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1 Introduction

There has long been hope that simple models of quantum gravity with negative cosmological

constant in less than four spacetime dimensions exist as consistent quantum mechanical

models. It has recently been demonstrated that Jackiw-Teitelboim (JT) gravity [1–6], a

two-dimensional model of dilaton gravity, is just such a consistent theory [7]. Moreover,

as one expects for consistent theories of AdS quantum gravity, it has a holographic dual.

Unlike standard examples of AdS/CFT, the holographic dual is not a quantum mechanical

system in one lower dimension. Rather its dual is a statistical ensemble of large random

Hermitian matrices H [7].

The holographic dictionary equates the n-point ensemble average of tr(e−βiH) in the

dual matrix model to the JT path integral with n boundaries of renormalized lengths βi:

The solid disk indicates a sum over all geometries which fill in the boundary circles. The

right-hand side is known only as an asymptotic series in a genus expansion with effec-

tive string coupling gs, while the left-hand side also has a genus expansion. Thanks to

the topological recursion of matrix integrals [8–11], Saad, Shenker, and Stanford [7] have

demonstrated that this equation holds to all orders in the genus expansion and for all n,

and it is in this sense that JT gravity is dual to a certain matrix ensemble.

A striking feature of JT gravity is that it includes a sum over wormhole geometries

which smoothly connect multiple asymptotic regions [7, 12]. For example, in the genus

expansion, the path integral with two boundaries is in pictures given by

The leading contribution of O(g−2
s ) comes from two disconnected disks, while at O(g0

s)

both disconnected geometries and connected ones contribute. In the matrix model this

– 1 –



J
H
E
P
0
4
(
2
0
2
1
)
0
3
3

sum equals the complete two-point function 〈tr
(
e−β1H

)
tr
(
e−β2H

)
〉ensemble . Its connected

part is, in the genus expansion, the sum over geometries which connect the two boundaries,

and is dominated by the leading connected geometry,

that is, by a Euclidean wormhole.

There is a long history dating back to Coleman concerning Euclidean wormholes,

whether or not they exist, and if they do what they imply for unitarity of Lorentzian

quantum gravity [13–15]. In the context of AdS/CFT there is an additional complication,

namely a tension between the existence of wormholes and the standard holographic dic-

tionary.1 Under that dictionary, the dual to gravity on a Euclidean wormhole would be a

local Euclidean conformal field theory (CFT) on a disconnected space, while the connect-

edness of the bulk implies that dual CFT correlation functions do not factorize across the

components. But these two statements contradict each other. However, in JT gravity we

do not have the standard holographic dictionary: the dual description is not a single quan-

tum mechanical theory, but an ensemble thereof (regarding H as a quantum mechanical

Hamiltonian), which is enough to alleviate this tension, as correlations across boundaries

are induced by an ensemble average rather than nonlocal interactions. The insertion of a

nearly AdS2 boundary is associated with the insertion of tr
(
e−βH

)
, i.e. the thermal par-

tition function Z(β), into the dual matrix integral. As such it is perfectly consistent that

the connected two-point function of Z(β), the very thing that tells us that Z(β) is not a

c-number but a random variable, is equated in JT with a sum over wormholes that signal

an ensemble average in the dual description.

The study of JT gravity has proven fruitful from a variety of perspectives, ranging

from the resolution of old puzzles regarding the lack of decoupling of nearly extremal black

holes in string theory [3, 18] to the Sachdev-Ye-Kitaev model [19–21] to even toy models

for de Sitter quantum gravity [22–24] (see also [25]). In this article we turn instead to

pure quantum gravity in three dimensions, which has long been a workhorse in the study

of simple models of gravity.

Classical “AdS3 gravity” is an exactly soluble system: all solutions to Einstein’s equa-

tions are locally AdS3 and so one can find the phase space of classical solutions [26]. The

classical model has no propagating degrees of freedom, but it does have edge modes (gen-

erated by large diffeomorphisms) with marginal interactions, in addition to moduli and a

sum over topologies. However it is not yet known if the model is truly consistent or not.

1It is worth noting that all but one example of Euclidean wormholes in string theory are known [16, 17]

to be unstable (the only exception we know of is the AdS5 wormhole of [16]), so concerns about this tension

may ultimately be much ado about nothing in standard AdS/CFT.
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Some years ago, Maloney and Witten [27] computed the leading contribution to the

torus partition function of AdS3 gravity, meaning the gravity path integral over metrics

whose conformal boundary is a torus of complex structure τ . Strictly speaking they did

not compute the complete path integral; rather they summed over saddle points of this

kind, and metrics continuously connected to them. These geometries all have the topology

of a disk times a circle, equivalently solid tori.

The density of states unearthed by the Maloney and Witten is not that of a unitary,

compact dual CFT. Their result has a large spectral gap between the vacuum and the BTZ

threshold, above which the spectrum is continuous. More worrisome, the putative density

of states is negative very near its spectral edge [27–30]. For this reason it has generally

been concluded that AdS3 gravity is not dual to a two-dimensional CFT, and perhaps is

not a consistent theory of gravity.

This conclusion is perhaps premature. The sum over spacetimes which asymptote

to a torus includes more than a sum over solid tori, and perhaps these non-saddle point

contributions render the AdS3 density of states non-negative [31]. And while a compact

CFT does not have a continuous density of states by definition, perhaps we should interpret

this as a clue rather than a problem. That is, perhaps AdS3 gravity is a consistent theory

of gravity, dual not to a CFT but instead to a statistical ensemble, as in the holographic

duality between JT gravity and a matrix model.

The point of this paper is to investigate this possibility. We do so by studying 3d

gravity on spacetimes that are topologically a torus times an interval. These are Euclidean

wormholes that smoothly connect two asymptotic regions with torus boundary. This is the

simplest setting after solid tori for which we can reliably compute the gravitational path

integral. What is this result dual to? The natural guess is that it is a contribution to the

connected two-point function of torus partition functions,

〈Z(τ1)Z(τ2)〉conn = ZT2×I(τ1, τ2) + · · · , (1.1)

which would in general be a sum over geometries which smoothly connect the two bound-

aries. On the left-hand side, we have allowed for brackets indicating a suitable ensemble

average. If AdS3 gravity is dual to a single theory rather than a ensemble, then the torus

partition function is a c-number and the right-hand side vanishes. Conversely, if the right-

hand side is nonzero, then we infer that the dual, if it exists, is some sort of statistical

ensemble.

We exactly compute the contribution from the torus times an interval. It is

ZT2×I(τ1, τ2) =
1

2π2
Z0(τ1)Z0(τ2)

∑

γ∈PSL(2;Z)

Im(τ1)Im(γτ2)

|τ1 + γτ2|2 , Z0(τ) =
1√

Im(τ) |η(τ)|2
.

(1.2)

Here Z0(τ) is the partition function of a non-compact boson with η(τ) = q1/24∏∞
n=1(1−qn)

the Dedekind eta function, q = e2πiτ , and γ is a modular transformation which acts as

γτ = aτ+b
cτ+d for ad− bc = 1.

Unlike JT gravity, it is not known if AdS3 gravity has a coupling constant which sup-

presses fluctuations of topology. As such we do not presently have a principled reason to
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expect our result to always be a good approximation to the complete sum over connected

spacetimes in (1.1). However, there is a kinematic limit in which JT gravity, plus a U(1)

gauge theory, gives a controlled approximation to AdS3 gravity [32]. This is the simulta-

neous limit of low temperature and fixed, large angular momentum J . The effective genus

expansion parameter in this regime is gs ≈ e−2π
√
c|J |/6 for c = 3/(2G) the Brown-Henneaux

central charge. Therefore we expect our result to be a good approximation in that limit.

So the wormhole amplitude (1.2) gives a strong piece of evidence that, if AdS3 gravity

has a holographic dual, then the dual is a statistical ensemble.

The computation that leads to (1.2) is non-trivial. There is no smooth saddle point of

AdS3 gravity with the topology T2 × I, and so the usual program of finding saddles and

summing up fluctuations does not work. Indeed, the final result (1.2) does not depend on

the gravitational coupling, and so has no saddle point approximation.

Our route to (1.2) is therefore somewhat indirect. Our starting point is the first-

order formulation of gravity in Lorentzian signature, on the annulus times time. The

action of gravity in first-order form has a single time derivative, and so is in Hamiltonian

form, meaning that in the quantum theory one is integrating over trajectories in a phase

space rather than in a configuration space. Furthermore, the time components of the

gravitational variables act as Lagrange multipliers, enforcing Gauss’ Law constraints on

the spatial components. On the annulus we can solve these constraints exactly, and so we

arrive at a constrained system. Quantizing the constrained system results in a Hilbert space

of gauge-invariant “wormhole states.” We define what we mean by Euclidean quantum

gravity by the analytic continuation of this constrained system to imaginary time, and

upon compactifying imaginary time, the Euclidean path integral is automatically a trace

over this Hilbert space.

The constrained system does not admit wormhole saddles, but it does have the next

best thing. There are wormhole configurations which are, in a precise sense, nearly saddle

points. These configurations are “constrained instantons” in the language of [33]: they

extremize the action subject to two further constraints, whereby we fix the energy and

momentum encoded in the boundary stress tensor. These configurations are characterized

by a spatial metric and spatial spin connection (since in order to arrive at the constrained

system we had to integrate out the time components of the gravitational fields). They are

the dominant off-shell configurations of 3d gravity which contribute to the T2×I amplitude.

See [34] for further discussion on constrained instantons in the context of Einstein gravity.

Of course we want to do more than find special field configurations: we want the com-

plete path integral. To evaluate it we use the machinery of our earlier work [35]. After

some simplification, the configurations that solve the Gauss Law constraints are character-

ized by four moduli and four chiral edge modes, two on each boundary. These edge modes

are, at fixed Euclidean time, reparameterizations of a circle, more precisely elements of the

quotient space Diff(S1)�U(1), and may be thought of as large gauge transformations. These

fields are weighted by an action, previously studied by Alekseev and Shatashvili in a rather

different context in the 80’s [36]. This action, which we call Alekseev-Shatashvili theory, is a

two-dimensional version of the Schwarzian action which weights the large diffeomorphisms
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of JT gravity. The integrals over these Alekseev-Shatashvili modes are one-loop exact, and

the ensuing results are stitched together by a moduli space integral. The measure on this

moduli space is determined by the symplectic structure of the constrained phase space. We

arrive at the summand of (1.2) by performing the moduli space integral.

This procedure closely mirrors the construction of the “double trumpet” path integral

in JT gravity in [7], in which two Schwarzian path integrals are stitched together by a

moduli space integral. In AdS3, the analogue of the “trumpet” in JT gravity is two copies

of the Alekseev-Shatashvili model.

The computation we just outlined is what we find for configurations where the spa-

tial and temporal circles on one boundary interpolate through the bulk to the spatial and

temporal circles on the other boundary. There are an infinite number of equivalent but

topologically distinct configurations where, say, the spatial circle on one boundary inter-

polates to the temporal circle on the other. Summing over these contributions results in

the modular sum in (1.2).

Having outlined how we find the wormhole amplitude, let us describe a few of its basic

properties. It is easy to verify that it is invariant under independent modular transfor-

mations τ1 → a1τ1+b1
c1τ1+d1

and τ2 → a2τ2+b2
c2τ2+d2

. As for the modular sum, it is logarithmically

divergent. Fortunately the divergence is rather simple: it is an additive constant, indepen-

dent of τ1 and τ2. Thus, as long as we study the dependence of ZT2×I on its arguments

rather than its absolute value, we are on firm footing.

AdS3 gravity is equipped with two copies of the Virasoro algebra that act as asymp-

totic symmetries on each boundary. The wormhole partition function is organized into

contributions from Virasoro primaries and their descendants. The contribution from the

primaries ZP comes from taking the complete result (1.2) and stripping off the infinite

products in the Dedekind eta functions,

ZP (τ1, τ2) =
1

2π2
√

Im(τ1)Im(τ2)

∑

γ∈PSL(2;Z)

Im(τ1)Im(γτ2)

|τ1 + γτ2|2 . (1.3)

It may be further decomposed into contributions from states of fixed spins on s1 and s2 on

the two boundaries by Fourier transforming with respect to the real parts of τ1 and τ2. At

fixed spin and low temperature we find

ZPs1,s2
(β1, β2) =

1

2π

√
β1β2

β1 + β2
e−Es1β1−Es2β2

(
δs1,s2 +O

(
1

β

))
, Es = 2π

(
|s| − 1

12

)
.

(1.4)

Here Im(τ1) = β1 and Im(τ2) = β2, and we are studying the leading behavior as β1, β2 → ∞
with the ratio β1/β2 fixed. Es is the minimum energy of a black hole of spin s.

In fact this limiting behavior is precisely related to random matrix theory. The spec-

trum of Virasoro primaries in two-dimensional CFT on the torus is characterized by a

Hamiltonian H and a commuting momentum P . One can simultaneously diagonalize the

two, in which case H is characterized by Hermitian blocks Hs corresponding to states of

fixed spin or momentum s. Instead of fixed matrices characterizing the spectrum of a par-

ticular CFT, if these blocks were large random matrices in a double-scaling limit, then a
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universal result in random matrix theory informs us that, after accounting for the threshold

energy for black holes of fixed spin s, we would have

〈
tr
(
e−β1Hs1

)
tr
(
e−β2Hs2

)〉

ensemble, conn.
=

1

2π

√
β1β2

β1 + β2
e−Es1β1−Es2β2 δs1,s2 + . . . , (1.5)

where the dots indicate genus corrections. This is of course exactly the leading low tem-

perature limit of our wormhole amplitude in (1.4).

Now consider the full amplitude, restoring the infinite products in the Dedekind eta

functions. The full 2-point spectral statistics near threshold is determined by those of

the primaries due to the Virasoro symmetry. These statistics match exactly with those

expected from a random matrix theory ansatz with Virasoro symmetry, which we discuss

later.

So at least in this limit, our AdS3 results are related to random matrix theory. The

low-temperature limit zooms in on the low-energy limit. In gravity the low-energy states

are the microstates of BTZ black holes of fixed spin near threshold. Another way of

stating our result is that near threshold (and to the extent that our result is a good

approximation to the complete gravity answer), the 2-point fluctuation statistics of these

black hole microstates is described by double-scaled random matrix theory.

In fact, from (1.1) and (1.4) we may extract a spectral form factor

〈ZPs1
(β + iT )ZPs2

(β − iT )〉conn =
T

4πβ
e−Es1β1−Es2β2 δs1,s2 +O(T−1) , (1.6)

which grows linearly at late Lorentzian time T and fixed spin. This “ramp” is, in random

matrix theory, a consequence of eigenvalue repulsion, and it leads to linear growth with a

universal slope that exactly matches our gravitational result [7, 12, 37, 38].

While our AdS3 computation is related to random matrix theory, let us be clear: we are

not claiming that AdS3 gravity is dual to an ensemble of random matrices. It seems more

likely to us that AdS3 gravity is dual to an ensemble which generalizes random matrix

theory (and in particular incorporates modular invariance), from which we may sample

CFT partition functions. We refer to this ensemble, whatever it may ultimately be, as

“random CFT.” (For very recent studies of ensembles of free CFT see [39, 40].)

The remainder of this manuscript is organized as follows. In section 2 we discuss some

basic features of Hamiltonian, or phase space path integrals, as well as set up the basics of

AdS3 gravity in first-order form. The computation of the wormhole path integral in (1.2)

may be found in section 3. We Fourier transform to fixed spin and organize the modular

sum at fixed spin as a Poincaré series in section 4, and show how this result is related to

(and goes beyond) random matrix theory in section 5. We conclude with a Discussion in

section 6. Some technical results are relegated to the appendix.

2 Preliminaries

In this section we set up the computation of the path integral of three-dimensional Eu-

clidean gravity on T2×I. This computation is rather delicate and requires some preparation
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before diving in. We begin with the first-order formulation for gravity with negative cos-

mological constant in Lorentzian signature, which in second-order formalism is described

by the action

S =
1

16πG

∫
d3x

√−g(R+ 2) , (2.1)

up to a boundary term. Here and henceforth we set the AdS radius to unity.

In the first-order formalism, the gravity path integral is in fact a phase space path in-

tegral with constraints, analogous to Yang-Mills theory in Hamiltonian form. So we begin

in subsection 2.1 with a review of phase space path integrals, using Yang-Mills and Chern-

Simons theory as examples. We then move on to review the first-order formulation of AdS3

gravity in subsection 2.2 and carefully continue to imaginary time in subsection 2.2.3. We

conclude in subsection 2.3 with a discussion of the edge modes of AdS3 gravity, large diffeo-

morphisms, whose contributions to the path integral are weighted by an action analogous

to the Schwarzian action appearing in JT gravity.

2.1 Phase space path integrals and “constrain first” quantization

Phase space or Hamiltonian path integrals with constraints naturally arise in field theory

and gravity. By phase space path integral, we mean a model whose action has a single time

derivative and one integrates over trajectories in phase space rather than in configuration

space. For instance, the quantum mechanics of a particle with position qi(t) and Lagrangian

L = mq̇2

2 − V (q) can equivalently be described in terms of a path integral over qi(t) and

pj(t) with action L′ = piq̇
i −H(p, q) with H(p, q) the Hamiltonian.

The phase space path integral enjoys some relative advantages over the usual Feynman

path integral, which will be of use to us in our study of Euclidean wormholes. The biggest

one is that it allows us to perform an analysis at all! Our wormholes are not saddle points of

the full gravity action, and so they are inaccessible by a standard perturbative treatment.

Now in a Hamiltonian path integral for gauge theory or gravity, the time components of

the gauge field or metric act as Lagrange multipliers enforcing Gauss’ Law constraints. In

a sense that will be more clear later, our wormholes are instead near-saddles, extremizing

the gravity action in all but two directions of field space. In the language of [33] they are

constrained instantons.

The phase space path integral description of gauge theories and gravity is an example

of constrained quantization. We refer interested readers to [41, 42]. We focus on two

examples: Yang-Mills theory, and the Chern-Simons path integral.

Our initial discussion will be pedagogical; our goal is to contextualize some technical

aspects of our gravity computations. The reader who wishes to skip to a summary of this

discussion can go straight to subsection 2.1.4.

