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Upper respiratory viral infections are a major etiologic instigator of allergic asthma, and 
they drive severe exacerbations of allergic inflammation in the lower airways of asthma 
sufferers. Rhinovirus (RV), in particular, is the main viral instigator of these pathologies. 
Asthma exacerbations due to RV infections are the most frequent reasons for hospital-
ization and account for the majority of morbidity and mortality in asthma patients. In both 
critical care and disease control, long- and short-acting β2-agonists are the first line of 
therapeutic intervention, which are used to restore airway function by promoting smooth 
muscle cell relaxation in bronchioles. While prophylactic use of β2-agonists reduces the 
frequency and pathology of exacerbations, their role in modulating the inflammatory 
response is only now being appreciated. Adrenergic signaling is a component of the 
sympathetic nervous system, and the natural ligands, epinephrine and norepineph-
rine (NE), regulate a multitude of autonomic functions including regulation of both the 
innate and adaptive immune response. NE is the primary neurotransmitter released by 
post-ganglionic sympathetic neurons that innervate most all peripheral tissues including 
lung and secondary lymphoid organs. Thus, the adrenergic signaling pathways are in 
direct contact with both the central and peripheral immune compartments. We present 
a perspective on how the adrenergic signaling pathway controls immune function and 
how β2-agonists may influence inflammation in the context of virus-induced asthma 
exacerbations.

Keywords: adrenergic receptor, asthma, rhinovirus, inflammation, cytokine

rHiNOvirUs (rv)-iNDUceD AstHMA eXAcerBAtiONs

Asthma is a debilitating chronic disease that has a significant impact on society, including decreased 
quality of life, work productivity, and increased utilization of health-care resources. With total annual 
costs reported at $81.9 billion in the U.S. alone (1), asthma represents an enormous economic bur-
den. Approximately 2 million annual emergency room visits and 500,000 hospitalizations have been 
attributed to acute asthma management in the U.S. (2), highlighting the substantial contribution of 
asthma exacerbations to the morbidity associated with this disease. Respiratory viral infections are 
commonly associated with asthma exacerbation episodes (3–6), and RVs have long been recognized 
as the most frequent viral contributors. The seasonality of RV-associated asthma exacerbations has 
also been well described, with predictable peaks of hospitalizations for asthma occurring during 
September epidemics of RV infection (7).

The mechanisms underlying this association between RV and exacerbations of asthma repre-
sent an area of intense investigation. The impact of the infection itself on the lung represents one 
potential mechanism. Although most commonly detected in upper airway samples, RVs have also 
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been demonstrated in lower airway fluids and cells following 
experimental infection of the upper airway (8–10). Paired with 
clinical evidence linking RV to lower respiratory tract infections  
in children (11–13), it is possible that RV infection directly injures 
airway tissues in the lower airway (14), potentially contributing 
to exacerbations of asthma. RV infection of airway epithelial 
cells (ECs) induces the expression of a range of chemokines 
and cytokines that promote ensuing inflammatory responses. 
These include such pro-inflammatory molecules as IL-8/CXCL8 
(15–17), IL-6 (17, 18), CCL11/eotaxin-1, RANTES/CCL5 (19), 
IP-10/CXCL10 (20), and ICAM-1 (21). In turn, inflammatory 
cells recruited by these chemokines secrete IFN-γ and TNF-α, 
which in some cases can provide a direct antiviral activity in 
target cells mimicking type I interferon (22). Increased concen-
trations of inflammatory cytokines have also been demonstrated 
in airway samples (nasal samples and sputum) obtained from 
RV-infected individuals (21, 23, 24). RV-induced secretion of 
such chemokines may also promote asthma exacerbations 
by promoting an influx of immune cells such as eosinophils, 
neutrophils, lymphocytes, and macrophages (Mɸs) into the 
airway (25). Immune cells themselves have also been shown to 
contribute to the epithelial RV response; human monocytic cells 
amplify bronchial epithelial cell (BEC) chemokine production 
during RV infection (26) and could thus also influence asthma 
pathogenesis in the setting of RV infection.

