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Abstract: Detecting pedestrians in autonomous driving is a safety-critical task, and the decision
to avoid a a person has to be made with minimal latency. Multispectral approaches that combine
RGB and thermal images are researched extensively, as they make it possible to gain robustness
under varying illumination and weather conditions. State-of-the-art solutions employing deep
neural networks offer high accuracy of pedestrian detection. However, the literature is short of
works that evaluate multispectral pedestrian detection with respect to its feasibility in obstacle
avoidance scenarios, taking into account the motion of the vehicle. Therefore, we investigated the
real-time neural network detector architecture You Only Look Once, the latest version (YOLOv4),
and demonstrate that this detector can be adapted to multispectral pedestrian detection. It can
achieve accuracy on par with the state-of-the-art while being highly computationally efficient, thereby
supporting low-latency decision making. The results achieved on the KAIST dataset were evaluated
from the perspective of automotive applications, where low latency and a low number of false
negatives are critical parameters. The middle fusion approach to YOLOv4 in its Tiny variant achieved
the best accuracy to computational efficiency trade-off among the evaluated architectures.

Keywords: pedestrian detection; multispectral fusion; deep learning; You Only Look Once; real-time

1. Introduction

Reliable real-time detection and recognition of other road users enable safe maneuver
planning and execution in autonomous driving. Among those other traffic participants,
pedestrians are considered the most vulnerable road users. According to the World Health
Organisation (WHO) reports [1], about half of the death casualties of road accidents per day
are vulnerable road users. Therefore, there is a need to develop more advanced pedestrian
detection systems for autonomous driving. The most common sensors in autonomous
vehicles are passive RGB cameras [2] that are vulnerable to changes in lighting conditions.
Hence, additional information from thermal cameras operating in the infrared spectrum [3]
is often used to detect pedestrians. As thermal images also have shortcomings related to
the lower resolution than RGB cameras and a lack of background textures, multispectral
fusion methods have attracted attention in recent years.

Current technologies for considering pedestrians in the design of an autonomous
vehicle were recently surveyed [4]. While in this survey, the technologies for handling
pedestrians were found to be mature, there is still a gap between the recent advances in
general-purpose object detection and recognition [5], and the solutions for multispectral
pedestrian detection proposed so far. Namely, although the state-of-the-art solutions to
this problem use deep neural networks and propose elaborated neural architectures that
exploit the complementary visual information, the high latency (for inference generation)
of the neural models often prevents these systems from producing an useful responses in
time, thereby not allowing the whole control system to make a good decision. Moreover,
the applications for autonomous cars are limited by the GPUs available in the vehicles
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themselves, and the available processing power is used to perform multiple perception
tasks. Therefore, in this article, we investigate the adoption of the real-time neural network
detector You Only Look Once (YOLO) [6], specifically its most recent version YOLOv4 [7],
for the task of multispectral pedestrian detection. Our aim is to design a neural network
architecture that exhibits detection accuracy on par with the state-of-the-art but is more
efficient with respect to the inference time, thereby allowing the control system of an
autonomous vehicle to make a decision while still far enough away from a vulnerable
road user.

We re-visit the general fusion paradigms that were already investigated for pedestrian
detection with the Faster R-CNN architecture [8]: early fusion at the level of images, late
fusion at the level of detection (bounding boxes), and middle fusion at the level of features.
Then, we recommend the fusion scheme that provides the best trade-off between the
accuracy in various scenarios (day and night) and latency. The obtained results are further
refined in the lightweight configuration of a YOLOv4-Tiny model optimized with Nvidia’s
TensorRT tool. We report the results of experiments on the KAIST multispectral pedestrian
detection dataset [9], which is commonly used to benchmark pedestrian detection methods,
but propose a new evaluation measure capturing the viability of the method for deployment
in the control system of an autonomous vehicle. The contributions of this article can be
summarized as:

• We investigated how the detection frame rate (expressed in frames per second, fps)
influences the recall measure in a realistic scenario wherein the goal is to detect a
person and brake before a collision occurs. This analysis allowed us to conclude that
low latency during detection is a key factor in pedestrian detection. We ought to
increase speed of detection algorithms so they can spot pedestrians and initiate safe
breaking in time.

• In the context of a realistic scenario, we investigated five different fusion schemes for
multispectral images that were inspired by the state-of-the-art, but are our original con-
tributions to the YOLOv4 architecture. These fusion schemes range from very simple
early fusion at the level of image data to elaborated middle and late fusion schemes.

• As a result of those investigations, we developed a new YOLOv4-based architecture
that allows for middle fusion and scored the best on average in the experiments while
processing the multispectral images at 35 fps.

• Being aware of the limited computing resources of autonomous cars, we prepared a
lightweight model. This detector exceeds 400 fps on the desktop Nvidia RTX 3080
GPU, provides the lowest latency when detecting vulnerable road users from a moving
vehicle, and can be deployed on edge computing devices.

The remainder of this article is organized as follows. Related works are reviewed
in Section 2. Section 3 introduces the YOLOv4 architecture and demonstrates how it
accomplishes the task of pedestrian detection on both RGB and thermal images. Section 4
describes the proposed multispectral fusion approaches using the modified YOLOv4
networks. Next, Section 5 provides the experimental results and performance assessment.
Section 6 contributes an in-depth analysis of the detector’s performance in the context of
an application in autonomous driving. Finally, Section 7 discusses the conclusions and
future work.

2. Related Work
2.1. System Architectures for Pedestrian Detection

Traditional object detection techniques use hand-crafted features and their descriptors
to determine the properties of objects in an image. Such techniques applied to pedestrian
detection on visible light images [10] have included Histogram of Oriented Gradients
(HOG) [10] and Local Binary Patterns (LBP) [11] features, with the Integral Channel Feature
(ICF) detector [12] being the most successful [13]. As hand-crafted features limit the
performance of a detector [13], convolutional neural networks (CNNs) can be applied to
extract features automatically.
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Object detection algorithms, which use CNNs, fall into two main types: two-stage
and single-stage detectors. Typical two-stage detectors come from the region-based con-
volutional neural network (R-CNN) family. In the Faster R-CNN [14] version, the region
proposal network (RPN) was introduced, which can predict the bounding box and score at
each position simultaneously, resulting in a substantial reduction in the prediction time.
Deep learning methods based on variants of the R-CNN architecture are widely used
to detect pedestrians in visible light images [15,16], but the Faster R-CNN architecture
was also successfully adapted for the fusion of visual and thermal images in pedestrian
detection [8,17,18]. Although the architectures of two-stage detectors were substantially
improved concerning their computational efficiency, these neural networks cannot process
images at the full resolution of a camera and the required frame rate. Therefore, only
single-stage detectors can be considered for tasks that require real-time operation.