2.1.1 Yang-Mills in Hamiltonian form

Ordinary Yang-Mills theory

Z =

∫
[dAµ]

gauge
eiSYM , SYM = − 1

4g2

∫
ddx tr(F 2) , (2.2)
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may be recast as a phase space path integral. One integrates in electric fields Ei so that

Z =

∫
[dAi][dE

i][dA0]

gauge
eiS

′
YM , S′

YM =

∫
ddx tr

(
EiȦi − g2

2
E2 − 1

4g2
FijF

ij +A0DiE
i

)
,

(2.3)

with Fij the field strength of Ai and Di the gauge covariant derivative. This action is of

the usual one-time-derivative term appropriate for a phase space action, of the schematic

form

S′ =

∫
dt
(
piq̇

i −H(p, q) + λa Ca(p, q)
)
, (2.4)

where λa are Lagrange mutlipliers enforcing the vanishing of the constraints Ca = 0. In the

Hamiltonian formulation of Yang-Mills theory, A0 acts as a Lagrange multiplier enforcing

Gauss’ Law, Ai is conjugate to Ei, and there is the usual Hamiltonian ∼ tr(E2 +B2). The

action is gauge-invariant with the electric field transforming in the adjoint representation

of the gauge symmetry, and by 1
gauge

we refer to the division by the gauge symmetry.

One route to quantization is a “constrain first” approach in which one first integrates

out A0 with a flat measure. The residual path integral is performed over configurations

of Ai and Ej that respect Gauss’ Law. What happens next depends on the gauge-fixing,

though of course the end result does not.

Suppose we impose Coulomb gauge ∂iAi = 0. Then the Faddeev-Popov ghosts do not

couple to A0 and the residual integral is performed over configurations exactly satisfying

DiE
i = 0. If we instead impose Lorentz gauge ∂µA

µ = 0, then the Faddeev-Popov ghosts

have a linear coupling to A0 and the Gauss’ Law involves ghost bilinears. For definiteness

consider the original path integral in Coulomb gauge, which reads

Z =

∫
[dAi][dE

i][dA0][dc̄][dc] eiS
′
YM+i

∫
ddx tr(c̄∂iD

ic)
∏

x

δ(∂iAi)

=

∫
[dAi][dE

i]

gauge
ei
∫
ddx tr(EiȦi−H(A,E))

∏

x

δ(DiE
i) .

(2.5)

After integrating out A0 the residual integral is performed over the ghosts, as well as over

configurations of Ai and Ej which obey Gauss’ law. Since the ghost action does not include

time derivatives, c and c̄ do not have conjugate momenta and the ghost integral is best

understood as part of the measure for Ai and Ej . At fixed time these configurations,

modulo the gauge symmetry, parameterize a phase space as we presently demonstrate.

From the pq̇ term we extract a putative symplectic form on this space,

ω =

∫
dd−1x tr(dEi ∧ dAi) , (2.6)

where by d we mean a formal variation in the space of field configurations rather than the

exterior derivative. The integral is taken over a constant-time slice. It is easy to verify that

ω is gauge-invariant on account of Gauss’ Law. In order for ω to be a symplectic form it

must be closed and non-degenerate. Clearly dω = 0, and as for being non-degenerate, the

zero eigenvalues of ω correspond to gauge-variations. That is, ω is non-degenerate on the

space of constrained Ai and Ej modulo the gauge symmetry, and is therefore a symplectic

form.

– 8 –



J
H
E
P
0
4
(
2
0
2
1
)
0
3
3

A nice feature of this approach is that it is easy to pass over to the operator formalism.

One promotes Ai and Ej to operators with canonical commutation relations; the classical

Hamiltonian becomes the quantum Hamiltonian (up to the usual ordering prescription);

and one gets the Hilbert space of gauge-invariant states, parameterized by wavefunctionals

of (Ai, E
j) that satisfy Gauss’ Law.

2.1.2 Chern-Simons theory

Another example of a phase space path integral is pure Gk Chern-Simons theory for a

compact gauge group G on a closed space Σg times time [43]. This example is particularly

useful to keep in mind, given the close relationship between three-dimensional gravity and

Chern-Simons theory. The Chern-Simons path integral reads

Z =

∫
[dAµ]

gauge
eiSCS , SCS = − k

4π

∫
tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (2.7)

with A anti-Hermitian and the trace taken in the fundamental representation of G. Unlike

Yang-Mills theory, we do not have to integrate in degrees of freedom to put the path integral

into Hamiltonian form. We simply separate time from space, A = A0dt+Aidx
i, and then

the Chern-Simons action reads

SCS = − k

4π

∫
d3x εijtr

(
−AiȦj +A0Fij

)
, (2.8)

which is of the one-time-derivative form appropriate for a phase space action. The pq̇ term

implies that Ai is conjugate to εijAj , there is no Hamiltonian, and A0 enforces the Gauss’

Law constraint.

The story from here parallels the one for Yang-Mills theory, although there is a simpler

route to the constrained system. One may obtain the classical phase space directly, and

then quantize it. The classical constraint is simply Fij = 0 which may be solved locally as

Ai = g̃−1∂ig̃ where g̃ is a group-valued field which need not be periodic around cycles of

Σg. The effective action is simply the first term of (2.8), which upon substituting in this

expression for Ai only depends on the holonomies of A around the cycles of Σg. From the

pq̇ term we extract the symplectic form on the phase space,

ω = − k

4π

∫
d2x εijtr(dAi ∧ dAj) , (2.9)

which if we wished could be written in terms of the holonomies. Written this way it is

clear that it satisfies all of the requirements of a symplectic form. It is manifestly closed;

it is gauge-invariant on account of the Gauss’ Law constraint; the trace form is negative

semi-definite (since A is anti-Hermitian and G is compact); and the zero eigenvalues of ω

correspond to pure gauge fluctuations. So ω is closed and non-degenerate on the space of

constrained Ai modulo the gauge symmetry, and the residual integral is performed over

trajectories in this phase space. In this instance the Chern-Simons path integral reduces to

quantum mechanics (with H = 0) for the holonomies with a 2g-dimensional Hilbert space.

The quantization is richer on a space with boundary, for which the Hilbert space

becomes infinite-dimensional. Consider the disk times time, perhaps with a puncture in
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the interior. In this case the basic result is that the Chern-Simons theory is equivalent

to a chiral WZW model on the boundary, i.e. to current algebra. The Hilbert space is

isomorphic to a single highest weight module of a Gk′ Kac-Moody symmetry, where the

weight is determined by the puncture. (Here we have allowed that k and k′ differ by some

renormalization, as in k′ = k + 2 for G = SU(2).) The infinite-dimensional phase space

comes from the fact that locally one may decompose Ai = g̃−1∂ig̃, where g̃’s non-periodicity

around the boundary circle is fixed by the conjugacy class of the puncture. The phase space

and Chern-Simons action only depend on the boundary value of g̃ (modulo the redundancy

g̃(x, t) → h(t)g̃(x, t) introduced by parameterizing Ai in terms of g̃).

Another basic example is quantization on the annulus times time. In this instance

Chern-Simons theory is equivalent to a full non-chiral WZW model on the boundary. The

right-movers live on one boundary, the left-movers on the other, and the Hilbert space

decomposes into a sum of tensor products of the form Hλ⊗ Hλ∗ , with Hλ a (right-moving)

highest weight module of the Kac-Moody symmetry in a representation λ and Hλ∗ the

(left-moving) module in the conjugate representation. To arrive at this conclusion, one

decomposes Ai = g̃−1∂ig̃, where g̃ = eλ(y)xg with g single-valued. The physical degrees

of freedom are a single-valued G-field, g on each boundary, and a quantum mechanical

holonomy characterized by λ.

2.1.3 Continuation to imaginary time and Hilbert space trace

Now let us continue to imaginary time, t = −iτ . In Euclidean signature we still want

for A0 to act as a Lagrange multiplier and, for Yang-Mills, we want the real part of the

Euclidean action to be bounded below. These considerations fix Ai and Ei to continue

with no factors of i, while

A0dt → Aτdτ , (2.10)

i.e. A0 → iAτ . So we integrate over the Euclidean gauge field A = Aτdτ +Aidx
i with real

contours for the Aµ. For Yang-Mills theory the Euclidean phase space action is

S′
E,YM =

∫
ddx tr

(
iEi∂τAi − g2

2
E2 − 1

4g2
FijF

ij + iAτDiE
i

)
. (2.11)

Compactifying Euclidean time with periodicity β, the path integral performed with this

action and periodic boundary conditions gives us a trace over the physical Hilbert space

H obtained after imposing Gauss’ Law, ZE = trH(e−βH).

Similarly, in Chern-Simons theory, we arrive at a Euclidean action

SE,CS =
ik

4π

∫
d3x εijtr (−Ai∂τAj +AτFij) . (2.12)

Again this continuation guarantees that Aτ acts as a Lagrange multiplier. The Euclidean

path integral again has the interpretation of a Hilbert space trace, now over the Hilbert

space of states on Σg.

When there is a boundary we have seen that the Hilbert space is enlarged from finite-

dimensional to infinite-dimensional. For example, on the disk times time, the Hilbert space
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is a single irreducible module of a Kac-Moody algebra i.e. that of a chiral WZW model; and

on the annulus times time it is the Hilbert space of the full Gk′ non-chiral WZW model.

Consider the disk times time. Upon continuation, one may arrange for the boundary

to be a torus of complex structure τ . The Euclidean path integral is the torus partition

function of a Gk chiral WZW model, a character of a highest weight module of the Kac-

Moody symmetry. For the annulus times time, upon continuation, one equivalently has

the Chern-Simons path integral on a torus times an interval. One may arrange for the

boundary where the right-movers reside to be a torus of complex structure τ1, and the

other τ2. For an appropriate choice of boundary conditions, the Euclidean path integral

then becomes a generalized WZW torus partition function, where the left- and right-movers

are at different temperatures:

ZA×S1(τ1, τ̄2) = trHWZW

(
qL0

1 q̄L̄0
2

)
, (2.13)

with q1 = e2πiτ1 and q2 = e2πiτ2 .

The usual torus partition function of a WZW model, i.e. with τ1 = τ2 = τ , is modular

invariant. This generalized partition function is also modular invariant even when τ1 6= τ2,

ZA×S1

(
aτ1 + b

cτ1 + d
,
aτ̄2 + b

cτ̄2 + d

)
= ZA×S1(τ1, τ̄2) , ad− bc = 1 . (2.14)

This invariance is geometrized in the Chern-Simons computation. See figure 1. The three-

dimensional space is topologically T2 × I. The usual arguments for modular invariance of

2d CFT on the torus can then be adapted here. Recall that the torus is a quotient of the

complex plane T2 = C�Z × Z generated by a basis of lattice vectors (ω1, ω2) with τ = ω2
ω1

.

For T2 × I we should regard the basis vectors ω1 and ω2 as smoothly varying along the

interval. But we may describe the same torus with any basis we wish, and any two bases

are related by a modular transformation, which then acts simultaneously on τ1 and τ2.

This last example of Gk Chern-Simons theory on T2 × I is particularly relevant for us.

It is a prototype for the Euclidean wormholes of AdS3 gravity that we will study, which are

also topologically T2 ×I, smoothly connecting two asymptotic regions with torus boundary.

There is another useful fact to glean from figure 1. The bulk orientation induces

opposite orientations on the two boundaries. In our AdS3 analysis we wish to study

wormholes where both boundaries have the same orientation. In practice this can be

accomplished by parity-flipping boundary 2. With respect to the new orientation both

boundaries are endowed with modes of the same chirality. At the level of the partition

function we do this by reinterpreting its complex structure as τ2 → −τ̄2, i.e. by flip-

ping the real part of τ2 while preserving the imaginary part. The ensuing partition func-

tion is Z ′(τ1, τ2) = ZA×S1(τ1,−τ2), and by (2.14) it obeys Z ′(γτ1, γ
−1τ2) = Z ′(τ1, τ2) for

γ ∈ SL(2; Z).

2.1.4 Taking stock

Let us summarize a few lessons from the phase space path integral form of gauge theory

that will appear in our AdS3 analysis.
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Figure 1. Chern-Simons theory on T2 × I is modular invariant, even when the boundary tori have

different complex structures. Here r is the coordinate along the interval, and (ω1(r), ω2(r)) are the

lattice vectors corresponding to the torus as a function of r.

1. The time component of the gauge field acts as a Lagrange multiplier, enforcing the

Gauss’ Law constraint. For Chern-Simons theory the constraint is simply that the

spatial field strength vanishes, and the residual integral is performed over flat spatial

connections, locally Ai = G−1∂iG. The residual integral only depends on topological

data (holonomies around contractible cycles) and boundary values of G.

2. After imposing the constraints and modulo the gauge symmetry, the residual space

of field configurations is, at constant time, a phase space with a symplectic form

determined by a single-time-derivative term ∼ pq̇ in the effective action. This gives

us a canonical measure for the residual path integral, on each time slice given by the

Pfaffian of the symplectic form of that phase space.

3. The continuation to imaginary time is simply t → −iτ and At → iAτ , i.e.

A0dt → Aτdτ , (2.15)

with a real integration contour for Aτ . This guarantees that Aτ continues to act as

a Lagrange multiplier in the Euclidean theory. Upon compactifying Euclidean time,

the Euclidean path integral then has the interpretation of a trace over the Hilbert

space of states obtained after enforcing the Gauss’ Law constraint.

4. Finally, in Chern-Simons theory on T2 × I we have encountered a prototype of the

Euclidean wormholes we will study in 3d gravity. We can clearly tune the complex

structures τ1 and τ2 of the boundary tori to be different from one another, but they

are connected through the bulk. The space is equivalent to an annulus times a circle,

which continues in real time to an annulus times time. The Hilbert space is that

– 12 –



J
H
E
P
0
4
(
2
0
2
1
)
0
3
3

of a G WZW model, where the right-movers reside on one boundary and the left-

movers on the other. The Euclidean path integral is a trace over that Hilbert space,

trHWZW

(
qL0

1 q̄L̄0
2

)
with qi = e2πiτi , and it is modular invariant.

All of these lessons correspond to aspects of our gravity computation. In the first-order

formalism the gravitational action is already in Hamiltonian form. The time components of

the dreibein eA0 and spin connection ωAB0 act as Lagrange multipliers, enforcing curvature

and torsion constraints. The continuation to imaginary time parallels (2.15),

eA0 dt → eAτ dτ , ωAB0dt → ωABτdτ , (2.16)

and the local Lorentz symmetry remains SO(2, 1). This continuation is essentially fixed by

discrete symmetries and the requirement that eAτ and ωABτ continue to act as Lagrange

multipliers. However, this means that we continue to integrate over Lorentzian-signature

metrics even though we are in imaginary time. This statement is initially puzzling, but we

can made our peace with it on two counts. First, we require this continuation in order to

have a Hilbert space interpretation in real time. Second, it has a parallel in JT gravity,

where much more is known about the gravity path integral. The analogue there is the

integration over imaginary values of the dilaton, which enforces the constant curvature

constraint.

Finally, our wormholes are topologically T2 × I, or equivalently A × S1. These con-

figurations are not saddle points of the complete gravity action, however we can fully

enumerate them, after integrating out eAτ and ωABτ . As in the Chern-Simons case, we may

independently dial the complex structures of the boundary tori, and we expect on general

grounds for the gravity path integral to be modular invariant under simultaneous modular

transformations acting on τ1 and τ2. This is a strong consistency condition which is obeyed

by our result.

2.2 First order formulation of AdS3 gravity

Three-dimensional gravity with negative cosmological constant is often said to be classically

equivalent to a Chern-Simons theory [44]. (For statements going beyond classical physics

see [45, 46].) This statement needs additional qualifiers in order to be true. More precisely,

AdS3 gravity on spacetimes of the topology disk times time (i.e. global AdS3 and spacetimes

continuously connected to it) is equivalent to a topological sector of SO(2, 2) Chern-Simons

theory. This equivalence holds in the quantum theories to all orders in perturbation theory

but, as we will see, it does not hold on other spacetimes. In other words there is only a

perturbative equivalence between three-dimensional gravity and a Chern-Simons theory,

but they are non-perturbatively different theories.

Let us review the usual classical equivalence, which is seen as follows. Let M,N be

spacetime indices. Consider the first-order formulation, where we decompose the metric

into a dreibein eAM through gMN = ηABe
A
Me

B
N , where A,B are flat indices which are raised

and lowered with the Minkowski metric ηAB. We introduce a spin connection ωABM
satisfying ω(AB)M = 0. The gravity action in first-order variables is

S = − 1

16πG

∫
εABCe

A ∧
(
dωBC + ωBD ∧ ωDC +

1

3
eB ∧ eC

)
+ (boundary term) , (2.17)
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where eA = eAMdx
M and ωAB = ωABMdx

M are one-forms. Notably the action only has

a single time derivative, and each component of the dreibein and spin connection only

appears once. So we are dealing with a phase space path integral with constraints. To see

the relation to a Chern-Simons theory, one then groups the first order variables into the

vector-valued one-forms

AAM =
1

2
εABCωBCM + eAM , ĀAM =

1

2
εABCωBCM − eAM , (2.18)

and introduces generators JA and J̄A in the fundamental representation of sl(2; R) satisfying

[JA, JB] = εABCJ
C , tr(JAJB) =

1

2
ηAB , (2.19)

and similarly for J̄A, with ε012 = −1. Define the algebra-valued one-forms A = AAJA and

Ā = ĀAJ̄A. Note that A and Ā are independent real fields. When we require an explicit

form of the generators, we use

J0 = − i

2
σ2 , J1 =

1

2
σ1 , J2 =

1

2
σ3 . (2.20)

Then up to a boundary term a short computation shows that the action (2.1) may be

written as a difference of Chern-Simons terms,

S = − k

4π

∫
(I[A] − I[Ā]) , k =

1

4G
, I[A] = tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
. (2.21)

Since A and Ā are linear combinations of the dreibein and spin connection, it follows

that the classical equations of motion for the first-order variables are simply those for A

and Ā, the flatness conditions

F = dA+A ∧A = 0 , F̄ = dĀ+ Ā ∧ Ā = 0 . (2.22)

Further, on a classical solution, infinitesimal diffeomorphisms and local Lorentz rotations

act in the same way as infinitesimal sl(2; R) × sl(2; R) gauge transformations.2

So on-shell, A and Ā appear to be sl(2; R) × sl(2; R) gauge fields, and linearized dif-

feomorphisms and local Lorentz rotations act as linearized gauge transformations. Of

course we would like to see that the converse is true, i.e. that linearized gauge transfor-

mations are in one-to-one correspondence with linearized diffeomorphisms/rotations. But

this is only the case if (AM − ĀM )A is non-degenerate as a 3 × 3 matrix. Eq. (2.18)

implies (AM −ĀM )A

2 = eAM , so this is simply the condition that the spacetime metric is

non-degenerate.

