition, the area of

each slope unit was set to around 5 ha; therefore, slope units

smaller than 5 ha were combined with adjacent slope units

and those larger than 5 ha were split into several smaller ones.

Moreover, slope units delineated by parallel drainage on a dip

slope were combined into one slope unit. After the editing,

each slope unit is used for disaster prevention.

www.nat-hazards-earth-syst-sci.net/18/1717/2018/ Nat. Hazards Earth Syst. Sci., 18, 1717–1733, 2018



1720 L.-W. Wei et al.: Adopting the I3–R24 rainfall index and landslide susceptibility

Figure 2. Flowchart of landslide occurrence time gathering during field investigation (left), locations of landslide cases with the occurrence

times used in this study (middle) and the pictures of interviewing residents (right). To improve the quality of this key information, landslide

occurrence times were obtained from local residents, especially those whose relatives were injured or houses were damaged or destroyed by

the landslides.

3.4 Landslide susceptibility factors

Several predisposing factors that might lead to landslides

were selected initially in this study to construct a landslide

susceptibility model for slope units. These factors included

rock mass strength-size classification (RMSSC I–VII), dip

slope, average slope, variance of slope, ratio of steep slope,

total slope height, average elevation, average curvature, vari-

ance of curvature, fault density, fold density, average wet-

ness, rainfall intensity, total rainfall, 3 h mean rainfall inten-

sity (I3) and 24 h accumulated rainfall (R24). The relation-

ships of these factors to landslides could be analyzed through

graphic discrimination, including success rate curve, proba-

bility of failure curve and difference between landslide and

non-landslide groups (Lee, 2014). After that, factor correla-

tion analyses were applied to delete highly related factors to

keep the factors used in the landslide susceptibility model as

independent as possible (Table 2).

In terms of geological factors, the lithology of a location

is essential for the analysis of landslide susceptibility. How-

ever, our study area had more than 50 detailed types of lithol-

ogy, which was unfavorable for the analysis. Therefore, we

adopted the 1 : 25 000 rock mass strength–size classification

maps from Central Geological Survey, Taiwan, to replace the

use of lithology (Franklin, 1975; Central Geological Survey,

2008). In addition, the dip slope inventory interpreted manu-

ally from 1 : 5000 aerial photographs by the Central Geolog-

Table 2. Predisposing factors and their coefficient in logistic regres-

sion analysis.

Code Factor item Coefficient

L01 RMSSC I –

L02 RMSSC II –

L03 RMSSC III −0.874

L04 RMSSC IV −0.099

L05 RMSSC V 0.314

L06 RMSSC VI −0.384

L07 RMSSC VII –

F01 dip slope 0.207

F02 average slope 0.265

F03 variance of slope 0.098

F04 ratio of steep slope 0.344

F05 average curvature 0.016

F06 variance of curvature 0.161

F07 fold density 0.013

F08 average wetness 0.061

F09 3 h mean rainfall intensity (I3) −0.817

F10 24 h accumulated rainfall (R24) 0.665

C Constant 0.057

ical Survey, Taiwan, was also adopted (Central Geological

Survey, 2008). The fold density was also calculated by divid-

ing the total length of all the folds by the total area in each

slope unit.
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For morphological factors, the average slope and the vari-

ance of slope were obtained by averaging and calculating the

standard deviations of all the grid cells in the slope unit sep-

arately. In addition, shallow landslides are prone to occur

on steep slopes; therefore, we also used the “ratio of steep

slopes” to present how many steep slopes existed in a slope

unit. It was found after trial and error that a threshold of gra-

dient higher than 30◦ had a higher relationship with landslide

susceptibility. Thus, we calculated the area where the gra-

dient was greater than 30◦ (A>30) as well as the total area

(Atotal) of each slope unit. Therefore, the ratio of steep slope

could be calculated by dividing A>30 by Atotal. The average

curvature and variance of curvature could also be calculated

by the same method as slope in the ArcGIS software. The av-

erage wetness was calculated by averaging the wetness index

of grid cells in a slope unit. This factor represents the effect

of morphology on soil wetness. When the drainage area is

larger and the slope is gentler, the water content in the soil

will also be higher and therefore make a slope more prone to

failure. The wetness index can be calculated according to the

method proposed by Wilson and Gallant (2000) as follows:

ω = ln

(

As

tanθ

)

, (1)

where ω is wetness index, As is the drainage area of a specific

grid cell expressed as square meters and θ is the slope of the

grid expressed in radians.