The most widely used single-stage CNN architectures belong to the You Only Look
Once (YOLO) family. The YOLO architecture [6] treats object detection as a regression prob-
lem. Although the regression-based detectors are considered less accurate than their region-
proposal-based counterparts, they are significantly faster [19]. The YOLO concept was fur-
ther improved by its authors [20,21], and the latest version created by Bochkovskiy et al. [7]
comes with changes that speed up the algorithm even more and improve detection accuracy.
The YOLO architecture outperforms two-stage detectors concerning the computational
speed, which typically results in a higher frame rate in image processing while detecting
objects. However, the memory requirements of the Darknet backbone network in YOLO
are too demanding for embedded devices, and the resulting processing speed is insufficient
in some applications. Hence, several scaled-down YOLO variants, often referred to as
“YOLO-Tiny,” have been proposed [22]. Variants of YOLO-Tiny have already been applied
in the context of automotive applications, demonstrating high performance in object detec-
tion [23,24]. The YOLO family networks were already employed in pedestrian detection
with visible light images [25], and recently, YOLO-based network architectures were pro-
posed for pedestrian detection using multispectral fusion. The MAF-YOLO approach [26]
adapted YOLOv3 architecture. The approach in [27] adopts the most recent YOLOv4
version, which was also leveraged in our research. Furthermore, other single-stage neural
network detectors were investigated for multispectral pedestrian detection: the Single Shot
Detector (SSD) [28] and the Central and Scale Prediction Network (CSPNet) [29].

2.2. Multispectral Fusion in Pedestrian Detection

The methodology of multi-sensory fusion using deep learning methods in the context
of automotive applications was presented in a recent survey [30]. Implementing an effective
fusion scheme requires addressing three points: what to fuse, when to fuse them, and how
to fuse them.

The first question concerns the sources of information that are most relevant to the
task at hand. In the pedestrian detection task, combining regular RGB images and thermal
images acquired in the infrared spectrum improves the reliability of detection. The RGB
and thermal sensing modalities perform best under different scenarios, with the RGB
images yielding precise cues related to visual details, if the lighting conditions permit,
whereas thermal images recover cues related to pedestrians in deep shadows and night-time
scenes [3,31,32].

The second question relates to the processing stage when the information is being
fused into a coherent structure that makes it possible to decide if a pedestrian is detected
or not. In general, the information about pedestrians conveyed in the visible and thermal
modalities can be combined at the level of images, or the level of detection, in the form
of locations of the bounding boxes produced from two distinct processing pipelines [33].
This led to the early and late fusion paradigms, which were compared in the early works
on deep-learning multispectral fusion for pedestrian detection [18]. The popular Faster R-
CNN detector was adapted to multispectral pedestrian detection in [8,18,33], investigating
fusion at different stages of the neural processing architecture. The work of Liu et al. [8]
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concludes that the fusion of visible and thermal features at the middle stage of processing
outperforms both more obvious early and late fusion schemes.

The last question concerns the ways of performing sensory fusions and is closely
related to the transformation of input information inside the network. The standard feature
fusion methods include the addition or concatenation of feature maps, but more compli-
cated procedures are also applied. Such methods can exploit additional context information,
e.g., produced by semantic segmentation [34], or weight the detection results from the
visible and thermal parts according to the prediction of the illumination conditions [33,35].
The last few years brought interesting results [31,32] demonstrating that adaptive, learning-
based fusion schemes outperform hand-crafted fusion mechanisms in the multispectral
pedestrian detection task. These schemes work at the middle level but introduce some
attention mechanisms [36] to the network to assign weighting factors to feature maps
obtained from the different input modalities. The attention module in [32] works at the
channel level, considering the bounding box information and distinguishing between the
background and pedestrians in an image. The more recent approach presented in [31] adds
a guidance mechanism for inter-modality attention, which selects RGB or thermal features
according to a mask, providing a dynamic comparison of their importance.

Recently, multispectral fusion methods for pedestrian detection have been imple-
mented using single-stage neural network detector architectures, such as the Single Shot
Detector (SSD) [28] and the Central and Scale Prediction Network (CSPNet) [29]. Fur-
thermore, the YOLO architecture has been adapted for pedestrian detection fusing RGB
and thermal images. The MAF-YOLO approach [26] adapted the YOLOv3 architecture,
improving the Darknet53 backbone network to work better with infrared images of small
objects, and adding an attention mechanism for better accuracy. The works of Cao et al. [27]
and Dao et al. [37] leverage the most recent YOLOv4 version for multispectral pedestrian
detection. The research presented in [27] investigated several fusion schemes at different
stages of the neural processing pipeline, and selected the middle fusion scheme as the most
effective, which corroborates our findings, and makes that work most similar to ours. The
best solution from [27] had similar performance to our YOLO4-Middle, with a slightly bet-
ter detection accuracy but slightly longer inference time. However, in [27] the performance
was measured only in terms of the log average miss rate for the two modalities, and they
did not attempt to investigate how the performance impacts the ability to detect pedestrians
quickly in day and night scenarios. We demonstrate in Section 6 that low latency of the
detector (i.e., very short inference time) is a key factor in ensuring safe breaking when
pedestrians are detected. Another recent study that leveraged YOLOv4 [37] involved a
different approach to fusion, with an architecture that deploys two YOLOv4 pipelines for
separate processing of RGB and thermal images, and then fuses the results using weights
computed upon the estimated illumination condition. The architecture proposed in [37]
requires the processing of both images through the entire YOLOv4 pipeline, which results
in a processing speed that is clearly inferior to that of our solution (16 fps vs. 35 fps,
respectively), though their accuracies are comparable. With respect to state-of-the-art, we
were also the first to investigate a scaled-down "tiny" variant of the YOLO architecture for
the detection of pedestrians. We found that although the accuracy of detection (in terms
of mean average precision) drops for the scaled-down architecture, the extremely short
inference time allows our YOLO4-Tiny-Middle to score best when the ability to provide
reliable detection of distant pedestrians in a car breaking scenario is assessed.

3. Pedestrian Detection with YOLOv4

Pedestrian detection for intelligent vehicles requires low latency of information to
make steering decisions on time while also performing inferences several times per second
to observe the changing environment. Therefore, we selected YOLOv4 as a baseline,
state-of-the-art network that meets these requirements. We start the introduction of our
approaches with a classical RGB image-based YOLOv4 detector, as described in Section 3.1,
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called YOLO4-RGB. This baseline approach was adapted to work with thermal images only
as explained in Section 3.2 and called YOLO4-T.

3.1. YOLOv4 with RGB Images

The main requirements for developing pedestrian detection systems for autonomous
vehicles are high recognition accuracy and the ability to operate the system in real-time.
Those requirements are fulfilled by the YOLOv4 detector, which belongs to the family
of single-stage detectors. Among the key features that distinguish YOLOv4 from earlier
versions is the detector architecture, consisting of a backbone, neck, and head as presented
in Figure 1. As the backbone, the CSPDarknet53 is used. This convolutional neural network
contains residual connections preventing gradient vanishing and allowing information to
flow from the initial to the final layers.

Figure 1. Scheme showing the main processing components of the YOLOv4 detector architecture.

The detector layers that are directly connected to the backbone are called the neck,
and for YOLOv4, they take the form of PANet (Path Aggregation Network). Their task is
to extract feature maps at various stages of backbone processing, allowing more efficient
detection of objects of different sizes. What is more, SPP (Spatial Pyramid Pooling) is
also often included as part of the neck, which extends the receptive field of the detector,
increasing its final accuracy. This is possible thanks to performing max-pooling operations
with different kernel values for given feature maps. The final components of the YOLOv-4
detector are its heads, which have not changed since the previous version. Their multiplicity
allows them to be combined with layers of various feature extraction levels, which helps
detect objects of different sizes. Important also is the collection of techniques called Bag of
Specials—low computational cost modules for both the backbone and the detector of the
YOLOv4 architecture, including the new activation function Mish.