To sum up, we see that AdS3 gravity is on-shell equivalent to sl(2; R) × sl(2; R) Chern-

Simons theory at the level of the equations of motion and linearized gauge symmetries, so

long as the spacetime metric is non-degenerate. Of course the quantum theories are rather

different.

2Let ξM be an infinitesimal diffeomorphism, and vA
B an infinitesimal Lorentz rotation. Then, on-shell,

these variations act on A and Ā in the same way as infinitesimal sl(2; R) × sl(2; R) gauge transformations

with gauge parameters Λ = AM ξM + v and Λ̄ = ĀM ξM + v respectively.
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2.2.1 Global AdS3 and boundary conditions

The simplest solution to Einstein’s equations on a spacetime with the topology of a disk

times time is global AdS3, parameterized by the dreibein

e0 = cosh(ρ)dt , e1 = sinh(ρ)dx , e2 = dρ , (2.23)

with x ∼ x + 2π. This spacetime has a conformal boundary as ρ → ∞. Upon solving for

the spin connection so that the torsion vanishes, the combinations A and Ā are

A =
1

2

(
dρ −e−ρ(dx+ dt)

eρ(dx+ dt) −dρ

)
, Ā =

1

2

(
−dρ eρ(dx− dt)

−e−ρ(dx− dt) dρ

)
. (2.24)

Since F = F̄ = 0 we may write A = G−1dG and Ā = Ḡ−1dḠ for some (possibly multi-

valued) SL(2; R) elements G and Ḡ. One representative is

G = e(x+t)J0eρJ2 , Ḡ = e−(x−t)J0e−ρJ2 . (2.25)

This G and Ḡ are double-valued, with G(x + 2π, t, ρ) = −G(x, t, ρ) and similarly for Ḡ.

Recall that PSL(2; R) is the quotient of SL(2; R) by its Z2 center {I,−I}, and that SO(2, 2)

is its double cover, the quotient of SL(2; R)×SL(2; R) by the Z2 subgroup {(I, I), (−I,−I)}.

Then G and Ḡ are single-valued only as elements of either PSL(2; R) × PSL(2; R) or

SO(2, 2), and not of any cover thereof. So, to the extent that the Chern-Simons description

has a good candidate for the global form of the gauge group, it must be either PSL(2; R)×
PSL(2; R) [47] or SO(2, 2) [35].

In fact nonlinear classical equivalence selects SO(2, 2). The isometry group of global

AdS3 is SO(2, 2), since the combined transformation x → x + 2π and t → t, acts as the

identity. It is easy to verify that these nonlinear isometries act on A and Ā as SO(2, 2)

gauge transformations.

SO(2, 2) has a fundamental group isomorphic to Z×Z, and it is worth noting that the

SO(2, 2) field (G, Ḡ) parameterizing global AdS3 has a non-trivial winding number around

the spatial circle. Configurations with other winding numbers have curvature singularities

in the interior. So first-order AdS3 gravity (on the disk times time) is only classically

equivalent to a particular winding sector of SO(2, 2) Chern-Simons theory.

In order to fully specify the classical theory we must also supply a variational principle

and add requisite boundary terms to the Chern-Simons action. We impose the standard

Brown-Henneaux boundary conditions on the metric, which when translated to the first-

order variables become

A =
1

2

(
dρ 0

eρ(dx+ dt) −dρ

)
+O(e−ρ) , Ā =

1

2

(
−dρ eρ(dx− dt)

O(e−ρ) dρ

)
+O(e−ρ) ,

(2.26)

as one approaches a conformal boundary at ρ → ∞. These boundary conditions clearly

allow global AdS3, and crucially, an infinite-dimensional phase space of solutions connected

to it parameters by the action of large diffeomorphisms on global AdS3.

These boundary conditions are consistent with a good variational principle for e and

ω, equivalently A and Ā, only if we add a boundary term to the Chern-Simons action which

we describe momentarily.
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2.2.2 Going off-shell

In this manuscript we are interested not in classical physics but the complete gravity path

integral. Our approach is to take the first-order path integral as fundamental, and in

section 3 we will see just what a Chern-Simons description does and does not get correct.

In the original first-order action eA0 and ωAB0 appear linearly and we proceed by

treating them as Lagrange multipliers. Equivalently, we take the combinations A0 and Ā0

to be Lagrange multipliers. So we separate time from space xµ = (t, xi) with i = 1, 2

the spatial directions, and decompose A and Ā into their temporal and spatial parts as

A = A0dt+Aidx
i, Ā = Ā0dt+ Āidx

i. Then

S =
k

4π

∫
d3x εijtr

(
−AiȦj +A0Fij

)
− (A → Ā) + Sbdy . (2.27)

Here Sbdy is a boundary term required in order for there to be a variational principle

consistent with the boundary conditions (2.26). It is given by

Sbdy = − k

4π

∫
d2x

(
tr(A2

x) + tr(Ā2
x)
)
. (2.28)

This action is indeed of the form (2.4) with a Hamiltonian only coming from the boundary

term, and a symplectic form coming from the pq̇ term as

ω = − k

4π

∫
d2x εijtr (dAi ∧ dAj) − (A → Ā) = − k

4π

∫
d2x εijεABCde

A
i ∧ dωBCj , (2.29)

taken over a constant time slice. A0 and Ā0 appear as Lagrange multipliers enforcing the

Gauss’ Law constraints.

From here the path integral quantization that ensues closely parallels that of Chern-

Simons theory as described in subsection 2.1.2. One solves the flatness constraints to obtain

the classical phase space, which one then quantizes using the action (2.27) and symplectic

structure (2.29). The step that is different from Chern-Simons theory is that we integrate

over inequivalent metrics, not inequivalent gauge fields. For 3d gravity on the torus times

interval, equivalently annulus times time, this difference boils down to a different field range

for the wormhole moduli as well as a different integration measure over the moduli space.

2.2.3 Continuing to imaginary time

Now we continue to imaginary time. The story here parallels the continuation of gauge the-

ory to imaginary time t = −iy3 in subsection 2.1.3. We require that the time components

of the dreibein and spin connection, equivalently A and Ā, continue to act as Lagrange

multipliers, and that the spatial metric is real. These considerations fix eA0 → ieAy and

ωAB0 → iωABy, with the spatial components not picking up any factors of i. Equivalently,

AA0 dt → AAy dy , ĀA0 dt → ĀAy dy , (2.30)

with real integration contours for eAy and ωABy, equivalently AAy and ĀAy .

3Here and henceforth we refer to Euclidean time as y, reserving τ for the torus complex structure.
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Relatedly, in our continuation we take the local rotations to remain valued in SO(2, 1)

rather than SO(3). We do this because we are interested in a Hilbert space of the Lorentzian

signature theory, whose local Lorentz invariance is SO(2, 1) rather than local rotational in-

variance SO(3). Consequently we sum over Lorentzian signature metrics gMN = ηABe
A
Me

B
N

even though we are in imaginary time.

Let us be more explicit. Consider Global AdS3, (2.24). Continuing t = −iy, we have

A =
1

2

(
dρ −e−ρdz̄

eρdz̄ −dρ

)
, Ā =

1

2

(
−dρ eρdz

−e−ρdz dρ

)
, z = x+ iy , (2.31)

and the resulting line element

ds2 = cosh2(ρ)dy2 + sinh2(ρ)dx2 + dρ2 (2.32)

is Euclidean. We may further identify z ∼ z+ 2πn+ 2πmτ so that the boundary is a torus

of complex structure τ . Note that Ay and Āy are pure imaginary. In going off-shell, we

integrate over A and Ā subject to the boundary conditions

A =
1

2

(
dρ 0

eρdz̄ −dρ

)
+O(e−ρ) , Ā =

1

2

(
−dρ eρdz

0 dρ

)
+O(e−ρ) , (2.33)

and we integrate over real fluctuations. That is, we fix Ay and Āy (equivalently eAy and

ωABy) to be pure imaginary near the boundary, and integrate over a real contour for them

in the interior.

This is analogous to what one does in JT gravity, where one fixes the dilaton to be a

real constant on the boundary and integrates over imaginary fluctuations in the bulk.

2.2.4 What about SL(2; C)?

Clearly we must be careful about what we mean by Euclidean quantum gravity. Let us

briefly comment on another possible definition, namely the sum over real Euclidean metrics.

In the first-order formalism we would have a dreibein eAM and spin connection ωABM with

ω(AB)M = 0, where now we raise and lower flat indices with the Euclidean metric δAB
and mod out by local SO(3) rotations. The Euclidean action is the same as (2.17), except

now εABC is the antisymmetric invariant tensor of SO(3) instead of SO(2, 1). The spin

connection appears quadratically and can be integrated out, resulting in Euclidean gravity

in the second-order formalism.

On-shell, there is again a story about classical equivalence with a Chern-Simons theory.

One can group the dreibein and spin connection into an sl(2; C) gauge field, on which

linearized diffeomorphisms and local rotations act in the same way as infinitesimal sl(2; C)

gauge transformations. The gravity action equals a Chern-Simons action for this gauge

field. Nonlinearly, for Euclidean global AdS3, the PSL(2; C) isometries of EAdS3 act on

this gauge field as PSL(2; C) gauge transformations.

However, unlike in Lorentzian signature where classical AdS3 gravity is equivalent to

a winding sector of SO(2, 2) Chern-Simons theory, PSL(2; C) is simply connected and so

has no winding sectors.
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In any case, the reader may wonder why we do not start with this definition. The

reason is simple: in this definition, while eAM and ωBCM appear linearly in the action (for

fixed M), the action is real and so they do not act as Lagrange multipliers with a real

contour of integration.

2.3 Alekseev-Shatashvili theory

AdS3 gravity has no propagating degrees of freedom, but it does have edge modes. These

are sometimes called boundary gravitons. They are generated by acting on a spacetime

with large diffeomorphisms and Lorentz transformations (meaning they do not die off at

the boundary, and so are not part of the gauge symmetry) that preserve the boundary

conditions.

In our previous work [35], we obtained the effective action for these large gauge trans-

formations for global AdS3. Our approach was to use the classical equivalence between

AdS3 gravity on the solid cylinder D × R and a particular winding sector of SO(2, 2)

Chern-Simons theory, and to then quantize using the Chern-Simons description. In this

case the Chern-Simons phase space coincides with the phase space of 3d gravity on the

disk, and so both lead to the same quantum theory. Our goal for this subsection is to sum-

marize that effective action, its path integral, and a deformation of it which will appear in

section 3.

Let us briefly summarize the Chern-Simons quantization, and refer the reader to [35]

for more details. We integrated out the time components A0 and Ā0, which enforced that

the spatial gauge field was flat. Parameterizing it as

Ai = G−1∂iG , Āj = Ḡ−1∂jḠ , (2.34)

the Chern-Simons action becomes a chiral SO(2, 2) WZW action for (G, Ḡ). Our decompo-

sition (2.34) introduces a gauge symmetry, having nothing to do with the original SO(2, 2)

gauge symmetry, instead a redundancy under

G(t, x, ρ) → h(t)G(t, x, ρ) , Ḡ(t, x, ρ) → h̄(t)Ḡ(t, x, ρ) , (h, h̄) ∈ SO(2, 2) , (2.35)

which clearly leads to the same gauge field. So we identify these configurations in the path

integral over G and Ḡ. Decomposing

G = eφJ0eλJ2eψ(J1−J0) , Ḡ = e−φ̄J0e−λ̄J2eψ̄(J1+J0) , (2.36)

the AdS3 boundary conditions (2.26) fix (λ, ψ, λ̄, ψ̄) near the boundary in terms of (φ, φ̄)

which remain finite on the boundary. The winding condition implies that (λ, ψ, λ̄, ψ̄) are

single-valued, but φ and φ̄ are not periodic, instead obeying

φ(x+ 2π, t) = φ(x, t) + 2π , φ′ > 0 ,

φ̄(x+ 2π, t) = φ̄(x, t) + 2π , φ̄′ > 0 ,
(2.37)
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with ′ = ∂x. That is, φ and φ̄ are, at fixed time, diffeomorphisms of the circle, Diff(S1).

Translated into an identification on φ and φ̄, (2.35) means that we identify

tan

(
φ(x, t)

2

)
∼
a(t) tan

(
φ(x,t)

2

)
+ b(t)

c(t) tan
(
φ(x,t)

2

)
+ d(t)

, tan

(
φ̄(x, t)

2

)
∼
ā(t) tan

(
φ̄(x,t)

2

)
+ b̄(t)

c̄(t) tan
(
φ̄(x,t)

2

)
+ d̄(t)

,

(2.38)

where4

ad− bc = ād̄− b̄c̄ = 1 . (2.39)

Thus, at fixed time, φ and φ̄ are elements of the quotient space Diff(S1)�PSL(2; R).

With these substitutions the chiral WZW action then simplifies to the desired boundary

effective action for the edge modes φ and φ̄,5

S[φ, φ̄] = S−[φ] + S+[φ̄] , (2.40)

with

S±[φ] = − C

24π

∫
d2x

(
φ′′∂±φ

′

φ′2
− φ′∂±φ

)
, C =

3

2G
, ∂± =

1

2
(∂x ± ∂t) . (2.41)

The quantity C is the Brown-Henneaux central charge, and C ≫ 1 is the weak coupling

limit both for AdS3 gravity and for this model. This action is Lorentz-invariant, in fact

conformally invariant, despite not being manifestly so. Being linear in time derivatives,

it is already in Hamiltonian form. The time derivative term tells us that the symplectic

form is

ω =
C

48π

∫ 2π

0
dx

(
dφ′ ∧ dφ′′

φ′2
− dφ ∧ dφ′ − (φ → φ̄)

)
, (2.42)

which is also what we get from the bulk symplectic form (2.29) upon rewriting A in terms

of φ and φ̄. At the quantum mechanical level, the AdS3 path integral is then

ZD×R =

∫ ∏

t

(
[dφ(t)][dφ̄(t)]

PSL(2; R) × PSL(2; R)
Pf(ω(t))

)
eiS . (2.43)

The notation indicates that the measure of integration is, at fixed time, over the space
Diff(S1)�PSL(2; R)×

Diff(S1)�PSL(2; R) with the symplectic measure inherited from (2.42).

So large gauge transformations are weighted by the action S, and in the quantum

theory we integrate over them.

We see that the action and path integral chirally factorize into models for φ and φ̄.

The classical chiral action for φ (or φ̄) was not new. It first appeared in a paper of Alekseev

4Note that in P SL(2; R) we identify (a, b, c, d) with (−a, −b, −c, −d), while in SO(2, 2), we identify

(a, b, c, d; ā, b̄, c̄, d̄) with (−a, −b, −c, −d, −ā, −b̄, −c̄, −d̄). But the fractional linear transformation in (2.38)

is the same for (a, b, c, d) and (−a, −b, −c, −d). So the quotient is effectively by two independent copies of

P SL(2; R), rather than by SO(2, 2).
5This result was anticipated in [48]. Its quadratic approximation was independently arrived at in [49]

as an effective field theory for 2d CFTs dominated by exchange of the identity operator and its Virasoro

descendants.
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and Shatashvili [36], and for this reason we refer to it as Alekseev-Shatashvili theory. The

point is that the integration space of φ at fixed time is a coadjoint orbit of the Virasoro

group. See [35, 50] for a practical primer to coadjoint orbits. Coadjoint orbits of Lie groups

G are phase spaces with a G-invariant symplectic form, and under certain conditions one

can consider the quantum mechanics of trajectories in the phase space, the quantization of

the phase space. This quantization generally produces a quantum mechanics whose Hilbert

space is a single irreducible representation of G. There is some freedom in the choice of

Hamiltonian, but the natural ones correspond to elements of the Lie algebra of G. Building

upon previous work, Alekseev and Shatashvili obtained the classical action corresponding

to the quantization of the coadjoint orbit Diff(S1)�PSL(2; R) of the Virasoro group, which

for a Hamiltonian corresponding to the generator L0 coincides with the action S+ above.

(The action S− is its chiral conjugate, with a Hamiltonian corresponding to L̄0.)

There is a close relationship between this model and the Schwarzian path integral

describing Euclidean JT gravity on the hyperbolic disk. The field of the Schwarzian path

integral is an element of the same phase space φ ∈ Diff(S1)�PSL(2; R). It may be thought

of as a phase space integral, Zdisk ∼
∫
dxdp e−βH . The Alekseev-Shatashvili model is

simply the quantization of this phase space, and AdS3 gravity on the disk times time is

two decoupled copies of this quantum mechanics, one right-moving and one left-moving.

To investigate the Hilbert space of the Alekseev-Shatashvili model we continue to

imaginary time t = −iy and put the model on a torus of complex structure τ by identifying

z = x + iy ∼ z + 2πτ (recall that x is already periodic with x ∼ x + 2π). The ensuing

Euclidean action is

SE =
C

24π

∫
d2x

(
φ′′∂φ′

φ′2
− φ′∂φ+

φ̄′′∂̄φ̄′

φ̄′2
− φ̄′∂̄φ̄

)
. (2.44)

The boundary conditions for φ and φ̄ are that they wind once around the spatial cycle,

and are periodic around the other,6

φ(z + 2πn+ 2πmτ) = φ(z) + 2πn , φ̄(z + 2πn+ 2πmτ) = φ̄+ 2πn . (2.45)

This corresponds in three dimensions to our continuation of gravity on global AdS3, where

the asymptotic geometry is Euclidean and the boundary is a torus of complex structure τ .

The bulk is a disk times a circle, and we call the path integral Z(τ).