For triggering factors, we collected hourly rainfall data of

423 rain stations provided by Central Weather Bureau, Tai-

wan (96 of which were located in our study area, shown in

Fig. 1) and analyzed both the 3 h mean rainfall intensity (I3)

and the 24 h accumulated rainfall (R24) of each station for

each rainfall events in Table 2. After that, we used the linear

mode of ordinary kriging and applied the default setting in

Surfer software to obtain the rainfall distribution of the whole

study area. Whenever Taiwan has a typhoon event, the Cen-

tral Weather Bureau issues disaster prevention alerts. There-

fore, we counted the time that the first alert was issued as the

beginning of the rainfall event and the time that the alert was

canceled as the end of the rainfall event to calculate rainfall

amounts. Our reasons for choosing 3 h mean rainfall inten-

sity (I3) and 24 h accumulated rainfall (R24) as factors will

be explained in detail in Sect. 4.2.

4 Methodology

4.1 Landslide susceptibility analysis

The main purpose of landslide susceptibility analysis is to

determine the effectiveness of each predisposing factor and

the relative possibility of landslide occurrence in a specific

area. Several methods can be used to analyze landslide sus-

ceptibility. The deterministic method uses a physical model

and geotechnical material properties to determine the safety

factor of slopes; however, precise parameters of materials

are difficult to obtain, especially on a regional scale (Mont-

gomery and Dietrich, 1994; Van Westen and Terlien, 1996).

The qualitative and semi-quantitative methods rely on the

experience and knowledge of the experts who carried out

the analysis; however, these results might vary from one ex-

pert to another. The machine learning method uses multiple

samples to build a model by trial and error; however, it is

time consuming (Gorsevski and Jankowski, 2010; Yeon et

al., 2010; Yilmaz, 2010; Marjanovic et al., 2011; Lee et al.,

2012; Song et al., 2012). The statistical method also requires

numerous samples for the training; however, it is more ef-

ficient, especially when dealing with regional-scale analy-

ses, and can avoid the uncertainty of material parameters as

well as differences in expert experience. Recently, nonlinear

analysis, a statistical method, has been used for the analy-

sis of complex landslide phenomena. Methods such as logis-

tic regression (Yilmaz, 2010; Lee et al., 2012, 2014, 2015;

Schlögel et al., 2017) and discriminant analysis (Lee et al.,

2004, 2008a, b) are often used to analyze landslide suscep-

tibility. In this study, we applied logistic regression (LR) to

evaluate the susceptibility of each slope unit (Guzzetti et al.,

1999; Ayalew and Yamagishi, 2005). The LR function can be

expressed as follows:

P =
1

1 + e−z
, (2)

z =

m
∑

i=1

Liwi +

n
∑

j=1

Fjwm+j + C, (3)

where P is landslide susceptibility, Li is RMSSC factor (L01

to L07 in Table 2), Fj is other factors (F01 to F10 in Table 2),

wi and wm+j are regression coefficients and C is a constant.

Six event-based landslide inventories in this study were used

to label whether or not landslides occurred in the slope units.

