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Abstract: We construct the holographic dictionary for both running and constant dilaton

solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a

circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three

dimensions. This specific model ensures that the dual theory has a well defined ultraviolet

completion in terms of a two dimensional conformal field theory, but our results apply

qualitatively to a wider class of two dimensional dilaton gravity theories. For each type

of solutions we perform holographic renormalization, compute the exact renormalized one-

point functions in the presence of arbitrary sources, and derive the asymptotic symmetries

and the corresponding conserved charges. In both cases we find that the scalar operator

dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives

rise to a matter conformal anomaly for the running dilaton solutions, while its expectation

value is the only non trivial observable for constant dilaton solutions. The role of this

operator has been largely overlooked in the literature. We further show that the only

non trivial conserved charges for running dilaton solutions are the mass and the electric

charge, while for constant dilaton solutions only the electric charge is non zero. However,

by uplifting the solutions to three dimensions we show that constant dilaton solutions can

support non trivial extended symmetry algebras, including the one found by Compère,

Song and Strominger [1], in agreement with the results of Castro and Song [2]. Finally, we

demonstrate that any solution of this specific dilaton gravity model can be uplifted to a

family of asymptotically AdS2 × S2 or conformally AdS2 × S2 solutions of the STU model

in four dimensions, including non extremal black holes. The four dimensional solutions

obtained by uplifting the running dilaton solutions coincide with the so called ‘subtracted

geometries’, while those obtained from the uplift of the constant dilaton ones are new.
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1 Introduction and summary of results

Despite the plethora of gravity and string theory backgrounds that contain an AdS2 region,

arising for example in the near horizon limit of near extremal black holes [4] or at the in-

frared of holographic renormalization group (RG) flows with finite charge density [5], AdS2
holography remains less understood than its higher dimensional cousins. Paradoxically,

one of the main reasons is that it is apparently trivial: pure AdS2 gravity does not allow

finite energy excitations [6].

Nevertheless, AdS2 holography has been studied extensively [3, 4, 7–21] and has been

used to count the microstates of extremal black holes [22–24]. Given the lack, until recently,
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of a good candidate for the holographic dual, the focus has been on attempts to describe

the effects of the strong gravitational backreaction on AdS2 by finite energy excitations. As

elucidated recently by Almheiri and Polchinski [17] and further elaborated on in [20, 21],

to leading order the effect of the gravitational backreaction can be described by a rather

universal AdS2 dilaton gravity model. In [19, 25, 26] it was argued that such a dilaton

gravity model provides a holographic description of the infrared limit of the Sachdev-Ye-

Kitaev model [27, 28], a quantum mechanical system of Majorana fermions with random

long range interactions. Moreover, AdS2 dilaton gravity coupled to a gauge field can also

provide a holographic description of the Kondo effect [29].

In this paper we revisit the holographic dictionary and the asymptotic symmetries of

the specific 2D Einstein-Maxwell-Dilaton (EMD) model

S2D =
1

2κ22

(∫

M

d2x
√−g e−ψ

(
R[g] +

2

L2
− 1

4
e−2ψFabF

ab

)
+

∫

∂M
dt
√−γ e−ψ2K

)
,

(1.1)

with the aim to clarify certain aspects of AdS2 holography that have been to some extent

elusive. The main motivation of our choice of model is that it can be obtained by a

circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three

dimensions [4], which ensures that the dual theory admits a well defined ultraviolet (UV)

completion in terms of a 2D CFT. Moreover, the model (1.1) arises as the very near

horizon effective theory of nearly extremal black holes in five dimensions [4]. Other studies

of this specific model in the context of AdS2 holography include [2, 30]. Similar models

with a different coupling to the Maxwell field have been studied in [3, 14, 18, 19]. Despite

the fact that such models do not uplift to Einstein-Hilbert gravity in three dimensions,

they share some qualitative properties with the model (1.1), e.g., they generically admit

two distinct classes of solutions, one with running dilaton, and one with constant dilaton.

Clearly, the constant dilaton solutions coincide, but there are significant differences in the

running dilaton solutions. Setting the Maxwell field in (1.1) consistently to zero results in

the Jackiw-Teitelboim model [31, 32], which has been discussed recently in [17, 20, 21].

A second motivation for the EMD theory (1.1) is that it provides a holographic descrip-

tion of the so called ‘subtracted geometries’ [33–39]. These are asymptotically conformally

AdS2 × S2 or AdS2 × S3 black holes that can be obtained through a ‘subtraction’ pro-

cedure [33, 34] from generic multi-charge non extremal asymptotically flat black holes in

four [40–44] and five [45] dimensions. More systematically, they can be obtained as a scal-

ing limit [35], or via Harrison transformations [36, 38], but also through a decoupling limit

where certain integration constants in the harmonic functions that describe the asymp-

totically flat non extremal black holes are set to zero [37]. The classical entropy of the

subtracted geometries is the same as that of the original asymptotically flat black hole, but

quantum corrections are different [46–48].

A holographic description of the asymptotically conformally AdS2 × S2 or AdS2 × S3

subtracted geometries requires a Kaluza-Klein reduction on the compact manifold, in di-

rect analogy with coincident Dp branes which are asymptotically conformal to AdSp+2 ×
S8−p [49, 50]. The 2D theory that is obtained by keeping only the massless modes coin-
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Figure 1. This diagram shows how the EMD model (1.1) arises as the low energy effective theory

of non extremal asymptotically conformally AdS2 × S2 subtracted geometries in four dimensions,

in the parameterization introduced in [51]. For non rotating black holes the two routes to (1.1),

a direct S2 reduction (black arrow) and the more general procedure through the uplift to five

dimensions (blue arrows), coincide. However, only the latter is available for rotating black holes.

The relevant Kaluza-Klein Ansätze are given in (A.3) and (A.6). A similar diagram applies for

subtracted geometries in five dimensions, replacing S2 with S3.

cides with (1.1). The relation with 3D gravity arises due to the fact that there is a linear

dilaton that blows up in the ultraviolet, which forces one to consider instead the uplift of

these black holes to five or six dimensions, where they become respectively asymptotically

AdS3 × S2 or AdS3 × S3 solutions [33, 34]. Kaluza-Klein reducing the uplifted solutions

on their respective compact manifolds results in the uplift of the EMD theory (1.1) to

Einstein-Hilbert gravity in three dimensions. The relation of the four dimensional sub-

tracted geometries and their five dimensional uplift to Einstein Hilbert gravity in three

dimensions and the AdS2 theory (1.1) is depicted schematically in figure 1. The STU

model in four dimensions and its subtracted geometries in the parameterization introduced

in [51] are summarized in appendix A, together with the relevant Kaluza-Klein Ansätze.

Summary of results. Besides the general solutions for the 2D model (1.1) and their

uplift to four dimensions, our main results relate to the holographic interpretation of these

solutions, as well as the asymptotic symmetry algebras they support. Our findings partially

agree with earlier studies, but there are also some significant differences, which we explain

in detail.

We find that the action (1.1) admits two distinct types of solutions, those with running

dilaton and those with constant dilaton. Both are asymptotically AdS2, but the AdS radius

of the constant dilaton solutions is half that of the running dilaton ones. Moreover, constant

dilaton solutions only exist in the presence of a non zero electric charge, while the role of

– 3 –



J
H
E
P
1
2
(
2
0
1
6
)
0
0
8

the gauge field for running dilaton solutions is secondary. The fact that the AdS radii are

different implies that the dual theories are different and each type of solutions requires its

own holographic dictionary.

Both types of solutions contain a number of arbitrary functions of time, as well as

arbitrary constants. In the case of running dilaton solutions all arbitrary functions cor-

respond to (pure gauge) sources of dual operators, while one of the arbitrary functions

parameterizing the constant dilaton solutions corresponds to the one-point function of the

scalar operator dual to the dilaton. Rather surprisingly, although this mode is identified

with the one-point function of the scalar operator, it does not lead to a running dilaton,

since it only enters in the solution for the metric and the gauge field. This mode is the only

non trivial observable in the theory dual to constant dilaton solutions, but its significance

and holographic interpretation have been mostly overlooked in the earlier literature, which

is perhaps the reason behind the often made claim that AdS2 holography with constant

dilaton is trivial.

In contrast, we find that this mode captures non trivial physics and leads to infinite

families of qualitatively different solutions. In particular, negative values of this one-point

function correspond to smooth horizonless geometries with two AdS2 boundaries, while

zero and positive values correspond respectively to extremal and non extremal black holes.

The non extremal black holes with constant dilaton are distinct from those with running

dilaton, but there is an RG flow that connects the extremal members of each family.

This RG flow corresponds to the “very-near-horizon region” of (near) extremal black holes

discussed in [4].

Both types of 2D solutions can be uplifted to solutions of the STU model in 4D through

the one-parameter family of Kaluza-Klein Ansätze given in (A.3). The parameter λ in the

Ansatz corresponds to the rotation parameter of the resulting 4D solutions and can be

viewed as a modulus. The uplift of either type of extremal solutions with zero λ is a

BPS solution, while for non zero λ it is extremal non BPS. Running dilaton solutions

uplift to general rotating subtracted geometries [33, 34]. As we mentioned above, these

are generically non extremal asymptotically conformally AdS2 × S2 black holes that can

be obtained through the near horizon decoupling limit of non extremal asymptotically flat

black holes. Instead, the 4D solutions obtained by uplifting the constant dilaton solutions

are asymptotically AdS2 × S2 and can be smooth geometries, extremal or non extremal

black holes depending on the sign of the scalar one-point function. The BPS solution is

qualitatively similar to the Near-Horizon-Extreme-Kerr (NHEK) geometry [52]. In general,

all 4D solutions resulting from the uplift of the constant dilaton solutions appear to be new

asymptotically AdS2 × S2 solutions of the STU model.

Our main result regarding the holographic dictionary is the identification of the dual

operators and the Ward identities they satisfy. We consider Dirichlet boundary conditions

on all fields for both running and constant dilaton solutions, but for constant dilaton

solutions we also discuss Neumann boundary conditions on the gauge field, which uplift to

Compère-Song-Strominger (CSS) boundary conditions in 3D [1]. Except for this case, the

spectrum of operators in the dual theory consists of the stress tensor, the scalar operator

dual to the dilaton and the current dual to the gauge field. For constant dilaton solutions
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with Neumann boundary conditions, however, there is no local current operator. Instead,

there is a dynamical gauge field whose only gauge invariant observable is a non local

‘Polyakov line’. All these operators are necessary to consistently describe the physics of

the dual theory.

In particular, the scalar operator dual to the dilaton plays a major role for both

running and constant dilaton solutions. For the running dilaton solutions it corresponds

to a marginally relevant operator whose coupling drives the RG flow. Turning on an

arbitrary source for this operator gives rise to a conformal anomaly that matches precisely

the conformal anomaly of the 2D CFT that provides the UV completion. We find that

the renormalized effective action for the sum of the stress tensor and the scalar operator,

which equals the conformal anomaly through the trace Ward identity, can be expressed in

terms of the Schwarzian derivative of a dynamical time on the boundary. With respect to

the theory dual to constant dilaton solutions, this scalar operator has dimension 2 and is

therefore irrelevant. However, the stress tensor vanishes identically in this theory and so

the one-point function of this operator is the only non trivial observable, parameterizing the

Coulomb branch of the theory. Moreover, it transforms anomalously under local conformal

transformations, with a central charge related to that of the UV completion.

While our holographic dictionary for running dilaton solutions mostly agrees with

previous works, our analysis for the constant dilaton solutions differs considerably. This

is due to the fact that we use different boundary counterterms than previous studies,

which are dictated by the asymptotic behavior of the gauge field in the case of constant

dilaton solutions. We explain at length in section 3 how general consistency arguments

for the counterterms, that go beyond the requirement that the divergences of the on-shell

action be removed, unambiguously lead to our counterterms. In particular, these boundary

counterterms are crucial for AdS2 holographic correlation functions to be consistent [53].

By uplifting the running and constant dilaton solutions to solutions of 3D gravity with

a negative cosmological constant, we show that the former are obtained by a spacelike

circle reduction of the general solution of 3D gravity, while the latter correspond to a

null reduction [2]. This is partly why the boundary counterterms for running dilaton

solutions can be obtained by Kaluza-Klein reduction from those of 3D gravity, but the

counterterms for constant dilaton solutions cannot. Since the 2D solutions solve all the

equations of motion following from the action (1.1), their uplift to 3D automatically solves

the Einstein equations, including the trace and divergence constraints on the holographic

stress tensor. In the case of constant dilaton solutions this leads to a holographic stress

tensor that contains an arbitrary function and precisely matches the stress tensor for CSS

boundary conditions [1]. From the 2D point of view, this arbitrary function corresponds

to the one-point function of the irrelevant scalar operator dual to the dilaton.

Turning to the symmetries preserved by each type of solutions, we find that running

dilaton solutions always admit a single timelike Killing vector, recovering a well known

result from the earlier literature. In combination with the electric charge, therefore, the

classical symmetry algebra for such solutions is u(1)⊕ u(1). The corresponding conserved

charges are respectively the mass and the electric charge. In contrast, constant dilaton so-

lutions admit an infinite set of isometries that generate a Witt algebra (classical Virasoro),

but this is broken to the global sl(2,R) subalgebra by the anomalous transformation of the
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scalar operator. In addition, there is a global electric u(1) in the case of Dirichlet boundary

conditions on the gauge field, or a local û(1) Kac-Moody algebra in the case of Neumann

boundary conditions. The fact that the stress tensor is identically zero for constant dilaton

solutions leads to the conclusion that all charges associated with the conformal symmetry

vanish for both boundary conditions on the gauge field. Moreover, for Dirichlet boundary

conditions, the charge corresponding to the global u(1) symmetry is the non zero electric

charge, while for Neumann boundary conditions there is no conserved charge associated

with the û(1) Kac-Moody symmetry.

Finally, we consider the asymptotic symmetries preserved by the 2D solutions when

uplifted to three dimensions. This allows for more general symmetry transformations that

involve the Kaluza-Klein circle, and consequently for extended symmetry algebras, since the

Killing vectors are now solutions of partial differential equations. Although such generalized

isometries generate infinite dimensional algebras for both running and constant dilaton

solutions, we find that the only non trivial conserved charges for running dilaton solutions

are still the mass and the electric charge, which correspond respectively to the Hamiltonians

along the time and Kaluza-Klein circle directions. However, the fact that constant dilaton

solutions contain the arbitrary one-point function of the scalar operator allows for a non

trivial realization of the infinite dimensional symmetry algebras. In particular, Dirichlet

boundary conditions on the gauge field lead to non trivial conserved charges for one copy of

the Virasoro algebra, as well as an electric u(1). For Neumann boundary conditions on the

gauge field, which correspond to CSS boundary conditions from the 3D point of view, we

find non trivial charges for one copy of the Virasoro algebra, as well as a û(1) Kac-Moody

algebra, with the central charge and Kac-Moody level found in [1], in agreement with [2].