There is a unique solution to the equations of motion with these boundary conditions

modulo the quotients, and at large C we compute Z(τ) to one loop by expanding φ and φ̄ in

fluctuations around the classical trajectory. The one-loop determinant must be evaluated

with respect to the symplectic measure (2.42), with the result

Z1−loop(τ) = |χ0,c(τ)|2 =

∣∣∣∣∣q
− c

24

∞∏

n=2

1

1 − qn

∣∣∣∣∣

2

, c = C + 13 , (2.46)

which we recognize as the Virasoro character of the vacuum representation with a one-loop

renormalization of the central charge by 13. (This one-loop renormalization can also be

6φ and φ̄ depend on both z and z̄. We are only writing out the dependence on z to simplify the notation.
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seen from a one-loop computation in the bulk [51].) In other words, the path integral tells

us that the Hilbert space of the mode is the vacuum representation of two copies of the

Virasoro group. The holomorphic contribution comes from φ̄, and the antiholomorphic

from φ.

In our previous work [35] we showed that the torus partition function of the Alekseev-

Shatashvili model is one-loop exact by a localization argument. In a sense the argument

is the quantization of the argument of Stanford and Witten [6] that the Schwarzian path

integral is one-loop exact. The gist is to exponentiate the symplectic measure with ghosts.

The total action, including the ghost term, is invariant under a Grassmann-odd BRST

supercharge Q. Because the integration space at fixed time is not only symplectic but

Kähler with a metric invariant under the action of L0 and L̄0, there is a Q-exact term

constructed from the Kähler metric whose bosonic part is positive definite. Adding this

term to the action with a large positive coefficient leaves the partition function invariant,

but localizes the path integral. We then conclude that the exact Alekseev-Shatashvili path

integral is

Z(τ) = |χ0,c(τ)|2 . (2.47)

In this computation the spatial circle of the boundary is contractible in the bulk.

There are infinitely other configurations where other combinations of boundary cycles are

contractible in the bulk, and the path integral on each is given by Z(γτ) for some modular

transformation γ ∈ PSL(2; Z). Gravity sums over this choice, so that the complete disk

times circle partition function is

ZD×S1(τ) =
∑

γ∈PSL(2;Z)/Γ∞

|χ0,c(γτ)|2 . (2.48)

Here Γ∞ is the subgroup of PSL(2; Z) generated by the T transformation, which leaves

the vacuum character invariant.

The path integral analysis complements that of Maloney and Witten. Using [52] they

performed a Kähler quantization of the phase space of 3d gravity on the cylinder, the same

one we mentioned above, Diff(S1)�PSL(2; R) × Diff(S1)�PSL(2; R). The ensuing Hilbert

space is the vacuum representation of Virasoro at some central charge c. Passing over

to imaginary time and taking the boundary to be a torus of complex structure τ , the

Euclidean path integral is the vacuum character, and the sum over other configurations

gives the same partition function (2.48).

There is a one-parameter family of deformations of the model (2.44) that will appear

in our wormhole analysis. In Euclidean signature, the deformation of the right-moving part

is labeled by a constant b̄2 > −1 and is given by

SAS =
C

24π

∫
d2x

(
φ̄′′∂̄φ̄′

φ̄′2
+ b̄2φ̄′∂̄φ̄

)
. (2.49)

At constant time the field φ̄ is an element of the quotient Diff(S1)�U(1), meaning it obeys

the same boundary conditions as in (2.45), but is subject to a gauge symmetry

φ̄(x, y) ∼ φ̄(x, y) + ā(y) . (2.50)
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This more general Alekseev-Shatashvili path integral,

ZAS(τ |b̄) =

∫ ∏

y

(
[dφ̄(y)]

U(1)
Pf(ω(y))

)
e−SAS , (2.51)

is also one-loop exact (in fact it is secretly a quadratic theory after a non-local field redef-

inition), giving an ordinary holomorphic Virasoro character

ZAS(τ |b̄) = χh,c(τ) = qh− c
24

∞∏

n=1

1

1 − qn
, (2.52)

where the renormalized central charge c and scaling weight h are

c = C + 1 , h =
c− 1

24
+
Cb̄2

24
. (2.53)

A left-moving mode with some b would give rise to the antiholomorphic character with

Z∗
AS(τ̄ |b) = χ∗

h̄,c
(τ̄) = q̄h̄− c

24

∞∏

n=1

1

1 − q̄n
, h̄ =

c− 1

24
+
Cb2

24
. (2.54)

In our wormhole analysis, we can imagine cutting the wormhole into two “trumpets.”

We will see that each trumpet is endowed with two Alekseev-Shatashvili modes of this

sort, one holomorphic and with one antiholomorphic, and characterized by some b and b̄.

The total contribution from the trumpet is then a non-holomorphic character with scaling

weights (h, h̄) as above. In a picture, we have

2.4 Spectral form factor in random matrix theory

The spectral form factor lies at the focal point of the connection between our AdS3 analysis

and random matrix theory. Here we provide a brief review of the spectral form factor in

random matrix theory and gravity. (See [38] for a modern review of random matrix theory.)

We begin with random matrix theory. Suppose we have an ensemble of d×d Hamilto-

nians, that is, a probability distribution P (H) over the space of d× d Hermitian matrices.

Each H has d eigenvalues E1, . . . , Ed, and we can write the averaged density of states as

ρ(E) =

∫
dH P (H)

1

d

d∑

i=1

δ(E − Ei) =

〈
1

d

N∑

i=1

δ(E − Ei)

〉

ensemble

. (2.55)

Due to the ensemble average, ρ(E) will often be a smooth function of E instead of a sum

of delta functions.
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The density of states encodes the probability of finding an eigenvalue at energy E. We

can also consider two-point correlations such as

ρ(E,E′) =

〈
1

d2

d∑

i,j=1

δ(E − Ei)δ(E
′ − Ej)

〉

ensemble

(2.56)

which encodes the joint probability of finding an eigenvalue at energy E and another

eigenvalue at energy E′. For ensembles of sufficiently “generic” Hamiltonians, the energy

eigenvalues will repel one another. Furthermore, in small, contiguous energy windows away

from the edge of the spectrum, the pair correlations of eigenvalues are equivalent to the

pair correlations of a classical one-dimensional Coulomb gas with logarithmic repulsion at

finite temperature. Thus the eigenvalues form a crystal in one dimension, which can be

more rigid or more floppy depending on the strength of the level repulsion. The long-range

level repulsion is captured by a term in ρ(E,E′) of the form 1
d2(E−E′)2 .

The spectral form factor is the Fourier transform

d2
∫
dEdE′ρ(E,E′)e−i(E−E′)T =

〈
d∑

j,k=1

e−i(Ej−Ek)T

〉

ensemble

=
〈
tr(e−iHT )tr(eiHT )

〉
ensemble

.

(2.57)

Due to the inverse square repulsion 1
d2(E−E′)2 , the spectral form factor will contain term

linear in time ∼ T . Often it is convenient to consider a finite-temperature analog of the

spectral form factor, namely

〈
tr
(
e−(β+iT )H) tr

(
e−(β−iT )H)〉

ensemble
. (2.58)

This will also contain linear growth in time ∼ T , called the ramp.

The time-dependence of the (finite-temperature) spectral form factor is as follows. At

time T = 0, its value is ∼ d2, which then decays to zero either exponentially or polynomially

depending on the details of the ensemble. Once the spectral form factor has decayed to

an O(1) value, the linear growth ∼ T (with small fluctuations around it) dominates until

times of O(d). As stated above, this linear growth is due to long-range level-level repulsion.

At T ∼ O(d), the spectral form factor is probing short distances on the scale of the average

nearest-neighbor level spacing, which causes the spectral form factor to become constant

(with small fluctuations).

The spectral form factor has been computed for many random matrix theories

and disordered theories. Using matrix fat graphs, the diagrams which correspond

to the ramp correspond to discretized wormhole-like geometries of the connected part〈
tr(e−iHt) tr(eiHt)

〉
ensemble, conn.

[53]. More recently, the initial decay and subsequent

ramp of the spectral form factor was computed analytically and numerically in the SYK

model [12, 37]. Here the ramp manifested as bulk gravitational configurations correspond-

ing to a Euclidean wormhole. Perhaps most interestingly, the spectral form factor can be

computed in JT gravity, dual to a random matrix theory [7]. One subtlety is that this

random matrix theory is double scaled, i.e. d → ∞, but in such a way that eS0 (where
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S0 is a large genus expansion parameter) takes on the role of d in the spectral form fac-

tor and other spectral correlators. Again the ramp corresponds to Euclidean wormhole

configurations in the gravity picture.

It is worth noting several aspects of the spectral form factor that are relevant to our

analysis in the present paper. First, suppose we can consider an ensemble of Hamiltonians

with a common symmetry that allows us to block-diagonalize each Hamiltonian as

H =




H1

H2

. . .




Then generically, each block will behave like an independent random matrix. That is, the

eigenvalues within a particular Hj will experience level repulsion, but there will not be

level repulsion between eigenvalues of Hj and eigenvalues of an Hk for j 6= k. As such, it

is natural to compute the spectral form factor for each block independently, i.e.

〈
tr
(
e−(β+iT )Hj

)
tr
(
e−(β−iT )Hj

)〉
ensemble

.

Such spectral form factors will contain a late-time ramp ∼ T .

One of the more notable features of the spectral form factor is that it is not a self-

averaging quantity [54]. In particular, if we sample a random H̃ from our ensemble H, the

quantity

tr
(
e−(β+iT )H̃) tr

(
e−(β−iT )H̃) (2.59)

for large d will not approximate the spectral form factor at late times in terms of having

a large percent error. Eq. (2.59) will have a ramp, but with large fluctuations that are the

size of the height of the ramp itself. Similarly the plateau at times t & O(d) is swamped by

large fluctuations. Only the early-time behavior corresponding to the decay of the spectral

form factor is self-averaging.

If we take a single Hamiltonian (without regard to any ensemble) and compute

eq. (2.59), we will find similar behavior, i.e. the ramp and plateau will be present but

nearly swamped out by large fluctuations. It is only by ensemble averaging that these

fluctuations become suppressed.

In this paper we effectively compute the connected part of the spectral form factor in

pure AdS3 gravity at late times (but before the plateau). On the boundary we have Virasoro

symmetry, including a conserved, commuting Hamiltonian and momentum. The Virasoro

symmetry implies that many states at a given energy and momentum are descendants of

primary states, with quantum numbers fixed by those of the primaries. So we will work

with primary states in sectors of fixed momentum. Now the key question is whether the

spectral form factor in AdS3 gravity is more like eq. (2.59) with a single Hamiltonian,

having a ramp with large fluctuations, or instead is like eq. (2.58) which is an ensemble

average and thus has a ramp with suppressed fluctuations. We will provide evidence

for the latter. Furthermore, while we provide strong evidence that AdS3 gravity is an

ensemble-averaged theory, it is only resembles the random matrix theory of a single block-

diagonal Hamiltonian in the large-time limit, with the blocks corresponding to sectors
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of fixed momentum. Outside of this regime, there is an intriguing departure from the

discussion above. Pure AdS3 gravity is, at its simplest, a matrix model with infinitely

many non-independent matrices. More broadly, we conjecture that AdS3 gravity is an

ensemble from which one draws CFT partition functions, rather than quantum mechanical

Hamiltonians, and that his ensemble becomes double-scaled random matrix theory in a

certain limit.

3 Wormholes

In this section we compute the path integral of AdS3 gravity for the torus times an interval.

In our Hamiltonian framework it is more useful to think of the space as an annulus times

a circle. See [55, 56] for previous work on the classical phase space of AdS3 gravity on the

annulus.

Let us begin by setting up the conventions, boundary conditions, and solving the

constraints. We let x ∼ x + 2π, y ∼ y + 2π parameterize a torus and ρ ∈ R be a

radial coordinate which parameterizes the interval. The two conformal boundaries are

approached as ρ → ±∞. In this setting the asymptotically AdS3 boundary conditions are

that, as ρ → ∞, the combinations A and Ā defined in (2.18) approach

A =
1

2

(
dρ 0

eρ(dx+ τ̄1dy) −dρ

)
+O(e−ρ) , Ā =

1

2

(
−dρ −eρ(dx+ τ1dy)

0 dρ

)
+O(e−ρ) .

(3.1)

With this choice, the spacetime metric approaches

ds2 ≈ e2ρ

4
|dx+ τ1dy|2 + dρ2 , (3.2)

so that the conformal boundary is indeed a torus of complex structure τ1. Note that we are

imposing boundary conditions so that the spatial part of the dreibein and spin connections

are real, but the temporal components have an imaginary part. This is required so that

the metric is Euclidean near the boundary. In the path integral we integrate over real

fluctuations of all of the fields. Similarly we impose that near the other boundary ρ → −∞
we have

A =
1

2

(
dρ e−ρ(dx+ τ̄2dy)

0 −dρ

)
+O(eρ) , Ā =

1

2

(
−dρ 0

−eρ(dx+ τ2dy) dρ

)
+O(eρ) , (3.3)

so that the conformal boundary is a torus of complex structure τ2. With these boundary

conditions, the spatial and temporal circles on boundary 1 respectively interpolate to the

spatial and temporal circles on boundary 2.

Let us call the path integral with these boundary conditions and bulk topology

Z(τ1, τ2). This object is not the complete gravity path integral on T2 × I, which we

denote as ZT2×I(τ1, τ2). The latter includes a sum of PSL(2; Z) Dehn twists of the torus

on boundary 1 relative to the torus on boundary 2. For instance, we ought to sum over

bulk configurations in which the spatial circle on boundary 1 smoothly interpolates to the

temporal circle on boundary 2. As we will see at the end of subsection 3.3, the partition
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function Z(τ1, τ2) includes an infinite sum of these Dehn twists generated by the axial T

transformation (τ1, τ2) → (τ1, τ2 +1). As a result the total wormhole amplitude is given by

ZT2×I(τ1, τ2) =
∑

γ∈PSL(2;Z)/Γ∞

Z(τ1, γτ2) , (3.4)

where Γ∞ is the subgroup generated by T , i.e. the subgroup of modular transformations

which preserves τ = i∞.

The Euclideanized gravity action, including boundary terms is

SE = − ik

4π

∫
d3x εijtr (−Ai∂yAj +AyFij) − (A → Ā) + Sbdy ,

Sbdy =
ik

4π

(∫

ρ→∞
d2x tr

(
τ̄1A

2
x − τ1Ā

2
x

)
+

∫

ρ→−∞
d2x tr

(
τ̄2A

2
x − τ2Ā

2
x

))
.

(3.5)

One may verify that these boundary terms and the boundary conditions are consistent

with a good variational principle.

Integrating out Ay and Āy imposes the Gauss’ Law constraints Fij = F̄ij = 0, which

are solved by

Ai = G̃−1∂iG̃ , Āi = ˜̄G−1∂i
˜̄G , (3.6)

where G̃ and ˜̄G are SL(2; R)-valued fields which may be multi-valued around the spatial

circle but which are periodic in y. This non-periodicity may be parameterized as

G̃ = eλ(y)xG , ˜̄G = eλ̄(y)xḠ , (3.7)

with G and Ḡ periodic fields in the trivial winding sector of SL(2; R). It is simple to

show that smoothness of the spatial metric requires that λ and λ̄ are “spacelike” vectors

in sl(2; R).

By decomposing A into G̃ and Ā into ˜̄G we introduce a redundancy under

G̃(x, y, ρ) → h(y)G̃(x, y, ρ) , ˜̄G(x, y, ρ) → h̄(y) ˜̄G(x, y, ρ) , (3.8)

for h and h̄ elements of SL(2; R), since both configurations parameterize the same Ai and

Āi. This redundancy may be partially alleviated by fixing the non-periodicity of G̃ and ˜̄G

in group space. We pick

G̃ = eb(y)xJ1G , ˜̄G = eb̄(y)xJ1Ḡ . (3.9)

The redundancy is then only under those h and h̄ which commute with the non-periodic

parts, meaning under transformations h = ea(y)J1 and h̄ = eā(y)J1 .

If we were quantizing Chern-Simons theory rather than gravity, then b(y) and b̄(y)

would parameterize the holonomies of A and Ā respectively around the spatial circle at

time y. These holonomies would be in the hyperbolic conjugacy class of SL(2; R). Their

interpretation in gravity will become clear in the next subsection.

To solve the boundary conditions we find it convenient to decompose

G = eφJ1eΛJ2eψ(J1−J0) , Ḡ = eφ̄J1e−Λ̄J2eψ̄(J1+J0) . (3.10)
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The parameters b(y) and b̄(y) appear together with the fields φ and φ̄ in the combinations

Φ(x, y, ρ) = b(y)x+ φ(x, y, ρ) , Φ̄(x, y, ρ) = b̄(y)x+ φ̄(x, y, ρ) . (3.11)

The residual redundancy we described above implies that we identify

φ(x, y, ρ) ∼ φ(x, y, ρ) + a(y) , φ̄(x, y, ρ) ∼ φ̄(x, y, ρ) + ā(y) . (3.12)

Following our previous work [35], the boundary conditions imply that, at large ρ, the fields

Λ and ψ are fixed in terms of Φ, and Λ̄ and ψ̄ in terms of Φ̄ as

Λ ≈ ln

(
eρ

Φ′

)
, ψ ≈ −e−ρΦ′′

Φ′
, Λ̄ ≈ ln

(
eρ

Φ̄′

)
, ψ̄ ≈ −e−ρΦ̄′′

Φ̄′
, (3.13)

with Φ and Φ̄ finite as ρ → ∞. We denote Φ1 = limρ→∞ Φ and Φ̄1 = limρ→∞ Φ̄. Similar

statements hold near the other boundary.

Plugging (3.6), (3.9), (3.10), and the asymptotic profiles (3.13) into the action (3.5),

we arrive at

SE =
C

24π

∫
d2x

(
Φ′′

1∂1Φ′
1

Φ′2
1

+
Φ̄′′

1∂̄1Φ̄′
1

Φ̄′2
1

− i

2

(
τ̄1Φ′2

1 + φ′
1∂yφ1 − τ1Φ̄′2

1 − φ̄′
1∂yφ̄1

)

+
Φ′′

2∂2Φ′
2

Φ′2
2

+
Φ̄′′

2∂̄2Φ̄′
2

Φ̄′2
2

− i

2

(
τ̄2Φ′2

2 − φ′
2∂yφ2 − τ2Φ̄′2

2 + φ̄′
2∂yφ̄2

))

− iC

24

∫ 2π

0
dy
(
b2∂yY − b̄2∂yȲ

)
.

