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Abstract

The AdS/CFT correspondence between string theory in AdS space and con-
formal field theories in physical space-time leads to an analytic, semi-classical
model for strongly-coupled QCD which has scale invariance and dimensional
counting at short distances and color confinement at large distances. The
AdS/CFT correspondence also provides insights into the inherently nonper-
turbative aspects of QCD such as the orbital and radial spectra of hadrons
and the form of hadronic wavefunctions. In particular, we show that there
is an exact correspondence between the fifth-dimensional coordinate of AdS
space z and a specific impact variable ζ which measures the separation of the
quark and gluonic constituents within the hadron in ordinary space-time. This
connection leads to AdS/CFT predictions for the analytic form of the frame-
independent light-front wavefunctions (LFWFs) of mesons and baryons, the
fundamental entities which encode hadron properties. The LFWFs in turn
predict decay constants and spin correlations, as well as dynamical quanti-
ties such as form factors, structure functions, generalized parton distributions,
and exclusive scattering amplitudes. Relativistic light-front equations in or-
dinary space-time are found which reproduce the results obtained using the
fifth-dimensional theory and have remarkable algebraic structures and integra-
bility properties. As specific examples we describe the behavior of the pion
form factor in the space and time-like regions and determine the Dirac nucleon
form factors in the space-like region. An extension to nonzero quark mass is
used to determine hadronic distribution amplitudes of all mesons, heavy and
light. We compare our results with the moments of the distribution amplitudes
which have recently been computed from lattice gauge theory.
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1 Introduction

Quantum Chromodynamics, the Yang-Mills local gauge field theory of SU(3)C color
symmetry provides a fundamental description of hadron and nuclear physics in terms
of quark and gluon degrees of freedom. Yet, because of its strong coupling nature,
it has been difficult to find analytic solutions to QCD or to make precise predictions
outside of its perturbative domain. An important theoretical goal is thus to find an
initial approximation to QCD which is both analytically tractable and which can be
systematically improved. For example, in quantum electrodynamics, the Coulombic
Schrödinger and Dirac equations provide quite accurate first approximations to atomic
bound state problems, which can then be systematically improved using the Bethe-
Salpeter formalism and correcting for quantum fluctuations, such as the Lamb Shift
and vacuum polarization.

It was originally believed that the AdS/CFT mathematical correspondence could
only be applied to strictly conformal theories, such as N = 4 supersymmetric Yang-
Mills gauge theory. Conformal symmetry is broken in physical QCD by quantum
effects and quark masses. There are indications, however both from theory and
phenomenology, that the QCD coupling is slowly varying at small momentum transfer.
In these lectures we shall discuss how conformal symmetry, plus a simple ansatz for
color confinement, provides a remarkably accurate first approximation for QCD.

The essential element for the application of AdS/CFT to hadron physics is the
indication that the QCD coupling αs(Q

2) becomes large and constant in the low mo-
mentum domain Q ≤ 1 GeV/c, thus providing a window where conformal symmetry
can be applied. Solutions of the Dyson-Schwinger equations for the three-gluon and
four-gluon couplings [1, 2, 3, 4, 5, 6, 7] and phenomenological studies [8, 9, 10] of
QCD couplings based on physical observables such as τ decay [11] and the Bjorken
sum rule [12], show that the QCD β function vanishes and αs(Q

2) become constant
at small virtuality; i.e., effective charges develop an “infrared fixed point.” Recent
lattice simulations [13, 14] and nonperturbative analyses [15] have also indicated an
infrared fixed point for QCD. One can understand this physically [16]: in a confining
theory where gluons have an effective mass [17] or maximal wavelength, all vacuum
polarization corrections to the gluon self-energy decouple at long wavelength; thus
an infrared fixed point appears to be a natural consequence of confinement. Further-
more, if one considers a semi-classical approximation to QCD with massless quarks
and without particle creation or absorption, then the resulting β function is zero,
the coupling is constant, and the approximate theory is scale and conformal invari-
ant [18, 19], allowing the mathematical tools of conformal symmetry to be applied.
One can use conformal symmetry as a template, systematically correcting for its
nonzero β function as well as higher-twist effects.

