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Abstract
The sympathetic nervous system integrates the functions of multiple organ systems by regulating their autonomic physiological
activities. The immune system is regulated both locally and systemically by the neurotransmitters epinephrine and norepineph-
rine secreted by the adrenal gland and local sympathetic neurons. Immune cells respond by activation of adrenergic receptors,
primarily the β2-adrenergic receptor, which signal through heterotrimeric G-proteins. Depending upon the cell type, adrenergic
signaling regulates a variety of functions in immune cells ranging from cellular migration to cytokine secretion. Furthermore, due
to the diurnal oscillation of systemic norepinephrine levels, various immune functions follow a circadian rhythmic pattern. This
review will highlight recent advances in our understanding of how the sympathetic nervous system regulates both innate and
adaptive immune functions and how this regulation is linked to circadian rhythms.

Systemic pathways of adrenergic regulation

The sympathetic nervous system controls a myriad of biolog-
ical processes, and, perhaps, the most well-studied regulators
of this system are the neurotransmitters epinephrine (E) and
norepinephrine (NE). They both bind and signal through the
adrenergic class of G-protein-coupled receptors whose mem-
bers are differentially expressed on various cells and tissues
throughout the body. The receptors are divided into α- and β-
family members, and their selective expression, coupled
to unique G-α downstream second messengers, conveys
unique signals to individual cell types. In this way, E
and NE can simultaneously regulate distinct functions in
many organ systems.

The immune system is intimately connected to the sympa-
thetic nervous system [1]. Early studies demonstrated that
both primary and secondary lymphoid tissues are innervated
by post-ganglionic sympathetic nerve fibers that predominant-
ly secrete NE as their primary neurotransmitter [2–12].
Immune cells come in direct contact with the dendrites of
these neurons. Both innate and adaptive immune cells express

adrenergic receptors, primarily the β2-adrenergic receptor
(ADRB2), enabling them to directly respond to the sympa-
thetic nervous system [12].

Sympathetic nerves secrete NE in response to pathogenic
organisms (reviewed in [12]). While signaling through pattern
recognition receptors (PRRs) promotes inflammatory cyto-
kine secretion from antigen-presenting cells, neurons them-
selves express various Toll-like receptors (TLRs), enabling
them to respond directly to certain pathogen-associated mo-
lecular patterns (PAMPs) [13–19]. Both viral and bacterial
infections elicit bursts of NE secretion from sympathetic neu-
rons, and PAMPs such as lipopolysaccharide (LPS) drive NE
release within seconds upon exposure. This intimate relation-
ship between sympathetic neurons and immune cells creates a
direct conversation between the two organ systems and estab-
lishes reciprocal pathways of regulation. In general, adrener-
gic signaling is immunosuppressive in nature and has been
reviewed extensively. In this review, we will provide an up-
date on novel and recent research into adrenergic regulatory
pathways that impact immune function and homeostasis.

Control of innate responses—antigen
presentation, innate sensing, and cytokine
secretion

Inflammation is a delicately balanced process that utilizes cy-
totoxic elements to sterilize tissues, and collateral damage is a
necessary but dangerous component. Without checks and
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balances, immune cells proceed without limits to destroy cells
and tissues within infected areas, and various immune sup-
pressors are in place to limit this destruction. Immune toler-
ance and suppression collectively limit the magnitude of in-
flammation, which is necessary for overall survival. Along
with well-characterized mechanisms such as central and pe-
ripheral tolerance, checkpoint inhibition, and cytokine-
mediated suppression, adrenergic signaling is a potent sup-
pressive pathway that limits both inflammatory cytokine sig-
naling and priming of T cells. In addition to the known effects
of glucocorticoids, early studies demonstrated that both E and
synthetic β2-agonists could dramatically suppress TNF-α se-
cretion in macrophages responding to LPS [20].

We and others have demonstrated that ADRB2 signaling
suppresses inflammatory cytokine secretion from both macro-
phages and dendritic cells in response to LPS [21, 22]. In our
study, we found that this pathway was not exclusive to a
TLR4 agonist, as β-agonists, including NE, suppressed virtu-
ally all TLR pathways encompassing both intracellular and
extracellular sensors [23]. While some components of this
pathway may be directly blocking NF-kB activation [24],
IL-10, highly induced by NE, acts in an autocrine fashion to
block TNF-α and other inflammatory cytokines.
Consequently, deletion of the ADRB2 in macrophages and
dendritic cells leads to a severe loss of IL-10 secretion and
elevated systemic TNF-α levels in vivo in response to LPS. In
fact, ADRB2 loss was found to be lethal in LPS-induced sep-
sis models, highlighting its critical role in protection against
harmful endotoxemia [21, 23]. A single exogenous treatment
of IL-10 can rescue ADRB2-deficient mice from lethal LPS
toxicity, and antibody blockade of the IL-10R reverses the
protective effect of NE. Consequently, IL-10 induction may
represent the primary downstream target of the anti-
inflammatory properties of E and NE.