After that, all the slope units were divided randomly into two

groups, one for training the model and the other for valida-

tion. The index indicating landslide or non-landslide was set

as the dependent variable, and all the landslide susceptibil-

ity factors were set as covariates in SPSS for training of the

model. After iterative training, the regression coefficients of

each landslide susceptibility factor, as well as the success rate

curve (SRC), the prediction rate curve (PRC) and the area

under the curve (AUC), were reported in SPSS. The AUC

can be used to examine if the model predicts landslides well,

and the regression coefficients can be used for the prediction

of landslide susceptibility. During the process of training,

several details required attention. Because the non-landslide

samples outnumbered the landslide samples, we randomly

selected equal numbers of non-landslide and landslide sam-

ples for the training so as to avoid the effect of difference

in quantity. In addition, different samples could have led to

different results when selecting non-landslide samples ran-
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Figure 3. The 3 h mean rainfall intensity (I3) and 24 h accumu-

lated rainfall (R24) were used as short-term and long-term rainfall

indexes for the establishment of rainfall thresholds.

domly. To reduce this effect, we prepared several sets of ran-

domly selected samples for the analysis of landslide suscep-

tibility to test if the model was stable enough; i.e., the AUC

would not vary severely when validating models with differ-

ent sets of samples. Finally, the individual landslide suscep-

tibilities of slope units were calculated with this model and

classified into high, moderate and low susceptibility levels.

4.2 I3–R24 rainfall index and thresholds

Rainfall-induced landslides are triggered by either high in-

tensity rainfall or high accumulated rainfall (Larsen and Si-

mon, 1993; Corominas and Moya; 1999; Yu et al., 2006).

To identify rainfall indexes responsible for landslides, the

triggering rainfall, including the rainfall intensity (I1, I2, I3,

I4, I5 and I6) and accumulated rainfall (R6, R12, R24, R48

and R72) of different time windows of each landslide case

were analyzed according to the landslide occurrence time.

The results revealed that 218 landslides occurred within the

3 h following the highest rainfall intensity, and 242 occurred

within the 3 h following the 2nd or 3rd highest rainfall inten-

sity (i.e., induced by high rainfall intensity), accounting for

nearly 49 % of the landslide cases gathered in this study (Ta-

ble 3). From these results, it became clear that in Taiwan, I3

is the most important index for landslides induced by rainfall

of short duration but high intensity. In contrast, 481 land-

slides occurred close to the end of the rainfall events (i.e.,

induced by high accumulated rainfall), accounting for about

51 % of the total cases. Furthermore, analysis of the different

accumulated rainfall indexes showed that 24 h accumulated

rainfall had the lowest coefficient of variation (Table 4), in-

dicating that this index was less dispersive than others and

might be more suitable for serving as an accumulated rain-

fall index for establishing rainfall thresholds. The coefficient

Figure 4. Establishment of I3–R24 rainfall thresholds for shallow

landslides. The best fit line was derived by least square method, and

the ratio of a and b was used as the ratio of the semi-major axis and

semi-minor axis in the ellipse threshold line.

of variation can be calculated as follows:

Cv =
σ

µ
, (4)

where Cv is the coefficient of variation, and σ and µ are the

standard deviation and average of accumulated rainfall of all

the cases used in this study respectively.

Based on these data and previous studies (Cheung et al.,

2006; Liao et al., 2010), 3 h mean rainfall intensity (I3) and

24 h accumulated rainfall (R24) were respectively chosen as

the short-term and long-term rainfall indexes for the estab-

lishment of the rainfall threshold (Fig. 3). We chose 3 h mean

rainfall intensity here instead of 3 h accumulated rainfall to

focus on rainfall of short duration but high intensity. Simi-

larly, we chose 24 h accumulated rainfall to focus on rainfall

of long duration but low intensity. Finally, rainfall thresh-

olds were decided by plotting the I3 and R24 rainfall index

of historical landslides in the I3–R24 diagram (Fig. 4). Here

we used the ellipse as the threshold line, and the parame-

ters a (semi-major axis) and b (semi-minor axis) of the el-

lipse were set according to the slope of best fit line obtained

from the least square method. Thresholds such as 90, 60, 30,

15 % were determined according to the percentage of histor-

ical cases that could be enveloped under the threshold line;

e.g., the 90 % threshold (T90 %) included 90 % of the histori-

cal cases. A higher threshold indicates a more dangerous con-

dition for the occurrence of landslides. The original warning

values of I3 and R24 of the 90, 60, 30, 15 % thresholds were

equal to the semi-minor axis and semi-major axis of each

threshold respectively. After that, I3 was rounded to the near-

est 5 mm h−1 and R24 was rounded to the nearest 50 mm for

operational purposes, such as the evacuation of residents.