In addition to the chemokines listed above, RV also induces 
type I IFN (IFN) expression in airway ECs. The demonstration of 
decreased IFN-β responses in RV-infected BECs from asthmat-
ics led to the hypothesis that defective IFN antiviral responses 
could contribute to the pathogenesis of asthma exacerbations 
(27). While virtually all somatic cells have the capacity to pro-
duce IFN-α/β in response to infection, specialized plasmacytoid 
dendritic cells (pDCs) are the primary cell type to secrete IFN at 
high levels in response to viral infection. Furthermore, human 
pDCs also express the high affinity IgE receptor, enabling 
them to respond to both viral and allergic signals. Deficient 
viral-induced IFN responses have been demonstrated in virus- 
simulated whole-blood cultures (28, 29) and purified pDCs 
(30) from individuals with allergic asthma, providing further 
evidence for a potential role of IFN in asthma exacerbations. 
In addition, the link between IgE and pDC antiviral IFN responses 
could explain the increased risk of asthma exacerbations seen in 
the presence of atopy and respiratory viral infections. Allergic 
sensitization and elevated IgE levels are known risk factors for 
asthma exacerbations with RV infection (3). The magnitude 
of pDC IFN responses to in  vitro viral challenge is inversely 
correlated with serum IgE levels. In addition, IgE cross-linking 
abrogates viral-induced pDC IFN production (30, 31). In a 
recent NIAID-sponsored trial of omalizumab in children with 
allergic asthma, RV-induced pDC IFN responses were signifi-
cantly increased in the group who received this IgE-reducing 
treatment, and this improved antiviral response was associated 
with lower exacerbations (31, 32).

Since pDCs represent the major source of this antiviral 
cytokine (33), a defect in IFN production, this cell type could 
explain how viral infection promotes severe disease in patients 
with asthma. Another potentially significant effect of reduced 

pDC antiviral IFN production includes the effect on T helper 
type 2 responses. IFN has recently been shown to reverse the 
Th2 phenotype of CD4 lymphocytes via suppression of the Th2 
transcription factor GATA-3 (34, 35) and to acutely inhibit IL-5 
and IL-13 secretion from memory Th2 cells (36). Thus, a deficient 
IFN response during respiratory RV infection could contribute 
to the increased Th2 inflammation observed in individuals with 
allergic asthma.

cONtrOL OF iMMUNe FUNctiON BY 
ADreNerGic siGNALiNG

While the use of corticosteroids and long-term β2-agonists are 
used for maintenance therapy for asthma sufferers, the front-line 
intervention for acute exacerbations driven by RV infections is 
the short-acting β2-agonist, ventolin (nebulized albuterol). The 
β2-adrenergic receptor (ADRB2) is expressed on smooth muscle 
cells surrounding the bronchioles, and activation of this recep-
tor by both the natural ligand, epinephrine and norepinephrine 
(NE), as well as β2-agonists promotes smooth muscle cell relaxa-
tion and restored breathing capacity. Signaling through adren-
ergic receptors controls a myriad of physiological responses, 
including heart rate, respiratory capacity, and lung turgor. As 
such, both natural and synthetic ligands for adrenergic receptors 
have been chiefly used to control sepsis, heart disease, COPD, 
and asthma.

Innervating throughout most tissues and organs, post- 
ganglionic sympathetic neurons release the major neurotrans-
mitter NE in response to various intrinsic and external stimuli. 
Diurnal fluctuations in the release of NE link the sympathetic 
nervous system to circadian rhythms. Sympathetic neurons 
also control the “fight or flight” response during periods of 
stress or fear. Upon ligand binding, adrenergic receptors can 
activate various G-proteins, depending upon the class of recep-
tor and the specific cell types that express them. For example, 
the binding of adrenaline and noradrenaline to β2AR results 
in activation of Gαs (the stimulatory subunit of heterotrimeric 
G protein) and subsequently activation of adenylyl cyclase, 
increase in cyclic AMP (cAMP) concentration, and activation 
of cAMP-dependent protein kinase A (PKA). Depending on 
the cell that the receptor is engaged, PKA activation can lead 
to several physiological changes, including muscle contraction, 
cytokine secretion, and so on. Moreover, the same receptor can 
couple to the inhibitory Gαi and or signal through MAP kinase 
pathways (37–39). This complex behavior of the adrenergic 
receptors enables these receptors to induce cell- and context-
specific physiological changes.