Clinically, E, NE, and other vasopressors are administered
as front-line therapeutics in sepsis-associated hypotension
with the primary goal of restoring blood pressure [25, 26]. In
septic patients, there is a pivotal shift in cytokine profiles
shortly after E administration highlighted by a marked reduc-
tion in serum TNF-α coupled with a rise in IL-10 [27–29].
Given the important role of IL-10 in suppressing both local
and systemic inflammatory processes, the induction of this
immunosuppressive cytokine by E and NE underscores the
critical role of the sympathetic nervous system in mitigating
the damaging effects of inflammation. This comes at a cost,
however, since the very processes that eliminate infection are
inhibited by IL-10, potentially allowing pathogen replication
and spread. Nonetheless, there is clear evidence that adrener-
gic stimulation provides dual protection in sepsis by restoring
blood pressure and by suppressing inflammatory cytokines.

In addition to suppressing inflammatory cytokines,
ADRB2 signaling also modulates various other innate cell
activities, which have downstream effects on both B and T

cell responses. For example, β2-agonists suppress the pro-
Th1-inducing cytokine IL-12 in dendritic cells while increas-
ing IL-10 secretion, thus blocking Th1 responses [30–32].
This may be due, in part, to the effects of NE on driving
alternative M2 macrophage development, which is character-
ized by an anti-inflammatory phenotype dominated by IL-10
rather than TNF-α and other inflammatory cytokines
[21]. Indeed, these suppressive effects are seen in the
innate response of NK cells to virus infection, as loss of
ADRB2 enhances IFN-γ and lytic activity of NK cells
in response to MCMV [33].

Antigen presentation to T cells is a hallmark activity of
innate cells including DCs, macrophages, monocytes, and B
cells. Early studies indicated that NE could suppress IFN-γ-
induced MHC-II expression on astrocytes [34, 35] and other
tissue resident antigen-presenting cells, such as langerhans
cells [36]. Thus, β2-agonists can promote tolerance by limit-
ing antigen presentation, and recent studies have demonstrated
that ADRB2 signaling limits the magnitude of CD4+ T cell
priming by suppressing cross-presentation in dendritic cells
[37]. Interestingly, the opposite has been observed in B cells,
where adrenergic signaling increases the ability of B
cells to present antigen and activate CD4+ T cells
[38], through the co-stimulatory molecules B71/B72
[39]. B cell help is enhanced in this situation resulting
in elevated IgG1 secretion overall [38, 40].

Although expression of α-ARs may be low on immune
cells, there is some evidence that the α1-adrenergic
(ADRA1) may act to amplify cytokine secretion in innate
cells, placingα andβ receptors in opposing roles in regulating
cytokine-mediated inflammation [41].Whether the ADRA1 is
acting directly to drive cytokine secretion from innate cells is
unclear; however, blockade of the α1-AR suppresses
cytokine-mediated inflammation in the context of bacterial
infections. Indeed, it has been suggested that blocking the
α1-adrenergic receptor may be a viable therapeutic interven-
tion to suppress the cytokine storm observed in severe
COVID-19 patients [42].