3.2. YOLOv4 with Thermal Images

RGB cameras are commonly used in scenarios assuming observations in the visible
light spectrum. However, these cameras perform poorly in poor lighting conditions, such
as during adverse weather conditions or at night. Moreover, poor performance can also be
observed during rapid changes in illumination or when a single source of light, e.g., the
sun, blinds the camera.

Capturing the light spectrum at different wavelengths provides different views of the
scene. If we decide to capture information at wavelengths up to 14 µm, we get a thermal
camera. Thermal cameras perform their measurements in the infrared spectrum, observing
objects’ heat emissions. Thermal images are relatively independent of lighting conditions,
making thermal cameras effective at detecting objects that are invisible to RGB cameras.

In our experiments, we used the 1-channel, 8-bit thermal data encoding initially
provided by the authors of the KAIST dataset, which we normalized with a histogram
to use the whole range of 8-bit channel information. The 8-bit thermal data encoding
instead of raw 14-bit representation is a known limitation of this dataset [38]. As a result of
data preprocessing, we obtained thermal data compatible with the original YOLO4-RGB
architecture, not requiring modifications to the architecture itself. The version that works
with thermal data was dubbed YOLO4-T, with the T standing for the thermal input. The
internal layers of the network were not changed, and the network was pretrained on the
COCO dataset, similarly to YOLO4-RGB.
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4. Sensory Fusion with the YOLO Architecture

Performing the fusion of different sensor modalities requires proper alignment of
these measurements, understood as finding the correspondence between individual mea-
surements from each sensor. We assumed that the RGB and thermal images are aligned,
based either directly on the hardware used to capture the sensory data [9] or by additional
processing steps [39]. Once calibrated, we could consider different approaches to fusing
the information in the deep learning-based processing pipeline. We decided to differentiate
between these approaches based on the moment when information from different sensing
modalities is combined in the detection processing pipeline. Our approaches were divided
into three main groups: early fusion, late fusion, and middle-fusion methods.

4.1. Early Fusion Approaches

Early fusion approaches focus on combining the RGB and thermal images on the raw
data level prior to being processed by the neural network. In our case, it means that the
RGB and thermal data were packed into a single, multi-channel image that was passed to
the network for further processing. In these approaches, the latent features created in the
backbone of YOLO contain information from both cameras from the first computational
stage. The main idea is that the input streams are complementary at the low level of
processing. The deep learning network can determine which input properties are essential
for object detection.

The original network architecture of YOLO processes the three-channel image as an
input. Therefore, we divide our approaches into subgroups of methods that preprocess the
initial data to fit these input types (YOLO4-HST, YOLO4-GST) and a method that modifies
the network architecture to take a four-channel image as an input (YOLO4-RGB-T).

4.1.1. Yolo4-HST and YOLO4-GST Fusions

Providing the RGB and thermal images as a three-channel input means some infor-
mation must be compressed to fit the input requirements. In the two proposed methods,
we convert the image in RGB color space into a different color representation and select
two channels containing the essential information for pedestrian detection.

In the YOLO4-HST approach, the RGB color space is converted into the HSV (hue,
saturation, value), also known as HSB (hue, saturation, brightness). Then, the HST space
is created using the hue, saturation, and thermal components. In this representation, the
brightness component is omitted. The YOLO4-HST is trained and evaluated on the input
data converted into HST space.

In the YOLO4-GST approach, the GST representation consists of the G channel, which
is the color image transformed to grayscale, containing the input from all RGB channels;
the S channel, which is the saturation from the HSV representation of the color image; and
the T channel which is the grayscale thermal image. Exemplary images converted into HST
and GST representations are presented in Figure 2.

Figure 2. Example input images processed by the YOLOv4 architecture: RGB and thermal images on
the left and HST and GST images on the right.

4.1.2. YOLO4-RGB-T Fusion

YOLO4-RGB-T fusion is an early fusion approach that modifies the input of the deep
learning network. In this approach, the 4-channel image is taken as an input and consists
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of a 3-channel RGB image and 1-channel thermal information, as presented in Figure 3. As
RGB and thermal information is fed directly to the network, no information is lost during
data conversion.

Figure 3. The processing pipeline of the YOLO4-RGB-T network combines RGB and thermal images
into a 4-channel input.

The modified architecture of YOLOv4 has an extra input dimension for the first
convolutional layer, which raises the total number of parameters of the network when
compared to YOLO4-RGB or YOLO4-T. Moreover, direct weight transfer from the original
YOLO4-RGB is not feasible. Nevertheless, we decided to use pretrained weights from
YOLO4-RGB for all common parts between architectures. To increase the robustness of the
learning procedure, we first trained the weights of the modified input layer for the first
two epochs with the weights of the remaining layers (frozen). The duration of two epochs
was chosen experimentally based on the learning curve to provide a good bootstrap of the
network’s weights while avoiding convergence to a local minimum. Once the first two
epochs were completed, the weights in the whole network were trained for the remaining
23 epochs. In total, the training process lasted for 25 epochs.

4.2. Late Fusion Approach (YOLO4-Late)

The previous section proposed a neural network that performs the fusion scheme at
the data input level. An entirely different approach is to perform independent processing
of the information coming from RGB and thermal cameras while fusing the processing
results. In this fusion approach, called YOLO4-Late and presented in Figure 4, the deep
neural network consists of YOLO4-RGB to process an RGB image and YOLO4-T to process
the thermal image.

The detection results obtained from both networks are processed by a proposed,
non-learnable component, which we call the prediction matching system (PMS). The
responsibility of the PMS is to provide a single detection output based on the results
obtained from both processing branches, thereby fusing the results of both networks. In
YOLO4-Late, the PMS takes as an inputs the value of the intersection over union (IoU)
parameter for bounding boxes for the outputs of both neural networks and the probability
that a detected object belongs to a given class calculated by each network. In the proposed
implementation, the PMS follows a preset rule that reports detection of an object if the
IoU value for the predictions from both detectors is greater than 0.6 or if the probability of
detection for either of the networks is greater than 0.45. The provided thresholds for the
IoU value and probability detection were determined with a simple exhaustive search on
the training data to provide the best mAP measure.
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Figure 4. The scheme shows the YOLO4-Late detector architecture, using a prediction matching
system to provide unified pedestrian detections based on the inputs of both network branches.

4.3. Middle Fusion Approach (YOLO4-Middle)

The last proposed method, YOLO4-Middle, performs the fusion on the feature-level
processing of the input. In this configuration, the input is a 6-channel tensor input, where
three channels are filled with RGB image data, and three channels contain the thermal
image. In the beginning, the processing is performed independently for RGB and thermal
inputs using the CSPDarknet53 neural network—see the initial feature processing presented
in Figure 5. This ensures that a separate pipeline preprocesses each image with a different
domain to determine the feature maps. In contrast to previous fusion approaches, these
feature maps are combined at different processing levels using inter-branch connections.

Figure 5. The processing pipeline of the YOLO4-Middle detector architecture extracts independent
features for RGB and thermal inputs that are combined on different processing levels before the layers
responsible for object detection.

The feature maps obtained from processing RGB and thermal inputs are concatenated
and then processed using convolutional layers with a kernel size of 1 × 1. This operation
reduces the depth of the feature maps, making it possible to keep the remaining processing
layers of the YOLOv4 detector architecture intact compared to processing with a single
sensory input.