Organization. The rest of the paper is organized as follows. In section 2 we present

the most general solutions of the action (1.1), with either running or constant dilaton, and

discuss the corresponding vacuum and black hole solutions. Moreover, we discuss the uplift

of any solution of the action (1.1) to a solution of the STU model (A.1) in four dimensions

through the Kaluza-Klein Ansatz (A.3). The holographic dictionary for both running

and constant dilaton solutions is constructed in section 3, while is section 4 we uplift the

general 2D solutions to solutions of 3D Einstein-Hilbert gravity with negative cosmological

constant. This allows us to find the precise map between the 2D and 3D holographic

dictionaries. The asymptotic symmetries and the corresponding conserved charges for

both classes of solutions are computed in section 5. In section 6 we consider more general

asymptotic transformations that involve the circle direction from three dimensions, which

leads to extended symmetries and non trivial infinite dimensional algebras in the case of

constant dilaton solutions. Finally, in appendix A we summarize some essential results on

subtracted geometries and present our Kaluza-Klein Ansatz for the reduction of the 4D

STU model to two dimensions, while in appendix B we discuss the connection of our results

to those of [2] and [3].

2 The general solution of 2D Einstein-Maxwell-Dilaton gravity

In this section we obtain the most general solutions of the 2D action (1.1), including the

general solution with constant dilaton found earlier in [14], and discuss their connection

– 6 –
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with 4D asymptotically conformally AdS2 × S2 black holes. The equations of motion

following from the action (1.1) take the form

0 = R[g] +
2

L2
− 3

4
e−2ψFabF

ab, (2.1a)

0 = (∇a∇b − gab�) e−ψ +
1

2
e−3ψ

(
FacFb

c − 1

4
gabFcdF

cd
)
+

1

L2
gabe

−ψ, (2.1b)

0 = ∇a(e
−3ψF ab). (2.1c)

Without loss of generality, we choose to work in the Fefferman-Graham gauge1

ds2 = du2 + γtt(u, t)dt
2, (2.2)

so that the equations of motion become

(
∂2u − L−2

)
e−ψ +Q2e3ψ = 0, (2.3a)

(
∂2u − L−2 − 3Q2e4ψ

)√−γ = 0, (2.3b)

(
�t +K∂u − L−2

)
e−ψ +Q2e3ψ = 0, (2.3c)

∂u

(
∂te

−ψ/
√−γ

)
= 0, (2.3d)

∂uQ = ∂tQ = 0, (2.3e)

where γtt = −(
√−γ)2, K = ∂u log

√−γ is the extrinsic curvature of γtt, �t is the covariant

Laplacian with respect to γtt, and Q = 1
2

√−γe−3ψF ut.

The general solution of this system of equations can be obtained analytically. The

equations of motion imply that Q is a constant and hence equation (2.3a) is a decoupled

second order non linear equation for the dilaton ψ, known as Yermakov’s equation (see [54],

2.9.1-1). The general solution of this equation consists of a continuous family of solutions

with a non trivial dilaton profile, as well as an isolated solution with constant dilaton. These

two solutions correspond to different Fefferman-Graham asymptotic expansions and hence

define different holographic duals. We will therefore analyze the holographic dictionary for

each of these asymptotic solutions separately.

1From the radial Hamiltonian formulation of the bulk dynamics in section 3 follows that this form of the

metric can always be reached locally by a bulk diffeomorphism, and so it corresponds to a choice of gauge.

The theorem of Fefferman and Graham ensures that this choice of gauge is always possible in the vicinity

of the conformal boundary, but it may break down in the interior. However there is no loss of generality in

seeking the general solution in the gauge (2.2). Another gauge choice often used is conformal gauge. The

unique advantage of the gauge (2.2) is that it allows us to identify the general boundary data corresponding

to local sources in the dual theory.
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2.1 General solution with running dilaton

The general solution of equations (2.3) with running dilaton takes the form

e−ψ = β(t)eu/L

√(
1 +

m− β′2(t)/α2(t)

4β2(t)
L2e−2u/L

)2

− Q2L2

4β4(t)
e−4u/L, (2.4a)

√−γ =
α(t)

β′(t)
∂te

−ψ, (2.4b)

At = µ(t) +
α(t)

2β′(t)
∂t log

(
4L−2e2u/Lβ2(t) +m− β′2(t)/α2(t)− 2Q/L

4L−2e2u/Lβ2(t) +m− β′2(t)/α2(t) + 2Q/L

)
, (2.4c)

where α(t), β(t) and µ(t) are arbitrary functions of time, while m and Q are arbitrary

constants. The subclass of solutions (2.4) with Q = 0 correspond to the general solution

of the Jackiw-Teitelboim model [31, 32]. Note that equations (2.3) are symmetric under

u → −u and so replacing u with −u in (2.4) gives another, equivalent solution. Although

the expressions for the metric and gauge field may at first sight look ill defined when the

arbitrary functions of time are set to constants, they do in fact admit a smooth limit, which

is given in (2.6) below.

The leading asymptotic behavior of the solution (2.4) as u→ +∞ is

γtt = −α2(t)e2u/L +O(1), e−ψ ∼ β(t)eu/L +O(e−u/L), At = µ(t) +O(e−2u/L), (2.5)

and so, as we will discuss in more detail in section 3, the arbitrary functions α(t), β(t) and

µ(t) should be identified with the sources of the corresponding dual operators. A special

property of this particular class of solutions of 2D dilaton gravity is that all sources are

pure gauge. In particular, the arbitrary functions α(t), β(t) and µ(t) can be eliminated by

means of a bulk diffeomorphism and a U(1) gauge transformation. As a consequence, the

holographic one-point functions that we will obtain from this class of solutions are local

functions of the sources and the Ward identities are explicitly satisfied. Nevertheless, these

sources are important in order to describe the holographic dictionary and the mechanism

responsible for the breaking of conformal invariance in the dual one-dimensional theory, and

it is this type of ‘pure gauge dynamics’ that has attracted attention recently [17, 19–21].

However, the parameters m and Q describe genuine dynamics.

If the arbitrary functions α(t), β(t) and µ(t) are set to some constant values, respec-

tively αo, βo and µo, the solution (2.4) becomes [4]

e−ψ = βoe
u/L

√(
1 +

mL2

4β2o
e−2u/L

)2

− L2Q2

4β4o
e−4u/L, (2.6a)

√−γ =
αoL

βo
∂ue

−ψ, (2.6b)

At = µo +
αo
βo

LQe2ψ. (2.6c)

For generic m > 0 and |Q| < mL/2, this is a non extremal asymptotically AdS2 black hole,

which becomes extremal when Q = ±mL/2. The minimum value of the radial coordinate

– 8 –
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u corresponds to the outer horizon, where the induced metric γtt vanishes, and is given by

e2u+/L =
L

4β2o

√
m2L2 − 4Q2. (2.7)

In the extremal case u+ = −∞ and so u goes from −∞ to +∞. The value of the dilaton

on the outer horizon is

e−ψ(u+) =
L1/2

2

(√
mL+ 2Q+

√
mL− 2Q

)
. (2.8)

The Hawking temperature can be computed as usual by requiring that the Euclidean

section does not have a conical defect. The result is

T =
αoβo

πL1/2

√
m2L2 − 4Q2

√
mL+ 2Q+

√
mL− 2Q

, (2.9)

which indeed vanishes when m = 2Q/L. However, in two dimensions the entropy is not

given by the area law, but can be computed for example using Wald’s formula [55, 56]. For

black holes of generic 2D dilaton gravity models ones finds that the entropy is given by the

value of the dilaton on the horizon [7, 57, 58]:

S =
2π

κ22
e−ψ(u+). (2.10)

2.2 General solution with constant dilaton

A distinct class of solutions of the field equations (2.3) is [2, 14, 19]

e−2ψ = LQ, (2.11a)

√−γ = α̃(t)eu/L̃ +
β̃(t)√
LQ

e−u/L̃, (2.11b)

At = µ̃(t)− 1√
LQ

(
α̃(t)eu/L̃ − β̃(t)√

LQ
e−u/L̃

)
, (2.11c)

where α̃(t), β̃(t) and µ̃(t) are arbitrary functions, Q > 0 is an arbitrary constant, and

L̃ = L/2. Note that, contrary to the running dilaton solutions, this class of solutions

involves the gauge field in an essential way, since the electric charge must be non zero.

A number of distinctive properties of this class of solutions should be emphasized.

Although both solutions (2.4) and (2.11) are asymptotically locally AdS2, the AdS radius,

L̃, of (2.11) is half that of (2.4). Since the degrees of freedom of the holographic dual is

generically proportional to a positive power of the AdS radius (e.g. N2 ∼ L3 in N = 4

SU(N) super Yang-Mills in four dimensions, or c ∼ L in two dimensional CFTs with a

gravity dual [59]), this suggests that there may exist an interpolating flow between (2.4)

in the UV and (2.11) in the IR, corresponding to a renormalization group (RG) flow

between two different theories. As we show in the next subsection, there is indeed an

interpolating flow between the extremal elements of each family of solutions, but not for

the non extremal ones.
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Another property of the constant dilaton solutions (2.11) that is worth pointing out

is that the asymptotic form of the gauge field At is rather unlike that of gauge fields in

AdSd+1 with d > 2, or the solution (2.4) in the case of running dilaton, since the mode that

asymptotically dominates is not µ̃(t), but rather α̃(t). This phenomenon occurs generically

for antisymmetric p-form fields in AdSd+1 with p ≥ d/2 [60] and it is the source of some

confusion in the literature regarding the correct holographic dictionary and holographic

renormalization in these cases, particularly in the study of one-form gauge fields in AdS2

and AdS3. We will discuss the holographic dictionary in detail in section 3.

Finally, the asymptotic form of the solution (2.11) suggests that the arbitrary functions

α̃(t) and µ̃(t) correspond to the sources of the dual stress tensor and U(1) current,2 but the

role of the arbitrary function β̃(t) is less obvious. As we will see in section 3, it corresponds

to the one-point function of the scalar operator dual to the dilaton ψ, which is an irrelevant

operator of dimension 2 relative to the theory dual to constant dilaton solutions (2.11).

This mode has been discussed before, e.g. in [14, 61], but its holographic interpretation

was different due to the use of different boundary counterterms. We will address to this

point in detail in section 3.

Our analysis in sections 3 and 5 implies that β̃ parameterizes degenerate states in the

dual one dimensional theory, and the identification of this mode with the one-point function

of a scalar operator suggests that it describes excitations of the Coulomb branch of the

dual theory [4]. Moreover, it seems plausible that it is related to AdS2 fragmentation [6].

In particular, when β̃ > 0, the geometry (2.11) is smooth and another boundary opens up

at u→ −∞. As we will see in the next subsection, starting with the extremal solution with

running dilaton, one can reach a solution of the form (2.11) in the IR with either β̃ or α̃

set to zero, but not both non zero. The extremal solution with running dilaton, therefore,

zooms in on one of the AdS2 throats.3

For β̃ = 0, (2.11) describes an extremal black hole, while β̃ < 0 corresponds to a non

extremal black hole. An important feature of these black holes is that their thermodynamic

properties are not the same as those of the BTZ black hole one obtains by uplifting them to

three dimensions. This is in stark contrast to the behavior of running dilaton black holes,

which have the same thermodynamic properties as their 3D uplifts. The reason behind this

property of constant dilaton black holes is that, as we will see in section 4, they are obtained

by a null reduction from three dimensions [2], while running dilaton solutions are obtained

by a spacelike reduction. Therefore, the difference in the thermodynamics of constant

dilaton black holes arises from the fact that what is time in 2D is a null coordinate in 3D.

2Although µ̃(t) is not the leading mode in the asymptotic expansion of the gauge field, it is the only

mode that defines a local operator in the dual theory. We will return to this point in section 3.
3The mode β̃ is normalizable with respect to the boundary at u = +∞, but non normalizable with

respect to that at u = −∞ [61]. The opposite holds for α̃. However, our interpretation of this mode refers

to an observer in the dual theory living at u = +∞. From the point of view of this observer all β̃ > 0 lead

to smooth bulk geometries and so β̃ can be arbitrary, perceived as massless excitations of the theory living

at u = +∞. Conversely, α̃ parameterizes massless excitations of the theory living at u = −∞. Hence,

although there are no excitations of AdS2 that are normalizable at both boundaries, observers on each of

the boundaries do see massless excitations, parameterized by the one-point function of the dimension 2

scalar operator dual to the dilaton.
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Setting α̃ and β̃ to constants, the thermodynamic observables of the constant dilaton

black holes, computed directly in 2D, are

T 2D =

√
−α̃oβ̃o

πL̃(LQ)1/4
, S2D =

2π

κ22

√
LQ , M2D = 0 . (2.12)

These agree with the expressions given e.g. in [14, 19], despite the fact that we use different

boundary counterterms. Uplifting these black holes to 3D using the results of section 4 and

computing the thermodynamic observables of the resulting BTZ black hole we find instead

T 3D =
(LQ)1/4

√
−α̃oβ̃o

πL̃
(√

LQ+
√

−2β̃o
LQ

) , S3D =
2π

κ22

(
√
LQ+

√
−2β̃o
LQ

)
, M3D =

1

4κ22L̃

(
LQ− 2β̃o

LQ

)
.

(2.13)

We would like to view these as the correct expressions describing the thermodynamics

of the constant dilaton black holes and they may be an indication that the Kaluza-Klein

circle cannot be really ignored in the case of constant dilaton solutions. We will find further

evidence to this effect in sections 5 and 6.

2.3 Extremal solution as an interpolating RG flow

Setting m− β′2/α2 = 2Q/L > 0 and µ = −α/β in (2.4) the solution becomes

e−ψ =
√
LQ+ β2(t)e2u/L,

√−γ =
α(t)β(t)e2u/L√
LQ+ β2(t)e2u/L

, At = − α(t)β(t)e2u/L

LQ+ β2(t)e2u/L
.

(2.14)

The asymptotic form of this as u → +∞ is still given by (2.5), but for u → −∞ it

behaves as

e−ψ =
√
LQ+

β2

2
√
LQ

e2u/L +O(e4u/L), (2.15a)

√−γ =
αβ√
LQ

e2u/L
(
1− β2

2LQ
e2u/L +O(e4u/L)

)
, (2.15b)

At = − αβ

LQ
e2u/L

(
1− β2

LQ
e2u/L +O(e4u/L)

)
. (2.15c)

In particular, the limit β → 0 keeping αβ fixed results in an exact solution of the form (2.11)

with α̃ = αβ/
√
LQ and u → −u. Notice that this limit sets m = 2Q/L and µ → −∞,

and corresponds to the “very-near-horizon region” discussed in [4]. The solution (2.14)

describes an RG flow between the theory dual to running dilaton asymptotics and that

dual to constant dilaton asymptotics. We will derive the holographic dictionary for both

theories in section 3.
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2.4 Vacuum solutions

Provided the electric charge Q is zero, the equations of motion (2.3) admit exact AdS2
solutions with a non trivial scalar profile, namely

e−ψ = (βo + β1t+ β2t
2)eu/L − β2e

−u/L, (2.16a)
√−γ = eu/L, (2.16b)

At = µ(t), (2.16c)

where βo, β1 and β2 are constants. Such solutions are a characteristic property of confor-

mally coupled scalars and exist even in higher dimensions [62, 63]. The Euclidean version

of these solutions (obtained by flipping the sign of the last term in (2.16a)) was the focus of

the analysis of [20], where hyperbolic space was cut off by prescribing a boundary condition

on the scalar.

In the present context, (2.16) corresponds to the vacuum of the theory dual to the

running dilaton solutions, with the scalar field allowed to take arbitrarily large values.

This results in the breaking of the AdS2 isometry group from SL(2,R) to U(1) [20, 21],

in direct analogy with Dp branes for p 6= 3, where the running of the dilaton breaks the

AdSp+2 isometry group to ISO(1, p) [49, 50].