Nat. Hazards Earth Syst. Sci., 18, 1717–1733, 2018 www.nat-hazards-earth-syst-sci.net/18/1717/2018/
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Table 3. Type and the proportion of landslide occurrence times.

Type of landslide occurrence time Amount (percentage)

Type A: within the 3 h following the highest rainfall intensity 218 (23 %)

(landslide induced by high rainfall intensity)

Type B: within the 3 h following the 2nd or 3rd highest rainfall intensity 242 (26 %)

(landslide induced by high rainfall intensity)

Type C: near the end of the rainfall event 481 (51 %)

(landslide induced by high accumulated rainfall)

Total 941 (100 %)

Table 4. Coefficient of variation of different accumulated rainfall

indexes.

Accumulated rainfall indexes Coefficient of variation

6 h accumulated rainfall (R6) 0.68

12 h accumulated rainfall (R12) 0.47

24 h accumulated rainfall (R24) 0.38

48 h accumulated rainfall (R48) 0.41

72 h accumulated rainfall (R72) 0.45

4.3 Landslide early warning model and validation

The landslide early warning model in this study considered

both landslide susceptibility and rainfall thresholds and alerts

were determined by using a hazard matrix. As mentioned

above, the LR method was applied to analyze the suscepti-

bility of each slope unit. After that, all the slope units were

categorized into high, moderate and low susceptibility levels.

We consequently established rainfall thresholds for each sus-

ceptibility level separately and then set alerts of red, orange,

yellow and green according to the level of danger.

High-susceptibility slopes might be more susceptible to

rainfall. Hence, the alerts were set as red (extreme danger

level) for rainfall conditions exceeding the 60 % threshold

line, orange (high danger level) for those between the 60

and 30 % threshold lines, yellow (medium danger level) for

those between the 30 and 15 % threshold lines and green

(low danger level) for rainfall conditions lower than the 15 %

threshold line (Table 5). For moderate-susceptibility slopes,

the alerts were set as red for rainfall conditions exceeding

the 90 % threshold line, orange for those between the 90 and

60 % threshold lines, yellow for rainfall conditions between

the 60 and 30 % threshold lines and green for rainfall condi-

tions lower than the 30 % threshold line. Low-susceptibility

slopes should be less susceptible to rainfall. Hence, the alerts

were set as orange for rainfall conditions exceeding the 90 %

threshold line, yellow for those were between the 90 and

60 % threshold lines and green for those lower than the 60 %

threshold line.

Several methods can be used for the validation of a land-

slide early warning model (Segoni et al., 2014, 2018; Gari-

ano, 2015; Rosi et al, 2015; Piciullo et al., 2017; Krøgli et

al., 2018). According to the analysis of Segoni et al. (2018),

compiling a contingency matrix and calculating skill scores

is the most commonly used method in recent years. There-

fore, we applied this method and quantitatively validated our

model with probability of detection (POD, also known as hit

rate), probability of false detection (POFD, also known as

false alarm rate) and probability of false alarm (POFA, also

known as false alarm ratio). The contingency matrix is pre-

sented as Table 6. Comparing the observed events and the

forecasted events produces four outcomes: true positive (TP),

true negative (TN), false positive (FP) and false negative

(FN). Because warnings against natural hazards are always

issued by taking a village as a unit in Taiwan, here we vali-

dated our model on the village scale. TP indicated the num-

ber of villages for which warnings of slope units were issued

and landslides did occur, while TN indicated the number of

villages for which no warning was issued and no landslide

occurred. In contrast, FP indicated the number of villages

for which warnings were issued but no landslides occurred,

also known as false alarms, while FN indicated the number

of villages for which no warnings were issued but landslides

did occur; i.e., missed alarms. In addition, in our study, we

defined red (extreme danger level) and orange (high danger

level) alerts as warnings issued for evacuation; i.e., the alarm

zone in our model. In contrast, yellow (medium danger level)

and green (low danger level) alerts were considered to indi-

cate no need for evacuation; i.e., the no alarm zone in our

model. POD, POFD and POFA can be calculated by the fol-

lowing equations:

POD =
TP

TP + FN
, (5)

POFD =
FP

TP + FP
, (6)

POFA =
FP

FP + TN
. (7)
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Table 5. Landslide early warning model and alert considering both landslide susceptibility and rainfall thresholds.