The ADRB2 is expressed widely on many types of immune 
cells, albeit at different levels of cell surface ligand binding sites 
(40). For example, Maisel et  al. identified expression of beta-
adrenergic receptor density on lymphocytes ranging from 1,000 
to 2,000 receptors/cell (41). In general, ADRB2 signaling acts to 
suppress the level of inflammation and cytokine secretion in both 
innate and adaptive T cells (diagrammed in Figure 1). For exam-
ple, recent studies demonstrated that CD8+ T cell effector func-
tion was impaired in response to adrenergic receptor signaling 
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FiGUre 1 | ADRB2-mediated suppression of inflammatory processes. Adrenergic signaling through the ADRB2 inhibits various virus-induced immune mediators. 
[1] Rhinovirus (RV) infects the upper airways by binding to ICAM-1 on the surface of lung ECs. RV infection of ECs upregulates ICAM-1 as well as IL-8, IL-6, CCL5, 
CCL11, and CXCL10 to recruit inflammatory cells. [2] Activation of the ADRB2 by either the natural ligands epinephrine and norepinephrine or by β2-agonists 
downregulates ICAM-1 as well as IL-8, CCL5, and GM-CSF from ECs. [3] ADRB2 signaling additionally inhibits pro-inflammatory mediators in innate and adaptive 
immune cells. Abbreviations: EC, epithelial cell; MC, mast cell; Mɸ, macrophage.
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(42–44). Presence of β2-agonists such as albuterol reduced TCR-
induced IFNγ and TNFα production, as well as cytolytic 
activity of both human and murine T  cells (43). Similarly, use 
of beta-blockers increased the frequency of intratumoral CD8+ 
T  cells and increased the efficacy of anti-PD-1 treatment (45). 
In CD4+ T cells, the presence of NE increases IFN-γ production 
from Th1  cells (46). Although Th1  cells have been reported to 
be affected by NE, Th2 cells are less responsive to NE due to 
the reduction of ADRB2 expression during differentiation and 
lack of the receptor expression on mature Th2 cells (47, 48). In 
addition to suppressing T cell effector function, previous studies 
have demonstrated that ADRB2 signaling can also inhibit TNF-α 
and IL-12 secretion from innate cells including dendritic cells and 
Mɸs (49–52) perhaps through direct inhibition of TLR-mediated 
NF-κB activation (53, 54). Finally, ADRB2 signaling has been 
shown to enhance the suppressive function of Treg cells (55), 
which may have significance for clinical effectiveness in asthma.

rOLe OF β2-AGONists iN tHe cONteXt 
OF rv-MeDiAteD iNFLAMMAtiON

Rhinovirus infects human airway ECs by binding to ICAM-1 
(Figure 1). As discussed earlier, the natural course of inflammation 
and cytokine expression increases ICAM-1 expression, allowing 
additional migration of inflammatory cells into sites of infection. 
This process likely contributes to RV-induced exacerbations in 
allergic subjects. Interestingly, both natural ligands of adrenergic 
receptors (epinephrine and NE), as well as synthetic agonists of 
the ADRB2 (salbutamol and terbutaline) downregulate ICAM-1 
expression on monocytes (56, 57). Furthermore, human BECs 
reduced the expression of ICAM-1 in response to fenoterol, a 
β2-agonist (58), suggesting the use of β2-agonists might help 
patients with RV-induced exacerbations by downregulating the 
entry receptor on various cell types. Moreover, human airway 
parasympathetic neurons also downregulate expression of 
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ICAM-1 (59), raising the possibility that the use of β2-agonists 
has a broader effect than previously appreciated.

Smooth muscle cell responsiveness to β2-agonists is critical 
for emergency intervention during exacerbations. However, RV 
infection has been shown to reduce expression of the ADRB2 
on airway smooth muscle cells via indirect actions on infected 
ECs. RV drives secretion of prostaglandins from ECs, which 
act in a paracrine fashion on smooth muscle cells to suppress 
ADRB2 expression (60). In this context, COX2 inhibitors tended 
to restore adrenergic responsiveness. Airway ECs express func-
tional adrenergic receptors (61, 62). Stimulation of the ADRB2 
increased the beat frequency of cilia (63), and fenoterol, a β2-
agonist downregulates ICAM-1 (58). Sabatini and colleagues 
reported that salmeterol downregulated VCAM-1 in addition 
to ICAM-1. In addition, RANTES, IL-8, and GM-CSF were 
inhibited in response to adrenergic stimulation (64). In murine 
models, airway EC-specific expression of ADRB2 can recapitulate 
IL-13-induced airway hyperresponsiveness, mucus production, 
and cellular infiltration (65), which contrasts to the suppressive 
effects of β2-agonists seen in human cells.