For the theory dual to the constant dilaton solutions (2.11), the vacua are parameter-

ized by strictly positive constant values of β̃, which corresponds to the Coulomb branch

of the theory. The origin of the Coulomb branch is at β̃o =
√
LQ α̃o, which is global

AdS2. Depending on the boundary conditions on the gauge field, the symmetry preserved

at the origin of the Coulomb branch is either a global u(1) and a classical Virasoro algebra

(Witt algebra), or a classical Kac-Moody u(1) and a classical Virasoro. However, both

local symmetries are broken to their global subalgebras due to anomalies. We will return

to the discussion of the asymptotic symmetries and of the corresponding conserved charges

in sections 5 and 6.

2.5 Uplift to four dimensions

Before we turn to the holographic dictionary for the two classes of solutions of the 2D

model (1.1), it is instructive to spell out the connection of such solutions with 4D black

holes. Here we will use notation that is introduced in appendix A and [51].

Both the running dilaton solutions (2.4) and the constant dilaton solutions (2.11)

can be uplifted to solutions of the STU model (A.1) in four dimensions, as is indicated

schematically in figure 1. The explicit Kaluza-Klein Ansatz is given in (A.3) and contains

a free parameter λ, which is related to the angular velocity of the resulting 4D solutions.

In particular, a given 2D solution can be uplifted to a family of 4D solutions with different

angular velocities.

The running dilaton solutions uplift to so called ‘subtracted geometries’ [33–39]. As was

shown in [37] for the static solutions, the subtracted geometries can be obtained (besides

the original subtraction procedure [33, 34], scaling limits [35], and Harrison transforma-

tions [36, 38]) through a decoupling limit of generic multi-charge non extremal asymptot-

ically flat black holes of the STU model in four dimensions [40–44]. In particular, the
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subtracted geometries can be obtained by setting to zero certain integration constants in

the harmonic functions of asymptotically flat black holes, much in the same way that an

asymptotically conformally AdSp+2 × S8−p solution can be obtained by setting to zero

the integration constant in the harmonic function of Dp branes. The resulting static or

stationary subtracted geometries are asymptotically conformally AdS2 × S2 (equivalently

asymptotically conical [35]), generically non extremal, black holes of the STU model and

take the form (A.2). The relation between the radial coordinates in (2.4) and (A.2) is

4r = e2(u−uo)/L + 2(r+ + r−) + (r+ − r−)
2e−2(u−uo)/L, e−uo/L =

4ℓ

L
, (2.17)

while the various constants that parameterize the solutions are mapped as

L = 2B, κ22 = κ24/πL
2, (2.18)

αo = k, βo = (ℓ/B)3 , µo = 0, (2.19)

and

mL2 = (2ℓ/L)4 (r+ + r−) , LQ = (2ℓ/L)4
√
r+r− . (2.20)

In particular, the integration constants k and ℓ that were introduced in [51] in order to

formulate the variational problem for the stationary solutions correspond to the sources

of the operators dual to the 2D metric and dilaton, respectively. Moreover, since λ enters

in the azimuthal angle of the internal S2 in the reduction Ansatz (A.3), the combination

kLω must be an integer for the internal S2 to be free of conical singularities [51]. Finally,

inserting the relations (2.19) and (2.20) in the expressions (2.9) and (2.10) for the temper-

ature and the entropy of the 2D black hole gives respectively the temperature and entropy

of the 4D black hole.

The Kaluza-Klein Ansatz (A.3) also allows us to uplift the constant dilaton solu-

tions (2.11), resulting in novel 4D solutions, which to our knowledge are new. These

solutions are generically asymptotically AdS2 times a deformed S2, instead of conformally

AdS2 × S2 as was the case for the subtracted geometries that are obtained by uplifting

the running dilaton solutions. Moreover, the AdS2 radius for these solutions is half that

of the AdS2 appearing in the subtracted geometries. The explicit form of the 4D uplift of

constant dilaton solutions is

e−2η = LQ+ λ2B2 sin2 θ, χ = λB cos θ, A+ χA0 = B cos θdφ, (2.21a)

e−2ηA0 = −
√
LQ

(
α̃(t)eu/B − β̃(t)√

LQ
e−u/B −

√
LQµ̃o

)
dt+ λB2 sin2 θdφ, (2.21b)

eηds24 = du2 −
(
α̃(t)eu/B +

β̃(t)√
LQ

e−u/B
)2

dt2 (2.21c)

+B2

(
dθ2 +

LQ sin2 θ

LQ+ λ2B2 sin2 θ

(
dφ+

λ√
LQ

(
α̃(t)eu/B − β̃(t)√

LQ
e−u/B

−
√
LQ µ̃(t)

)
dt

)2)
.

– 13 –



J
H
E
P
1
2
(
2
0
1
6
)
0
0
8

(a) (b) (c)

Figure 2. The compact part of the solutions (2.21) for increasing values of the ratio λB/
√
LQ: 0

for plot (a), 1 for plot (b), and 3 for plot (c). Solutions with λ = 0 are static, but when λ 6= 0 the

solutions acquire a non zero angular velocity, which goes to infinity at the AdS2 boundary.

For λ = 0 and β̃ = 0 this is the Robinson-Bertotti geometry on AdS2×S2 and corresponds

to an extremal BPS black hole solution in four dimensions. As in 2D, this extremal solution

arises as the far IR limit of the corresponding extremal subtracted geometry. For non zero

λ and β̃ = 0 this solution is still extremal but not BPS. The internal S2 gets deformed as

shown in figure 2 and it acquires non zero angular velocity, which becomes infinite near

the boundary of AdS2. This solution is analogous to — but distinct from — the NHEK

geometry [52] in pure gravity.

Finally, for β̃ < 0 these correspond to non extremal black holes, that are distinct

from the subtracted geometries, while for β̃ > 0 they are smooth horizonless geometries,

which from the 2D perspective might be interpreted as excitations of the Coulomb branch

of the dual CFT1. It would be interesting to see if these solutions can be generalized

to asymptotically flat horizonless geometries by restoring the integration constants in the

harmonic functions, thus providing microstates for the corresponding asymptotically flat

black holes.

3 Radial Hamiltonian formulation

In this section we derive the holographic dictionary for both running and constant dilaton

solutions of the EMD theory (1.1). In particular, using the radial Hamiltonian formulation

of the dynamics, we identify the sources and the dual operators, determine the boundary

counterterms required for each type of solutions, and evaluate the renormalized one-point

functions and on-shell action. The general solutions (2.4) and (2.11) allow us to obtain

these quantities exactly as functions of arbitrary sources, and hence any higher n-point

function can be directly obtained by further differentiation with respect to the sources.
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Inserting the radial decomposition

ds2 = (N2 +NtN
t)du2 + 2Ntdudt+ γttdt

2, (3.1)

of the metric in the action (1.1) we obtain the radial Lagrangian

L =
1

2κ22

∫
dt
√−γN

(
− 2

N
K
(
ψ̇ −N t∂tψ

)
− 1

2N2
e−2ψFutFu

t +
2

L2
− 2�t

)
e−ψ, (3.2)

where K = γttKtt and the extrinsic curvature Ktt is given by

Ktt =
1

2N
(γ̇tt − 2DtNt) , (3.3)

with the dot denoting a derivative with respect to the radial coordinate u, and Dt standing

for the covariant derivative with respect to the induced metric γtt.

The canonical momenta obtained from (3.2) are

πtt =
δL
δγ̇tt

= − 1

2κ22

√−γe−ψ 1

N
γtt
(
ψ̇ −N t∂tψ

)
, (3.4a)

πt =
δL
δȦt

= − 1

2κ22

√−γe−3ψ 1

N
γttFut, (3.4b)

πψ =
δL
δψ̇

= − 1

κ22

√−γe−ψK, (3.4c)

while those conjugate to N , Nt and Au vanish identically. These fields are therefore non

dynamical Lagrange multipliers imposing three first class constrains. In particular, the

Legendre transform of the Lagrangian (3.2) gives the Hamiltonian

H =

∫
dt
(
γ̇ttπ

tt + Ȧtπ
t + ψ̇πψ

)
− L =

∫
dt
(
NH+NtHt +AuF

)
, (3.5)

where

H = − κ22√−γ e
ψ
(
2ππψ + e2ψπtπt

)
−

√−γ
κ22

(
L−2 −�t

)
e−ψ, (3.6a)

Ht = −2Dtπ
tt + πψ∂

tψ, (3.6b)

F = −Dtπ
t. (3.6c)

Hence, the vanishing of the canonical momenta conjugate to N , Nt and Au leads to the

constraints

H = Ht = F = 0, (3.7)

which are identified respectively with the equations (2.3c), (2.3d) and the second equation

in (2.3e).

In the Fefferman-Graham gauge

N = 1, Nt = 0, Au = 0, (3.8)
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Hamilton’s equations take the form

γ̇tt =
δH

δπtt
= − 2κ22√−γ e

ψπψγtt, (3.9a)

Ȧt =
δH

δπt
= − 2κ22√−γ e

3ψπt, (3.9b)

ψ̇ =
δH

δπψ
= − 2κ22√−γ e

ψπ, (3.9c)

π̇tt = − δH

δγtt
=

κ22√−γ e
ψ
(
πttπψ +

1

2
e2ψπtπt

)
+

√−γ
2κ22

γtte−ψL−2, (3.9d)

π̇t = − δH

δAt
= 0, (3.9e)

π̇ψ = −δH
δψ

=
κ22√−γ e

ψ
(
2ππψ + 3e2ψπtπt

)
−

√−γ
κ22

e−ψL−2, (3.9f)

which reproduce the remaining three equations in (2.3).

As a final ingredient in the derivation of the holographic dictionary, recall that the

canonical momenta (3.4) can alternatively be expressed as gradients of Hamilton’s principal

function S as

πtt =
δS
δγtt

, πt =
δS
δAt

, πψ =
δS
δψ
, (3.10)

where S[γ, ψ,A] is a functional of the induced fields γtt, At and ψ and their t-derivatives

only and coincides with the on-shell action. Inserting these expressions for the canonical

momenta in the constraints (3.6) gives the Hamilton-Jacobi equations for S, which can be

used to derive the covariant counterterms.

3.1 Holographic dictionary for running dilaton solutions

The radial Hamiltonian formulation of the EMD theory (1.1) allows us to systematically

construct the holographic dictionary for any admissible boundary conditions. Starting

with the running dilaton boundary conditions, we first need to determine the covariant

boundary counterterms that render the variational problem well posed and the on-shell

action finite.

Boundary counterterms. For the running dilaton solutions the boundary counterterms

can be determined through standard holographic renormalization, in a number of different

ways. In particular, one can adapt the analysis for non conformal branes in [50], or solve

the Hamilton-Jacobi equation for S asymptotically using the recursive procedure developed

in [64]. In this specific case, however, the boundary counterterms can also be obtained by

Kaluza-Klein reduction of the well known boundary counterterms for 3D Einstein-Hilbert

gravity [65]. The result is

Sct = − 1

κ22

∫
dt
√−γ L−1 (1− uoL�t) e

−ψ. (3.11)

Notice that there is a counterterm that depends explicitly on the radial cutoff uo, indicating

the presence of a conformal anomaly. This counterterm is inherited from the analogous

– 16 –



J
H
E
P
1
2
(
2
0
1
6
)
0
0
8

counterterm for 3D gravity, which is proportional to the Euler density of the boundary met-

ric and is a topological quantity. This is reflected in the fact that the counterterm in (3.11)

that depends explicitly on the radial cutoff is in fact a total derivative. Consequently, it

does not contribute to the renormalization of the one-point functions, but it is necessary

in order to evaluate the on-shell action on a finite time interval. Moreover, this term is

required for the consistency between the trace of the stress tensor and the transformation

of the renormalized on-shell action under boundary Weyl transformations.

Dual operators. Having determined the boundary counterterm we can now evaluate

the exact renormalized one-point functions in the presence of sources which are given by

the renormalized canonical momenta [66], namely

T = 2π̂tt, Oψ = −π̂ψ, J t = −π̂t, (3.12)

where, using (3.11) and the solution (2.4), we find that the renormalized canonical mo-

menta are

π̂tt =
1

2κ22
lim
u→∞

eu/L
(
∂ue

−ψ − e−ψL−1
)
= − L

4κ22

(
m

β
− β′2

βα2

)
, (3.13a)

π̂t = lim
u→∞

eu/L√−γ π
t = − 1

κ22

Q

α
, (3.13b)

π̂ψ = − 1

κ22
lim
u→∞

eu/Le−ψ
(
K − L−1

)
= − L

2κ22

(
m

β
− β′2

βα2
− 2

β′α′

α3
+ 2

β′′

α2

)
. (3.13c)

Hence, there are three independent local operators in the holographic dual to the theory

with running dilaton boundary conditions, whose exact one-point functions as a function

of the arbitrary sources α(t), β(t) and µ(t) take the form

T = − L

2κ22

(
m

β
− β′2

βα2

)
, J t =

1

κ22

Q

α
, Oψ =

L

2κ22

(
m

β
− β′2

βα2
− 2

β′α′

α3
+ 2

β′′

α2

)
.

(3.14)

Note that we have refrained from using the canonical notation 〈·〉 for one-point functions
in order to emphasize the fact that these are the one-point functions in the presence of

arbitrary sources, which can be taken as the definition of the dual operators [67]. Moreover,

as we shall see, all three operators (3.12) are required in order to obtain a consistent

holographic dictionary. However, notice that for constant β the operators T and Oψ are

equal up to a sign, which is a direct consequence of the trace Ward identity (3.16).

Ward identities. The operators (3.14) satisfy a number of general identities, indepen-

dently of the values of the parameters m and Q. In particular, the momentum and gauge

constraints, i.e. equation (2.3d) and the second equation in (2.3e), imply that

∂tT − Oψ∂t log β = 0, DtJ t = 0, (3.15)

where Dt denotes the covariant derivative with respect to the boundary metric −α2. These

are identified respectively with the Ward identities associated with time reparameterization
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invariance and U(1) gauge invariance of the dual theory. Moreover, the expressions (3.14)

for the one-point functions lead to the trace Ward identity

T +Oψ =
L

κ22

(
β′′

α2
− β′α′

α3

)
=

L

κ22α
∂t

(
β′

α

)
≡ A. (3.16)

This identity implies that the scalar operator Oψ is marginally relevant with an exact

beta function βψ = −1. Moreover, as anticipated, there is a conformal anomaly that is

proportional to the counterterm that explicitly depends of the cutoff, since from (2.4) we

see that −√−γ �te
−ψ ∼ ∂t (β

′/α), precisely matching the expression for the conformal

anomaly A. Notice that the conformal anomaly is proportional to the source β of the

scalar operator dual to the dilaton ψ, and hence, the dilaton plays a central role in AdS2
holography and the breaking of the symmetries of the vacuum.

Generating functional. The renormalized one-point functions (3.14) can be ex-

pressed as

T =
δSren

δα
, Oψ =

β

α

δSren

δβ
, J t = − 1

α

δSren

δµ
, (3.17)

in terms of the renormalized on-shell action4

Sren[α, β, µ] = − L

2κ22

∫
dt

(
mα

β
+
β′2

βα
+

2µQ

L

)
, (3.18)

which is identified with the generating function of connected correlation functions in the

dual theory. As the one-point functions (3.14), this expression for the generating functional

is exact in the sources α(t), β(t) and µ(t). Successively differentiating the generating

functional or the one-point functions with respect to these sources one can evaluate any

n-point correlation function of the operators T , Oψ and J t in the dual theory.