Regulation of T cell effector functions

Cytokines have a profound impact on T cell function and their
development into distinct subsets of effector and memory cell
populations. For example, IL-12 secreted by DCs drives Th1
and CD8+ CTL development in response to both bacterial and
viral infections [43, 44]. Other cytokines, such as IL-2, IL-4,
IL-10 and IFN-α/β promote alternative pathways of Th2,
Treg, and memory cell development [45–52]. Early studies
demonstrated that CD4+ T cells express the ADRB2 [53,
54], and more recent studies identified differential expression
on subsets of effector and memory CD8+ T cells [55, 56].
CD4+ T cells regulate multiple aspects of effector andmemory
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responses through selective cytokine secretion [57], and both
naive and in vitro polarized Th1 cells preferentially express
ADRB2 with limited expression on Th2 cells [53, 54].
Stimulation of polarized Th1 cells suppressed IFN-γ secretion
while having little effect on IL-4 or IL-5 secretion from Th2
cells. Furthermore, NE stimulation can tip the balance toward
Th17 development due to effects on dendritic cell priming
[32]. In contrast, while the ADRB2 is more highly expressed
on effector and memory effector CD8+ T cells, NE and β-
agonists effectively suppress IFN-γ and TNF-α secretion
from all CD8+ subsets, and this suppression was specific for
TCR-induced functions as stimulation with IL-12 + IL-18 was
unaffected by NE to suppress IFN-γ secretion [56]. In addi-
tion, ADRB2 signaling effectively suppresses cytolytic activ-
ity in CD8+ CTLs. In contrast, ADRB2 signaling has been
shown to enhance NK cell expansion and effector function
in vivo in response to virus infection [58]. It is unclear yet
how the adrenergic pathway influences long-term memory T
cell development. Thus, the overall activities of NE on T cells
seem to fall in line with it immunosuppressive effects on in-
nate cells described above.

While adrenergic signaling modulates activation-induced
cytokine expression, conversely, cytokine responsiveness
modulates expression of the ADRB2 on T cells, creating a
reciprocal feedback loop during innate priming of T cells dur-
ing infection [59]. For example, IL-2 activation enhances
ADRB2 expression in T cells [59] while IL-12 increases its
expression on both CD8+ T cells and NK cells [56, 58], mak-
ing them more sensitive to the effects of NE stimulation.
Given the immunosuppressive effects of NE, increasing the
intrinsic expression of ADRB2 may provide the cells with an
additional layer of modulation that can prevent over activation
and limit collateral damage during effector responses. Indeed,
chemical sympathectomy with 6-hydroxydopamine potently
accelerates the CD8+ T cell response to influenza [60], indi-
cating a clear role for NE in suppressing the overall magnitude
of the CTL response. In some cases, ADRB2 signaling may
promote Th2 responses and suppress Th1 development in the
absence of overt infection. In HSV DNA vaccine-challenged
mice, treatment with the β2-specific agonist salbutamol
elicited Th2 driven immune response indicated by high
levels of HSV specific IgG1 antibodies compared with
IgG2a, providing protective immunity to mucosal chal-
lenge with live virus [61].

In addition to suppressing overt T cell–mediated inflamma-
tion, ADRB2 activation can potentially promote T cell toler-
ance by driving Treg development [62–64]. ADRB2 signaling
promotes Treg devolvement by inducing FoxP3 expression in
CD4+ T cells [63]. This pathway may be accentuated in the
context of tolerance to self-antigens presented by resting DCs,
as NE can promote IL-10 secretion in these APCs [23, 65].
Curiously, however, FoxP3 induction was independent of IL-
10R activation [63], and other studies have shown a direct

induction of Treg activity by ADRB2 activation on Treg cells
[66]. Regardless of the precise mechanism, these studies high-
light the role of adrenergic signaling in suppressing effector T
cell responses in both CD4+ and CD8+ T cells and potentially
driving inducible Treg development in peripheral CD4+ T
cells to self-antigens.

Inflammation in the context of chronic
disease

Stimulation of the sympathetic neurons that innervate second-
ary lymphoid organs has been shown to suppress inflamma-
tion in a variety of chronic diseases. For example, pioneering
work from Tracey and colleagues has shown that electrical
stimulation of the vagus nerve significantly suppresses inflam-
mation by blocking secretion of inflammatory cytokines both
locally and systemically (reviewed in [67, 68]). The complex
mechanisms underlying this suppression involve acetylcho-
line and the α7- nicotinic receptor [69]. Under certain condi-
tions, release of NE by the splenic nerve stimulates T cells,
promoting their secretion of acetylcholine which can suppress
innate cell cytokine secretion [70, 71]. This pathway is pow-
erful and has been harnessed to treat a variety of chronic
inflammatory diseases. The mechanism of vagus nerve sup-
pression relies on acetylcholine production from immune cells
since secondary lymphoid organs are only innervated by sym-
pathetic nerves that secrete NE rather than acetylcholine.
However, it is quite likely that NE acts directly on macro-
phages and DCs to suppress inflammatory cytokine secretion,
particularly in response to PAMPs [72, 73].