Table 6. Contingency matrix for the validation of landslide early

warning model. True positive (TP), true negative (TN), false posi-

tive (FP) and false negative (FN).

Observed events

Yes No

Forecasted events

Yes True positive False positive

(TP) (FP)

No False negative True negative

(FN) (TN)

The ranges of POD, POFD and POFA are all between 0 to 1,

and their optimal values are 1, 0 and 0, respectively.

5 Results and discussions

5.1 Landslide susceptibility analysis

After several calibrations, the resultant model was obtained.

The coefficients for each factor of LR are given in Table 2,

and the landslide susceptibility of each slope unit was also

calculated. To evaluate the quality of a predicted model, the

success rate curve (SRC) and prediction rate curve (PRC)

(Chung and Fabbri, 1999) were mapped, and then the area

under the curve (AUC) was used to describe the model’s abil-

ity to distinguish landslide and non-landslide (Yesilnacar and

Topal, 2005). A higher AUC value indicated a better model

for the prediction of landslides. If the AUC value was 0.5, it

meant that the model did not predict the occurrence of the

landslide better than a random approach. If the AUC value

was 1.0, the capability of the model for predicting a landslide

was perfect.

In our study, the AUCs were 0.745 and 0.691 in train-

ing and validation respectively, indicating that our LR model

could identify 60 % of the landslides in the top 25 and 30 %

of the highest susceptibility areas during training and valida-

tion (Fig. 5). These results showed that the LR model was

Figure 5. Area under the curve (AUC) of training and validation of

landslide susceptibility analysis.

acceptable in both the training and the validation. For a sta-

tistical landslide susceptibility analysis, it is essential to use

as many samples as possible. However, we used slope units

instead of grid units in this study for application to disas-

ter prevention. This led to the reduction of samples, since

one slope unit might equal hundreds of grids. Therefore, our

AUC might not be considered high in comparison to a grid-

based landslide susceptibility model.

To avoid over-training, it was necessary to validate the

capability of the model. One common method is to divide

the study area into sub-regions such as left and right, one

for training and the other for validation (Chung and Fabbri,

2008). But this method might cause the loss of a training pat-

tern in a small or particular geological region if the study area

is extensive. To overcome this problem, we used multi-event

data from the same area for training and testing. The data

used in this study were therefore randomly divided into two

portions, and several sets of data were tested. This approach

would also solve the problems mentioned above.
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5.2 I3–R24 rainfall threshold

We gathered a total of 941 landslide cases in this study and

used 240 cases located in southern Taiwan, consisting of 110

high-susceptibility cases, 84 moderate-susceptibility cases

and 46 low-susceptibility cases, to establish a susceptibility-

based regional landslide early warning model. The ellipse-

shaped I3–R24 rainfall thresholds for three different landslide

susceptibility slopes are presented in Fig. 6. For practical use,

the original threshold values of I3 and R24 (as shown in the

parentheses in Table 7) were separately rounded to the near-

est 5 mm h−1 and the nearest 50 mm. It was found that the

threshold values gradually increased as the susceptibility of

slope units decreased for the same alert level, indicating that

greater rainfall amounts would be needed when issuing al-

ters on less susceptible slope units. These results showed that

establishing rainfall thresholds according to different land-

slide susceptibilities and then setting alert levels by adopting

a hazard matrix not only provided differentiated thresholds

but also avoided the over- or underestimation of the thresh-

olds for slopes.