The proposed architecture of YOLO4-Middle was initialized with original pretrained
weights for the YOLO4-RGB detector for all the processing blocks that are the same as those
of the original pipeline. However, similarly to YOLO4-RGB-T, some components differ,
and the weights had to be trained without initial guesses. Therefore, the neural network
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training was split into two stages—a warm-up and the main training. The warm-up lasted
for two epochs and was used to determine the initial values of weights that could not
be initialized with transfer learning, i.e., for new convolutional layers that combined the
output feature maps from both sources. The transferred weights were frozen during the
warm-up stage of training. The main training started from the third epoch when all the
weights in the network were trained.

5. Experiments
5.1. Kaist Dataset

An experimental evaluation of the proposed networks that fuse the RGB and thermal
inputs in pedestrian detection requires a dataset that recorded from a moving car that
contains aligned images from both sensor modalities. The KAIST dataset [9] meets these
requirements, as RGB and thermal cameras were placed on a unique sensory setup on
the car’s rooftop. This sensory setup allows recording images from both sensors while
ensuring that each pixel of the RGB image corresponds to the same pixel of the thermal
image. In practice, it means that data from both sensors are aligned, and the proposed
sensory fusion approaches can be directly used.

The dataset consists of over 60,000 images recorded at different times of the day. The
authors of the dataset divided these sequences into day and night parts. Each recording
has object annotations defined by the authors of the dataset, which can be used during
training and to evaluate the proposed system. The ground truth labels are available for
three classes: a person, a group of people, and a cyclist. In our approach, we merged
all of these classes into a single class “person”,as the dataset was not balanced, and each
annotated class represents a person in the end.

Each sequence in the KAIST dataset was used only during the training, validation, or
testing phase, which avoided the overlap between data. This approach ensured that the
detector would not know the test data, allowing for an unbiased prediction of its accuracy.
Table 1 shows the division of the dataset into training, validation, and test sets, together
with the number of objects included in the image sequences.

Table 1. Division of the KAIST dataset into the training, validation, and test sets according to the
time of day based on the number of images and number of annotated ground truth objects.

Training Validation Test Total
Img. Obj. Img. Obj. Img. Obj. Img. Obj.

Day 41 k 54 k 13 k 12 k 8 k 4 k 62 k 70 k
Night 20.5 k 36 k 9 k 5 k 3.5 k 3.5 k 33 k 44.5 k

Total 61.5 k 90 k 22 k 17 k 11.5 k 7.5 k 95 k 114.5 k

5.2. Precision Performance Comparison

The typical way of measuring the detection performance is based on the mean average
precision (mAP). The mAP metric determines how many of the predictions turned out
to be correct and what was the overlap between the detected and ground truth locations
of the objects. The mAP is therefore useful for comparing the performances of different
detection algorithms. Furthermore, the values of mAP are strongly connected with the
preset threshold that determines the overlapping of the predicted bounding boxes with
the ground truth ones. The overlap threshold is denoted by the Intersection over Union
(IoU) value. The lower the IoU is, the lower overlap is needed to be considered correct,
increasing the number of detections that are assumed to be accurate. In our case, we
computed mAP values for IoU thresholds of 0.15 (mAP15), 0.30 (mAP30), 0.50 (mAP50),
0.60 (mAP60), 0.75 (mAP75), and 0.90 (mAP90) for all considered fusion approaches. The
obtained performances for all considered methods are presented in Figure 6.
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Figure 6. Measured mAP for different IoU threshold values for all considered fusion approaches.

From this visual representation of the mAP values for all IoU thresholds, the highest
metric scores were reached by the YOLO4-Middle detector, which combines extracted
information from two sources at different processing levels. Slightly worse results were
achieved by the YOLO4-Late detector, which combines the detection results from parallel
processing pipelines for RGB and thermal images.

Marginally worse results can be observed for the YOLO4-GST and YOLO4-HST
fusions, which barely outperformed the detector processing only the thermal images
(YOLO4-T). Despite using all available information, similar but slightly lower performance
than for YOLO4-T can be observed for YOLO4-RGB-T. We believe it might have been
caused by a partial inability to use weight transfer learning to boost the initial training
of the network for YOLO4-RGB-T. The worst mAP metric values were obtained by the
YOLO4-RGB detector, proving the importance of performing data fusion for data from
RGB and thermal domains.

The ranking of the considered approaches is almost the same regardless of the chosen
IoU threshold. However, a single IoU threshold value has to be chosen during the operation.
To select this value, we decided to analyze the plot of recall and false positives depending
on the IoU threshold for YOLO4-Middle, as presented in Figure 7. We did not use the
popular receiver operating characteristic (ROC) curve, as for the object detection task it is
problematic to count the proper number of true negatives. In our case, we are interested
in detecting the pedestrian as soon as possible to determine if emergency braking can
be performed. Therefore, we are less concerned about the accuracy of the bounding box
detection and more interested in a greater recall value. We conclude that a lower value of the
IoU threshold would be preferred in this scenario, as long as we would be able to filter the
false positives. We finally chose the IoU of 0.50 as a good trade-off and the value typically
used in state-of-the-art works on pedestrian detection. Therefore, for further analysis we
focused on the IoU of 0.50. The mAP50 results obtained by the methods, depending on the
time of the day, are presented in Table 2.

As previously seen in Figure 6, the best overall performance according to mAP50 metric
was obtained by YOLO4-Middle, which significantly outperformed the other methods on
the day images. This difference in performance is especially evident when compared to
the single-source approaches, such as YOLO4-RGB and YOLO4-T: YOLO4-Middle had
more than 0.066 mAP50 improvements over both of those methods. For night conditions,
YOLO4-Middle outperformed YOLO4-RGB by 0.328 and YOLO4-T by 0.009. This proves
that the middle data fusion can improve performance in all conditions compared to single
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modality approaches. It is worth noting that the YOLO4-Late detector obtained the best
performance at night, achieving a mAP50 measure 0.010 higher than YOLO4-Middle.

Figure 7. The obtained plot of recall and number of false positives depending on the chosen IoU
threshold for YOLO4-Middle.

Table 2. The obtained mean average precision mAP50 metric for different types of pedestrian detection
systems depending on the time of day. The best result for the selected time of the day is marked in
blue, and the worst is red.

Time of Day
Day Night Day + Night

YOLO4-RGB 0.684 0.298 0.465
YOLO4-T 0.641 0.617 0.625
YOLO4-HST 0.672 0.62 0.639
YOLO4-GST 0.673 0.603 0.627
YOLO4-RGB-T 0.648 0.609 0.618
YOLO4-Middle 0.751 0.626 0.686
YOLO4-Late 0.666 0.636 0.645

The remaining fusion approaches had similar performances for day and night condi-
tions, showing that fusion methods can perform well regardless of these conditions, even
though YOLO4-RGB performs very poorly in night conditions.

5.3. Performance as a Function of Object Size

The results show that the YOLO4-Middle architecture was the best performing net-
work among the verified solutions according to the mAP measure. A single mAP value
is insufficient to determine the method’s viability to be deployed in real-world scenar-
ios. Therefore, we decided to additionally analyze the performances of the presented
approaches based on the ground truth pixel sizes of the objects. The ground truth pixel size
of an object is defined as the sum of pixels that were used to mark the object in the dataset
on the particular images. Then, we computed the mAP performance of the network for all
images in the testing part of the dataset for a considered bounding box size. The mAP50
results obtained for all considered methods and different sizes of objects are presented in
Figure 8.