In the context of autoimmunity, studies have focused on
the role of NE in the central nervous system (CNS) in mouse
models of experimental autoimmune encephalomyelitis EAE
[74]. Early studies found a direct correlation between elevated
NE and reduction in severity of CNS inflammation [75].
Depletion of central adrenergic nerves lowered NE levels
and significantly increased the severity of EAE as compared
with controls. Moreover, treatment with L-DOPA, a NE pre-
cursor with non-tricyclic NE selective reuptake inhibitor
atomoxetine, increased CNS NE levels and reduced EAE
symptoms. Furthermore, the downstream transcription factor
NR4A1 was shown to be critical in NE-mediated suppression
of neuroinflammation through effects on macrophage recruit-
ment and activation [76]. Recently, a direct role for ADRB2
on immune cells was found to be critical for the anti-
inflammatory properties of NE in EAE [77]. In humans, there
is some evidence that expression of both dopaminergic and
adrenergic receptors on lymphocytes may be considered as a
contributing biomarker in the progression of MS [78].

Allergic asthma is another well-studied chronic inflamma-
tory disease, perhaps in which the role of NE and β2-agonists
is most notable in restoring lung function and promoting
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airway clearance [79, 80]. Allergic asthma is generally classi-
fied as a “type 2” response, being heralded by innate
lymphocyte-2 (ILC2) and their induction of allergen-specific
Th2 cells leading to IgE secretion in responding B cells
(reviewed in [81, 82]). Th2 cells were the original hallmark
cellular phenotype that characterized allergic conditions, and
multiple signaling pathways converge to drive their develop-
ment, including IL-4, IL-33, and TSLP [83]. Recently, CD8+

Tc2 cells have also been shown to play a distinct role in asth-
ma pathogenesis [84]. Type 2 responses are guided by innate
cytokines that drive the development of Th2, Tc2, and other
inflammatory phenotypes such as Th17 cells. ILC2 cells, in
particular, have been shown to play a key role in early priming
events, acting as a potent source of Th2-inducing cytokines
such as IL-4. Recently, Moriyama et al. [85] found that the
ADRB2 played a significant role in ILC2 suppression, and
deletion of the ADRB2 led to exacerbated type 2 responses
in gut mucosal tissues. Perhaps, the most potent counter reg-
ulatory cytokine found to inhibit this pathway is the antiviral
cytokine IFN-α/β [51, 86]. IFN-α/β suppresses the develop-
ment and cytokine secretion potential of CD4+ Th2 cells [50,
87]; it can also reverse the Th2 phenotype of pre-committed
cells, even from allergic subjects [88]. This suppression is
accomplished by blocking the induced expression of the key
Th2 transcription factor GATA3 [50, 89]. This is particularly
important in the context of upper respiratory viral infections
which drive the secretion of IFN-α/β [90, 91] as specific Toll
agonists have been proposed as therapeutic agents to reverse
the allergic phenotype. Yet, viral infections are a particular
nuisance in allergic diseases, causing severe exacerbations of
allergic asthma. This is a significant conundrum with the use
of β-agonists, since recent studies have found that both IgE
stimulation and NE can suppress virus-induced IFN-α/β se-
cretion from dendritic cells [92–95]. Nonetheless, while β-
agonists had very little effect on IL-4 secretion from Th2 cells
in vitro [54], ADRB2 activation can prevent Th2-mediated
inflammation with respect to allergic stimulation [96]. This
places the use of β-agonists in a very precarious situation
when treating allergic airway diseases impacted by respiratory
viruses. The stimulation of the adrenergic pathway indeed
restores lung function and may temporarily suppress acute
Th2 cytokine secretion in vivo, yet it also suppresses IFN-α/
β, which is key to reversing the Th2 state and blocking viral
replication [86].

Regulation of trafficking and circadian
involvement

Over the last 10 years, there have significant advances in the
area of “chrono-immunology” and the role circadian rhythms
play in immune function [97–99]. Circadian rhythms evolved
in virtually all life forms in order to regulate biological

processes that cycle with the needs of the organism as a func-
tion of light/dark cycles. In higher organisms, light signals are
converted to biological oscillations of a set of core transcrip-
tion factors that regulate a myriad of processes throughout the
body, and immune cells are no exception to this. Light en-
trainment regulates expression of the core transcription factor
Bmal1/2 within the suprachiasmatic nucleus (SCN) subregion
of the hypothalamus [100]. As night falls, Bmal is
extinguished by the action of the cryptochrome proteins Per
and Cry. This oscillation regulates the expression of genes
with the SCN to release neurotransmitters that entrain cells
throughout the body. One of these external entrainment path-
ways is regulated by the sympathetic nervous system, and the
secretion of NE is a major component to that systemic entrain-
ment process. NE levels typically rise in response to light
entrainment and fall at night.