Effective action and the Schwarzian derivative. The Legendre transform of the

generating functional with respect to a particular source gives the 1PI effective action for

the corresponding operator. Setting the sources α(t) and β(t) of the operators T and Oψ

equal probes the ‘pure gauge dynamics’ sector of the theory that is described by correlation

functions of the effective operator T + Oψ, which through the trace Ward identity (3.16)

is equal to the conformal anomaly.

Legendre transforming the generating functional with respect to the combined source

α(t) = β(t) leads to the effective action

Γeff = Sren +

∫
dt α (T +Oψ)

=
L

κ22

∫
dt

(
α′′

α
− 3

2

α′2

α2
− µQ

L
− m

2

)
. (3.19)

4The full expression for the renormalized on-shell action includes an integration constant that depends

on global properties of the solution on which it is evaluated. This integration constant can be determined

by explicitly evaluating the radial integral for any particular solution. This is necessary, for example, in

order to compute the free energy. Note, however, that the value of this additive constant is renormalization

scheme dependent.
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Expressing the boundary metric as −α2(t)dt2 = − (dτ(t))2 in terms of the ‘dynamical time’

τ(t) [21], i.e. an arbitrary time reparameterization function, the effective action (3.19) takes

the form

Γeff =
L

κ22

∫
dt ({τ, t} − µQ/L−m/2) , (3.20)

where

{τ, t} =
τ ′′′

τ ′
− 3

2

τ ′′2

τ ′2
, (3.21)

denotes the Schwarzian derivative. This form of the effective action arises in the infrared

limit of the Sachdev-Ye-Kitaev model [27, 28] and is a key piece of evidence for the holo-

graphic identification of this model with AdS2 dilaton gravity [17, 20, 21].

Symplectic space of running dilaton solutions. Finally, a concept that will be useful

in the discussion of the conserved charges and the asymptotic symmetries in section 5 is

the symplectic form on the space of solutions. From the relations (3.17) follows that for

the running dilaton solutions the symplectic form is

Ω =

∫
dt (δPα ∧ δα+ δPβ ∧ δ log β + Pµ ∧ δµ) , (3.22)

where

Pα = T , Pβ = αOψ, Pµ = −αJ t. (3.23)

This allows us to define the Poisson bracket

{C1, C2} =

∫
dt

(
δC1
δPα

δC2
δα

+ β
δC1
δPβ

δC2
δβ

+
δC1
δPµ

δC2
δµ

− C1 ↔ C2
)
, (3.24)

for any functions C1,2 on the symplectic space of such solutions.

3.2 Holographic dictionary for constant dilaton solutions

The holographic dictionary for constant dilaton solutions can be constructed in a similar

way, except that there are a number of subtleties that require careful analysis and have

often led to some confusion. The main source of these subtleties can be traced in the

form of the gauge field in the solution (2.11). As we saw in section 2, contrary to gauge

fields in AdSd+1 with d ≥ 3, when the dilaton is constant the asymptotically leading mode

for the gauge field At is not µ̃(t), but the mode proportional to the conserved charge Q.

The fact that this mode satisfies the conservation law in (2.3e) — in fact it is constant in

two dimensions — implies that it cannot possibly be identified with the source of a local

operator in the dual theory. A similar situation arises for rank-p antisymmetric tensor

fields in AdSd+1 with p ≥ d/2, and in particular, for vector fields in AdS3 [60].

In such cases there are usually two possibilities for defining the source of the dual

operator. The first is to identify the source with the mode µ̃(t), which is unconstrained

and possesses a gauge symmetry of the form µ̃(t) → µ̃(t) + ∂tΛ̃(t). This gauge symmetry

is reflected in the fact that the conjugate mode proportional to Q is conserved and it is

therefore naturally identified with a conserved current in the dual theory. The alternative

possibility is to trivialize the constraint satisfied by the leading mode Q in order to obtain
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an unconstrained source [60]. This procedure is equivalent to starting with the Hodge dual

gauge field in the bulk, which has p < d/2. However, gauge fields in AdS2 cannot be

dualized and so this second option is not available in this case. It follows that the only

consistent identification of the source and one-point function dual to the gauge field At
in AdS2 is that the mode µ̃(t) be identified with the source of a local current operator

and the conserved mode proportional to Q be identified with the conserved current. This

identification is the same as for the running dilaton solutions, except that for constant

dilaton solutions µ̃(t) is the asymptotically subleading mode. Nevertheless, this does not

mean that µ̃(t) must necessarily be kept fixed at the boundary. Indeed, even though there

are no propagating degrees of freedom, both modes are normalizable (see e.g. [68]) and

so different boundary conditions can be imposed on AdS2 gauge fields. As we shall see,

this leads to different asymptotic symmetries, but also to a different holographic dual. In

particular, the holographic dual with µ̃(t) identified as a source contains a local conserved

current operator, while the one with Q kept fixed does not.5

A related subtlety arises in the derivation of the boundary counterterms that render the

variational problem well posed for constant dilaton solutions. A source of confusion here is

the usual folklore that the boundary counterterms are needed to remove the long distance

divergences of the on-shell action. Although this is one of the properties of the boundary

counterterms, it is not the fundamental property that unambiguously determines these

terms. Indeed, any covariant boundary term that removes the divergences of the on-shell

action is not necessarily consistent and inconsistencies can arise at the level of correlation

functions. Instead, the fundamental property that determines the boundary counterterms

is a well posed variational problem [69]. This implies that the boundary counterterms must

be compatible with the symplectic structure on the space of solutions, as well as the gauge

symmetries of the symplectic variables.

Preserving the symplectic structure requires that the boundary counterterms cor-

respond to the generating function of a canonical transformation that diagonalizes the

symplectic map between the phase space, parameterized by the induced fields and their

conjugate momenta, and the symplectic space of asymptotic solutions, parameterized by

the modes in the Fefferman-Graham asymptotic expansions [70]. In addition, to respect

the gauge symmetries of the symplectic variables, the first class constraints of the radial

Hamiltonian formalism, i.e. the Ward identities of the dual theory, must be satisfied by

the transformed (renormalized) canonical variables at the radial cutoff.6 This is clearly a

stronger constraint than simply removing the divergences of the on-shell action and de-

termines the divergent part of the boundary counterterms uniquely. Of course, a freedom

of adding extra finite local counterterms, still preserving the symplectic structure and the

5In fact, Q may be interpreted as a source for the non local Polyakov line operator
∫
dt µ̃(t). Hence,

depending on the boundary condition imposed on the AdS2 gauge field, the dual theory possesses either a

local conserved current operator or a global Polyakov line operator. In the latter case µ̃ can be thought of

as a dynamical gauge field in the dual theory, whose only gauge invariant observable is the Polyakov line.
6Failure of the renormalized variables to obey the Ward identities at the radial cutoff, in general, is an

indication of quantum anomalies. However, for genuine quantum anomalies this must be a necessity rather

than a poor choice of boundary counterterms.
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local symmetries, remains and corresponds to the freedom of choosing a renormalization

scheme. Moreover, any function of the renormalized symplectic variables can be added to

the renormalized action in order to change the boundary conditions, provided the corre-

sponding boundary conditions are admissible.

For constant dilaton solutions of the 2D action (1.1) there are two types of canonical

transformation that lead to the same renormalized variational principle. The first corre-

sponds to the addition of standard local counterterms Sct[γ,A, ψ] that depend on the gauge

potential At. The resulting variation of the renormalized action takes the form

δ (Sreg + Sct[γ,A, ψ]) =

∫
dt

(
πt +

δSct

δAt

)
δAt + · · · , (3.25)

where Sreg is the on-shell action on the radial cutoff, including the Gibbons-Hawking

term, and the ellipses stand for terms involving other fields that are not important for the

present argument. This implies that Sct[γ,A, ψ] is the generating function of the canonical

transformation (
At
πt

)
→
(
At
Πt

)
=

(
At

πt + δSct

δAt

)
. (3.26)

This type of counterterms were first considered in [14] and for the model (1.1) take the form

Sct[γ,A, ψ] = − 1

2κ22L

∫
dt
√−γ

(
e−ψ − e−3ψAtA

t
)
. (3.27)

However, there are two problems with these counterterms. The first is that the correspond-

ing canonical transformation (3.26) does not diagonalize the symplectic map between the

phase space variables and the modes of the constant dilaton solutions. In particular,

from (2.11) we see that the leading form of At depends on the metric mode α̃, as well as Q.

Similarly, although Πt is asymptotically proportional to µ̃, it depends on α̃ and Q as well.

The second problem is that, although, as it was shown in [14], the counterterms (3.27)

are asymptotically invariant under local gauge transformations, the corresponding renor-

malized canonical variables do not respect the Ward identities on the radial cutoff. In

particular, neither Πt nor At satisfy a conservation identity reflecting the U(1) symme-

try on the radial cutoff. A related observation is that, in contrast to the bare symplectic

variables πt and At, both renormalized variables Πt and At contain the mode µ̃, and so

they transform non trivially under U(1) gauge transformations. The fact that the coun-

terterms (3.27) neither diagonalize the symplectic map from phase space to the space of

solutions nor preserve the U(1) covariance of the symplectic variables leads us to the con-

clusion that these are not the correct boundary counterterms.

A second type of canonical transformation that results in the same renormalized vari-

ational principle is generated by a boundary term of the form

−
∫

dt πtAt + S̃ct[γ, π, ψ], (3.28)

where the counterterms S̃ct[γ, π, ψ] are now a local functional of the canonical momentum

πt instead of the induced gauge field At. The first term in this expression performs a Leg-

endre transform interchanging the canonical variables At and π
t, while S̃ct renormalizes the
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gauge potential At. In particular, a variation of the total on-shell action in this case gives

δ
(
Sreg −

∫
dt πtAt + Sct[γ, π, ψ]

)
= −

∫
dt

(
At −

δSct

δπt

)
δπt + · · · , (3.29)

and hence the boundary term (3.28) is the generating function of the canonical

transformation (
At
πt

)
→
(
−πt
Aren
t

)
=

(
−πt

At − δSct

δπt

)
. (3.30)

Note that the boundary terms (3.27) and (3.28) lead to the same variational principle

in terms of the modes, corresponding to identifying Q with the source of the dual (non

local in this case) operator, and
∫
dt µ̃ with its one-point function. The difference is in

the identification of the renormalized variables on a finite cutoff. In the former case, At is

identified with the source and Πt with the renormalized one-point function. In the latter

case, πt is identified with the source and Aren
t with the renormalized one-point function.

In both cases the counterterms are a local functional of the canonical variables identified

with the source. However, the canonical transformation (3.30) preserves explicitly the

U(1) covariance: the renormalized variables transform as their unrenormalized counterpart.

In particular, the variable πt, which satisfies the U(1) Ward identity Dtπ
t = 0, is left

intact. Moreover, as we now show by computing explicitly the counterterms S̃ct[γ, π, ψ],

the symplectic map from phase space to the space of solutions is diagonalized.

This example is simple enough that one can obtain the counterterms S̃ct[γ, π, ψ] by

using the asymptotic form of the solution (2.11) and combining the expressions (3.4)

and (3.10) for the canonical momenta. The result is7

S̃ct = − 1

2κ22L

∫
dt

(√−γ e−ψ +
(Lκ22)

2

√−γ e3ψπtπt

)
. (3.31)

Given this form of the boundary counterterms, it is straightforward to check that the

canonical transformation (3.30) diagonalizes the symplectic map between phase space and

the space of asymptotic expansions. Namely,

πt ∼ − 1

κ22
Q, Aren

t = At −
δSct

δπt
∼ At +

1√
LQ

√−γ ∼ µ̃(t), (3.32)

and so the canonically transformed variables πt and Aren
t are directly proportional to each

of the two modes in the Fefferman-Graham expansion.

7This quantity vanishes identically on shell and so all the divergences of the on-shell action are canceled

by the term implementing the Legendre transform in (3.28). However, S̃ct is crucial for renormalizing

the canonical variables. The fact that S̃ct, which in this case is an algebraic function of the canonical

variables, vanishes on-shell indicates that constant dilaton solutions satisfy a second class constraint. As

it was shown in a different context in [71], the boundary counterterms are ambiguous up to second class

constraints, but this ambiguity is lifted to linear order in the second class constraints by requiring that

the canonical variables themselves are appropriately renormalized. More generically, the renormalization of

n-point functions determines the counterterms up to order n in the second class constraints. This second

class constraint is also the reason why reducing the counterterms for 3D gravity does not give the correct

boundary terms for the 2D theory in the case of constant dilaton solutions, in contrast to the running

dilaton solutions.
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Having renormalized the symplectic variables, and hence the on-shell action, we can

now address the question of boundary conditions. As we pointed out above, we may

choose to keep either µ̃(t) or Q fixed on the boundary, but only in the first case the

dual theory has a local current operator. The variation (3.29), therefore, implies that

Sreg −
∫
dt πtAt + S̃ct[γ, π, ψ] corresponds to the effective action of the operator dual to

the gauge field At, or to the generating function of the theory defined by keeping Q fixed,

which does not have a local current operator. To obtain the generating function for the

theory with the local current operator we need to Legendre transform back with respect

to the renormalized variables. Namely, the generating functional in this case is given by

Sren = lim
u→∞

(
Sreg + S̃ct −

∫
dt πtAt +

∫
dt πtAren

t

)

= lim
u→∞

[
Sreg +

(
1−

∫
dt πt

δ

δπt

)
S̃ct[γ, π, ψ]

]
, (3.33)

with S̃ct as in (3.31).

A few remarks are in order at this point. Firstly, it is worth pointing out that if it were

possible to Hodge dualize the bulk gauge field, the boundary term (3.28) is exactly what

one would obtain by carrying out standard holographic renormalization for the Hodge dual

and then dualizing the result back. This can be demonstrated explicitly for p-form fields

in AdSd+1 with p ≥ d/2 [60], or even for gauge fields in non AdS spaces, as was done for

the gauge field in the electric frame in [51].

Secondly, the boundary term (3.28), with S̃ct given in (3.31), seems to be related with

the counterterm for 2D dilaton gravity proposed in [18, 72], since the bulk fieldstrength in

two dimensions only has a ut component, which is proportional to the canonical momentum

πt. As is the case for the boundary terms (3.28), the counterterms proposed in [18, 72]

are manifestly gauge invariant and so preserve the gauge symmetries of the symplectic

variables. However, they are generically non local8 and do not always diagonalize the

symplectic map from phase space to the space of asymptotic solutions. Both of these aspects

depend on the dilaton couplings in the bulk action, as well as the asymptotic solutions

considered. For running dilaton solutions of the specific action (1.1) we have seen above

that the correct counterterms are given instead by (3.11). Moreover, for constant dilaton

solutions of the action (1.1), or of any other 2D dilaton gravity theory, the counterterms

in [18, 72] are in fact non local, and so they cannot be interpreted as local counterterms

in the dual theory. The reason is that fµνf
µν in eq. (5.4) of [18], which is proportional

to (πt)2, goes to a constant asymptotically and so, for constant dilaton, the square root

cannot be expanded. This means that the boundary term in [18] is intrinsically non local

in that case. In addition, a simple calculation shows that for constant dilaton such a

boundary term does not diagonalize the symplectic map between phase space and the

space of asymptotic solutions, since the renormalized gauge potential Aren
t depends not

only on µ̃(t), but also on Q.