After the establishment of the landslide early warning

model, we converted the model to an early warning system

(EWS) connected to the QPESUMS, which provides nearly

real-time radar rainfall data, for disaster prevention. Based

on the alerts present in the system, the corresponding danger

levels and suggested actions for residents around the warn-

ing slope are shown in Table 8. During a yellow alert, res-

idents should listen for further announcements and prepare

for evacuation if the alert is raised to orange. When an or-

ange alert is issued, residents should evacuate as quickly as

possible because landslides are likely to occur, according to

the validations shown in the next section. Finally, when a red

alert is issued, evacuation may need to be enforced to protect

residents from injury.

5.3 Validation of landslide early warning model

We validated our model with two kinds of data: (1) three dis-

astrous shallow landslides in 2016 and the occurrence times

provided by witnesses; (2) a landslide inventory of two his-

torical typhoon events and the occurrence times reported by

newspapers.

The first set of validation data showed that orange or red

alerts could have been issued in advance for all of the disas-

trous landslides before the landslides occurred, according to

the rainfall path in the I3–R24 diagram (Fig. 7; Table 9).

The Shihwen landslide occurred on a low-susceptibility

slope. From the rainfall histogram and I3–R24 diagram

(Fig. 7a), we knew that the occurrence time was quite close

to the end of the rainfall event, and that the I3 was only

2.3 mm h−1 while the R24 was 507.5 mm, indicating that ac-

cumulated rainfall might have been the principal cause of this

case. The rainfall path showed that on 14 September, the alert

was raised to yellow at 10:00 (GMT+8) and then to orange

Figure 6. I3–R24 rainfall thresholds and alert of (a) high-

susceptibility slope units (b) moderate susceptibility slope units and

(c) low-susceptibility slope units for southern Taiwan.
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Table 7. Rainfall thresholds for southern Taiwan. The values were calculated as 90, 60, 30 and 15 % of the original threshold. After that,

I3 was rounded to the nearest 5 mm h−1 and R24 was rounded to the nearest 50 mm for operational purpose (e.g., evacuation). The original

values are shown in parentheses.

Table 8. Alerts and the corresponding danger levels, as well as sug-

gested actions.

Alert Danger level Suggested action

Green Low –

Yellow Medium Notice announcements

Orange High Evacuation

Red Extreme Forced evacuation

at 11:00 during the downpour. Then the precipitation fell for

several hours, and the alert was lowered to yellow. However,

when it rained again, the alert was raised back to orange at

18:00 and at 23:00, and the landslide occurred at 05:00 on 15

September.

The Zhongmin landslide occurred on a high-susceptibility

slope. From the rainfall histogram and I3–R24 diagram

(Fig. 7b), it was found that the occurrence time was also

quite close to the end of the rainfall event and that the I3

was 8.3 mm h−1 while the R24 was 479 mm. The high rain-

fall intensity (74 mm h−1 at 04:00 on 28 September) and ac-

cumulated rainfall might both have contributed to this case.

The rainfall path showed that on 28 September, the yellow

alert was raised to orange and red at 04:00 during the high

intensity rainfall mentioned above. After that, although the

rainfall soon fell off, the landslide occurred 6 h later, at 10:00

on 28 September, during an orange alert.

The Houcuo landslide also occurred on a low-

susceptibility slope. From the rainfall histogram and

I3–R24 diagram (Fig. 7c), we found that the occurrence

time was close to the time that the highest rainfall intensity

showed in the rainfall event, and the I3 was 24.3 mm h−1

while the R24 was 291.3 mm, indicating that high rainfall

intensity might have been responsible for this case. Due to

this intensity, the rainfall path showed that the alert was

raised from green to yellow and then to orange within just

1 h, from 03:00 to 04:00, on 28 September, and the landslide

occurred at around 03:30.

For the second set of validation data, we applied the

kriging method to interpolate spatial rainfall data and an-

alyzed the alerts for each slope unit hour-by-hour. The re-

sults showed that the hit rates in the two historical typhoon

events were all sufficiently high, according to the accumu-

lative warning numbers relative to the numbers of landslide

slopes (Fig. 8; Table 10).