Victoni et al. demonstrated that β2-agonists can downregulate 
TNFα, IL-6, and IL-1β from human monocyte-derived Mɸs; 
however, lung Mɸs are resistant to suppressive effects of β2-
agonists (66). Similarly, chemokines CCL2, CCL3, and CCL4 
were downregulated in human monocyte-derived Mɸs, yet lung 
Mɸs were not affected. One possible mechanism of cytokine 
suppression may involve targeting cytokine mRNA transcripts. 
For example, β2-agonist salbutamol increases the expression 
of tristetraproline (TTP) in murine and human Mɸ cell lines. 
TTP can bind to AU-rich elements in 3′UTR of several pro- 
inflammatory cytokine transcripts, including TNF and GM-CSF. 
This interaction might account for the reduction in pro-
inflammatory cytokines in response to adrenergic signaling (67). 
Although lung Mɸs had similar levels of ADRB2 transcript, the 
ADRB2 protein was not expressed, which can explain why lung 
Mɸs may not respond to β2-agonists as efficiently as their splenic 
and circulating counterparts (66). β2-Agonists inhibit release of 
histamine and leukotriene from mast cells (MCs) in  vitro and 
in vivo (68–70). Similarly, β2-agonists reduce histamine release 
from human lung MCs when cocultured with airway smooth 
muscle cells (71). IgE-mediated release of TNFα is also reduced 
in response to β2-agonists (72). These findings suggest that MC 
mediators that are involved in acute inflammatory responses can 
be controlled by adrenergic receptor agonists.

In IFN-γ-primed human dendritic cells, salbutamol inhib-
ited IL-12, IL-1α, IL-1β, IL-6, and TNFα; however, IL-10 was 
unaffected. When naive T  cells were primed with dendritic 
cells exposed to salbutamol, commitment to Th1 lineage 
significantly reduced (possibly due to the reduction in IL-12) 
(49). This is accompanied by an increase in IL-4+ Th2 cells in 
the coculture. This suggests that use of β2-agonists may skew 
lung T cells to the pathogenic Th2 lineage. Similarly, in murine 
bone marrow-derived dendritic cells, epinephrine enhanced 
differentiation of IL-4- and IL-17A-producing T cells (73). In 
addition to T  cell priming, β2-agonists also alter phagosomal 
degradation of antigens and cross-presentation of dendritic 
cells (74). Finally, Yewdell and colleagues recently demonstrated 

that chemical sympathectomy increased CD8+ T cell responses 
to influenza infection in mice (42). Furthermore, ADRB2 
antagonists enhanced CD8+ responses, and while a direct role 
for the ADRB2 on CD8+ T cells was not examined, this study 
suggests that adrenergic signaling acts to limit the response to 
viral infections.

FiNAL cOMMeNts AND FUtUre AreAs 
OF iNterest

Although β2-agonists are widely used in the management of 
asthma and COPD, many questions remain regarding their abil-
ity to suppress inflammation in the context of exacerbations. As 
mentioned earlier, stimulation of ECs in vitro with β2-agonists 
downregulates ICAM-1 expression. This indicates that the use of 
β2-agonists can potentially reduce RV entry and spread within 
the lungs. Yamaya and colleagues reported that pretreatment of 
human tracheal ECs with tulabuterol, a long-acting β2-agonist, 
for 3  days before RV-14 exposure reduced the expression 
of ICAM-1 and viral replication in ECs (75). By contrast, 
Bochkov and colleagues reported that pretreatment of BECs 
with budesonide (a corticosteroid), formoterol (a β2-agonist), 
or in combination for 24  h did not alter replication of RV-16 
in asthmatics and healthy subjects (76). However, the authors 
did not present data on the level of ICAM-1 protein. It would 
be beneficial to assess the role of β2-agonists ex vivo during 
RV infections to eliminate the variation from in vitro settings. 
Also, no studies to date have investigated the role of adrenergic 
receptor signaling on expression of RV viral proteins. Moreover, 
β2-agonists promote an anti-inflammatory phenotype in innate 
and adaptive immune cells by suppressing production of antivi-
ral cytokines (43) and downregulate a plethora of chemokines 
(64) that can contribute to recruitment of inflammatory cells 
to the lungs. This raises the issue of the benefits versus costs of 
the use of long-term β2-agonists to control asthma symptoms. 
If β2-agonists generally suppress innate immune function, does 
their use allow for a more receptive environment for infection? 
By contrast, in the contest of overt RV-driven inflammation, β2-
agonists can certainly dampen the magnitude of inflammation, 
which is also thought to be the main benefit of corticosteroids. 
Additional studies are warranted to determine the long-range 
effects of β2-agonists in the context of both RV susceptibility and 
the acute effects these drugs have on suppressing inflammation 
during exacerbations.
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