8We should emphasize that by “non local” in this case we do not mean “non polynomial in bound-

ary derivatives”, but rather “non analytic”. Neither type of non locality is acceptable in the boundary

counterterms.
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However, the counterterm in [18, 72] can give the correct result for 2D dilaton gravity,

provided the dilaton potentials in the bulk action are such that there exist solutions where

the modes in the asymptotic expansion of the gauge field are reversed, while at the same

time the dilaton is running. The action (1.1), for example, does not admit such solutions,

but the action in eq. (5.3) of [18] does. In that case, the square root in (5.4) can be expanded

asymptotically for large X, with only the first two terms contributing to the divergences

of the on-shell action, resulting in the local boundary terms (3.28) and (3.31) here.

In summary, for a generic 2D EMD theory, the counterterms take one of two possible

forms, depending on which mode dominates asymptotically in the Fefferman-Graham ex-

pansion of the gauge field. If the conserved charge is asymptotically subleading (this can

only happen in the presence of a running dilaton in two dimensions), then the boundary

counterterms are of the form (3.11), with the function of the dilaton appearing in the coun-

terterms determined by the dilaton couplings in the bulk action. If the conserved charge

is the asymptotically leading mode in the Fefferman-Graham expansion of the gauge field,

however, then the correct counterterms are of the form (3.28) and (3.31), with the dila-

ton dependence again determined by the dilaton couplings in the bulk action. It should

be emphasized that the boundary counterterms that renormalize the canonical variables

and cancel the divergences of the on-shell action are unambiguous and the renormalization

scheme dependence does not affect them. In particular, the requirements that the coun-

terterms diagonalize the symplectic map between phase space and the space of asymptotic

solutions, and that they preserve the Ward identities on a finite cutoff, are necessary and

can be considered as the defining property of these terms. The renormalization scheme

dependence corresponds to the possibility of adding extra local and finite boundary terms,

that preserve the diagonalization of the symplectic map achieved by the counterterms [70].

Dual operators. Using the renormalized action (3.33) and the general constant dilaton

solutions (2.11), we can evaluate the exact renormalized one-point functions of the dual

operators. The renormalized canonical momenta take the form

π̂tt = lim
u→∞

e2u/L
(

1

2κ22
∂ue

−ψ +
1√−γ γtt

δSct

δγtt

)
= 0, (3.34a)

π̂t = lim
u→∞

eu/L√−γ π
t = − 1

κ22

Q

α̃
, (3.34b)

π̂ψ = lim
u→∞

e4u/L
(
− 1

κ22
e−ψK +

1√−γ
δSct

δψ

)
=

2

κ22L̃

β̃

α̃
, (3.34c)

and hence

T = 2π̂tt = 0, Oψ = −π̂ψ = − 2

κ22L̃

β̃

α̃
, J t = −π̂t = 1

κ22

Q

α̃
. (3.35)

These one-point functions differ from those for running dilaton asymptotics in (3.14) in

two major ways. Firstly, the stress tensor in the theory dual to constant dilaton solutions is

a trivial operator. Secondly, the scalar operator Oψ dual to the dilaton is now an irrelevant

operator with scaling dimension ∆̃ψ = 2, in agreement with e.g. [4]. This is consistent

with the RG flow (2.14) we discussed earlier, where the operator dual to the dilaton is
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marginally relevant with respect to the ultraviolet theory, but irrelevant with respect to

the infrared one. Moreover, the general solution (2.11) does not contain a source for this

irrelevant operator, since such a source would change the asymptotic form of the solution.

Instead, the arbitrary function β̃(t) in the metric corresponds to the one-point function of

the irrelevant scalar operator, which can be non zero without modifying the asymptotic

form of the solution. Notice that since the holographic stress tensor is identically zero for

constant dilaton solutions, different values of β̃(t) cost no energy, and so they parameterize

a space of degenerate vacua, which we loosely refer to as the “Coulomb branch” of the

theory. As we will see in section 5, the operator Oψ transforms anomalously under the

local asymptotic symmetries, with the same conformal anomaly as in the running dilaton

theory. This suggests that the microstates accounting for the black hole entropy survive in

the constant dilaton solutions and should correspond to the degenerate vacua parameterized

by the expectation value of Oψ, i.e. β̃.

Ward identities. The time reparameterization and trace Ward identities are satisfied

trivially in this theory because the source of the irrelevant operator is set to zero, while

the charge conservation identity remains unchanged, namely

DtJ t = 0, (3.36)

where Dt now denotes the covariant derivative with respect to the boundary metric −α̃2.

Turning on a source ν̃(t) for the irrelevant operator Oψ, even infinitesimally, would require

the theory to be defined with a UV cutoff. To leading non trivial order in the irrelevant

source, the time reparameterization and trace Ward identities take the form

∂tT +Oψ∂tν̃ = O(ν̃2), T − ν̃Oψ = − L̃(LQ)1/2

κ22α̃
∂t

(
ν̃ ′

α̃

)
+O(ν̃2), (3.37)

which are indeed trivially satisfied by the one-point functions (3.35) in the limit ν̃ → 0.

However, at non zero source ν̃ there is again a trace anomaly that is sourced entirely by the

dilaton, as in the case of running dilaton solutions. In fact, from the infrared limit (2.15) of

the RG flow between the two theories we can read off the map between the sources, namely

α̃ = αβ/
√
LQ and ν̃ ∝ β2. Inserting this in the trace anomaly in (3.37) we recover precisely

that of the running dilaton theory in (3.16). Notice that the Ward identities (3.37) imply

that the stress tensor is nonzero if and only if a source for the irrelevant scalar operator is

turned on.

Generating functional. At zero source for the irrelevant operator Oψ, the one-point

functions (3.35) can be expressed as

T =
δSren

δα̃
, Oψ = − 1

α̃

δSren

δν̃
, J t = − 1

α̃

δSren

δµ̃
, (3.38)

in terms of the renormalized on-shell action

Sren[α̃, ν̃, µ̃] = − 1

κ22L̃

∫
dt
(
2β̃ν̃ + µ̃Q+O(ν̃2)

)
. (3.39)
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Higher order terms in the source ν̃ of the irrelevant operator can be computed pertur-

batively by considering fluctuations around the general solution (2.11) and introducing a

radial cutoff.

Symplectic space of constant dilaton solutions. As for the running dilaton solutions,

the relations (3.38) allows us to determine the symplectic form on the space of constant

dilaton solutions:

Ω =

∫
dt
(
δPα̃ ∧ δα̃+ δPν̃ ∧ δν̃ + δPµ̃ ∧ δµ̃

)
, (3.40)

where

Pα̃ = T , Pν̃ = −α̃Oψ, Pµ̃ = −α̃J t. (3.41)

This defines the Poisson bracket

{C1, C2} =

∫
dt

(
δC1
δPα̃

δC2
δα̃

+
δC1
δPν̃

δC2
δν̃

+
δC1
δPµ̃

δC2
δµ̃

− C1 ↔ C2
)
, (3.42)

for any functions C1,2 on the symplectic space of such solutions.

4 3D perspective

Since the action (1.1) can be obtained by a circle reduction from Einstein-Hilbert gravity

in three dimensions, the holographic dictionaries we derived in the previous section should

be consistent with the holographic dictionary for three dimensional gravity and the dual

CFT2. In this section we show that this is indeed the case. Moreover, as we will discuss

in section 6, the 3D perspective allows us to extend the asymptotic symmetry algebras, by

allowing for local transformations that involve the circle direction.

The general solution of 3D Einstein-Hilbert gravity with a negative cosmological con-

stant can be written in the Fefferman-Graham gauge

ds2 = du2 + γij(u, x)dx
idxj , i = 1, 2, (4.1)

as [73]

γij = e2u/L
(
g(0)ij + e−2u/Lg(2)ij + e−4u/Lg(4)ij

)
, (4.2)

where the boundary metric g(0)ij is arbitrary, g(4)ij = (g(2)g(0)
−1g(2))ij/4 and g(2)ij is also

arbitrary except that it satisfies the constraints

g(0)
ijg(2)ij = −L

2

2
R[g(0)], D(0)

i
(
g(2)ij − g(0)

klg(2)klg(0)ij

)
= 0. (4.3)

Here, D(0)i denotes a covariant derivative with respect to g(0)ij . Defining the tensor

τij =
1

κ23L

(
g(2)ij − g(0)

klg(2)klg(0)ij

)
, (4.4)

the constraints (4.3) can be written more compactly as

D(0)iτ
i
j = 0, τ ii =

c

24π
R[g(0)], (4.5)
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where

c =
12πL

κ23
=

3L

2G3
, (4.6)

is the Brown-Henneaux central charge [59]. This form of the constraints allows us to

identify τij with the stress tensor in the dual CFT2. In terms of τij the metric (4.1)–(4.2)

becomes

ds2 = du2 + e2u/L
{
g(0)ij + 2e−2u/L

(
κ23L

2
τij −

L2

4
R[g(0)]g(0)ij

)

+e−4u/L

(
κ23L

2
τik −

L2

4
R[g(0)]g(0)ik

)(
κ23L

2
τkj − L2

4
R[g(0)]δ

k
j

)}
dxidxj .

(4.7)

Kaluza-Klein reduction to 2D. To make contact with the solutions of the EMD theory

in 2D we parameterize the AdS3 coordinates as xi = {u, t, z}, where xa = {u, t} cover the

AdS2 subspace and z is periodically identified as z ∼ z + Rz with period Rz. Using the

Kaluza-Klein Ansatz [2, 4]

ds23 = e−2ψ (dz +Aadx
a)2 + gabdx

adxb = du2 + γttdt
2 + e−2ψ (dz +Atdt)

2 , (4.8)

leads to the following relations between the metric in 3D and the various fields of the EMD

theory in 2D:

γ
(3)
tt = γtt + e−2ψA2

t , γ
(3)
tz = e−2ψAt, γ(3)zz = e−2ψ. (4.9)

Moreover, the gravitational constants are related as

κ23 = Rzκ
2
2. (4.10)

Solving the constraints via the Liouville equation. To fully specify the metric (4.7)

it is necessary to solve the constraints (4.5) so that the stress tensor τij is expressed as a

functional of the boundary metric g(0)ij . This can be achieved with the help of an auxiliary

Liouville field.

It is straightforward to check that a stress tensor of the form

τij =
2

q2
e

q

2
ϕp

(
D(0)iD(0)j −

1

2
g(0)ij�(0)

)
e−

q

2
ϕp +

1

2q2
R[g(0)]g(0)ij , (4.11)

where 1/q2 = c/24π is proportional to the Brown-Henneaux central charge (4.6) and the

auxiliary scalar field ϕp satisfies the Liouville equation

q�(0)ϕp − peqϕp = R[g(0)], (4.12)

with some arbitrary parameter p, automatically satisfies the constraints (4.5). Conversely,

provided τij satisfies the constraints (4.5), any solution of the linear equation

(
τij −

1

2q2
R[g(0)]g(0)ij −

2

q2

(
D(0)iD(0)j −

1

2
g(0)ij�(0)

))
e−

q

2
ϕ = 0, (4.13)
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satisfies the Liouville equation (4.12) for some parameter p. This last statement can be

proven by multiplying (4.13) with e
q

2
ϕ, then taking the covariant divergence with respect

to one of the indices, and then multiplying by e−qϕ. This gives

∂i
(
e−qϕ(R[g]− q�(0)ϕ)

)
= 0, (4.14)

which is the Liouville equation (4.12) with the parameter p emerging as an

integration constant.

This result implies that the general solution of the constraints (4.5) can be parame-

terized as a Liouville stress tensor of the form (4.11), in terms of the general solution of

the family of Liouville equations (4.12). As we shall show below, this observation plays a

crucial role in the relation between the holographic dictionaries for the EMD theory (1.1)

in 2D and that for 3D Einstein-Hilbert gravity.

4.1 Running dilaton solutions from spacelike reduction

Using the Kaluza-Klein relations (4.9), the general solution (2.4) can be uplifted to three

dimensions. In particular, we read off the following boundary metric g(0)ij and CFT2 stress

tensor τij that parameterize the metric (4.7) in three dimensions:

g(0)zz = β2, g(0)zt = β2µ, g(0)tt = −(α2 − β2µ2), (4.15)

and

Rzτzz = βOψ, (4.16a)

Rzτzt = βµOψ +
α2

β
J t, (4.16b)

Rzτtt = −α
2

β
T + βµ2Oψ +

2α2µ

β
J t. (4.16c)

Notice that the component g(0)zz of the boundary metric in three dimensions is positive

definite and so the running dilaton solutions of the 2D EMD theory are obtained through

a spacelike circle reduction of 3D Einstein-Hilbert gravity.

Ward identities. The Ricci scalar of the boundary metric (4.15) is

R[g(0)] = 2

(
β′′

α2β
− α′β′

α3β

)
. (4.17)

Evaluating the trace of the stress tensor τij through the relations (4.16) then reproduces

the trace constraint in (4.5), namely

Rzτ
i
i =

1

β
(T +Oψ) =

RzL

κ23

(
β′′

α2β
− α′β′

α3β

)
=

1

β
A, (4.18)

where A is the conformal anomaly of the 2D EMD theory with running dilaton defined

in (3.16). Hence, the conformal anomaly of the 2D theory, which is entirely due to the

running dilaton, precisely matches the metric conformal anomaly in the 2D CFT. Moreover,

it is straightforward to check that the relations (4.16) map the Ward identities (3.15) to

the conservation of the stress tensor τij in (4.5).
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Relation to the Liouville equation. We now show that the expressions (4.16) for the

stress tensor can be written in the form (4.11), in terms of a specific solution of the Liouville

equation in the background metric (4.15), which takes the form

q

αβ

[
α2 − β2µ2

αβ
∂2zϕp +

βµ

α
∂t∂zϕp + ∂t

(
βµ

α
∂zϕp −

β

α
∂tϕp

)]
− peqϕp =

2

αβ
∂t

(
β′

α

)
.

(4.19)

For p = 0 a solution of this equation is

ϕ0(t, z) = c0z + h(t), h′(t) = c0µ+ c1
α

β
− 2β′

qβ
, (4.20)

where c0 and c1 are arbitrary constants. Inserting this solution in the expression (4.11) for

the stress tensor we obtain

τzz =
1

q2

(
q2

4

(
c20 + c21

)
− β′2

α2
+

2ββ′′

α2
− 2ββ′α′

α3

)
, (4.21a)

τzt =
c0c1α

2β
+ µτzz, (4.21b)

τtt =
1

q2

(
q2

4
(c20 + c21)

α2

β2
− β′2

β2

)
+
c0c1αµ

β
+ µ2τzz, (4.21c)

which coincide with the expressions (4.16) with the identifications

m =
κ22Rz
2L

(c20 + c21), Q =
κ22Rz
2

c0c1,
1

q2
=

c

24π
=

L

2κ22Rz
. (4.22)

4.2 Constant dilaton solutions from null reduction

Uplifting the constant dilaton solutions (2.11) using the Kaluza-Klein relations (4.9) results

in the following boundary metric g(0)ij and CFT2 stress tensor τij :

g(0)zz = 0, g(0)zt = −
√
LQ α̃, g(0)tt = −2

√
LQ α̃µ̃, (4.23)

and

κ23τzz = Q = κ22α̃J t, (4.24a)

κ23τzt = Qµ̃ = κ22α̃µ̃J t, (4.24b)

κ23τtt = − 2α̃β̃
√
LQ L̃

+Qµ̃2 = κ22α̃

(
α̃√
QL

Oψ + µ̃2J t

)
. (4.24c)

Since the component g(0)zz of the boundary metric vanishes, the constant dilaton solutions

of 2D EMD theory are obtained by a null reduction of 3D Einstein-Hilbert gravity [2, 4].