In Figure 8, it can be seen that the performances of all of the methods drop when
objects get smaller. For all considered scenarios, the best performance can be seen for
YOLO4-Middle, with mAP50 reaching nearly 0.700 for objects larger than 4000 pixels; but
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mAP50 dropped to below 0.300 for the smallest objects. Right behind it, the YOLO4-Late
detector also achieved the highest mAP values for the largest objects. The results confirm
that fusion techniques are essential for detecting distant objects, often at a significant
distance from the vehicle.

Figure 8. The plot of the mAP50 metric for different sizes of ground truth bounding boxes in a range
from 200 to 5000 pixels and different configurations of the proposed detector.

5.4. Inference Time

In automotive applications, we are interested in obtaining the best possible results
considering real-world scenarios. While the vehicle is in motion, the system has a limited
time budget to perform efficient detection and decide, i.e., to perform emergency brak-
ing. The obtained processing fps values for the analyzed fusion models are presented
in Table 3, and the inference times were computed assuming that each image was pro-
cessed independently. The optimized models were obtained after processing original
networks through Nvidia’s SDK for high-performance deep learning inference, TensorRT
(https://github.com/NVIDIA/TensorRT accessed on 20 November 2021).

Table 3. Model inference expressed in fps for all of the YOLOv4 detectors.

Original [fps] Optimized [fps] Original Single Optimized Single
Inference Time [ms] Inference Time [ms]

YOLO4-RGB 28.1 41.0 35.6 24.4
YOLO4-T 28.1 41.0 35.6 24.4

YOLO4-HST 27.9 39.9 35.8 25.1
YOLO4-GST 27.8 39.8 36.0 25.1

YOLO4-RGB-T 27.6 39.6 36.2 25.3
YOLO4-Middle 21.7 35.2 46.1 28.4

YOLO4-Late 27.1 38.2 36.9 26.2

After optimizing neural network models, the processing times for all analyzed meth-
ods dropped below 30 ms for a single image. The longest inference time was observed for
YOLO4-Middle, which has additional connections between processing blocks for RGB and
thermal pipelines, leading to a long processing time. As it turns out, the middle fusion
architecture provides the best results concerning the accuracy of pedestrian detection in
both day and night scenarios. Still, it is slower than the completely independent processing
pipelines for both modalities for the YOLO4-Late approach. Although the achieved speed
of 35 fps satisfies our assumptions of low latency, as we can process the incoming images
essentially at the fps of a typical RGB camera, this was achieved using the total processing
power of the Nvidia RTX 3080 GPU.

https://github.com/NVIDIA/TensorRT
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5.5. The Lightweight Approach: YOLO4-Tiny-Middle

Considering the speed versus accuracy trade-off, we decided to extend our investiga-
tions to the tiny-YOLO architecture, which is known for its superb computational efficiency.
We considered our YOLO4-Middle fusion scheme as the baseline for further development,
as it performed well for the day, night, and smaller objects. We created the YOLO4-Tiny-
Middle version starting from this fusion scheme and considering the YOLO-Tiny backbone
architecture [23]. Compared to YOLO4-Middle, YOLO4-Tiny-Middle has a lighter back-
bone and only two levels in the SPP pyramid, resulting in fewer network parameters and
thus faster inference generation. The complete architecture of the YOLO4-Tiny-Middle is
presented in Figure 9.

Figure 9. The processing pipeline of the YOLO4-Middle-Tiny detector. It extracts independent
features from RGB and thermal inputs that are combined on different processing levels before the
layers responsible for object detection.

The average mAP50 obtained for the YOLO4-Tiny-Middle was 0.557 (0.639 for day and
0.491 for a night), which is less than either of the previous fusion networks. The lower mAP
performance comes with a significant processing speedup compared to the previous fusion
approaches, resulting in approximately 410 fps on Nvidia RTX 3080 after optimizing the
model with the TensorRT library.

5.6. Comparison to the State-of-the-Art

Although the main aim of our research was to investigate how the fps of a deep
learning detector influences its ability to detect a vulnerable road user within a sufficient
distance to allow for breaking. We also draw brief comparisons between the performance
of our best model, YOLO4-Middle, and other YOLO-based detectors that were published
recently. While most of the works concerning multispectral pedestrian detection adopt
the log average miss rate over the range of [10−2, 100] false positives per image as the
performance measure, there seem to be considerable differences in the preparation of the
datasets employed for the benchmarks. The KAIST dataset [9] is used most commonly, but
many works adopt modified annotations, introduced in [34] and known as the “sanitized”
version, because numerous annotation errors have been removed. Furthermore, some
authors test their neural models on a “reasonable” setting of the KAIST dataset, using only
human silhouettes taller than 50 pixels. As our research is aimed at real-world applications
to autonomous vehicles, where various errors in data annotation can happen easily, and all
objects endangering the vehicle should be detected, we used the KAIST dataset without
any modifications. Moreover, we treated all the annotated classes as vulnerable road users
that should be detected; however, these objects could also be cyclists, groups of people, or
uncertain objects labeled as “person?”. Using the raw dataset certainly made the detection
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task harder and lowered the sore of our method, but we believe that such settings were
necessary to make our breaking distance analysis fair with respect to real-world conditions.

Multispectral Channel Feature Fusion from [27] scored with its best variant the log
average miss rate of 20.64% for the day and night scenarios (using “sanitized” annotations),
while achieving 30 fps. A recent method based on YOLOv4 [37] reported 16 fps and the
log average miss rate of 34.11% for the day and night scenarios. However, in this case it
is unclear if the corrected annotations and/or “reasonable” settings were employed. In
comparison, our best neural network model, YOLO4-Middle, achieved the log average
miss rate of 35.81% for the day and night scenarios, with a slightly lower miss rate (34.0%)
for the daytime only scenario, and a slightly worse score for the nighttime images (36.43%).
Although these scores are worse than those reported in [27], they were achieved on the
entire KAIST dataset, thereby including examples with very small pedestrian silhouettes,
cyclists etc., and without removing the erroneous annotations. Under these conditions, our
results are still on par with the log average miss rate reported on the KAIST dataset by the
recent paper [37], whose authors also adopted YOLOv4. Our detector achieved more than
twice faster processing though (35 fps). Compared to older two-stage detectors based on
the R-CNN architecture, we achieved inference times one order of magnitude shorter, along
with better detection results (e.g., [8] reports the miss rate of 36.99% using a conceptually
similar fusion scheme). We consider low latency inference a key factor in achieving the
ability to protect vulnerable road users from accidents in real-world automotive scenarios,
and we provide results that support this statement in the next section.

6. Real-World Application Viability

An analysis of the practical viability of the proposed pedestrian detection method
has to capture the behavior of the system in typical driving scenarios. Measuring the
performance of the pedestrian detector with mean average precision does not illustrate how
well the system would perform once deployed in an actual autonomous car. Therefore, we
decided to simulate a typical scenario when a person appears on the road, and the car has to
either brake or has to perform an avoidance maneuver to avoid a collision. In this scenario,
we can estimate the performance of the pedestrian detection system depending on the
inference time needed to process a single image, the speed of the vehicle, and the distance
to the detected object. Unfortunately, the KAIST dataset lacks the depth information to
infer the performance based on the distance to the obstacle and vehicle speed for each
image. In order to do our simulation, we had to make several assumptions:

• We assumed that each detected person object represents only one person of consistent
height and width;

• We assumed that each object detection was independent;
• We assumed that the detection rate was not limited by the camera’s frame rate;
• We focused on recall without the consideration for false positives.