During Typhoon Mindulle in 2004, landslides occurred

in 10 911 slope units, including 5129 high-susceptibility

slopes, 2750 moderate-susceptibility slopes and 3032 low-

susceptibility slopes. According to newspaper reports, sev-

eral landslides occurred at 10:00 and between 15:00 and

16:00 on 2 July 2004; however, most of the landslides oc-

curred between 06:00 and 13:00 the next day, 3 July 2004

(blue dashed box in Fig. 8a). From the alert history (Fig. 8a),

it was found that the peak number of orange and red alerts

matched the reported occurrence times quite well. In addi-

tion, orange alerts, indicating the need for evacuation, had

been issued for 8283 slope units during the whole event, ac-

counting for 75.9 % of the slope units where landslides oc-

curred in this event.

Typhoon Haitang in 2005 was another event of con-

cern. Landslides occurred in 10 804 slope units, in-

cluding 2592 high-susceptibility slopes, 2355 moderate-

susceptibility slopes and 5857 low-susceptibility slopes. Ac-

cording to newspaper reports, landslides occurred between

05:00 on 19 July and 06:00 on 20 July 2005 (blue dashed

box in Fig. 8b). From the alert history (Fig. 8b), it was found

that landslides occurred immediately after the number of or-

ange and red alerts increased sharply, and the peak number of

orange and red alerts also matched the reported occurrence

times quite well. Orange alerts had been issued for 10 245

slope units during the whole event, accounting for 94.8 % of

the slope units where landslides occurred in this event. These
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Table 9. Disastrous landslide cases in 2016 and the results of validation. Warnings could have been issued for all landslide cases in advance

or at the time of occurrence (all times referred to are in UTC+8).

Landslide Lithology Landslide Alert & Occurrence of Early (+),

susceptibility area issuing time landslide late (−)

Shihwen landslide (Shihwen village, Chunri Township, Pingtung County)

Low Weathered 61 500 m2 Orange, 11:00, 05:00, +18 h

sandstone 14 September 2016 15 September 2016

Zhongmin landslide (Zhongmin Rd., Yanchao District, Kaohsiung City)

High Mudstone interbedded 3500 m2 Orange and red, 04:00, 10:00, +6 h

with thin sandstone 28 September 2016 28 September 2016

Houcuo landslide (Houcuo Ln., Qishan District, Kaohsiung City)

Low Conglomerate 4000 m2 Orange, 03:00–04:00, 03:30, 0 h

28 September 2016 28 September 2016

Table 10. Validation of warnings issued for slope units and the hit rate during Typhoons Mindulle and Haitang.

Typhoon event Landslide occurrence time (GMT+8) Number of landslide slope units Number of slope units Hit rate

(year) reported by newspapers (number of high-, moderate- and for which orange alerts

low-susceptibility slope units) had been issued

Mindulle (2004) Mainly 06:00–13:00, 10 911 8283 75.9 %

3 July 2004 (5129; 2750; 3032)

Haitang (2005) From 05:00, 19 July 10 804 10 245 94.8 %

to 06:00, 20 July 2005 (2592; 2355; 5857)

results revealed that our model could provide valuable infor-

mation for evacuation and disaster prevention.

In addition, the second set of validation data was also used

to validate the warnings issued for villages during two ty-

phoon events by adopting the contingency matrix and skill

scores. According to the event-based landslide inventories, if

any landslides were located in a village, the village was clas-

sified as “Yes” for observed events. If orange or red warn-

ing alerts were issued for slope units in a village, the vil-

lage was classified as “Yes” for forecasted events. Based on

these rules, the numbers of true positive (TP), true nega-

tive (TN), false positive (FP) and false negative (FN) were

counted and the skill scores were calculated (Table 11). The

probabilities of detection (PODs) of the two typhoon events

were 0.961 and 0.874 respectively, indicating that most of the

villages where landslides occurred could have been warned

in advance. The probabilities of false detection (POFDs) of

the two typhoon events were 0.280 and 0.667 respectively,

suggesting that the model performed well for Typhoon Min-

dulle but might not be as ideal for Typhoon Haitang. Lastly,

the probabilities of false alarm (POFAs) of the two typhoon

events were 0.120 and 0.110 respectively, which meant that

our model would not issue an excessive number of false

alarms and was feasible for disaster prevention.