Note that although AdS2 in this case has radius L̃ = L/2, the corresponding AdS3 radius

is still L.

It was pointed out in [2] that this form of the 2D CFT stress tensor implies that

the constant dilaton solutions are compatible with the Compère-Song-Strominger (CSS)

boundary conditions for 3D gravity found in [1]. Indeed, setting

α̃ =
1

2
√
LQ

, µ̃ = −P ′(t), Q =
κ23
2π

∆, β̃ = −L
2Qκ23
4π

LCSS(t), (4.25)
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where P , ∆ and LCSS refer to notation used in [1], reproduces exactly the boundary metric

and stress tensor in [1]. However, more than one boundary conditions within this space

of asymptotic solutions are compatible with the symplectic structure (3.40). Since ν̃ is

an infinitesimal source that must be set to zero in the solutions, any choice of boundary

conditions must include keeping ν̃ fixed. One choice of consistent boundary conditions is

the CSS boundary conditions [1], which correspond to

δν̃ = 0, δQ = 0, δα̃ = 0, (4.26)

with µ̃ and β̃ arbitrary dynamical variables. A second class of consistent boundary condi-

tions on these solutions is

δν̃ = 0, δµ̃ = 0, δα̃ = 0, (4.27)

with β̃ and Q arbitrary. These two choices of boundary conditions define different dual

theories, with different operators and different symmetries. In particular, the theory cor-

responding to CSS boundary conditions (4.26) does not have a local current operator,

while the one dual to the boundary conditions (4.27) does. We will consider the asymp-

totic symmetries and corresponding conserved charges for both boundary conditions in

sections 5 and 6.

Notice that, in terms of the boundary metric (4.23), the boundary conditions (4.27)

do not correspond to keeping the Weyl factor fixed, since the charge Q is allowed to vary.

This is completely consistent with the symplectic structure and the variational problem, but

shows that the standard Dirichlet boundary conditions on the space of constant dilaton

solutions of the 2D EMD theory uplift to generalized Dirichlet boundary conditions in

3D. Such generalized Dirichlet boundary conditions arise naturally in asymptotically AdS

spaces since the bulk fields do not induce fields on the conformal boundary, but rather

a conformal class of fields, i.e. a set of sources defined up to local Weyl rescalings, and

are well defined provided the conformal anomaly vanishes [69]. This suggests that both

boundary conditions (4.26) and (4.27) can be extended by allowing α̃(t) to vary, in parallel

with the generalization of the Brown-Henneaux boundary conditions in [74]. However, we

will not discuss this type of boundary conditions further here.

Ward identities. As we saw above, with zero source for the irrelevant scalar operator,

the Ward identities for constant dilaton boundary conditions are satisfied trivially. Using

the relations (4.23) and (4.24) these Ward identities can be expressed in the form (4.5), or

more explicitly,

∂t
(
α̃τ tz
)
= 0, ∂t

(
τ tt − µ̃τ tz

)
= 0, τ tt + τ zz = 0, (4.28)

reflecting respectively charge conservation, time reparameterizations, and radial reparam-

eterizations. Although these are trivially satisfied by the solutions (4.23) and (4.24), the

form of the conserved quantities is useful in order to define the conserved charges in sec-

tion 5.
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Relation to the Liouville equation. Finally, let us determine the solution of the Liou-

ville equation (4.12) that gives rise to the stress tensor (4.24) through the identity (4.11).

In the background metric (4.23) the Liouville equation (4.12) takes the form

2q√
LQ α̃

(µ̃∂z − ∂t) ∂zϕp − peqϕp = 0. (4.29)

For p = 0 the general solution of this equation is

q ϕ0(t, z) = log ∂+F(x+) + log ∂−G(x−), (4.30)

where F and G are arbitrary functions of their arguments and ∂± denote derivatives with

respect to the variables

x+ = 2
√
LQ

∫ t

dt′α̃(t′), x− = z +

∫ t

dt′µ̃(t′). (4.31)

Note that in terms of x± the boundary metric (4.23) takes the canonical form

ds2(0) = −dx+dx−. (4.32)

The stress tensor (4.11) then becomes

τzz = − 1

q2

(
∂−

(
∂2−G
∂−G

)
− (∂2−G)2

2(∂−G)2
)
, (4.33a)

τzt = µ̃τzz, (4.33b)

τtt = −4LQα̃2

q2

(
∂+

(
∂2+F
∂+F

)
− (∂2+F)2

2(∂+F)2

)
+ µ̃2τzz, (4.33c)

which involves the Schwarzian derivatives (3.21) of G with respect to x− and of F with

respect to x+. These expressions for the stress tensor of the 2D CFT matches the expres-

sions (4.24) obtained from the 2D EMD theory provided we identify

∂−G = sech2

(√
Q

L
x−

)
, β̃ =

L2

2
(LQ)3/2 α̃

(
∂+

(
∂2+F
∂+F

)
− (∂2+F)2

2(∂+F)2

)
, (4.34)

with F(x+) arbitrary.

5 Conserved charges and asymptotic symmetry algebras

In this section we identify the asymptotic symmetries preserved by the running and con-

stant dilaton solutions of the 2D theory (1.1), and construct the associated conserved

charges. It should be emphasized that the symmetries preserved depend fundamentally on

the identification of the sources in the dual theory. Hence, even within the same space of

asymptotic solutions, identifying different modes as sources leads to different asymptotic

symmetries. Here we consider standard Dirichlet boundary conditions for the running dila-

ton solutions, but for the constant dilaton solutions we consider both Dirichlet and CSS

boundary conditions.
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In order to identify the asymptotic symmetries we first need to know how the modes

parameterizing the solutions transform under the local bulk transformations that preserve

the Fefferman-Graham gauge. Bulk diffeomorphisms with this property are known as

Penrose-Brown-Henneaux (PBH) diffeomorphisms [59, 75] (see also [76]), but they can be

generalized to other local symmetries, such as gauge transformations. In general, the local

bulk transformations preserving the Fefferman-Graham gauge mix, and so we will refer to

all such transformations collectively as generalized PBH transformations.

Under an infinitesimal bulk diffeomorphism the fields of the 2D model (1.1) trans-

form as

δξguu = Lξguu = ξ̇u, δξgtt = Lξgut = γtt(ξ̇
t + ∂tξu), δξgtt = Lξgtt = Lξγtt + 2Kttξ

u,

(5.1a)

δξAu = LξAΛ
u = ξ̇tAt, δξAt = LξAt = LξAt + ξuȦt, δξLξψ = Lξψ = Lξψ + ξuψ̇,

(5.1b)

where Lξ denotes the Lie derivative with respect to the vector ξa, while Lξ stands for the Lie

derivative with respect to the transverse component ξt. Moreover, under an infinitesimal

gauge transformation the gauge field transforms as

δΛAu = Λ̇, δΛAt = ∂tΛ. (5.2)

To preserve the Fefferman-Graham gauge (3.8), therefore, we must demand

Lξguu = Lξgut = 0, (Lξ + δΛ)Au = 0. (5.3)

This leads to a set of equations for the parameters ξa(u, t) and Λ(u, t), with general solu-

tion [69]

ξu = σ(t), ξt = ε(t)+∂tσ(t)

∫
∞

u
du′γtt(u′, t), Λ = ϕ(t)+∂tσ(t)

∫
∞

u
du′At(u

′, t), (5.4)

where ε(t), σ(t) and ϕ(t) are arbitrary functions of time. They correspond respectively to

time reparameterizations, i.e. boundary diffeomorphisms, Weyl and gauge transformations.

Under these transformations the dynamical fields transform as

δξγtt = Lξγtt + 2Kttξ
u, (Lξ + δΛ)At = LξAt + ξuȦt + ∂tΛ, δξψ = Lξψ + ξuψ̇. (5.5)

Inserting the asymptotic expansions of these fields in the general solution (5.4) determines

the asymptotic form of PBH transformations. Using the resulting form of the PBH trans-

formations, together with the asymptotic expansions of the fields in (5.5) determines how

the modes transform.

– 32 –



J
H
E
P
1
2
(
2
0
1
6
)
0
0
8

Finally, defining the generalized Lie bracket for diffeomorphisms and gauge transfor-

mations9

[ξ1, ξ2] := δξ1ξ2 = Lξ1ξ2, (5.6a)

[ξ,Λ] := δξΛ− δΛξ = δξΛ, (5.6b)

[Λ, ξ] := δΛξ − δξΛ = −δξΛ, (5.6c)

[Λ1,Λ2] := δΛ1
Λ2 − δΛ2

Λ1, (5.6d)

one can compute the algebra of local transformations preserving the Fefferman-Graham

gauge. Strictly speaking, though, this is not an algebra since it closes up to field depen-

dent transformation parameters. However, as we shall see, when restricted to asymptotic

symmetries this becomes a proper algebra: the asymptotic symmetry algebra.

5.1 Running dilaton solutions

Inserting the general running dilaton solution (2.4) in (5.4) and (5.5) we find that PBH

transformations in this case act on the sources as

δPBHα = ∂t(εα) + ασ/L, δPBHβ = εβ′ + βσ/L, δPBHµ = ∂t(εµ+ ϕ), (5.7)

and on the one-point functions as

δPBHT = ε∂tT − σ

L
T +

β′σ′

κ22α
2
, (5.8a)

δPBHOψ = ε∂tOψ − σ

L
Oψ +

Lε

2κ22β
∂t

(
β′2

α2

)
+

L

κ22α
∂t

(
βσ′

Lα

)
, (5.8b)

δPBHJ t = −
(
∂t(εα)

α
+
σ

L

)
J t. (5.8c)

These transformations are intimately connected with the Ward identities (3.15)

and (3.16). Rewriting these identities in terms of the symplectic variables (3.23) and

defining the function10

H[ε, σ, ϕ] =

∫
dt

(
−ε
(
α∂tPα − β′

β
Pβ + µ∂tPµ

)
+
σ

L
(αPα + Pβ − αA)− ϕ∂tPµ

)
,

(5.9)

on the space of running dilaton solutions, one can check that

δPBHX = {H[ε, σ, ϕ], X}, (5.10)

where {·, ·} denotes the Poisson bracket (3.24) and X stands for any of the canonical

variables. It follows that PBH transformations are generated by the Ward identities. Con-

versely, the transformation of the renormalized action under arbitrary PBH transformation

(invariant up to anomalies) leads to an alternative derivation of the Ward identities.

9This is a well defined Lie bracket since it satisfies the Jacobi identity. Moreover, in the present setting

in can be derived by Kaluza-Klein reduction from 3D pure gravity PBH transformations.
10In order for the functional derivatives to be well defined one must add a ‘boundary’ term to this function

on the initial and final times. Such terms are related to the conserved charges. However, we will determine

the conserved charges by an alternative argument and so we do not show explicitly these boundary terms.
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Asymptotic symmetries. Asymptotic symmetries correspond to PBH transformations

that leave the sources invariant, i.e.11

δPBH (sources) = 0. (5.11)

The solutions of this condition correspond to boundary conformal Killing vectors (BCKV)

and are in one-to-one correspondence with asymptotic bulk Killing vectors [69], where

the qualification ‘asymptotic’ means that they are not necessarily symmetries of the one-

point functions. Generically, if the conformal anomaly is numerically non zero, then only

boundary Killing vectors lead to conserved charges. However, in certain cases the form of

the anomaly allows one to define conserved charges even for boundary conformal Killing

vectors that are not Killing [60]. As we will see, the conformal anomaly that arises in the

present context is one of these cases.

The general solution of the condition (5.11) for the transformations (5.7) is

ε = ξ1
β

α
, σ/L = −ξ1

β′

α
, ϕ = ξ2 − ξ1

β

α
µ, (5.12)

where ξ1,2 are arbitrary constants. The symmetry algebra is therefore u(1) ⊕ u(1), whose

corresponding charges are the mass and the electric charge. The one-point functions are

strictly invariant under these global transformations and so this algebra is preserved on

the Hilbert space of the dual theory, i.e. there is no anomaly.

Conserved charges. A simple and general way to derive the conserved charges is to

consider the variation of the renormalized action under PBH transformations. From the

relations (3.17) between the renormalized on-shell action and the one-point functions fol-

lows that

δPBHSren =

∫
dt
(
T δPBHα+

α

β
OψδPBHβ − αJ tδPBHµ

)
. (5.13)

When evaluated on generic PBH transformation (5.7) this variation is equal to

δPBHSren =
1

L

∫
dt ασ A, (5.14)

where A is the conformal anomaly. As we pointed out above, inserting the PBH trans-

formation (5.7) of the sources and using the fact that ε(t), σ(t) and µ(t) are arbitrary

functions leads to an alternative derivation of the Ward identities (3.15) and (3.16).

When evaluated instead on the boundary conformal Killing vectors (5.12) instead, the

variation (5.13) gives identically zero. Using the Ward identities and keeping the total

derivative terms leads to the general expressions for the corresponding conserved charges.

In particular, for the symmetry transformations (5.12) the variation of the renormalized

action takes the form

0 = δBCKVSren =

∫
dt ∂t

(
ξ1

(
βT − L

2κ22

β′2

α2

)
− ξ2αJ t

)
, (5.15)

11As we mentioned earlier, this condition can be relaxed e.g. by demanding that the sources are preserved

up to a Weyl transformation as in [74], but we will not consider such generalized boundary conditions here.
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which leads to the two commuting conserved charges

Q1 = −
(
βT − L

2κ22

β′2

α2

)
=
mL

2κ22
, Q2 = αJ t =

Q

κ22
. (5.16)

These two conserved charges carry a representation of the asymptotic symmetry algebra

u(1)⊕ u(1) on the Hilbert space of the dual 1D theory.

5.2 Constant dilaton solutions

Inserting the general constant dilaton solution (2.11) in (5.4) and (5.5) we find that PBH

transformations act on the sources as

δPBHα̃ = ∂t(εα̃)+ α̃σ/L̃+O(ν̃), δPBHν̃ = εν̃ ′+ ν̃σ/L̃, δPBHµ̃ = ∂t(εµ̃+ϕ), (5.17)

and on the one-point functions as

δPBHT = −
√
LQ

κ22

ν̃ ′

α̃2
σ′, (5.18a)

δPBHOψ = ε∂tOψ − 2σ

L̃
Oψ +

√
LQ

κ22α̃
∂t

(
σ′

α̃

)
, (5.18b)

δPBHJ t = −
(
∂t(εα̃)

α̃
+
σ

L̃

)
J t. (5.18c)

Note that we have included the infinitesimal source ν̃ of the irrelevant scalar operator Oψ

in these transformations since it is required in order to generate the PBH transformations

through the Poisson bracket. In particular, defining the function

H[ε, σ, ϕ] =

∫
dt
(
− ε

(
α̃∂tPα̃ − ν̃ ′Pν̃ + µ̃∂tPµ̃

)
+
σ

L̃
(α̃Pα̃ + ν̃Pν̃ − α̃A)−ϕ∂tPµ̃

)
, (5.19)

on phase space, corresponding to the Ward identities (3.36) and (3.37), one can check that

the PBH transformations are generated by the Poisson bracket (3.42) according to

δPBHX = {H[ε, σ, ϕ], X}, (5.20)

where again X stands for any of the symplectic variables.