Therefore, the following analysis is only valid if these assumptions are held and do
not cover the infinite number of cases that might occur while driving.

6.1. Distance to the Obstacle Based on Bounding Box from the Detection

The following processing step of our simulation involved estimating the relation
between the size of the bounding box measured in pixels and a metric distance to the
obstacle. In our simulation, we assumed the supposed worldwide average height of an
adult, approximately 1.7 m, and the average width of 0.4 m [40]. For simplicity, we assumed
these dimensions for all objects marked as a person, group of people, or a person riding a
bicycle. We believe it is a reasonable assumption, as instances of the latter classes rarely
appear in the dataset, constituting less than 4% of all pedestrian objects.
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With the knowledge that the vertical field of view of the camera was equal to θ = 39◦ [9],
we formulated an equation to compute the camera focal length of a standard pinhole camera
model valid for images of size 416 × 416 pixels:

f =
w

2 tan
(

θ
2

) , (1)

where w is the width of the image in pixels. Our thermal and RGB cameras have isotropic
lenses and can be modeled with a pinhole camera model to approximate the same focal
length f = fx = fy for both x and y axes. The relation computed from Equation (1) is
described with the equation:

d = f
√

pw ph
b

, (2)

where pw stands for person’s width, ph stands for person’s height pw, and b is the size
of the bounding box measured in pixels. For the KAIST dataset, we found out that the
pedestrian detections occur for bounding boxes b ranging from 50 to 5000 pixels.

Based on the prior assumptions, for a selected bounding box size b, we were able to
roughly estimate the distance from the camera to the pedestrian. The relation between
the bounding box size b and the distance to the pedestrian d is presented as a blue line
in Figure 10. As we can see, all objects with bounding boxes exceeding approximately
500 pixels were closer than 20 m to the camera. This relation is not linear. The distance
grows exponentially for smaller bounding boxes, thereby showing the importance of
detecting small objects.

Figure 10. The distance to the person, based on the size of the bounding box, is registered on
416 × 416 pixel images.

6.2. Recall as a Function of Distance

This section reports the performance of the method based on the distance. In our
simulation, we assumed that the person was standing on the road, and the goal was to
detect the person and brake before the collision occurred. Therefore, we were interested in
ensuring that the person was consistently detected (recall), ignoring the number of false
positives at this time. The recall measure was computed as:

r =
TP

TP + FN
, (3)

where TP is the sum of all true positives defined as correct detection with an IoU measure
above the defined threshold of 0.50, and FN is the sum of all false negatives defined as the
sum of detections that should have been but were not made by the proposed algorithm.

We computed the recall measure for each analyzed fusion method based on ground
truth and estimated bounding boxes. Like the previous computations, we did them for
different sizes of the ground truth bounding boxes used to determine the recall depending
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on the distance to the detected objects. The results for day and night conditions are
presented in Figure 11.

Figure 11. The recall for YOLO4-RGB, YOLO4-T, YOLO4-Middle, and YOLO4-Tiny-Middle as a
function of distance (sizes of bounding boxes).

None of the methods could enable detection at distances exceeding 28 m. For all
methods, the average recall dropped almost linearly with the distance of the person from the
camera. The best recalls were found for YOLO4-Middle for almost all considered distances
for the day and the night. For daytime, the worst performance for more considerable
distances was observed for YOLO4-Tiny-Middle, which struggle with recognition of small
bounding boxes. The worst performance was the nighttime detection by YOLO4-RGB,
which performed poorly for distances larger than approximately 10 m.

6.3. Emergency Braking Procedure

Based on the computed recalls and chosen vehicle speed, we were interested in a
simulation to determine the safe driving speed with which a pedestrian detection system
could initiate the emergency braking procedure and avoid a collision. More precisely, for a
selected vehicle speed, we were interested in finding the distance from the sensors where
our system produces correct pedestrian detection with the required 0.99 probability. The
further the detection distance, the better the method performs, as the system has more
time to break or perform an avoidance maneuver. We assumed that each image processing
was independent during our simulation, and started off by dividing the feasible detection
ranges into intervals of 50 pixels, defined by bounding box sizes, with objects sizes of 0 px
(b0), 50 px (b1), etc., until 5000 px (b100). For each bounding box interval, we computed the
number of feasible detections:

ni =
d(bi)− d(bi−1)

v
f , (4)

where ni is the sought number of detections that can be performed in the i-th interval that
ranges for metric distances d(bi−1) to d(bi) based on the pixel sizes of the objects (bi−1, bi).
The computation was performed for a selected vehicle speed v and the fps of the chosen
detector f . Then, we were able to compute the probability of detecting a person in the
selected interval of bounding box sizes (distances) with index i, using equation:

pi = 1 − (1 − ri)
ni , (5)

where pi is the probability of object detection (recall) in the selected range and ri is the
recall of a single detection algorithm. The accumulated probability of detection from far
away to closer distances can be written as:

q = 1 − ∏
i
(1 − pi). (6)
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In practice, we looked for the furthest distance whereat the detection probability ex-
ceeds 0.99:

i∗ = argmin
j

(
qj > 0.99

)
= argmin

j

((
1 −

j

∏
i
(1 − pi)

)
> 0.99

)
, (7)

where i∗ is the ID of the detection interval defined by its bounding box size, which was
used to determine the furthest detection distance d(bi∗) at which the given system obtained
the required 0.99 probability of pedestrian detection. The computed detection distances for
YOLO4-RGB, YOLO4-T, YOLO4-Middle, and YOLO4-Tiny-Middle for the day and night
are presented in Figure 12.

Figure 12. Detection distances for each method when a person can be detected with a probability
exceeding 0.99. We show the typical braking distance, proving that the system can perform emergency
braking when the speed does not exceed 50 km/h.

As it turns out, the detection distances for all of the presented methods during the day
were similar to the best performance (largest detection distance) observed for YOLO4-Tiny-
Middle. During the day, YOLO4-Tiny-Middle can safely brake when driving at a speed
of approximately 65 km/h, and the other solutions could work safely at about 60 km/h.
The more significant differences between the methods can be observed for the nighttime
attempts: YOLO4-Tiny-Middle performed best and YOLO4-RGB worst. The difference
in speed for when we can avoid a collision using these two methods is approximately
11 km/h (62 vs. 51 km/h). Naturally, the person could be detected with the required
probability from a greater distance (greater detection distance) with lower vehicle speeds
by all considered methods.

6.4. Accumulated Recall Measure for Real-World Viability

The lack of clear visual distinction between presented methods suggests that despite
the differences in recall performance, the amount of fps is the critical feature determining
the performance of a solution. This proves that YOLO4-Tiny’s short inference time and
high fps make it an excellent algorithm for pedestrian detection. Based on this observation,
we also propose introducing a performance measure that combines the recall of a method
with the feasible fps. We call this measure the accumulated recall over time:

AccRt = 1 − (1 − r) f (t), (8)

where AccRt is the proposed measure metric, r is the recall for a single detection, and f (t)
is the number of detections that can be performed in t milliseconds. This measure captures
the recall of the method in the chosen time interval, assuming independence for all of
the detections. For our further considerations, we chose AccR50, which is measured in
50 milliseconds, and Figure 13 presents the accumulated recall measure computed for each
of the analyzed solutions.
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Figure 13. Comparison using the accumulated recall measure over 50 ms. The differences between
methods are largely negligible, as better recall results were mostly obtained by more sophisticated
methods that are slower.