6 Conclusions

This study attempted to establish regional rainfall thresholds

for shallow landslides according to their landslide suscepti-

bility levels and set alerts with a hazard matrix to provide

more detailed results for disaster mitigation.

Logistic regression (LR), a statistical method, was applied

in this study to analyze the landslide susceptibilities of slope

units. The areas under the curve (AUC) were 0.745 and 0.691

in the training and validation respectively. Due to our use of

slope units instead of grid units in this study for application

to disaster prevention, the number of our training samples

was less, since one slope unit might equal hundreds of grids.

Therefore, our AUC might not be considered high as com-

pared to a grid-based landslide susceptibility model, but it

was still acceptable for practical use.

This study also examined the relationships between rain-

fall indexes and the occurrence of landslides. From 941 land-

slide cases we gathered, it was found that 3 h mean rainfall

intensity (I3) and 24 h accumulated rainfall (R24) were the

most dominant short-term and long-term parameters respon-

sible for rainfall-induced landslides in Taiwan. There were

460 cases (about 49 %) occurred within the 3 h following

the highest, 2nd and 3rd rainfall intensities, while 24 h ac-

cumulated rainfall had the lowest coefficient of variation of
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Figure 7. Disastrous landslide cases in 2016, their rainfall histograms, and their rainfall paths in the I3–R24 diagram. The results showed

that orange or red alerts could have been issued in advance for these disastrous landslides.

Table 11. Validation of alerts issued for villages during Typhoons Mindulle and Haitang by using contingency matrix and skill scores.

Observed events

Typhoon Mindulle (in 2004) Typhoon Haitang (in 2005)

Yes No Yes No

Forecasted events
Yes 220 30 Yes 194 24

No 9 77 No 28 12

POD 0.961 0.874

POFD 0.280 0.667

POFA 0.120 0.110

Nat. Hazards Earth Syst. Sci., 18, 1717–1733, 2018 www.nat-hazards-earth-syst-sci.net/18/1717/2018/



L.-W. Wei et al.: Adopting the I3–R24 rainfall index and landslide susceptibility 1729

Figure 8. Warning history of (a) Typhoon Mindulle and (b) Typhoon Haitang showing that the time at which our model issued alerts matched

the landslide occurrence times reported by newspapers.
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the long-term rainfall indexes. The I3–R24 rainfall index was

therefore used to establish rainfall thresholds.

We categorized the slope units into three landslide suscep-

tibility levels (high, moderate and low) and then separately

established a susceptibility-based regional rainfall threshold.

We also set three alert levels, including red (extreme dan-

ger level), orange (high danger level) and yellow (medium

danger level), by adopting a hazard matrix for application to

evacuation decisions. It was found that the threshold values

gradually increased as the susceptibility of slope units de-

creased for the same alert level, indicating that greater rain-

fall amounts would be needed when issuing alters on less

susceptible slope units.

Validations using three disastrous shallow landslides in

2016 and two landslide inventories of historical typhoon

events showed that, for the landslide cases in 2016, orange

or red alerts could have been issued before the landslides oc-

curred and the hit rates of the alerts issued for slope units in

the two historical typhoon events were 75.9 and 94.8 % re-

spectively, which are sufficiently high for a landslide early

warning model. In addition, the skill scores applied to the

validation of alerts issued for villages during two typhoon

events showed that the probability of detection (PODs) was

0.961 and 0.874, the probability of false detection (POFDs)

was 0.280 and 0.667, and the probability of false alarm (PO-

FAs) was 0.120 and 0.110, respectively, indicating that our

model could be used for landslide early warnings.

It can concluded that classifying landslide susceptibility

and establishing rainfall thresholds separately not only pro-

vides refined thresholds but also avoids overestimation or un-

derestimation of the thresholds for slopes, especially when

considering the application to disaster prevention.
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