Perhaps, the most well-documented aspect of circadian
control of immune function is in the area of immune cell
trafficking through lymphoid tissues [97, 101]. Nakai et al.
[102, 103] found that lymphocyte recirculation through sec-
ondary lymphoid tissues followed a diurnal circadian pattern.
Their retention and release was regulated by interactions with
chemokine receptors and required the expression of ADRB2.
Further treatment with β-agonists could alter their migration.
In addition to trafficking, innate sensing is also impacted by
circadian rhythms. Recent studies found that TLR9 is directly
controlled by CLOCK, and diurnal oscillations in TLR9 reg-
ulated both the innate secretion of pro-inflammatory cytokines
and the resulting adaptive response [104]. Whether this effect
was regulated by adrenergic signaling was not explored. In
humans, during sleep, low levels of sympathetic agonists,
such as NE and prostaglandin E2, allow T cells to express
β2-integrins on their cells surface. This expression is normally
suppressed by Gα-receptor activation during wakefulness
when the levels of these neurotransmitters are high [105].
Increased expression of integrins allows for differential recir-
culation of cells within lymphoid tissues.

In addition to trafficking, circadian rhythms also have the
potential to influence an overt immune response in T cells.
Indeed, T cells display a periodic oscillation of core circadian
factors [106]. Interestingly, recent studies in CD4+ T cells
found that the CLOCK gene was dispensable for primary
effector responses to infection, although there was observed
reduction in IL-2 responsiveness [107]. However, the case is
quite different for CD8+ T cells. Here, loss of the primary
oscillator Bmal1 in CD8+ T cells significantly altered their
development into primary effector cells in response to virus
infection [108]. Whether the ADRB2 is responsible for the
entrainment of these cells is still an open question.
Nonetheless, it is clear that immunity is controlled, in part
by circadian oscillations, and identifying specific mechanisms
of this regulation could open new avenues of therapeutic in-
tervention. Significant questions remain in this area such as
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the role of the ADRB2 in the entrainment of immune cells, the
requirement of rhythmic oscillations in effector and memory
responses, and whether the time of day of infection influences
the outcome of vaccines and immunotherapy.

The gut microbiome has come into focus recently as a key
regulator of mucosal immune homeostasis, and perturbations
in the microbiome lead to significant inflammatory conditions
(reviewed in [109]). Like all organisms, the microbiome
operates under the constraints of circadian rhythms and re-
leases a variety of metabolites in a diurnal rhythmic fashion
[109, 110]. Recent studies have demonstrated that products
from the microbiome can directly regulate inflammatory re-
sponses [111–113]. Thus, the microbiome establishes an im-
portant circadian rhythmic control of the local immune com-
munity at barrier interfaces.

Conclusion

The sympathetic nervous system plays a major role in
controlling the biological processes including immune
system, mediated via neuromodulators such as epineph-
rine and nor epinephrine. This neuroimmune communi-
cation is enabled by the adrenergic receptors, among
which ADRB2 as a pivotal player is differentially
expressed on innate and adaptive immune cells. To keep
in check the neces sa ry ev i l “ i n f l ammat ion ,”
neurosignaling through ADRB2 limits the release of in-
flammatory cytokines from macrophages and dendritic
cells, along with activation of T cells. As revealed by
our previous studies, IL10 is a critical target down-
stream of E and NE to limit inflammation. The suppres-
sion of inflammation in varied chronic diseases is also
exhibited by NE, which has been utilized for treatment
of diseases such as allergic asthma where NE and β2-
agonists play major roles in restoring normal health
conditions. Even the autoimmune diseases such as
EAE in mouse have correlated the NE levels with de-
crease in CNS inflammation, underscoring the role of
ADRB2 signaling in suppressing inflammation.
Through sympathetic regulation, circadian rhythms also
contribute to the timing and magnitude of specific func-
tions of immune system. Recirculation of immune cells
through lymphoid tissues and circulation has been well
studied and demonstrated in context of circadian regu-
lation. Much remains to be uncovered, and further rev-
elations could open new avenues for the identification
and development of prophylactic and therapeutic targets
with improved clinical outcomes.
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