(3.14)

In order to simplify this expression we have defined

∂1 = − i

2
(τ̄1∂x + ∂y) , ∂2 = − i

2
(τ̄2∂x − ∂y) , (3.15)

along with

Y (y) =
1

2πb(y)

∫ 2π

0
dx(φ1(x, y) − φ̄1(x, y)) ,

Ȳ (y) =
1

2πb̄(y)

∫ 2π

0
dx(φ2(x, y) − φ̄2(x, y)) .

(3.16)

One consistency check on the action (3.14) is that it is invariant under the gauge redun-

dancy (3.12), which acts simultaneously on the 1 and 2 fields as

φ1(x, y) ∼ φ1(x, y) + a(y) , φ2(x, y) ∼ φ2(x, y) + a(y) , (3.17)

and similarly for the barred fields. The “twist” fields Y and Ȳ are in fact gauge-invariant.

The effective action (3.14) is a bit complicated. We will simplify it shortly. For now,

we note that it also has a single time derivative and therefore is in Hamiltonian form.

Accordingly, the single time derivative term in the action determines a symplectic measure

on the space of field configurations, which we will use to perform the path integral below.
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Figure 2. The wormhole in (3.19). This is a bottleneck geometry, where the length of the bottleneck

is π|b+ b̄| and spinning fields are twisted by an amount determined by b− b̄ after going around it.

3.1 Representative wormholes

Let us pause to consider some representative wormhole geometries before going on to

compute the full path integral. Consider the configuration

b(y) = b , b̄(y) = b̄ , φ = φ̄ = 0 , (3.18)

with φ and φ̄ defined as in (3.10). This corresponds to φ1 = φ2 = φ̄1 = φ̄2 = Y = Ȳ = 0.

In fact this configuration is almost a saddle point of the constrained action (3.14) for all

b, b̄. After a shift of ρ, this configuration corresponds to

Aidx
i =

1

2

(
dρ e−ρbdx

eρbdx −dρ

)
, Āidx

i =
1

2

(
−dρ −eρb̄dx

−e−ρb̄dx dρ

)
. (3.19)

Extracting the spatial dreibein, we arrive at a spatial metric (recall that in imposing the

constraints we have integrated out the temporal component of the dreibein)

ds2
spatial =

(
bb̄ sinh2(ρ) +

(b+ b̄)2

4

)
dx2 + dρ2 . (3.20)

This is a bottleneck geometry, as in figure 2. Clearly we must have bb̄ > 0 in order for the

wormhole to be smooth and non-singular. The bottleneck is characterized by a minimum

length geodesic around the x-circle at ρ = 0. It has length

L = π|b+ b̄| , (3.21)

which gives an interpretation to the sum of b and b̄.

To interpret the difference of b and b̄ we consider the spin connection. The wormhole

described by (3.19) has a spin connection with some curvature. So the holonomy around

some curve depends on the curve. However a natural way to describe the wormhole is the

holonomy of the spin connection around a particular curve, the minimum length geodesic

around the bottleneck. Recall that the spin connection is valued in sl(2; R) = so(2, 1). The

holonomy in the two-dimensional representation is in the hyperbolic conjugacy class with

tr P exp

(∮

ρ=0
ω

)
= 2 cosh

(
π(b− b̄)

2

)
. (3.22)
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So fields with spin are twisted by an amount determined by b − b̄ when going around the

bottleneck.

Studying the spatial metric (3.20) and holonomy (3.22) we learn that these wormholes

are characterized by arbitrary b, b̄ ≥ 0. (The configurations with b, b̄ ≤ 0 are equivalent

to those with b, b̄ ≥ 0.) Our continuation to imaginary time rears its head here. In our

continuation we do not continue the gauge group for local Lorentz rotations from SO(2, 1)

to SO(3). This has the following consequence: the holonomy (3.22) allows for arbitrarily

large b − b̄, whereas if the spin connection was for local SO(3) rotations, its holonomies

would be valued within a finite range.

The gravitational action (3.14) evaluated on (3.20) is

SE = − iπC

12

(
b̄2(τ1 + τ2) − b2(τ̄1 + τ̄2)

)
. (3.23)

The fact that the action depends on b and b̄ tells us that the wormhole is a constrained

saddle. It is a saddle only when we fix b and b̄, and the complete path integral will involve

an integral over b, b̄ ≥ 0.

This action also gives us another way to interpret the parameters b and b̄. The classical

approximation to the path integral (upon fixing b and b̄) is

e−SE = (q1q2)
Cb̄2

24 (q̄1q̄2)
Cb2

24 , qi = e2πiτi . (3.24)

So b and b̄ correspond to the left- and right-moving energies respectively, L0 − c
24 ∼ Cb̄2/24

and L̄0 − c
24 ∼ Cb2/24, and both boundaries perceive the same left- and right-moving

energies.

3.2 Moduli space field range and measure

The full set of constrained saddles is parameterized by constant b, b̄ as above, in addition

to twists between the two boundaries:

b(y) = b , b̄(y) = b̄ , φ = bγ(ρ) = b(α(ρ) +β(ρ)) , φ̄ = b̄γ̄(ρ) = b̄(α(ρ) −β(ρ)) , (3.25)

where α and β are finite at infinity with boundary values αi and βi for i = 1, 2. The fields

α and β are related to the twists Y and Ȳ defined in (3.16) by

Y = α1 − α2 + β1 − β2 , Ȳ = α1 − α2 − β1 + β2 . (3.26)

More precisely, the most general saddles are characterized by constant b, b̄, and the bound-

ary values of α and β. These are the wormhole moduli. As we will see, α1 and β1 parameter-

ize a spacetime translation on the boundary 1, while α2 and β2 parameterize a translation

on boundary 2. Common translations are trivial, and lead to the same configuration. Only

relative translations are physical, and these are precisely the twists.

We already found above that the zero modes b, b̄ are non-negative. Our goal in this

subsection is to obtain the field ranges of the twists and the measure on the moduli space.
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As in (3.19) the wormhole configurations correspond to

Aidx
i =

1

2

(
dρ e−ρb(dx+ dα+ dβ)

eρb(dx+ dα+ dβ) −dρ

)
,

Āidx
i =

1

2

(
−dρ −eρb̄(dx+ dα− dβ)

−e−ρb̄(dx+ dα− dβ) dρ

)
.

(3.27)

Near both boundaries, the spatial geometry is approximately

ds2
spatial ≈ e2|ρ|bb̄

4
(dx+ dα+ dβ) (dx+ dα− dβ) + dρ2 . (3.28)

We then see that a shift of α1 corresponds to a spatial translation on boundary 1, and a

shift of α2 to a spatial translation on boundary 2. So α is compact with periodicity 2π.

However, β appears to be non-compact. As result the “vector twist” Y+Ȳ
2 = α = α1 − α2

is compact and it seems the “axial twist” Y−Ȳ
2 = β = β1 − β2 is non-compact.

To interpret this result we temporarily go back to Lorentzian signature, where the

boundaries are cylinders S1 × R. The asymptotic metric is

ds2 ≈ e2|ρ|bb̄

4
(dx+ dt+ dα+ dβ)(dx− dt+ dα− dβ) + dρ2 , (3.29)

and so shifts in β correspond to time translations. So axial twists β = β1 − β2 are relative

time translations of the boundaries and are obviously non-compact. From the last line

of (3.14) we extract the symplectic structure on the moduli space

ωmoduli =
C

24
(db2 ∧ dY − db̄2 ∧ dȲ ) =

C

24

(
(db2 − db̄2) ∧ dα+ (db2 + db̄2) ∧ dβ

)
, (3.30)

and so a measure db2db̄2dαdβ Pf(ωmoduli).

In Euclidean signature however, the periodicity of Euclidean time suggests that we may

rotate the contour of the zero mode β so that axial twists correspond to relative Euclidean

time translation. If τ1 and τ2 are pure imaginary, then the statement is simply that we

rotate β1 and β2 (and so the twist β) to be pure imaginary.

This idea is simple enough, but its execution is a little more tricky than one might

think, on account of the independent boundary complex structures.

Consider the full spacetime dreibein near the boundary, including the temporal part

anchored down as a boundary condition. From (3.1) and (3.27) we have at large positive ρ

e+ = e0 + e1 ≈ eρb

2
(dx+ τ̄1dy + dγ) ,

e− = e0 − e1 ≈ −eρb̄

2
(dx+ τ1dy + dγ̄) ,

(3.31)

and at large negative ρ,

e+ ≈ e−ρb̄

2
(dx+ τ2dy + dγ̄) ,

e− ≈ −e−ρb

2
(dx+ τ̄2dy + dγ) ,

(3.32)
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with e2 = dρ in both regions. We proceed by parameterizing the translations γ and γ̄ near

the boundaries as

γ ≈ α(ρ) + β(ρ) ×




τ̄1 , ρ → ∞
τ̄2 , ρ → −∞

,

γ ≈ α(ρ) + β(ρ) ×




τ1 , ρ → ∞
τ2 , ρ → −∞

(3.33)

with α(ρ) and β(ρ) real. This definition for α is consistent with the one we used above,

but the definition for β is different, in particular it is not purely axial. Crucially we are

allowing for the zero modes to acquire an imaginary part. With this decomposition, at

large positive ρ we have

e+ ≈ eρb

2
(dx+ dα+ τ̄1(dy + dβ)) , e− ≈ −eρb̄

2
(dx+ dα+ τ1(dy + dβ)) , (3.34)

and similarly at boundary 2. With this continuation shifts of αi are spatial translations

and shifts of βi are translations in imaginary time. So, as expected, the αi and βi are

compact with periodicity 2π.

Points in the moduli space are labeled not by the individual translations αi and βj
but by the relative translations α = α1 − α2 and β = β1 − β2. The original twists Y and

Ȳ , however, are not functions on the moduli space: we have Y = α + (τ̄1β1 − τ̄2β2) and

Ȳ = α + (τ1β1 − τ2β2) which only depends on β when the two complex structures are

aligned as τ1 = τ2 = τ .

Let us take this limiting case of τ1 = τ2 = τ . Then from the last line of (3.14) we

extract a symplectic form on moduli space

ωmoduli =
C

24

(
(db2 − db̄2) ∧ dα+ (τ̄ db2 − τdb̄2) ∧ dβ

)
. (3.35)

This leads to a consistent symplectic measure on the moduli space

db2db̄2dαdβ Pf(ωmoduli) ∝ db2db̄2dαdβ Im(τ).

However, for more general τ1 and τ2, the pq̇ term in (3.14) does not lead to a symplectic

form since the twists are functions of the individual βi and not β. To illustrate the point,

suppose that we define the temporal twist to only act on boundary 1, i.e. β2 = 0 and β = β1.

Then we would have a putative symplectic form ∝ (db2 − db̄2) ∧ dα+ (τ̄1db
2 − τ1db̄

2) ∧ dβ
and arrive at a measure ∝ db2db̄2dαdβ Im(τ1). Clearly we would get a different answer if

we defined our axial twist to only act on boundary 2.

So we are forced to analytically continue both ωmoduli and the volume form when the

complex structures are no longer aligned. We view this as part of the continuation to

imaginary time. We define

Ω =
C

24

(
(db2 − db̄2) ∧ dα+ (τ̄1db

2 − τ1db̄
2) ⊗ dβ − dβ ⊗ (τ̄2db

2 − τ2db̄
2)
)
, (3.36)

which is a tensor on the moduli space and reduces to ωmoduli in (3.35) when τ1 = τ2. Ω is

non-degenerate and so defines a covariant measure,

db2db̄2dαdβ
√

|Ω| ,
√

|Ω| =

(
C

24

)2

2
√

Im(τ1)Im(τ2) , (3.37)
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which is indeed a volume form on the moduli space. Up to the factor of
√

Im(τ1)Im(τ2)

this is two copies of the Weil-Petersson measure on the moduli of the hyperbolic cylinder.

To summarize, the moduli may be labeled by (b, b̄, α, β) with b, b̄ ≥ 0. The spatial

and temporal twists α and β are compact zero modes of periodicity 2π. The moduli space

measure is given by (3.37), and it will play a pivotal role in our analysis. In particular, its

dependence on τ1 and τ2 ensures that the wormhole amplitude is modular invariant.

It is worth noting that if we were studying SO(2, 2) Chern-Simons theory instead of

gravity, then b, b̄ ≥ 0 correspond to hyperbolic holonomies and the twists Y and Ȳ would be

non-compact. So the measure would be proportional to db2db̄2dY dȲ . This is a perturbative

(1-loop) difference between Chern-Simons theory and gravity on the space T2 ×I. However,

we are of the opinion that it should be regarded as a non-perturbative difference between

the two theories, since in gravity the wormhole is already a non-perturbative effect.

3.3 The path integral

We now compute the wormhole amplitude. Recall the boundary action (3.14). We proceed

by redefining the fields φi and φ̄i so that the twist fields Y and Ȳ are independent degrees

of freedom. Given the subtleties about twist zero modes that we discussed in the last

subsection, we explicitly separate out the axial twist zero mode:

φ1(x, y) → φ1(x, y)+α(y)+β(y)+ τ̄1β , φ̄1(x, y) → φ̄1(x, y)+α(y)−β(y)+τ1β , (3.38)

while leaving φ2 and φ̄2 alone. Here α(y) is an arbitrary function of Euclidean time with

α ∼ α + 2π, while β(y) is non-compact and has no zero mode, i.e.
∫ 2π

0 dy β(y) = 0. The

cost of performing this redefinition is that we must introduce gauge symmetries. The

redundancies (3.12) are enhanced to

φ1(x, y) ∼ φ1(x, y) + a1(y) , φ2(x, y) ∼ φ2(x, y) + a2(y) ,

φ̄1(x, y) ∼ φ̄1(x, y) + ā1(y) , φ̄2(x, y) ∼ φ̄2(x, y) + ā2(y) .
(3.39)

The action (3.14) becomes

SE =
C

24π

∫
d2x

(
Φ′′

1∂1Φ′
1

Φ′2
1

+
Φ̄′′

1∂̄1Φ̄′
1

Φ̄′2
− i

2

(
τ̄1Φ′2

1 + φ′
1∂yφ1 − τ1Φ̄′2

1 − φ̄′
1∂yφ̄1

)

+
Φ′′

2∂2Φ′
2

Φ′2
2

+
Φ̄′′

2∂̄2Φ̄′
2

Φ̄′2
2

− i

2

(
τ̄2Φ′2

2 − φ2∂yφ2 − τ2Φ̄′2
2 + φ̄2∂yφ̄2

))

− iC

24

∫ 2π

0
dy
(
(b2 − b̄2)∂yα+ (b2 + b̄2)∂yβ

)
.

(3.40)

Our next step is to integrate out the twists α(y) and β(y), which only appear in the

last line of the action through a pq̇ term. Clearly α and β act as Lagrangian multipliers

enforcing that b(y) and b̄(y) are constants. But let us proceed slowly and compute the

exact effect, including the normalization.
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Consider a simpler version of the problem at hand. Let p(y) be a non-compact variable

with some range and q(y) compact with periodicity 2π, and an action SE = ic
∫ 2π

0 dy p∂yq.

We may expand p and q into Fourier and winding modes

p(y) = p+
∑

m= 6=0

p̃me
imy , q(y) = q + wy +

∑

m6=0

q̃me
imy , (3.41)

where (p, q) are the zero modes, w is a winding number of q around the thermal circle, and

the Fourier expansion coefficients satisfy X̃∗
m = X̃−m. So we can eliminate the negative

modes and regard the X̃m>0 as independent complex variables. Because the action is of

the pq̇ form there is a symplectic structure ω = c dq ∧ dp on the space of zero modes, and

on the space of nonzero Fourier modes. At fixed m we have

ωm = c dqm ∧ dp−m , (3.42)

so that the integration measure for fixed m > 0 is d2qmd
2pm Pf(ωm) = d2qmd

2pmc
2. In

this parameterization the action becomes

SE = 2πc
∑

m>0

m(pmq
∗
m − p∗

mqm) + 2πiwcp . (3.43)

Then we have as a general identity for any functional F(p(y)),

∫
[dq][dp]e−SE F(p(y)) =

∞∑

w=−∞

∫
(dqdp c)

∏

m>0

(
d2qmd

2pm c
2
)
e−SE F(p(y))

=
∏

m>0

1

m2

∫
(dqdp c) F(p)

∞∑

w=−∞

e−2πiwcp

=
1

2π

∫
(dqdp c) F(p)

∞∑

n=−∞

δ(cp− n) ,

=
∑

n

F(pn) , pn =
n

c
.

(3.44)

In going from the first line to the second we integrated out the Fourier expansion coeffi-

cients, which sets p to constant at the cost of a Jacobian which we Zeta-regularize as

1

det′(|∂y|)
=
∏

m>0

1

m2
= e−2

∑
m>0

lnm → e2ζ′(0) =
1

2π
. (3.45)

In going from the second line to the third we use the Poisson summation formula,
∑∞
w=−∞ e−2πiwcp =

∑∞
n=−∞ δ(cp − n). Finally, in the last line we used that the field

range of q is 2π and the sum is taken over those values of pn which lie within the original

integration range of the zero mode p.

To summarize, the Fourier modes of q set p to be constant up to a Jacobian 1
2π ; the

winding modes quantize cp ; and there is a remaining integral over the zero modes of q

and p.
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Now we turn to the problem we really want to solve. Let us decompose b(y), b̄(y),

α(y), and β(y) into Fourier and winding modes. We have

b(y)2 = b2 +
∑

m6=0

b̃me
imy , b̄(y)2 = b̄2 +

∑

m6=0

˜̄bme
imy ,

α(y) = α+ wy +
∑

m6=0

α̃me
imy , β(y) =

∑

m6=0

β̃me
imy .