It can be seen that due to the high speed (above 35 fps) of all considered methods, their
average recall performances are quite similar, with the exception of YOLO4-Tiny-Middle.
Despite lower mean average precision, the high fps makes it the best method during the
day. The best performance during the night was by YOLO4-Tiny-Middle; clearly worse
performance was obtained for YOLO4-RGB (the right side of Figure 13).

If we consider the total accumulated recall for all detections regardless of the distances,
the best performance measured using AccR50 was obtained by YOLO4-Tiny-Middle (0.999).
The second best results were obtained by YOLO4-Middle (0.870), followed by YOLO4-
T (0.866) and YOLO4-RGB (0.723). Based on these measures, we see that the method’s
performance should be analyzed together with its speed, and YOLO4-Middle outperformed
YOLO4-RGB and YOLO4-T according to this measure. Moreover, efficient data fusion can
also be performed with a lightweight network, thereby achieving excellent performance
day and night.

7. Discussion and Conclusions

In this article, we considered the problem of low latency detection of the pedestrians
from pairs of co-registered RGB and thermal images. Unlike many other approaches, we fo-
cused on the real-world viability of the method in scenarios related to autonomous driving.

From the set of different approaches based on a single modality (YOLO4-RGB, YOLO-
T) or both modalities (YOLO4-HST, YOLO4-GST, YOLO4-RGB-T, YOLO4-Middle, YOLO4-
Late), we determined that the fusion performed in the middle stage of the YOLO detector
processing pipeline (YOLO4-Middle) provides the best performance during the day and
at night, which corroborates earlier results from the literature [8]. The YOLO4-Middle
detector performs better than YOLO4-RGB during the daytime and better than YOLO4-T
during the night, regardless of the object size.

Measuring the mAP and/or log average miss rate scores on a public dataset is usually
the final step in other works concerning this problem. We went further, by proving that
YOLO4-Middle can process over 35 images per second on the desktop RTX 3080 GPU.
However, as automotive applications call for lower-end or embedded GPUs, we aimed to
further improve the processing speed with YOLO4-Tiny-Middle, a lightweight implemen-
tation of our best YOLOv4-based fusion architecture. Although with this architecture we
achieved slightly lower mAP50 and recall rates, the inference time of YOLO4-Tiny-Middle
is an order of magnitude shorter than that of the full-scale version.

Measuring the mAP and fps is not enough to verify a solution for real autonomous cars.
Therefore, we measured the performance in a simulated scenario in which a pedestrian
emerged in front of the car, and the system had to brake to avoid a collision. From this
analysis on the KAIST dataset, it can be seen that high-fps detectors outperformed their
more classic counterparts, due to their ability to perform more frame processing passes
within the same time window. We also proposed an “accumulated recall” measure that
jointly captures recall and fps based on this information. Accumulated recall is suited
to capturing the real-world feasibility of pedestrian detectors. Hence, we argue that this
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new measure can be used to assess the readiness of detectors when product deployment
is considered.

Our experiments proved that thermal and visible light images can be fused in the
modern YOLOv4 architecture without additional overheads in processing, to achieve
very high fps processing, as long as both images are synchronized and aligned. These
assumptions are somewhat limiting, as no out-of-the-box co-aligned RGB and thermal
cameras are available for automotive applications. Therefore, we see two exciting branches
for further research. The first will focus on utilizing data streams from both modalities when
the images are not co-aligned, making a practical solution when two separate cameras are
combined in a single sensory setup. The other direction of future research will investigate
the detection of small objects in images and the addition of preprocessed LiDAR data [41]
for better detection of pedestrians from long distances.
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was funded by Poznań University of Technology.

Data Availability Statement: The code used in this manuscript is available on GitHub (https://
github.com/KRoszyk/YOLOv4-Middle_detector accessed on 26 January 2022) and can be cited
using Zenodo (https://zenodo.org/record/5899548#.Ye8mAXVKhhE accessed on 26 January 2022).
The used KAIST dataset is available on GitHub (https://github.com/SoonminHwang/rgbt-ped-
detection accessed on 15 January 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Global Status Report on Road Safety 2018; World Health Organization: Geneva, Switzerland, 2018.
2. Yeong, D.J.; Velasco-Hernandez, G.; Barry, J.; Walsh, J. Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review.

Sensors 2021, 21, 2140. [CrossRef]
3. Krišto, M.; Ivasic-Kos, M.; Pobar, M. Thermal Object Detection in Difficult Weather Conditions Using YOLO. IEEE Access 2020,

8, 125459–125476. [CrossRef]
4. Camara, F.; Bellotto, N.; Cosar, S.; Nathanael, D.; Althoff, M.; Wu, J.; Ruenz, J.; Dietrich, A.; Fox, C.W. Pedestrian Models for

Autonomous Driving Part I: Low-Level Models, From Sensing to Tracking. IEEE Trans. Intell. Transp. Syst. 2021, 22, 6131–6151.
[CrossRef]

5. Liu, Y.; Sun, P.; Wergeles, N.; Shang, Y. A survey and performance evaluation of deep learning methods for small object detection.
Expert Syst. Appl. 2021, 172, 114602. [CrossRef]

6. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

7. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
8. Liu, J.; Zhang, S.; Wang, S.; Metaxas, D.N. Multispectral deep neural networks for pedestrian detection. In Proceedings of the

British Machine Vision Conference (BMVC 2016), York, UK, 19–22 September 2016.
9. Hwang, S.; Park, J.; Kim, N.; Choi, Y.; So Kweon, I. Multispectral Pedestrian Detection: Benchmark Dataset and Baseline. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.
10. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893.
11. Esfahanian, M.; Zhuang, H.; Erdol, N. Using local binary patterns as features for classification of dolphin calls. J. Acoust. Soc. Am.

2013, 134, EL105–EL111. [CrossRef]
12. Dollar, P.; Tu, Z.; Perona, P.; Belongie, S. Integral Channel Features. In Proceedings of the British Machine Vision Conference, London,

UK, 7–10 September 2009; BMVA Press: London, UK, 2009; pp. 91.1–91.11.

https://github.com/KRoszyk/YOLOv4-Middle_detector
https://github.com/KRoszyk/YOLOv4-Middle_detector
https://zenodo.org/record/5899548#.Ye8mAXVKhhE
https://github.com/SoonminHwang/rgbt-ped-detection
https://github.com/SoonminHwang/rgbt-ped-detection
http://doi.org/10.3390/s21062140
http://dx.doi.org/10.1109/ACCESS.2020.3007481
http://dx.doi.org/10.1109/TITS.2020.3006768
http://dx.doi.org/10.1016/j.eswa.2021.114602
http://dx.doi.org/10.1121/1.4811162


Sensors 2022, 22, 1082 20 of 21

13. Zhang, S.; Benenson, R.; Omran, M.; Hosang, J.; Schiele, B. How Far are We from Solving Pedestrian Detection? In Proceedings
of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 1259–1267.

14. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91–99. [CrossRef]

15. Zhang, L.; Lin, L.; Liang, X.; He, K. Is Faster R-CNN Doing Well for Pedestrian Detection? In Computer Vision–ECCV 2016; Leibe,
B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 443–457.