Asymptotic symmetries for Dirichlet boundary conditions. The asymptotic sym-

metries again correspond to the subset of PBH transformations that leave the sources

invariant. However, for the constant dilaton solutions we want to consider two different

boundary conditions on the gauge field, which lead to different asymptotic symmetries. For

Dirichlet boundary conditions, corresponding to keeping µ̃(t) fixed,12 the subset of PBH

transformations that leave the sources invariant is

ε(t) =
ζ

2
√
LQα̃

, σ(t) = − L̃

2
√
LQα̃

ζ ′, ϕ = − ζ

2
√
LQα̃

µ̃+ ξ2, (5.21)

12Note that we call these Dirichlet boundary conditions even though the mode µ̃ is asymptotically sub-

leading. This is a matter of terminology to some extent, but it is motivated by the fact that such boundary

conditions are indeed Dirichlet once uplifted to 3D. It is also natural to treat them as Dirichlet in the

context of p-form antisymmetric tensors [60].
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where ζ(t) is an arbitrary function of time, ξ2 an arbitrary constant, and the normalization

of ζ has been chosen for reasons that will become apparent momentarily. Note that these

are the asymptotic symmetries when the source ν̃ of the irrelevant operator Oψ is set to

zero. This is precisely the reason why the solution (5.21) contains an arbitrary function of

time. Once this irrelevant source is turned on the asymptotic symmetries are broken down

to those for running dilaton solutions, namely (5.12).

The symmetry algebra of the BCKVs (5.21) is Witt⊕u(1), where the Witt algebra is the

classical Virasoro algebra, i.e. with zero central charge. However, not all one-point functions

remain invariant under this asymptotic symmetries, which implies that the symmetry is

broken by anomalies in the Hilbert space of the dual 1D theory. In particular, inserting

the BCKVs (5.21) in the transformation (5.18) of the one-point functions we find that T
and J t are invariant, while the irrelevant scalar operator transforms as

δζOψ = ζ∂+Oψ + 2(∂+ζ)Oψ − 2L(LQ)3/2

κ22
∂3+ζ, (5.22)

where x+ is the null coordinate defined in (4.31). We immediately recognize this expression

as the anomalous transformation of a Virasoro current. This should come as no surprise,

given that we saw earlier in (4.34) that the relation with the Liouville equation implies that

Oψ is proportional to a Schwarzian derivative with respect to x+. In fact, the coefficient

of the anomalous term in (5.22) is precisely such that the time-time component of the

corresponding stress tensor on the boundary of AdS3, given in (4.24), transforms with the

Brown-Henneaux central charge, in agreement with the Liouville expression (4.33).

The anomalous transformation (5.22) of Oψ is a manifestation of the trace anomaly

in (3.37) and it implies that the Witt algebra is only an asymptotic symmetry, which is

broken to the global sl(2,R) subalgebra in the interior of AdS2. In holographic terms,

the Witt algebra is broken by the conformal anomaly to sl(2,R) on the Hilbert space of

the dual theory. This is analogous to the breaking of the Virasoro symmetry in any 2D

CFT by the stress tensor. However, as we show next, in the case of conformal quantum

mechanics, the Witt algebra is trivially realized on the Hilbert space and it does not extend

to a Virasoro algebra.

Conserved charges for Dirichlet boundary conditions. Applying the symmetry

transformations (5.21) to the variation of the renormalized on-shell action, namely

0 = δBCKVSren =

∫
dt
(
T δBCKVα̃− α̃OψδBCKVν̃ − α̃J tδBCKVµ̃

)
, (5.23)

and keeping the total derivative terms leads to the conserved charges

Q[ε] = α̃T ε(t) = 0, Q = α̃J t =
Q

κ22
. (5.24)

In particular, the conserved charges associated with the Witt algebra generators vanish

identically, and so the conformal algebra is realized trivially on the Hilbert space of con-

formal quantum mechanics. Hence, although the asymptotic symmetry algebra is larger

than that for the running dilaton solutions, the representation of the symmetry algebra on

the Hilbert space is trivial, except for a global u(1).
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Asymptotic symmetries for CSS boundary conditions. Let us now consider the

alternative CSS boundary conditions. These correspond to keeping Q fixed instead of µ̃(t)

and so we need to add a finite term to the renormalized action (3.33) so that

δS′
ren = δ

(
Sren +

∫
dt α̃J tµ̃

)
=

∫
dt
(
T δα̃− α̃Oψδν̃ + µ̃δ(α̃J t)

)
. (5.25)

The subset of PBH transformations that preserves these boundary conditions contains two

arbitrary functions of time, namely

ε(t) =
ζ(t)

2
√
LQα̃

, σ(t) = − L̃

2
√
LQα̃

ζ ′(t), ϕ(t), (5.26)

where ζ(t) and ϕ(t) are arbitrary. This is a direct consequence of the fact that Q does

not transform under PBH transformations and so it does not lead to any constraint on the

PBH parameters. Evaluating the Lie brackets (5.6) on the BCKVs (5.26) gives one copy

of the Witt algebra and one copy of a û(1) Kac-Moody algebra at level zero. Hence, the

asymptotic symmetry algebra for constant dilaton solutions with CSS boundary conditions

is larger than both that of running dilaton and constant dilaton solutions with Dirichlet

boundary conditions.

Conserved charges for CSS boundary conditions. Evaluating the variation (5.25)

of the renormalized action on the BCKVs (5.26), namely

0 = δBCKVS
′
ren =

∫
dt
(
T δBCKVα̃− α̃OψδBCKVν̃ + µ̃δBCKV(α̃J t)

)
, (5.27)

once again gives trivial conserved charges. In particular, the total derivative term from

this variation leads to the conserved charge for local conformal transformations

Q[ε] = α̃T ε(t) = 0, (5.28)

while the fact that Q does not transform under PBH transformations implies that there is

no conserved charge associated with the Kac-Moody symmetry. Hence, both the conformal

and the Kac-Moody algebras are represented trivial on the Hilbert space of the dual theory

with these boundary conditions.

6 Extended symmetries from 3D embedding

One way to obtain non trivial charges on phase space is by embedding the space of solutions

of the 2D EMD model to that of 3D gravity, using the results of section 4. Although the

modes that parameterize the space of solutions remain the same, the 3D embedding allows

us to consider a wider class of PBH transformations that involve the Kaluza-Klein circle

direction. Applying the analysis at the beginning of the previous section to 3D gravity one

finds that 3D PBH transformations act on the modes g(0)ij and τij that parameterize the

general metric (4.7) as

δPBHg(0)ij = ξko∂kg(0)ij + g(0)kj∂iξ
k
o + g(0)ik∂jξ

k
o +

σ

L
g(0)ij , (6.1a)

δPBHτij = τik∂jξ
k
o + τjk∂iξ

k + ξk∂kτij +
1

κ23

(
D(0)iD(0)jσ − g(0)ij�(0)σ

)
, (6.1b)
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where σ(t, z) and ξko (t, z) are now arbitrary functions of the 2D boundary coordinates (t, z).

Writing ξto = ε(t, z), ξzo = ϕ(t, z) and using the identifications between 2D and 3D modes

for the two types of solutions given in section 4, the 3D PBH transformations (6.1) lead to

extended PBH transformations for the 2D modes.

6.1 Running dilaton solutions

In particular, for the running dilaton solutions, (4.15) and (6.1) give the generalized PBH

transformations for the sources

δPBHα = ∂t(εα) + ασ/L− µα∂zε, (6.2a)

δPBHβ = εβ′ + βσ/L+ β∂z(εµ+ ϕ), (6.2b)

δPBHµ = ∂t(εµ+ ϕ)− µ∂z(εµ+ ϕ)− α2

β2
∂zε. (6.2c)

Setting the derivatives with respect to the circle direction z to zero gives back the 2D PBH

transformations (5.7). The BCKVs that leave the sources invariant are now determined by

the partial differential equations

(∂t − µ∂z)(µε+ ϕ)− α

β
∂z

(
α

β
ε

)
= 0, (6.3a)

(∂t − µ∂z)

(
α

β
ε

)
− α

β
∂z(µε+ ϕ) = 0, (6.3b)

σ

L
= µ∂zε−

1

α
∂t(εα). (6.3c)

The general solution of this system of equations involves two arbitrary func-

tions, namely

α

β
ε =

1

2

(
f(z+)− g(z−)

)
, (µε+ ϕ) =

1

2

(
f(z+) + g(z−)

)
,

σ

L
= − 1

β
(∂+ − ∂−)(εα),

(6.4)

where f and g are arbitrary functions and

z± = z +

∫ t

dt′ (µ± α/β) . (6.5)

In terms of these coordinates

∂z = ∂+ + ∂−, ∂t = (µ+ α/β) ∂+ + (µ− α/β) ∂−, (6.6)

while the 2D boundary metric is put into the conformal gauge

ds(0)
2 = β2dz+dz−. (6.7)

Computing the classical algebra of these asymptotic symmetries one finds two copies of

the Witt algebra, one copy for each of the holomorphic and antiholomorphic coordinates.

This corresponds to an infinite enhancement of the asymptotic symmetry algebra relative
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to the pure 2D one, which, as we saw in the previous section, for these boundary conditions

contains only two global u(1)s.

To construct the conserved charges on the space of solutions, instead of varying the

renormalized action with respect to BCKVs as we did in the previous section, we can equiv-

alently use the Ward identities, i.e. the constraints (4.5). In terms of the coordinates (6.5)

these take the form

∂−τ++ + β2∂+
(
β−2τ+−

)
= 0, (6.8a)

∂+τ−− + β2∂−
(
β−2τ+−

)
= 0, (6.8b)

β−2τ+− =
c

24π
R[g(0)] =

c

3π
β−4 (∂+β∂−β − β∂+∂−β) . (6.8c)

Notice that since the conformal anomaly does not necessarily vanish in this gauge, the

components τ++ and τ−− are not conserved. However, using the third identity in (6.8),

the first two can be rewritten in the form

∂−τ̂++ = 0, ∂+τ̂−− = 0, (6.9)

in terms of the modified stress tensor13

τ̂++ = τ++ − c

12π

(
∂2+β

β
− 2

(
∂+β

β

)2
)
, τ̂−− = τ−− − c

12π

(
∂2−β

β
− 2

(
∂−β

β

)2
)
.

(6.10)

This allows us to define the conserved charges

Q+[ζ
+] =

∮
dz+ζ+(z+)τ̂++(z

+), Q−[ζ
−] =

∮
dz−ζ−(z−)τ̂−−(z

−), (6.11)

where

ζ+ = (εµ+ ϕ) +
εα

β
= f(z+), ζ− = (εµ+ ϕ)− εα

β
= g(z−). (6.12)

To compute the algebra of these charges we can determine the transformation of

the modified stress tensor components τ̂++ and τ̂−− by specializing the PBH transfor-

mations (6.1) to the BCKVs (6.12). The result is

δBCKVτ̂++ = 2τ̂++∂+ζ
+ + ζ+∂+τ̂++ − c

24π
∂3+ζ

+, (6.13a)

δBCKVτ̂−− = 2τ̂−−∂−ζ
− + ζ−∂−τ̂−− − c

24π
∂3−ζ

−, (6.13b)

and so these quantities transform as stress tensors with a conformal anomaly corresponding

to the Brown-Henneaux central charge. The Dirac brackets

{Q±[ζ
±

1 ],Q±[ζ
±

2 ]} = δζ±
1

Q±[ζ
±

2 ], (6.14)

13This modified stress tensor is conserved, but not fully covariant with respect to 2D boundary diffeo-

morphisms. However, it corresponds to subtracting the Liouville stress tensor of the Weyl factor of the

boundary metric and still leads to well defined charges. We thank Kostas Skenderis and Geoffrey Compère

for useful comments on this point.
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therefore lead to two copies of the Virasoro algebra, both with the Brown-Henneaux central

charge. However, on the space of running dilaton solutions of the 2D EMD model the

stress tensor τij takes the specific form (4.21). Evaluating the charges (6.11) using this

expression for the stress tensor we find that all Virasoro generators vanish except for L±

0 ,

which correspond to the two global u(1) charges (5.16). For running dilaton solutions with

Dirichlet boundary conditions, therefore, although embedding the space of solutions into

that of 3D gravity leads to an infinite enhancement of the asymptotic symmetry algebra,

but still only a global u(1) ⊕ u(1) is represented non trivially on the Hilbert space of the

dual theory.

6.2 Constant dilaton solutions

Finally let us examine the effect of generalized PBH transformations on the asymptotic

symmetries and conserved charges of the constant dilaton solutions. The 2D boundary

metric corresponding to constant dilaton solutions is given in eq. (4.23). Allowing for an

infinitesimal source ν̃ for the irrelevant scalar operator Oψ corresponds to the slightly more

general 2D boundary metric

ds2(0) = −2
√
LQα̃(t)(dt+ µ̃z(t)dz)(dz + µ̃(t)dt), (6.15)

where ν̃ ∝ α̃µ̃z.

Within the subspace of 3D solutions corresponding to 2D constant dilaton solutions,

a generic variation of the renormalized on-shell action takes the form

δSren =

∫
d2x
√−g(0)τ ijδg(0)ij = −2

∫
d2x

(
δα̃

α̃
Ptz + Pzzδµ̃+ Pttδµ̃z

)
, (6.16)

where

Ptz = τtz − µ̃τzz, Pzz = τzz, Ptt = τtt + 2µ̃2τzz − 3µ̃τtz. (6.17)

In terms of these variables and setting µ̃z = 0 the Ward identities (4.5) become14

Ptz = 0, ∂zPtt = 0, (∂t − µ̃∂z)Pzz = 0. (6.18)

The 3D PBH transformations (6.1) imply that µ̃, µ̃z and α̃ transform respectively as

δPBHµ̃ = (∂t − µ̃∂z) (µ̃ε+ ϕ) , (6.19a)

δPBHµ̃z = µ̃′z(ε+ µ̃zϕ) + (∂z − µ̃z∂t)(ε+ µ̃zϕ), (6.19b)

δPBHα̃ = ∂t(εα̃) +
1

L̃
σα̃+ α̃∂z(µ̃ε+ ϕ) + α̃µ̃z∂tϕ, (6.19c)

14Alternatively, these can be obtained by inserting the PBH transformations (6.19) in the variation (6.16)

of the renormalized on-shell action.
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while the stress tensor transforms as

δPBHτtt = 2τtt∂tε+ ε∂tτtt + 2τtz∂tϕ+ ϕ∂zτtt

+
1

κ23

(
∂2t σ − µ̃′∂zσ − α̃′

α
(∂t − µ̃∂z)σ − 4(∂t − µ̃∂z)∂zσ

)
+O(µ̃z), (6.20a)

δPBHτzz = 2τtz∂zε+ 2τzz∂zϕ+ ε∂tτzz + ϕ∂zτzz +
1

κ23
∂2zσ +O(µ̃z), (6.20b)

δPBHτtz = τtt∂zε+ τzz∂tϕ+ ∂t(τtzε) + ∂z(τtzϕ) +
1

κ23
(2µ̃∂z − ∂t)∂zσ +O(µ̃z). (6.20c)

We should point out that in writing these expressions for the generalized PBH transforma-

tions of the modes parameterizing the constant dilaton solutions of the 2D theory we have

made explicit use of the fact that these modes are only functions of t and not of z. These

transformations are sufficiently general to describe the symmetries realized on the space of

2D constant dilaton solutions, but in order to obtain the general 3D PBH transformations

and to generate these PBH transformations through a Poisson bracket one must allow the

modes to depend on both t and z.