(3.46)

The zero modes (b2, b̄2, α) along with β defined above parameterize the moduli space, and

w is a winding number. Integrating out the Fourier modes of αm and βm sets b and b̄ to

be constant with a Jacobian of 1
(2π)2 since we have integrated out two sets of modes rather

than one. This Jacobian is canceled by the (2π)2 field range of the twist zero modes α and

β. The sum over windings quantizes

C(b̄2 − b2)

24
∈ Z . (3.47)

As we will see shortly this is the integer quantization of spin.

It remains to integrate over the fields φi and φ̄i. Once b and b̄ are constant we may

perform a field redefinition which simplifies the problem, namely

Φ1 = bx+ φ1 → bφ1 , Φ2 = bx+ φ2 → bφ2 ,

Φ̄1 = b̄x+ φ̄1 → b̄φ̄1 , Φ̄2 = b̄x+ φ̄2 → b̄φ̄2 .
(3.48)

So defined the fields φ1, φ2, etc., are at fixed time elements of Diff(S1)�U(1), meaning

φ1(x+ 2π, y) = φ1(x, y) + 2π ,

φ1(x, y + 2π) = φ1(x, y) ,

φ1(x, y) ∼ φ1(x, y) + φ1(x, y) + a1(y) ,

(3.49)

and similarly for the other fields. The remaining part of the action, the first two lines

of (3.40), then becomes four decoupled copies of the Alekseev-Shatashvili theory we dis-

cussed in section 2.3,

S =
C

24

∫
d2x

(
φ′′

1∂1φ
′
1

φ′2
1

+ b2φ′
1∂1φ1 +

φ̄′′
1∂̄1φ̄

′
1

φ̄′2
1

+ b̄2φ̄′
1∂̄1φ̄1

+
φ′′

2∂2φ2

φ′2
2

+ b2φ′
2∂2φ2 +

φ̄′′
2∂̄2φ̄

′
2

φ̄′2
2

+ b̄2φ̄′
2∂̄2φ̄

)
.

(3.50)

The Alekseev-Shatashvili path integral over each mode is one-loop exact [35]. The integrals

over φ̄1 and φ̄2 produce holomorphic Virasoro characters (2.52) which we reprise as

ZAS(τ |b̄) = χh,c(τ) = qh− c
24

∞∏

n=1

1

1 − qn
, c = C + 1 , h =

c− 1

24
+
Cb̄2

24
, (3.51)

while the integrals over φ1 and φ2 produce antiholomorphic characters with h̄ = c−1
24 + Cb2

24 .

By (3.47) the spin is then quantized:

h− h̄ ∈ Z . (3.52)
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Converting the integration over b, b̄ ≥ 0 to an integral over h, h̄ ≥ c−1
24 , we then have

Z(τ1, τ2) = 2
√

Im(τ1)Im(τ2)

∫ ∞

c−1
24

dhdh̄ Z∗
AS(τ̄1|b)ZAS(τ1|b̄)Z∗

AS(τ̄2|b)ZAS(τ2|b̄)

×
∞∑

n=−∞

δ(h− h̄− n) .

(3.53)

Using the Poisson summation formula and (3.51) we can rewrite this as

Z(τ1, τ2) =
2
√

Im(τ1)Im(τ2)

|η(τ1)|2|η(τ2)|2
∞∑

n=−∞

∫ ∞

c−1
24

dhdh̄ e2πih(τ1+τ2+n)e−2πih̄(τ̄1+τ̄2+n)

=
1

2π2
Z0(τ1)Z0(τ2)

∞∑

n=−∞

Im(τ1)Im(τ2)

|τ1 + τ2 + n|2 =
∞∑

n=−∞

Z̃(τ1, τ2 + n) ,

(3.54)

where Z0(τ) is the modular invariant partition function of a non-compact boson
1√

Im(τ)|η(τ)|2
. The sum over windings n corresponds to a partial sum over Dehn twists,

relative Tn transformations of the boundaries. The basic object Z̃ is the gravity path

integral on T2 × I without any Dehn twist at all between the boundaries.

We are nearly finished. Before going on, we note that the more basic object Z̃ is

invariant under simultaneous modular transformations,

Z̃(γτ1, γ
−1τ2) = Z̃(τ1, τ2) , γτ =

aτ + b

cτ + d
, (3.55)

for γ ∈ PSL(2; Z). In fact our amplitude had to be invariant under this simultaneous

transformation for the same reason why Chern-Simons theory on T2 × I is as we discussed

in subsection 2.1.3. This is a strong consistency check on our result.

We note that had we not continued the axial twist as in subsection 3.2 we would have

instead gotten infinity times a non-modular-invariant result. So modular invariance in fact

tells us that we had to continue the axial twist. Relatedly, modular invariance combined

with the fact that the moduli space is symplectic for τ1 = τ2 together fix the moduli space

measure we landed on in (3.37).7

As we discussed before (3.4), the complete wormhole partition function ZT2×I is given

by the sum
∑
γ∈PSL(2;Z)/Γ∞

Z(τ1, γτ2), corresponding to a sum over relative Dehn twists.

This Maloney-Witten-like modular sum over Z(τ1, γτ2) then gives our main result,

ZT2×I(τ1, τ2) =
1

2π2
Z0(τ1)Z0(τ2)

∑

γ∈PSL(2;Z)

Im(τ1)Im(γτ2)

|τ1 + γτ2|2 (3.56)

7With the result (3.54) in hand, modular invariance alone implies that the measure must be proportional

to
√

Im(τ1)Im(τ2) G

(
Im(τ1)Im(τ2)

|τ1+τ2|2

)
for some function G. However recall that for τ1 = τ2 = τ the measure

was proportional to Im(τ). This fixes G to be a constant, and so the measure in (3.37) is the unique one

consistent with modular invariance and the aligned limit τ1 = τ2.
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4 The modular sum

In the last section we computed the path integral of AdS3 gravity on T2 × I. The result

is just above, in (1.2), and is expressed as a modular sum over PSL(2; Z). The goal of

this section is to compute the modular sum, and to process it into something more useful.

Because Z0(τ) is modular invariant, we need only compute the Poincaré series

F(τ1, τ2) =
∑

γ∈PSL(2;Z)

Im(τ1)Im(γτ2)

|τ1 + γτ2|2 . (4.1)

This sum does not converge. However the divergence is particularly simple and it can be

understood by a variant of Zeta regularization.

To simplify the notation, we henceforth work with complex variables z and w rather

than τ1 and τ2, with z = z1 + iz2 and w = w1 + w2. Define a Zeta function

Fs(z, w) =
∑

γ∈PSL(2;Z)

(
Im(z)Im(γw)

|z + γw|2
)s

, (4.2)

which converges for Re(s) > 1, and which becomes our sum at s = 1. Further as s →+ 1

we find that

Fs(z, w) =
3

s− 1
+ (finite) . (4.3)

This demonstrates that the modular sum F(z, w) in (4.1) diverges. Zeta-regularizing the

sum with s = 1 + ε and taking ε → 0, there is a 1/ε pole with constant coefficient,

independent of z and w, and a finite remainder. This finite remainder is almost independent

of the regulatory scheme. In appendix A we demonstrate that other Zeta-based regulatory

schemes, which have the virtue of maintaining modular invariance, also lead to finite pieces

which agree up to an additive constant. So it seems reasonable to define a renormalized

version of the prefactor F(z, w) by this finite remainder, up to addition by a constant.

When it converges the Zeta-regularized sum Fs(z, w) is invariant under independent

modular transformations, Fs(z, w) = Fs(γ1z, w) = Fs(z, γ2w) and in particular under

independent T transformations, z → z + 1, and w → w + 1. As a result it has a well-

defined Fourier series in the real parts of z and w,

Fs(z, w) =
∞∑

s1,s2=−∞

e−2πiz1s1−2πiw1s2F̃s,s1,s2(z2, w2) . (4.4)

Because the divergence as s → 1 is independent of z and w, it follows that the double

Fourier transform of the modular sum for F(z, w) converges, as long as at least one of the

momenta si is nonzero. The divergence only contributes to a constant divergence in the

zero momentum subsector. So as long as we work with the Fourier transformed version of

our sum, we can set s = 1 from the start.

In the remainder of this section we compute this double Fourier transform and analyze

it in some detail.
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4.1 Fourier series expansion

The Fourier coefficients in question are

F̃s1,s2 =

∫ 1

0
dz1

∫ 1

0
dw1 e

2πiz1s1+2πiw1s2F(z, w) . (4.5)

To evaluate F̃s1,s2 , we make several simplifications enabled by the modular sum and the

symmetries of F . Defining

f(z, w) =
Im(z)Im(w)

|z + w|2 , (4.6)

we can write F(z, w) =
∑
γ∈PSL(2;Z) f(z, γw) and similarly

F̃s1,s2 =
∑

γ∈PSL(2;Z)

∫ 1

0
dz1

∫ 1

0
dw1 e

2πiz1s1+2πiw1s2f(z, γw) . (4.7)

Note that f(z, γw) = f(γ−1z, w). We can parameterize a general element γ of SL(2; Z) by

an integer matrix (
a b

c d

)
, ad− bc = 1 , (4.8)

which acts as γτ = aτ+b
cτ+d . For c and d coprime, let us denote by γc,d some element of

SL(2; Z) of the form (
∗ ∗
c d

)
.

There may be multiple such elements of this form (and there is guaranteed to be at least

one), but for our purposes the specific choice will not matter. Letting (Z/cZ)∗ denote the

residue classes mod c which are multiplicatively invertible (more concretely, consider the

set of integers from 1 to c− 1 which are coprime to c), we show in appendix B that

F̃s1,s2 =
∑

n∈Z

∫ 1

0
dz1

∫ 1

0
dw1 e

2πiz1s1+2πiw1s2f(z, w + n)

+
∑

c≥1, d∈(Z/cZ)∗

∫ ∞

−∞
dz1

∫ ∞

−∞
dw1 e

2πiz1s1+2πiw1s2f(z, γc,dw) .
(4.9)

The first term equals

∑

n∈Z

∫ 1

0
dz1

∫ 1

0
dw1 e

2πiz1s1+2πiw1s2f(z, w + n) =
πz2w2

z2 + w2
e−2π(z2+w2)|s1| δs1,s2 . (4.10)

Let us denote the second term in (4.9) by Gs1,s2(z2, w2). Its general form is slightly com-

plicated, although for sgn(s1) = −sgn(s2) it simplifies to

Gsgn(s1) = −sgn(s2)
s1,s2

(z2, w2) = (4.11)

∑

c≥1, d∈(Z/cZ)∗

π2√
z2w2

c
√

1 + c2z2w2

e
2πi

(
d
c
s1+ d−1

c
s2

)

e
−2π

√
z2
w2

(1+c2z2w2)
|s1|

c
−2π

√
w2
z2

(1+c2z2w2)
|s2|

c
.

Here, d−1 is any multiplicative inverse of d mod c. In the remaining parts of this section

we will examine the salient features of the c = 0 contribution in (4.10), and the c ≥ 1

contributions packaged as Gs1,s2(z2, w2).
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4.2 Zero momentum mode

We begin by examining the zero momentum mode F̃0,0. Eq.’s (4.10) and (4.11) simplify to

F̃0,0 =
πz2w2

z2 + w2
+

∑

c≥1, d∈(Z/cZ)∗

π2√
z2w2

c
√

(1 + c2z2w2)
. (4.12)

The second term is divergent, which we can see by rewriting it as

∞∑

c=1

π2√
z2w2

c
√

(1 + c2z2w2)
ϕ(c) , (4.13)

where ϕ(c) is the Euler totient function which counts the number of positive integers less

than or equal to c which are coprime to c, i.e. the size of (Z/cZ)∗. This sum is then

∞∑

c=1

π2

c2
ϕ(c) + (convergent) . (4.14)

Using
∞∑

c=1

ϕ(c)

cs
=
ζ(s− 1)

ζ(s)
, (4.15)

we find that the source of the divergence of our sum is

∞∑

c=1

π2

c2
ϕ(c) = 6 ζ(1) , (4.16)

i.e., we run into the s = 1 pole of ζ(s).

As suggested earlier, we can regulate the divergence as follows. Letting Fs(z, w) =
∑
γ∈PSL(2;Z)

(
Im(τ1)Im(γτ2)

|τ1+γτ2|2

)s
as per eq. (4.2), we define

F̃s,s1,s2 =

∫ 1

0
dz1

∫ 1

0
dw1 e

2πiz1s1+2πiw1s2Fs(z, w) . (4.17)

Computing F̃s,0,0, we find that divergent term we examined above is regularized to8

π

(
Γ(s− 1/2)

Γ(s)

)2

(z1z2)1−s
∞∑

c=1

ϕ(c)

c2s

(
1 +O(1/c2)

)
=

3

s− 1
+ (finite as s → 1) . (4.18)

It is natural to subtract off the s = 1 pole, and then take the limit as s → 1. In this way,

we can regularize F̃0,0 so that it is finite. Our regularization procedure is robust up to an

additive constant which is independent of z2 and w2, i.e. different ways of implementing

the zeta-function regularization will differ by an additive constant.

Next, we will show that the remaining Fourier coefficients F̃s1,s2 for at least one of

s1, s2 non-zero are finite. Furthermore, we establish that once we have regularized the

divergence in F̃0,0 , the function F(z, w) itself is finite.

8We thank D. Stanford for pointing out an error in a previous version of this equation.

– 38 –



J
H
E
P
0
4
(
2
0
2
1
)
0
3
3

4.3 Convergence of remainder of the Fourier series

Here we provide bounds on F̃s1,s2 for at least one of s1, s2 nonzero, establishing that the

modular sum in F̃s1,s2 converges. The c = 0 contribution (4.10) is manifestly finite. For

the c ≥ 1 contributions, the sum over c and d is quite subtle. Defining the Kloosterman

sum

S(j, J, s) =
∑

d∈(Z/cZ)∗

e
2πi

(
j d

c
+J d−1

c

)

, (4.19)

we can write after some simplifications

Gs1,s2(z2, w2) =
∞∑

c=1

π
√
z2w2

c
√

(1 + c2z2w2)
S(s1, s2, c) e

−2πz2|s1|

×
∫ ∞

−∞
dx e

− 2πi
Bx+i sgn(s1)cw2

s1
c

+2πiBx
s2
c

1

x2 + 1
,

(4.20)

for B =
√

w2
z2

(1 + c2z2w2). The above expression is upper bounded by

Gs1,s2(z2, w2) ≤ π2 e−2πz2|s1|
∞∑

c=1

S(s1, s2, c)

c2
. (4.21)

The Weil bound tells us that

|S(j, J, c)| ≤
√

gcd(j, J, c)
√
c τ(c) (4.22)

where τ(c) is the number of positive divisors of c. Since τ(c) ≪ cδ for any constant δ > 0,

and since for at least one of j, J nonzero we have gcd(j, J, c) ≤ max(|j|, |J |), we can further

upper bound (4.21) by

Gs1,s2(z2, w2) ≤
√

max(|s1|, |s2|)π2 e−2πz2|s1|
∞∑

c=1

1

c3/2−δ
(4.23)

which is finite. Therefore eq. (4.21) converges, and so F̃s1,s2 is well-defined (with the

exception of F̃0,0 which we already dealt with).

Furthermore, eq. (4.23) implies that Gs1,s2(z2, w2) ≤ Cs1,s2 e
−2πz2|s1| where Cs1,s2 is

a constant depending on s1, s2. Since Gs1,s2(z2, w2) = Gs2,s1(w2, z2) by symmetry, we

additionally have Gs1,s2(z2, w2) ≤ Cs1,s2 e
−2πw2|s2|. Taken together, we have

Gs1,s2(z2, w2) ≤ Cs1,s2 e
−2πmax{z2|s1|,w2|s2|}

≤ Cs1,s2 e
−πz2|s1|−πw2|s2|

(4.24)

where we have used max(a, b) ≥ 1
2(a + b). Examining the bound on Gs1,s2(z2, w2) along-

side (4.10), we find that F̃s1,s2 is exponentially suppressed in |s1| and |s2|. So once we have

regularized the zero mode, the Fourier series expansion of F(z, w) converges.
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4.4 Summary

We have decomposed F(z, w) into a Fourier expansion in z1 and w1 with Fourier compo-

nents F̃s1,s2 . The zero mode F̃0,0 is divergent, which we showed how to Zeta-regularize. All

of the remaining Fourier coefficients F̃s1,s2 are finite, and upon regularizing F̃0,0 the entire

Fourier series for F(z, w) converges.

The Fourier coefficients are given by

F̃s1,s2(z2, w2) =
πz2w2

z2 + w2
e−2π(z2+w2)|s1|δs1,s2 + Gs1,s2(z2, w2) . (4.25)

The first term accounts for all of the terms in the modular sum generated by τ → τ + 1

while the second term Gs1,s2 includes all terms in the modular sum with at least one S

transformation. In general Gs1,s2 is given by (4.20), and when the signs of s1 and s2 are

opposite it simplifies to (4.11).

In the next section, we will show how our the Fourier coefficients F̃s1,s2 allow us to

relate our Euclidean wormhole computation in AdS3 to the calculation of a ramp in the

spectral form factor of a putative dual “random CFT.” Our results will generalize the

analysis of the spectral form factor in random matrix theory.

5 Beyond random matrices

Equipped with the Fourier series decomposition of F(τ1, τ2) defined in (4.1) in (4.25), we

will now analyze the wormhole amplitude ZT2×I(τ1, τ2) at fixed spins and low tempera-

ture. We will show how to extract a spectral form factor from the amplitude, and provide

evidence that, if AdS3 gravity has a dual, then the dual is an ensemble which provides a

generalization of random matrix theory.