16. Zhang, H.; Du, Y.; Ning, S.; Zhang, Y.; Yang, S.; Du, C. Pedestrian Detection Method Based on Faster R-CNN. In Proceedings of
the 13th International Conference on Computational Intelligence and Security (CIS), Hong Kong, China, 15–18 December 2017;
pp. 427–430.

17. König, D.; Adam, M.; Jarvers, C.; Layher, G.; Neumann, H.; Teutsch, M. Fully Convolutional Region Proposal Networks for
Multispectral Person Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 243–0250.

18. Wagner, J.; Fischer, V.; Herman, M.; Behnke, S. Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural
Networks. In Proceedings of the 24th European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium,
27–29 April 2016.

19. Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object Detection With Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst.
2019, 30, 3212–3232. [CrossRef]

20. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

21. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
22. Han, B.G.; Lee, J.G.; Lim, K.T.; Choi, D.H. Design of a Scalable and Fast YOLO for Edge-Computing Devices. Sensors 2020,

20, 6779. [CrossRef]
23. Wang, Z.; Li, L.; Li, L.; Pi, J.; Li, S.; Zhou, Y. Object detection algorithm based on improved Yolov3-tiny network in traffic scenes.

In Proceedings of the 4th CAA International Conference on Vehicular Control and Intelligence (CVCI), Hangzhou, China, 18–20
December 2020; pp. 514–518.

24. Jiang, Z.; Zhao, L.; Li, S.; Jia, Y. Real-time object detection method based on improved YOLOv4-tiny. arXiv 2020, arXiv:2011.04244.
25. Harishankar, V.; Karthika, R. Real Time Pedestrian Detection Using Modified YOLO V2. In Proceedings of the 5th International

Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 855–859.
26. Xue, Y.; Ju, Z.; Li, Y.; Zhang, W. MAF-YOLO: Multi-modal attention fusion based YOLO for pedestrian detection. Infrared Phys.

Technol. 2021, 118, 103906. [CrossRef]
27. Cao, Z.; Yang, H.; Zhao, J.; Guo, S.; Li, L. Attention Fusion for One-Stage Multispectral Pedestrian Detection. Sensors 2021,

21, 4184. [CrossRef]
28. Zheng, Y.; Izzat, I.H.; Ziaee, S. GFD-SSD: Gated Fusion Double SSD for Multispectral Pedestrian Detection. arXiv 2019,

arXiv:1903.06999.
29. Wolpert, A.; Teutsch, M.; Sarfraz, M.S.; Stiefelhagen, R. Anchor-free Small-scale Multispectral Pedestrian Detection. In

Proceedings of the 31st British Machine Vision Conference 2020 (BMVC), Manchester, UK, 7–11 September 2020.
30. Feng, D.; Haase-Schutz, C.; Rosenbaum, L.; Hertlein, H.; Glaser, C.; Timm, F.; Wiesbeck, W.; Dietmayer, K. Deep Multi-Modal

Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges. IEEE Trans. Intell.
Transp. Syst. 2021, 22, 1341–1360. [CrossRef]

31. Zhang, H.; Fromont, E.; Lefevre, S.; Avignon, B. Guided Attentive Feature Fusion for Multispectral Pedestrian Detection. In
Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021;
pp. 72–80.

32. Zhang, L.; Liu, Z.; Zhang, S.; Yang, X.; Qiao, H.; Huang, K.; Hussain, A. Cross-modality interactive attention network for
multispectral pedestrian detection. Inf. Fusion 2019, 50, 20–29. [CrossRef]

33. Li, C.; Song, D.; Tong, R.; Tang, M. Illumination-aware Faster R-CNN for robust multispectral pedestrian detection. Pattern
Recognit. 2019, 85, 161–171. [CrossRef]

34. Li, C.; Song, D.; Tong, R.; Tang, M. Multispectral Pedestrian Detection via Simultaneous Detection and Segmentation. In
Proceedings of the British Machine Vision Conference (BMVC), Newcastle, UK, 3–6 September 2018.

35. Guan, D.; Cao, Y.; Yang, J.; Cao, Y.; Yang, M.Y. Fusion of multispectral data through illumination-aware deep neural networks for
pedestrian detection. Inf. Fusion 2019, 50, 148–157. [CrossRef]

36. Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [CrossRef]
37. Dao, V.H.; Mac, H.; Tran, D. A Real-time Multispectral Algorithm for Robust Pedestrian Detection. In Proceedings of the RIVF

International Conference on Computing and Communication Technologies (RIVF), Hanoi, Vietnam, 2–4 December 2021; pp. 1–4.
38. Choi, Y.; Kim, N.; Hwang, S.; Park, K.; Yoon, J.S.; An, K.; Kweon, I.S. KAIST Multi-Spectral Day/Night Data Set for Autonomous

and Assisted Driving. IEEE Trans. Intell. Transp. Syst. 2018, 19, 934–948. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/TNNLS.2018.2876865
http://dx.doi.org/10.3390/s20236779
http://dx.doi.org/10.1016/j.infrared.2021.103906
http://dx.doi.org/10.3390/s21124184
http://dx.doi.org/10.1109/TITS.2020.2972974
http://dx.doi.org/10.1016/j.inffus.2018.09.015
http://dx.doi.org/10.1016/j.patcog.2018.08.005
http://dx.doi.org/10.1016/j.inffus.2018.11.017
http://dx.doi.org/10.1016/j.neucom.2021.03.091
http://dx.doi.org/10.1109/TITS.2018.2791533


Sensors 2022, 22, 1082 21 of 21

39. Shivakumar, S.S.; Rodrigues, N.; Zhou, A.; Miller, I.D.; Kumar, V.; Taylor, C.J. PST900: RGB-Thermal Calibration, Dataset and
Segmentation Network. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Virtual,
31 May–31 August 2020; pp. 9441–9447. [CrossRef]

40. Max Roser, C.A.; Ritchie, H. Human Height. Our World in Data 2013. Available online: https://ourworldindata.org/human-
height (accessed on 5 September 2021).

41. Nowak, T.; Ćwian, K.; Skrzypczyński, P. Real-Time Detection of Non-Stationary Objects Using Intensity Data in Automotive
LiDAR SLAM. Sensors 2021, 21, 6781. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/ICRA40945.2020.9196831
https://ourworldindata.org/human-height
https://ourworldindata.org/human-height
http://dx.doi.org/10.3390/s21206781
http://www.ncbi.nlm.nih.gov/pubmed/34695994

	Introduction
	Related Work
	System Architectures for Pedestrian Detection
	Multispectral Fusion in Pedestrian Detection

	Pedestrian Detection with YOLOv4
	YOLOv4 with RGB Images
	YOLOv4 with Thermal Images

	Sensory Fusion with the YOLO Architecture
	Early Fusion Approaches
	Yolo4-HST and YOLO4-GST Fusions
	YOLO4-RGB-T Fusion

	Late Fusion Approach (YOLO4-Late)
	Middle Fusion Approach (YOLO4-Middle)

	Experiments
	Kaist Dataset
	Precision Performance Comparison
	Performance as a Function of Object Size
	Inference Time
	The Lightweight Approach: YOLO4-Tiny-Middle
	Comparison to the State-of-the-Art

	Real-World Application Viability
	Distance to the Obstacle Based on Bounding Box from the Detection
	Recall as a Function of Distance
	Emergency Braking Procedure
	Accumulated Recall Measure for Real-World Viability

	Discussion and Conclusions
	References