Asymptotic symmetries for Dirichlet boundary conditions. The asymptotic sym-

metries for Dirichlet boundary conditions correspond to PBH transformations that satisfy

δPBHα̃ = 0, δPBHµ̃z = 0, δPBHµ̃ = 0. (6.21)

The transformations (6.19) lead to the set of differential equations

∂zε = 0, (∂t − µ̃∂z)(µ̃ε+ ϕ) = 0,
σ

L̃
= −∂zϕ− 1

α̃
∂t (α̃ε) , (6.22)

whose general solution takes the form

ε(t) =
g(x+)

2α̃
√
LQ

, µ̃ε+ ϕ = f
(
x−
)
, (6.23)

where x± are defined in (4.31) and f , g are arbitrary functions. As for the running dilaton

solutions, these BCKVs give two copies of the Witt algebra.

Conserved charges for Dirichlet boundary conditions. In the x± coordinate system

Ward identities in (6.18) become respectively

τ+− = 0, ∂−τ++ = 0, ∂+τ−− = 0, (6.24)

and hence the charges

Q+[g] =

∮
dx+g(x+)τ++(x

+), Q−[f ] =

∮
dx−f(x−)τ−−(x

−), (6.25)

are conserved. Restricting the PBH transformations (6.20) to the BCKVs (6.23) we find

that τ±± transform as

δBCKVτ++ = 2τ++∂+g + g∂+τ++ − c

24π
∂3+g, (6.26a)

δBCKVτ−− = 2τ−−∂−f + f∂−τ−− − c

24π
∂3−f. (6.26b)
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It follows that the two copies of the Witt algebra realized on the BCKVs turn into two

copies of the Virasoro algebra on the space of solutions, both with the Brown-Henneaux

central charge. However, the explicit form of the stress tensor for constant dilaton solutions

given in (4.33) and (4.34) implies that only the charges Q+ are realized non trivially on

the phase space of 2D constant dilaton gravity, while only a u(1) survives from the other

copy.

Asymptotic symmetries for CSS boundary conditions. In order to impose CSS

boundary conditions we need to add a boundary term to the renormalized action that

implements the appropriate Legendre transformation, namely

Sren → Sren + 2

∫
d2x (1− µ̃µ̃z)µ̃τzz. (6.27)

Note that the O(µ̃z) term affects the form of the resulting canonical variables and it

is necessary to get consistent results. A generic variation of the resulting action takes

the form

δ

(
Sren + 2

∫
d2x (1− µ̃µ̃z)µ̃τzz

)
= −2

∫
d2x

(
δα̃

α̃
Ptz − µ̃δPzz + (Ptt + µ̃2Pzz)δµ̃z

)
,

(6.28)

where again

Ptz = τtz − µ̃τzz, Pzz = τzz, Ptt = τtt + 2µ̃2τzz − 3µ̃τtz. (6.29)

Demanding invariance of this action under the generic PBH transformations (6.19)

and (6.20) implies the stronger Ward identities (cf. (6.18))

∂zPtt = 0, ∂tPzz = ∂zPzz = 0, (6.30)

and so Pzz = τzz must be constant for CSS boundary conditions.

The asymptotic symmetries for CSS boundary conditions are obtained from

the conditions

δPBHα̃ = 0, δPBHµ̃z = 0, δPBHPzz = 0, (6.31)

which translate to the differential equations

∂zε = 0,

(
2τzz∂z −

L̃

κ23
∂3z

)
ϕ = 0,

σ

L̃
= −∂zϕ− 1

α̃
∂t (α̃ε) . (6.32)

The general solution contains four arbitrary functions and in terms of the variables x+

(defined in (4.31) ) and z takes the form

ε =
ζ(x+)

2α̃
√
LQ

, ϕ = ϕo(x
+) + a+(x

+)e
2
√

Q

L
z
+ a−(x

+)e
−2

√
Q

L
z
, (6.33)

where ε(x+), ϕo(x
+) and a±(x

+) are arbitrary functions. The algebra these BCKVs gen-

erate is one copy of the Witt algebra as well as an ŝl(2,R) Kac-Moody algebra at level

zero. This is precisely the asymptotic symmetry algebra with CSS boundary conditions
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found in [77]. However, to get non trivial charges for the full ŝl(2,R) it is necessary that

µ̃ depends on both t and z (see e.g. eq. (2.13) in [77]), which takes us outside the space

of solutions of the 2D theory. Hence, only a û(1) ⊂ ŝl(2,R) subalgebra is realized non

trivially on the space of constant dilaton solutions in 2D, which corresponds to the original

symmetry algebra in [1].

Conserved charges for CSS boundary conditions. Inserting the BCKVs (6.33)

(with a± = 0) in the variation (6.28) of the on-shell action and keeping the total derivative

terms leads to the conserved charges

Q+[ε] =

∫ 2π

0
dφ

(
τ++ − 2τzzµ̃

2

(2
√
LQα̃)2

)
ζ(x+), Q−[ϕo] = −

∫ 2π

0
dφ

2τzzµ̃

2
√
LQα̃

ϕo(x
+),

(6.34)

where x+ = t̄+ φ, z = t̄− φ, and φ ∼ φ+ 2π. The algebra these charges generate can be

computed by specializing the transformations (6.19) and (6.20) to the BCKVs (6.33) with

a± = 0, namely

δBCKVτ++ = 2τ++∂+ζ + ζ∂+τ++ +
2τzzµ̃

2
√
LQα̃

∂+ϕo −
c

24π
∂3+ζ, (6.35)

δBCKV

(
µ̃

2
√
LQα̃

)
= ∂+

(
µ̃

2
√
LQα̃

ζ + ϕo

)
. (6.36)

Defining the generators

Ln = Q+[e
−inx+ ], Jn = Q−[e

−inx+ ], n ∈ Z, (6.37)

we obtain the algebra

i{Lm, Ln} = (m− n)Lm+n +
c

12
m3δn+m,0, (6.38)

i{Lm, J0,±
n } = −nJ0,±

m+n, (6.39)

i{J0
m, J

0
n} = −4πτzzmδm+n,0 = −2∆mδm+n,0, (6.40)

in agreement with [1].
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A 4D subtracted geometries and Kaluza-Klein Ansätze

In this appendix we summarize the four-dimensional STU model and its subtracted geome-

tries in the parameterization introduced in [51]. Moreover, we provide the Kaluza-Klein

Ansatz for the reduction of the general rotating subtracted geometries to two dimensions.

The general rotating subtracted geometries with three equal magnetic charges and one

electric charge are solutions of the action [35, 36]

S =
1

2κ24

∫

M

d4x
√−g

(
R[g]− 3

2
∂µη∂

µη − 3

2
e2η∂µχ∂

µχ− 1

4
e−3ηF 0

µνF
0µν

− 3

4
e−η(F + χF 0)µν(F + χF 0)µν

)

− 1

8κ24

∫

M

d4x
√−gǫµνρσ

(
χ3F 0

µνF
0
ρσ + 3χ2F 0

µνFρσ + 3χFµνFρσ
)
, (A.1)

and take the form

eη =
B2/ℓ2√

r + ℓ2ω2 sin2 θ
, χ =

ℓ3ω

B2
cos θ,

A0 =
B3/ℓ3

r + ℓ2ω2 sin2 θ

(√
r+r− kdt+ ℓ2ω sin2 θdφ

)
,

A =
B cos θ

r + ℓ2ω2 sin2 θ
(−ω√r+r− kdt+ rdφ) ,

ds2 =
√
r + ℓ2ω2 sin2 θ

(
ℓ2dr2

(r − r−)(r − r+)
− (r − r−)(r − r+)

r
k2dt2 + ℓ2dθ2

)

+
ℓ2r sin2 θ√

r + ℓ2ω2 sin2 θ

(
dφ− ω

√
r+r−

r
kdt

)2

.

(A.2)

Note that the magnetic charge B must be non zero for these solutions to be related to

solutions of the two-dimensional model (1.1). The coordinate transformations and map

of parameters that relate this form of the solutions to that found in previous works are

given in [51]. The form (A.2) of the subtracted geometries makes it manifest that they

are asymptotically conformal to AdS2 × S2, which implies that holography for these black

holes requires a Kaluza-Klein reduction on the internal S2.

The EMD theory (1.1) can be obtained from the STU model (A.1) by means of the

consistent Kaluza-Klein Ansatz

e−2η = e−2ψ + λ2B2 sin2 θ, χ = λB cos θ, (A.3a)

e−2ηA0 = e−2ψA(2) + λB2 sin2 θdφ, A+ χA0 = B cos θdφ, (A.3b)

eηds24 = ds22 +B2

(
dθ2 +

sin2 θ

1 + λ2B2e2ψ sin2 θ
(dφ− λA(2))2

)
, (A.3c)

with the identifications

L = 2B, κ22 = κ24/πL
2. (A.4)
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Moreover, the constant λ that parameterizes the family (A.3) of Kaluza-Klein Ansätze is

identified with the rotational parameter of the rotating black hole solutions (A.2) as

λ = ωℓ3/B3. (A.5)

This parameter must be a fixed constant for this Ansatz to be well defined. Since λ

does not enter as a parameter of the 2D model, it can be viewed as a modulus of the

dual theory. Moreover, any given solution in two dimensions can be uplifted to different

solutions of the STU model (A.1), with different values of λ. One of the advantages of the

parameterization (A.2) of the subtracted geometries is that it clearly separates the various

parameters of the 4D solution into a) parameters of the 2D theory (B) b) integration

constants of the two-dimensional theory (k, ℓ, and r±), and c) parameters that characterize

the Kaluza-Klein Ansatz but do not survive in the 2D theory (λ). This separation of the

different types of parameters is crucial for understanding holography for such black holes.

The easiest way to show that the Kaluza-Klein Ansatz (A.3) is consistent is to first

uplift the STU model to five dimensions [35, 36], and then reduce on the internal S2, as is

indicated with the blue arrows in figure 1. The uplift to fine dimensions is given by

ds25 = eηds24 + e−2η(dz +A0)2, (A.6a)

= ds23 +B2dΩ2
λ

= ds22 + e−2ψ(dz +A(2))2 +B2dΩ2
λ

A(5) = B cos θ (dφ+ λdz) , (A.6b)

where

dΩ2
λ = dθ2 + sin2 θ (dφ+ λdz)2 , (A.7)

and so the coordinate z must be periodic with period Rz = 2π/λ.

B Comparison with [2] and [3]

In this appendix we briefly comment on the relation of our constant dilaton results with

those in [2] and [3]. Starting with [2], there are two main differences, which lead to some-

what different conclusions. The first is the boundary counterterms used in [2], given in

eq. (A.22), which agree (taking into account the different normalization of the gauge field

and modulo an overall factor of the AdS radius in [2] that we believe is a typo) with the

boundary counterterms (3.27). However, as we argued in section 3, the correct boundary

terms for constant dilaton solutions are instead of the form (3.28) and (3.31). Furthermore,

in addition to the CSS boundary conditions considered in [2], we also consider Dirichlet

boundary conditions on the gauge field for constant dilaton solutions.

Even though the asymptotic symmetries obtained in section A.2 of [2] coincide with our

result for CSS boundary conditions in (5.26), the use of different boundary counterterms

in [2], which leads to a different identification of the dual operators, prevents a quantitative

comparison of the subsequent analyses. A number of qualitative observations can be made,

however. Firstly, for a given choice of boundary terms, there are three distinct variations
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of the on-shell action that contain distinct physical information. Varying the action with

respect to arbitrary sources one obtains the conjugate operators. Varying the action with

respect to generic PBH transformations gives the corresponding Ward identities. As we

have seen, the Ward identities are the generators of generic PBH transformations through

the Poisson bracket. Finally, the variation of the action with respect to the asymptotic

symmetries, i.e. PBH transformations that leave the sources invariant, leads to the cor-

responding conserved charges. In [2] these three distinct variations lead respectively to

the quantities in (A.15) (operators), (A.17) (conserved current) and (A.21) or (A.23) (con-

served charges or generators of asymptotic symmetries).

However, the corresponding quantities with our boundary terms are different. For con-

stant dilaton solutions we have found that in the case of Dirichlet boundary conditions on

the gauge field the dual operators are as given in (3.35). For CSS boundary conditions the

only change is that there is no local current operator but only the non local ‘Polyakov loop’

operator
∫
dt µ̃(t). In particular, the stress tensor vanishes identically. The corresponding

Ward identities are given in (3.37), which are trivial at zero source for the irrelevant scalar

operator Oψ. Moreover, there is no charge conservation constraint for CSS boundary con-

ditions since Q does not transform under (2D) PBH transformations. As a result, there

is no associated U(1) charge, while the conserved charges for conformal transformations

in (5.28) vanish identically due to the vanishing of the stress tensor. Besides the asymptotic

symmetries, this last conclusion is the only point where our analysis agrees with that of

appendix A in [2]. In particular, we indeed find that the (true time, boundary) Hamilto-

nian, i.e. T , vanishes identically in this theory and the only non trivial observable is the

VEV of the irrelevant scalar operator Oψ. As we saw in (5.22), this operator does trans-

form anomalously under local conformal transformations and so the corresponding central

charge can be associated with the number of degrees of freedom in this theory.

Finally, our analysis does not contradict the results of [3], nor the improvements made

in appendix B of [2]. However, we do not see a direct connection between the two analyses.

The calculation in [3] is a bulk calculation treating the 2D theory in conformal gauge as a

perturbative 2D CFT on the strip. In particular, the Virasoro and local U(1) constraints

considered there are directly analogous to our first class constraints (3.6), although the

choice of gauge is different (conformal versus Fefferman-Graham). The local transforma-

tions generated through the Poisson bracket by these constraints is the full set of PBH

transformations, whose analogue in the conformal gauge is holomorphic and antiholomor-

phic conformal and U(1) gauge transformations. However, the classical Poisson bracket

of these constraints does not contain anomalous terms. In the standard Brown-Henneaux

analysis, non trivial central charges are generated by considering the subset of PBH trans-

formations that correspond to the asymptotic symmetries and imposing the constraints

strongly. The generating functions of local transformations then vanish, except for bound-

ary terms that correspond to the conserved charges. It is in the Dirac brackets of these

conserved charges that the non trivial central terms appear. However, we have shown ex-

plicitly that these charges are identically zero. The Dirac brackets that [3] consider instead

are those of the constraints in the quantized bulk theory. Moreover, the argument given

there provides a relation between the Virasoro central charge for the twisted stress tensor
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dictated by the boundary conditions (the central charge of the untwisted stress tensor must

be zero for a consistent theory of quantum gravity [4]) and the level of the u(1) Kac-Moody

current algebra, but the Kac-Moody level itself is not derived.

We believe that a better understanding of the isomorphism between the bulk CFT2

Hilbert space and that of the dual CFT1 is required in order to clarify how the symmetry

algebras act and what is the relation between the representations carried by each Hilbert

space. The qualitative similarities between the bulk symmetry algebra discussed in [3]

and that of the boundary theory once the extra circle direction is taken into account, as

observed in [2], might indicate that the full Kaluza-Klein tower of modes in AdS2 must

be considered in order to be able to match the bulk and boundary Hilbert spaces and the

representations of the symmetry algebras.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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