5.1 Low temperature, long times

From the results of section 4 we can write the amplitude (3.56) as

ZT2×I(τ1, τ2) =
1

2π2
Z0(τ1)Z0(τ2)

∞∑

s1,s2=−∞

e−2πiRe(τ1)s1−2πiRe(τ2)s2F̃s1,s2(Im(τ1), Im(τ2)) ,

(5.1)

where again Z0(τ) = 1/(
√

Im(τ)|η(τ)|2) and we have regularized F̃0,0 as explained pre-

viously. The Fourier coefficients F̃s1,s2 are in general rather complicated. However they

simplify enormously in the low temperature limit Im(τ1) = β1, Im(τ2) = β2 → ∞ with

β1/β2 fixed. In that limit one can show from the integral representation (4.20) that9

F̃s1,s2(β1, β2) = e−2π|s1|β1−2π|s2|β2


 πβ1β2

β1 + β2
δs1,s2 +

∞∑

n=0

∞∑

c=1

I(n)
s1,s2

(
c; β1

β2

)

βn1


 , (5.2)

9This property is visible from the integrated expression in (4.11), which holds in the cases when s1 and

s2 have opposite sign or one of the spins vanishes.
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where I(n)
s1,s2 are series coefficients which are suppressed by powers of the temperature

relative to the indicated, leading order result. For example, the leading low-temperature

correction is the n = 0 term

I(0)
s1,s2

(c) =
S(s1, s2, c)

2c2
J0

(
Θ(s1s2)4π

√
|s1s2|

c

)
. (5.3)

Here Θ(x) is the Heaviside step function. So there is universal behavior in the low temper-

ature limit, with rather complicated corrections. Taking the low temperature limit zooms

in on low-energy physics in the usual way. In this setting the low-energy physics is that of

BTZ microstates near threshold.

We would like to interpret the wormhole amplitude as being a good approximation of

an ensemble average 〈Z(τ1)Z(τ2)〉ensemble, conn. in some regime with Z(τ) a CFT torus par-

tition function. There is a JT limit of AdS3 gravity [32] at large spin and low temperature,

with a genus expansion parameter which suppresses fluctuation of topology. At least in,

and perhaps beyond that regime we expect our result to be a good approximation to the

complete one. The torus partition function of a given, fixed CFT is determined by its spec-

trum on the circle, which is organized into representations of the Virasoro symmetry. The

complete spectrum is determined in terms of the spectrum of primaries, which themselves

may be labeled by their energy and momentum. The wormhole amplitude ZT2×I may be

separated into a contribution from primary states alone, which we call ZP , and contri-

butions from descendants determined by symmetry. From the final form of ZT2×I(τ1, τ2)

in (3.56), as well as the unintegrated expression in (3.53), we see that the full amplitude

comes from non-degenerate representations of Virasoro on the two boundary tori with no

vacuum contribution. So to obtain ZP we simply strip off the infinite products in the

prefactors Z0(τ1)Z0(τ2), giving

ZP (τ1, τ2) =
1

2π2

|q1q2|− 1
12

√
Im(τ1)Im(τ2)

∞∑

s1,s2=−∞

e−2πiRe(τ1)s1−2πiRe(τ2)s2F̃s1,s2(Im(τ1), Im(τ2)) .

(5.4)

The prefactor is independent of Re(τ1) and Re(τ2), and so the Fourier coefficients of ZP

are simply proportional to the F̃ ’s. We arrive at the leading low-temperature expression

ZPs1,s2
(β1, β2) =

1

2π

√
β1β2

β1 + β2
e−Es1β1−Es2β2

(
δs1,s2 +O

(
1

β

))
, Es = 2π

(
|s| − 1

12

)
.

(5.5)

Here Es is the threshold energy (with respect to the Hamiltonian 2π
(
L0 + L̄0 − c

12

)
) for

a BTZ black hole at spin s.

We can extract the spectral form factor for primaries. See subsection 2.4 for a summary

of the spectral form factor in random matrix theory. We simply take our result in (5.5)

and analytically continue β1 → β + iT , β2 → β − iT , which allows us to study finite

temperature correlations of the spectrum at Lorentzian time T . Including the first low-

– 41 –



J
H
E
P
0
4
(
2
0
2
1
)
0
3
3

temperature correction we have

ZPs1,s2
(β + iT, β − iT ) =

√
β2 + T 2

4πβ
e−2βEs1 δs1,s2

+ e−β(Es1 +Es2 )−iT (Es1 −Es2 )
∞∑

c=1

(
S(s1, s2, c)

2c2
√
β2 + T 2

J0

(
Θ(s1s2)4π

√
|s1s2|

c

)
+O(β−2)

)
,

(5.6)

which for T ≫ β becomes

ZPs1,s2
(β + iT, β − iT ) =

T

4πβ
e−2βEs1 δs1,s2 +O(T−1) . (5.7)

The leading correction comes from the expansion of the square root of the first term of (5.6),

as well as of from the leading behavior of the second line.

Eq. (5.7) has the behavior of a linear ramp, with fluctuations which are power-law

suppressed in 1/T . Guided by the JT limit of AdS3 gravity, we have some reason to believe

that the torus times interval amplitude dominates the two-torus partition function at least

at low temperature and large spin (and implicitly for times which are not exponentially

long compared to c). We would then have a spectral form factor containing a ramp with

small fluctuations around it, which is a smoking gun of a disordered theory. In the next

subsection we will find a precise connection between the slope of the ramp and random

matrix theory.

5.2 Random matrix statistics and Virasoro symmetry

In looking for an ensemble dual to pure AdS3 gravity, we notice several features which

emulate random matrix theory. In random matrix theory, nearest-neighbor eigenvalue

statistics are controlled by the symmetries of the ensemble. In this subsection we are

primarily interested in GUE eigenvalue statistics (in the absence of symmetry) and GOE

eigenvalue statistics (in the presence of T
2 = 1 time-reversal symmetry). Operationally, we

will consider the late-time behavior of the spectral form factor, whose behavior depends

on the symmetry class. For a recent discussion in the relevant context of double-scaled

random matrix theory, see [57].

Suppose that we envision AdS3 gravity as being dual to an ensemble of CFTs, inducing

an ensemble over CFT Hamiltonians on the circle. CFT Hamiltonians are (infinitely) large

matrices, and so perhaps there is a connection between AdS3 gravity and random matrix

theory with Virasoro symmetry. We are not aware of a discussion of such matrix models, nor

do we know how to construct such an ensemble for AdS3 gravity specifically. However, due

to the universality of eigenvalue pair correlations in random matrix theory, we can analyze

certain properties of matrix ensembles with Virasoro symmetry on general grounds.

The complete spectrum of such a random matrix ensemble is organized into a sum over

representations of the Virasoro symmetry, determined by the spectrum of primaries, which

are themselves labeled by an energy and momentum. Let us call the Hamiltonian which

labels Virasoro primary states H. It commutes with a momentum operator P, which we

take to also act only on primary states. Of course the spectrum of primaries completely
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determines the spectrum of the full Hamiltonian and momentum. We can block diagonalize

each Hamiltonian H in the ensemble into blocks Hp of fixed momentum p. Positing that

Hp is itself a large random matrix in the absence of additional symmetries, we would expect

each Hp to have GUE eigenvalue statistics. Accordingly, we can define a momentum-block

spectral form factor

ZPp,q(β + iT, β − iT ) =
〈
tr
(
e−(β+iT )Hp

)
tr
(
e−(β−iT )Hq

)〉

ensemble, conn.
(5.8)

We would expect that each ZPp,p(β+iT, β−iT ) has a GUE ramp due to level repulsion, and

that ZPp,q(β + iT, β − iT ) for p 6= q does not have a ramp since Hp and Hq will have statis-

tically independent eigenvalues. Our AdS3 computation realizes these expectations, thus

supporting the conceptual framework of AdS3 being dual to a “random” CFT. Specifically,

we find a ramp exactly matching that of double-scaled GUE random matrix theory.

As an additional piece of evidence for a putative duality with random CFT, suppose

we gauge time reversal symmetry in the bulk. This corresponds to introducing a global

time reversal symmetry on the boundary theory, implemented by an anti-unitary operator

T with

[P,T] = 0 . (5.9)

For simplicity we suppose T
2 = 1. As above, let us block diagonalize an H in the ensemble

into blocks Hp of fixed momentum. Then for a |ψ〉 in the subspace corresponding to the

block Hp, we have P|ψ〉 = p|ψ〉. But we also have P(T|ψ〉) = −TP|ψ〉 = −p(T|ψ〉), and so

T|ψ〉 is in the subspace corresponding to the block H−p. More generally, THpT
† = H−p,

and so Hp and H−p have identical eigenvalues. Since TH0T
† = H0, H0 is a real symmetric

matrix in a suitable basis. Taking all of these considerations into account, we have that

ZPp,p(β+iT, β−iT ) and ZPp,−p(β+iT, β−iT ) for p 6= 0 have GUE ramps, ZP0,0(β+iT, β−iT )

has a GOE ramp, and ZPp,q(β+iT, β−iT ) for p 6= q does not have any ramp. These features

are mirrored in gravity. After gauging bulk time reversal, the Fourier coefficients become

Zs1,s2(β1, β2) = Zs1,s2(β1, β2) + Zs2,s1(β1, β2) . (5.10)

Accordingly, we find that for small temperatures and long times,

ZP0,0(β + iT, β − iT ) =
T

2πβ
e−2βE0 +O(T−1) ,

ZPs,±s(β + iT, β − iT ) =
T

4πβ
e−2βEs +O(T−1) , s 6= 0 ,

ZPs1,s2
(β + iT, β − iT ) = O(T−1) , |s1| 6= |s2| .

(5.11)

Indeed, this exactly matches expectations from random matrix theory.

In the remainder of this subsection we return our focus to the ungauged model. In fact

our gravitational result (5.5) matches more than the slope of a ramp predicted by random

matrix theory. The leading contribution to the connected two-point function of eigenvalues

is a universal result in random matrix theory. In the present setting, it implies that in the

double-scaling limit

〈
tr
(
e−β1Hp

)
tr
(
e−β2Hq

)〉

ensemble, conn.
=

1

2π

√
β1β2

β1 + β2
e−β1Ep−β2Eqδp,q + · · · , (5.12)
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where the dots indicate corrections in the genus expansion. Here the cut for ensemble

averaged density of states of Hp runs from [Ep,∞). This result precisely matches the

leading low-temperature limit of our gravitational result.

In summary, we find that the T2×I contribution to the spectral form factor ramps, and

more broadly to the full low-temperature 2-point fluctuation statistics of BTZ microstates,

exactly matches the predictions of random matrix theory with Virasoro symmetry. While

this agreement with random matrix theory is totally striking, we note that there may be

roadblocks to a straightforward random matrix interpretation. Specifically, the Maloney-

Witten density of states is negative near threshold [27–30]. This flatly contradicts the

prospect of a random matrix duality, although perhaps the negativity of the Maloney-

Witten density of states is cured upon performing a complete non-perturbative path in-

tegral analysis (instead of just summing over saddles corresponding to smooth geometries

with torus boundary, and geometries continuously connected to these). An interesting fea-

ture of our gravitational result is corrections to the ramps which are suppressed by powers

of the temperature. These are not expected in standard random matrix theory, and so

could provide clues as to how AdS3 may go beyond this framework.

In any case, now let us consider the complete form of the wormhole amplitude, restoring

the contribution from descendants. The full result is determined by Virasoro symmetry in

terms of the contribution from primaries. From the leading low-temperature limit of the

Fourier coefficients F̃s1,s2 , we find

ZT2×I(τ1, τ2) =
1

4π

√
Im(τ1)Im(τ2)

Im(τ1) + Im(τ2)

1

|η(τ1)|2|η(τ2)|2
(

1 + q1q2

1 − q1q2
+

1 + q̄1q̄2

1 − q̄1q̄2
+O(Im(τ)−1)

)
.

(5.13)

The Fourier coefficients of the full result at fixed spin read

Zs1,s2(β1, β2) =
1

2π

√
β1β2

β1 + β2

∞∑

n,m=0

e−β1Es1,n−β2Es2,m

(
Cs1,s2,n,m +O

(
1

β

))
, (5.14)

where Es,n = 2π
(
|s| + 2n− 1

12

)
and Cs1,s2,n is an integer determined by the small−q

expansion of the Dedekind eta prefactor. In other words, the Fourier coefficients contain

an infinite sum of increasingly suppressed exponentials. As an example, when s1 = s2 = s

and n = m = 0 we have

Cs,s,0,0 =
s∑

k=0

p(k)2 , (5.15)

with p(k) the partition function of k, the number of ways k may be partitioned into integers.

As another example, consider s1 = 2, s2 = 1, and n = m = 0. In that case C2,1,0,0 = 3.

Note that there are low temperature correlations for any s1 and s2, not merely when the

spins are equal, and that there is an infinite tower of exponentially suppressed corrections.

These facts guarantee that the full spectral form factor has the long time form

Zs1,s2(β+ iT, β− iT ) =
T

4πβ

∞∑

n,m=0

Cs1,s2,n,m e
−β(Es1,n+Es2,m)−iT (Es1,n−Es2,m)

(
1 +O

(
1

T

))
.

(5.16)
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So there is a ramp only when the two energies coincide, with a more complicated slope

than before.

These expressions automatically match the prediction from random matrix theory

with Virasoro symmetry, which is similarly determined in terms of the primaries by the

symmetry. The full Hamiltonian H block diagonalizes into sectors Hp of fixed spin p,

in such a way that the full blocks are determined in terms of the Hamiltonian H and

momentum P on primaries. In particular, the symmetry determines the full correlation

function

〈
tr
(
e−β1Hp

)
tr
(
e−β2Hq

)〉

ensemble, conn.
=

1

2π

√
β1β2

β1 + β2

∞∑

n,m=0

e−β1Es1,n−β2Es2,mCs1,s2,n,m+· · · ,

(5.17)

where the dots indicate genus corrections.

Let us unpack this with the example of s1 = 2, s1 = 1, and n = m = 0. The full

Hamiltonian H2 has infinitely many blocks, one corresponding to the spin-2 primaries H2,

and the others corresponding to descendants. There are three other “descendant” blocks

whose densities of states starts at the minimum value E2 (the other descendant blocks

have densities of states starting at E2,n): one comes from acting on the spin-1 primaries

H1 with L−1, and the other two from acting on the scalar primaries H0 with L2
−1 or L−2.

Similarly at spin-1 the lowest energy contributions come from the primary block H1 and

the descendant block L−1 · H0. So H2 = H2 ⊗ (L−1 · H1) ⊗ (L2
−1 · H0) ⊗ (L−2 · H0) ⊗ . . .

and H1 = H1 ⊗ (L−1 ·H0) ⊗ . . ., where the dots indicate blocks whose cuts begin at larger

energies. The leading low-temperature contribution to (5.17) simply comes from tracking

the effects of eigenvalue repulsion between identical primary blocks. There are three such

terms in the two-point function 〈tr
(
e−β1H2

)
tr
(
e−β2H1

)
〉ensemble, conn.: one where L−1 ·H1

repels against H1, and two more where L2
−1 · H0 and L−2 · H0 repel against L−1 · H0. So

from the matrix ensemble we obtain C2,1,0,0 = 3, matching what we found from the Fourier

analysis of the wormhole amplitude above.

Having gone through this example, we emphasize that more generally the constants

Cs1,s2,n,m is determined both from the wormhole amplitude and matrix ensemble by the

same Virasoro symmetry. And so given that the statistics of the primaries match, the

statistics of the descendants match too.

5.3 Random CFT

We have seen that the leading low-temperature limit of the wormhole amplitude ZT2×I is

precisely described by double-scaled random matrix theory with Virasoro symmetry. How-

ever there are some simple reasons why we expect that the dual to AdS3 gravity is not

a random matrix theory. The first is that in Euclidean gravity we may arrange for the

boundary to be any genus g surface, and it is not clear how to interpret such an observable

in a putative random matrix dual. Another reason is the power-law suppressed fluctua-

tions of the ramp, which are not expected in standard random matrix theory, although

perhaps these can be accommodated for with suitable long-range eigenvalue correlations.

Finally, beyond Virasoro symmetry the gravitational amplitude is invariant under indepen-
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dent modular transformations of each boundary torus. Interpreting the two torus partition

function as characterizing the fluctuations of torus partition functions within the dual en-

semble, the independent modular invariances tell us that the objects we are averaging over

(the partition functions) are themselves modular invariant point by point in the ensem-

ble, and it is not clear how to incorporate this property in random matrix theory. For

these reasons we have made the guess that AdS3 gravity is dual to an ensemble of CFTs,

although perhaps when the boundaries are tori there is a non-standard random matrix

description. (More precisely, we have in mind an ensemble of CFTs with a large gap to the

BTZ threshold.)

But what would this mean? In this subsection, we sketch a plausible schematic frame-

work, following the usual logic of statistical physics. We stress that this sketch is specula-

tive. We regard it as an organizing principle to keep in mind when trying to make sense

of AdS3 gravity beyond the torus times interval. In particular, we are going to ignore the

pressing conceptual concern that we do not have any knowledge of specific irrational CFTs

at large central charge, much less an ensemble of such theories. Our optimistic hope is that

there are many solutions to the modular bootstrap for CFTs that “look” gravitational, and

that in a sense 3d gravity is an average over this solution space.

With these caveats and declarations out of the way we proceed. Suppose we denote

that data of a 2d CFT by T , standing for “theory.” For a given theory T there is a genus

g partition function ZT ,Σg (Ω), where Ω is the period matrix of the surface. Let d[T ] be a

measure on 2d CFTs, with which we can consider correlators like

〈ZT ,Σg1
(Ω1) · · ·ZT ,Σgn

(Ωn)〉ensemble ≡
∫
d[T ]ZT ,Σg1

(Ω1) · · ·ZT ,Σgn
(Ωn) . (5.18)

Next we turn to AdS3 quantum gravity. Let us define

ZAdS3(Σg1 ,Ω1; . . . ; Σgn ,Ωn) ≡
∑

bulk topologies of M3
∂M3=Σg1 ⊔···⊔Σgn

∫
d[g]Ω1,...,Ωn e

−Sgrav[g] , (5.19)

where Sgrav is the gravitational action. The path integral in the summand is understood to

be the amplitude of Euclidean AdS3 gravity on M3 with boundary ∂M3 = Σg1 ⊔ · · · ⊔ Σgn

and corresponding period matrices Ω1, . . . ,Ωn. It is far from clear if the right-hand side

of (5.19) is well-defined. For example, there is no known analogue of the genus expansion

for 3-manifolds, nor do we know the amplitudes of AdS3 gravity on general topologies. In

light of these unknowns, an ambitious conjecture is that there exists an ensemble of 2d

CFTs with fixed central charge obeying

〈ZT ,Σg1
(Ω1) · · ·ZT ,Σgn

(Ωn)〉ensemble ≃ ZAdS3(Σg1 ,Ω1; . . . ; Σgn ,Ωn) . (5.20)

Here “≃” means non-perturbative equivalence to all orders in a putative asymptotic ex-

pansion where we might hope that the analogue of the genus expansion parameter of JT

gravity is a coupling ∼ e−#/G. This would be an AdS3 generalization of the duality be-

tween nearly-AdS2 JT gravity and a double scaled matrix model in [7]. We emphasize that

essential refinements of the conjecture in eq. (5.20) are required.
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A logical possibility is that quantities like those in (5.19) are somehow pathological in

AdS3 gravity. Even if this is so, it may still be that a correspondence like eq. (5.20) holds,

with the same pathologies occurring on both sides of the duality. As an example we have

in mind the duality [57] between JT gravity on unorientable manifolds and a double-scaled

random matrix theory with time reversal symmetry, both sides of which diverge.

Our approach to (5.20) has been to compute examples of the right-hand side for AdS3

gravity, and suggest the existence of an ensemble average on the left-hand side. Very

recent works [39, 40] can be cast in a similar conceptual framework as (5.20): examples of

partition functions in an ensemble average of free CFT’s are computed, and a bulk dual

is suggested (up to the treatment of zero modes it is a Chern-Simons theory with gauge

group R2c — not Einstein gravity as in our setting).

In this paper, we have investigated a special case of (5.19), the T2 × I amplitude. If

this amplitude was expressible in terms of an average over an ensemble of CFTs, it would

correspond to a contribution to

〈ZT ,T2(τ1)ZT ,T2(τ2)〉ensemble, conn. . (5.21)

We might even hope that the geometry T2 × I provides the leading contribution. We can

suggestively rewrite the above equation as
〈
tr
(
e−Im(τ1)H+iRe(τ1)P

)
tr
(
e−Im(τ2)H+iRe(τ2)P

)〉

ensemble, conn.
. (5.22)

Note that here, the only feature of the CFT ensemble that matters is the induced distri-

butions over Virasoro-invariant Hamiltonians Hp. Specifically, the distribution d[T ] would

induce a measure dH over infinite-dimensional matrices H so that

〈ZT ,T2(τ1)ZT ,T2(τ2)〉ensemble =

∫
dH tr

(
e−Im(τ1)H+iRe(τ1)P

)
tr
(
e−Im(τ2)H+iRe(τ2)P

)
,

(5.23)

and more generally

〈ZT ,T2(τ1) · · ·ZT ,T2(τn)〉ensemble =

∫
dH tr

(
e−Im(τ1)H+iRe(τ1)P

)
· · · tr

(
e−Im(τn)H+iRe(τn)P

)
.

(5.24)

Then a special case of (5.19) would be
∫
dH tr

(
e−Im(τ1)H+iRe(τ1)P

)
· · · tr

(
e−Im(τn)H+iRe(τn)P

)
≃ ZAdS3(T2, τ1; . . . ; T2, τn) .

(5.25)

While we have introduced the above equation as a consequence of (5.19), it may be instead

viewed as a separate, weaker conjecture about the existence of a matrix model which

captures Euclidean AdS3 amplitudes with exclusively torus boundaries.

6 Discussion

In this paper we have computed the path integral of Euclidean AdS3 gravity on the torus

times interval. These configurations are Euclidean wormholes, and they represent a non-

perturbative effective in three-dimensional quantum gravity. Our answer encodes the fluc-

tuation statistics of microstates of the BTZ black hole near threshold, and we found that
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these correlations precisely match those of double-scaled random matrix theory with Vira-

soro symmetry. The gravitational computation also includes low temperature corrections

which differ from what one finds in standard random matrix theory. For this and other

reasons, our computation strongly supports the hypothesis that pure AdS3 gravity is dual

to an ensemble of CFTs. If true this duality would be a higher-dimensional analogue of

the duality between Jackiw-Teitelboim gravity and a double-scaled matrix model in [7].

Our analysis opens up a path to studying quantum AdS3 gravity on 3-manifolds with

the topology S1 ×f Σg,n or R ×f Σg,n. The former would correspond to a class of partition

functions in Euclidean AdS3, whereas the latter could be used to study topology-changing

amplitudes in Lorentzian AdS3. On the Euclidean side, it is important to study the finite-

ness (or lack thereof) of partition functions on these spaces, and more broadly develop

an analog of the genus expansion for 3-manifolds. Only then can we know if the T2 × I

amplitude is the dominant contribution in some regime. More ambitious still would be to

determine if AdS3 gravity is dual to an ensemble as our results suggest, and to establish

an exact duality.

The torus times interval amplitude suggests how the quantization of AdS3 gravity on

these manifolds proceeds. There were “trumpets” associated with each asymptotic region,

stitched together by an integral over time-dependent moduli. In our example it was simple

to integrate out the twist moduli, which enforced that the length moduli b and b̄ were

constant. For constant b and b̄ each trumpet was a Virasoro character stemming from

the path integral over two Alekseev-Shatashvili modes on its boundary, which decreases

exponentially at large b and b̄. As a result the moduli space integral was finite. This

finiteness is similar in spirit to how Schwarzian modes in JT gravity regulate the volumes of

moduli spaces of Riemann surfaces with asymptotically hyperbolic boundaries (see [58] for a

discussion). In our three-dimensional analysis there were two twist moduli, with a compact

moduli space, corresponding to large diffeomorphisms of space and time respectively. The

main open question to us is whether the twist moduli space is finite at higher genus.

It is far from clear how to construct an appropriate ensemble of irrational CFTs at large

central charge. Although there are candidate examples of such CFTs, they have not been

studied conclusively. Even if there was much better knowledge of the broader landscape

of irrational CFTs at large central charge, one would still be have to construct a measure

over them. Our approach in this paper has been pragmatic, focusing on computations in

gravity rather than positing a precise dual framework in which to interpret them.

However, there is a putative example of an ensemble of irrational CFTs which is worth

noting, a family of CFT fixed points coming from a two-dimensional version of the super-

symmetric SYK model [59]. Each element of the ensemble is thought to flow to a CFT

with large central charge at long distance, albeit with a relatively low twist gap. The

ensemble averaged, low-energy spectrum is a well-defined tower of operators. That is, the

averaged density of states is a sum of delta functions at O(1) energies. However, we expect

that the high energy part of the averaged spectrum, meaning h + h̄ > c/12, will exhibit

a continuous density of states with some correlations. This feature is reminiscent of the

black hole microstates of AdS3 gravity including the fluctuation statistics computed in the

present work.
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More speculatively, we would like to propose an organizing principle for thinking about

dualities between quantum gravity and disordered theories. One perspective in condensed

matter physics is that many disordered theories can be viewed as effective theories; for

instance, we could imagine augmenting standard effective field theory by an appropriate

disorder average over irrelevant operators. In some circumstances, like the SYK model [19–

21] such a disorder average may simplify computations of long-wavelength physics.

But in the case of Jackiw-Teitelboim gravity and pure AdS3 gravity, the situation is

more peculiar. These theories are self-consistent in their own right and we do not have

to regard them as effective theories. Yet they are dual to ensembles of matrices and (ten-

tatively) CFTs, respectively. However, JT gravity in two dimensions and pure gravity

in three dimensions only contain boundary gravitons, moduli and topology. From that

point of view, we might say that low-dimensional pure quantum gravity is a kind of self-

contained, quantum hydrodynamical theory of long-wavelength fluctuations of spacetime.

Then the dual disordered descriptions would provide a way of averaging over different mi-

croscopic theories with common long-wavelength gravitational physics to yield a universal

pure quantum gravity theory. To borrow terminology from condensed matter physics, it

may be appropriate to call such theories “mesoscopic quantum gravity.”

Beyond AdS3 gravity, our computational techniques generalize to other settings. In

three dimensions one can adapt our methods to study quantum effects with positive and

zero cosmological constant [23, 60, 61]. But, perhaps a more promising pathway is to adapt

our phase space techniques to study Euclidean wormholes in four and higher dimensions.

We anticipate that these methods will open up new horizons in quantum gravity.
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A Pole of Zeta-regularized Poincaré series

A core object in our study of the AdS3 ramp is the Poincaré series

F(τ1, τ2) =
∑

γ∈PSL(2;Z)

Im(τ1)Im(γτ2)

|τ1 + γτ2|2 (A.1)

for τ1, τ2 in the fundamental domain of the Poincaré half-plane H. Unfortunately, the

function F(τ1, τ2) is divergent. In this appendix, we consider a natural regularization

scheme by generalizing F(τ1, τ2) to a suitable Zeta function, and isolating the divergent

behavior.

We begin by generalizing F(τ1, τ2) to a Zeta function

Fs(τ1, τ2) =
∑

γ∈PSL(2;Z)

(
Im(τ1)Im(γτ2)

|τ1 + γτ2|2
)s

. (A.2)
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This reduces to F(τ1, τ2) for s = 1. We will show that Fs(τ1, τ2) has a simple pole at s = 1

with a residue which is independent of τ1 and τ2. Then we will regulate Fs(τ1, τ2) at s = 1

by subtracting out the pole, thus providing a natural regularization of F(τ1, τ2).

For our analysis, we require the spectral theory of the non-Euclidean Laplacian ∆ on

SL(2; Z)\H. This Laplacian has an orthonormal basis of eigenfunctions fλ(z) with respect

to the inner product

〈f, g〉 =

∫

SL(2;Z)\H
f(z)g(z) Im(z)−2 dz (A.3)

including a single zero mode eigenfunction f0(z) =
√

3
π . The Green’s function of ∆ − λ is

L2(SL(2; Z) \ H)-integrable with respect to the inner product defined above.

Let us treat Fs(τ1, τ2) as a function of τ2 with τ1 fixed. We will consider s in a

neighborhood of s = 1, say (1− ǫ, 1+ ǫ). Then as a function of τ2, it is readily checked that

Fs(τ1, τ2) is L2(SL(2; Z) \ H) integrable for s ∈ (1 − ǫ, 1) ∪ (1, 1 + ǫ). Note that Fs is not

L2(SL(2; Z)\H) integrable at s = 1 itself. On the other hand, ∆τ2Fs(τ1, τ2) is L2(SL(2; Z)\
H) integrable for s ∈ (1−ǫ, 1+ǫ), notably including s = 1. The L2(SL(2; Z)\H) integrability

conditions are checked most easily by noting that Fs and ∆τ2Fs are both bounded functions

of τ2, and by using a special case of Hölder’s inequality, namely ‖f‖2
2 ≤ ‖f‖1‖f‖∞.

Since both ∆τ2Fs and the Green’s function of ∆ − λ are L2(SL(2; Z) \ H) integrable,

this implies that

Fs(τ1, τ2) − 〈Fs , f0〉 f0 (A.4)

has a uniformly and absolutely convergent Roelcke-Selberg expansion (i.e., an expansion

in the eigenfunctions of ∆, see [62]) for s ∈ (1 − ǫ, 1 + ǫ). Furthermore, the fact that Fs is

L2(SL(2; Z) \ H) integrable away from s = 1 implies that all of the singular behavior in Fs

is due to 〈Fs , f0〉 f0 at s = 1, i.e. the singular behavior is contained in the projection onto

the zero mode.

It remains to compute 〈Fs , f0〉 f0 and examine the singular behavior at s = 1. We

have

〈Fs , f0〉 f0 =

(∫

SL(2;Z)\H

Fs(τ1, τ2) f0(τ2) Im(τ2)−2 dτ2

)
f0(τ2)

=
3

π

∫

H

(
Im(τ1)Im(τ2)

|τ1 + τ2|2
)s

Im(τ2)−2 dτ2

=
3√
π

Γ(s− 1)Γ(s− 1/2)

Γ(2s− 1)
.

(A.5)

As claimed, the above has a simple pole at s = 1 with residue 3, clearly independent of τ1

and τ2. Since Fs(τ1, τ2) − 〈Fs , f0〉 f0 is non-singular at s = 1, we see that

Ress=1Fs(τ1, τ2) = 3 , (A.6)

agreeing with the analysis in subsection 4.2. This motivates the definition of the regularized

Zeta function

F̃s(τ1, τ2) = Fs(τ1, τ2) − 3

s− 1
(A.7)
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which is non-singular at s = 1. Then F̃s=1(τ1, τ2) provides a natural regularization of

F(τ1, τ2), as desired.

Note that when performing Zeta regularization, the choice of regularized Zeta function

is often ambiguous up to an additive constant. The present situation is no different. As

an explicit example, suppose instead of the Zeta function Fs(τ1, τ2) we chose

e
K
3

(s−1)Fs(τ1, τ2) (A.8)

for a constant K. This function still has a simple pole at s = 1 with residue 3, and so we

can regularize the behavior at s = 1 by the subtraction

˜̃Fs(τ1, τ2) = e
K
3

(s−1)Fs(τ1, τ2) − 3

s+ 1
. (A.9)

However, the regularizations
˜̃Fs and F̃s disagree by an additive constant at s = 1, in

particular

lim
s→1

(
˜̃Fs − F̃s

)
= K . (A.10)

As usual, this ambiguity is unphysical.

B Double modular sum and SL(2; Z)

Here we derive eq. (4.9) from section 4. We begin with

F̃s1,s2 =
∑

γ∈PSL(2;Z)

∫ 1

0
dz1

∫ 1

0
dw1 e

2πiz1s1+2πiw1s2f(z, γw) (B.1)

where

f(z, w) =
Im(z)Im(w)

|z + w|2 . (B.2)

We have the important property that for any γ ∈ PSL(2; Z), f(z, w) = f(γz, γ−1w). As

mentioned in section 4, a general element of SL(2; Z) can be represented by an integer

matrix

γ =

(
a b

c d

)
such that ad− bc = 1 . (B.3)

Then a general element of PSL(2; Z) can be written as the restriction to c ≥ 0, and when

c = 0 we have a = 1. The matrix γ acts on a τ in H by γτ = aτ+b
cτ+d . Notice that this is

invariant under γ → −γ.

Upon inspecting (B.3), we observe that gcd(a, b) = gcd(a, c) = gcd(b, d) = gcd(c, d) =

1. For example, suppose gcd(a, b) = k. Then we could write a = ka′ and b = kb′ for some

integers a′, b′. But then ad−bc = k(a′d−b′c) has the form k ·(integer) which can only equal

one if k = 1. There are additional properties of the a, b, c, d that are useful. For instance,

since ad − bc = 1, we have ad ≡ 1 (mod c). That is, a and d must be multiplicative

inverses modulo c. Regarding a as the multiplicative inverse of d, we write a = [d−1]c + cn

where 0 ≤ [d−1]c ≤ c − 1 and n is an integer. Then ad − bc = [d−1]c d + cdn − bc. But
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[d−1]c d = 1 + c[r]c,d for some fixed integer [r]c,d , and so ad− bc = 1 + c([r]c,d+nd− b) = 1.

Solving for b, we find b = [r]c,d + nd, and so a general PSL(2; Z) element takes the form
(

[d−1]c + nc [r]c,d + nd

c d

)
. (B.4)

That is, we can specify an element of PSL(2,Z) by coprime c, d with c ≥ 0, and an

integer n.

It is prudent to further massage (B.4) for our purposes. Let (Z/cZ)∗ denote the

residue classes mod c which are multiplicatively invertible. Specifically, we take (Z/cZ)∗

to denote the set of integers from 1 to c − 1 which are coprime to c. Given coprime c, d,

we can decompose d as d = d′ + mc where d′ ∈ (Z/cZ)∗ and m is an integer. Noting

that [(d′ +mc)−1]c = [d′−1]c and [r]c,d′+mc = [r]c,d′ +m[d′−1]c , we can represent a general

PSL(2; Z) element by

γc,d′,m,n =

(
[d′−1]c + nc [r]c,d′ +m[d′−1]c + n(d′ +mc)

c d′ +mc

)
(B.5)

where c ≥ 0, d′ ∈ (Z/cZ)∗, and m,n ∈ Z.

Translations τ → τ + 1 are implemented by

T =

(
1 1

0 1

)
(B.6)

and its powers. In fact, we have

γc,d′,m,n = Tn ·
(

[d′−1]c [r]c,d′

c d′

)
· Tm

= Tn · γc,d′,0,0 · Tm . (B.7)

In light of the above decomposition, to ease the notation we denote γc,d′,0,0 by γc,d′ . It

is easy to check that the complete set PSL(2; Z) elements (i.e., without duplication) is

given by

PSL(2; Z) = {Tn}∞
n=1 ∪ {Tn · γc,d′ · Tm}c≥1, d′∈(Z/cZ)∗,m,n∈Z . (B.8)

Using (B.8), we have

F̃s1,s2 =
∑

γ∈PSL(2;Z)

∫ 1

0
dz1

∫ 1

0
dw1 e

2πiz1s1+2πiw1s2f(z, γw)

=
∑

n∈Z

∫ 1

0
dz1

∫ 1

0
dw1 e

2πiz1s1+2πiw1s2f(z, Tnw)

+
∑

m,n∈Z

∑

c≥1, d′∈(Z/cZ)∗

∫ 1

0
dz1

∫ 1

0
dw1 e

2πiz1s1+2πiw1s2f(z, (Tn · γc,d · Tm)w) . (B.9)

Since the first term is equivalent to

∑

n∈Z

∫ 1

0
dz1

∫ 1

0
dw1 e

2πiz1s1+2πiw1s2f(z, w + n) (B.10)
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and the second term is equivalent to

∑

m,n∈Z

∑

c≥1, d′∈(Z/cZ)∗

∫ 1

0
dz1

∫ 1

0
dw1 e

2πiz1s1+2πiw1s2f(Tnz, (γc,d · Tm)w)

=
∑

c≥1, d′∈(Z/cZ)∗

∫ ∞

−∞
dz1

∫ ∞

−∞
dw1 e

2πiz1s1+2πiw1s2f(z, γc,dw) , (B.11)

we have derived

F̃s1,s2 =
∑

n∈Z

∫ 1

0
dz1

∫ 1

0
dw1 e

2πiz1s1+2πiw1s2f(z, w + n)

+
∑

c≥1, d∈(Z/cZ)∗

∫ ∞

−∞
dz1

∫ ∞

−∞
dw1 e

2πiz1s1+2πiw1s2f(z, γc,dw) (B.12)

which is eq. (4.9) from section 4.
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