One of the key consequences of conformal invariance are the dimensional counting
rules [20, 21]. The leading power fall-off of a hard exclusive process follows from the
conformal scaling of the underlying hard-scattering amplitude: TH ∼ 1/Qn−4, where
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n is the total number of fields (quarks, leptons, or gauge fields) participating in the
hard scattering. Thus the reaction is dominated by subprocesses and Fock states
involving the minimum number of interacting fields. In the case of 2→ 2 scattering
processes, this implies dσ/dt(AB → CD) = FAB→CD(t/s)/sn−2, where n = NA+NB+
NC +ND and nH is the minimum number of constituents of H. The near-constancy
of the effective QCD coupling helps explain the empirical success of dimensional
counting rules for the near-conformal power law fall-off of form factors and fixed
angle scaling [22]. For example, one sees the onset of perturbative QCD scaling
behavior even for exclusive nuclear amplitudes such as deuteron photodisintegration,
here n = 1 + 6 + 3 + 3 = 13, s11dσ/dt(γd→ pn) ∼ constant at fixed CM angle.

In the case of hard exclusive reactions [23], the virtuality of the gluons exchanged
in the underlying QCD process is typically much less than the momentum transfer
scale Q, as several gluons share the total momentum transfer. Since the coupling is
probed in the conformal window, this kinematic feature can explain why the measured
proton Dirac form factor scales as Q4F1(Q

2) ≃ const up to Q2 < 35 GeV2 [24] with
little sign of the logarithmic running of the QCD coupling. Thus conformal symmetry
can be a useful first approximant even for physical QCD. The measured deuteron form
factor also appears to follow the leading-twist QCD predictions at large momentum
transfers in the few GeV region [25, 26, 27].

Recently the Hall A collaboration at Jefferson Laboratory [28] has reported a
significant exception to the general empirical success of dimensional counting in fixed
CM angle Compton scattering dσ/dt(γp→ γp) ∼ F (θCM)/s8, instead of the predicted
1/s6 scaling. However, the hadron form factor RV (T ), which multiplies the γq → γq
amplitude is found by Hall-A to scale as 1/t2, in agreement with the PQCD and
AdS/CFT prediction. In addition the timelike two-photon process γγ → pp appears
to satisfy dimensional counting [29, 30].

Our main tool for implementing conformal symmetry will be the use of Anti-de-
Sitter (AdS5) space in five dimensions which provides a mathematical realization of
the group SO(4, 2), the group of Poincare’ plus conformal transformations. The AdS
metric is

ds2 =
R2

z2
(ηµνdx

µdxν − dz2), (1)

which is invariant under scale changes of the coordinate in the fifth dimension z → λz
and xµ → λxµ. Thus one can match scale transformations of the theory in 3+1 phys-
ical space-time to scale transformations in the fifth dimension z. The isomorphism
of the group of Poincare’ and conformal transformations SO(4, 2) to the group of
isometries of Anti-de Sitter space underlies the AdS/CFT correspondence [31] be-
tween string states defined on the 5-dimensional Anti–de Sitter (AdS) space-time and
conformal field theories in physical space-time [32, 33] . In particular, we shall show
that there is an exact correspondence between the fifth-dimensional coordinate of AdS
space z and a specific impact variable ζ which measures the separation of the quark
and gluonic constituents within the hadron in ordinary space-time. This connection
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leads to AdS/CFT predictions for the analytic form of the frame-independent light-
front wavefunctions (LFWFs) of mesons and baryons, the fundamental entities which
encode hadron properties. The LFWFs in turn predict decay constants and spin cor-
relations, as well as dynamical quantities such as form factors, structure functions,
generalized parton distributions, and exclusive scattering amplitudes.

Scale-changes in the physical 3 + 1 world can thus be represented by studying
dynamics in a mathematical fifth dimension with the AdS5 metric. Different values
of the holographic variable z determine the scale of the invariant separation between
the partonic constituents. This is illustrated in Fig. 1. Hard scattering processes
occur in the small-z ultraviolet (UV) region of AdS space. In particular, the Q→∞
zero separation limit corresponds to the z → 0 asymptotic boundary, where the QCD
Lagrangian is defined.

Figure 1: Artist’s conception of AdS/CFT. The evolution of the proton at different
length scales is mapped into the compact AdS5 dimension z. Dirichlet bag-like bound-
ary condition, Ψ(z)|z=z0 = 0, is imposed at the confinement radius z = z0 = 1/ΛQCD,
thus limiting interquark separations.

As shown by Polchinski and Strassler [34], one can simulate confinement by im-
posing boundary conditions in the holographic variable z. The infrared (IR) cut-off
at z0 = 1/ΛQCD breaks conformal invariance, allowing the introduction of the QCD
mass scale and a spectrum of particle states. In the hard wall model [34] a cut-off is
placed at a finite value z0 = 1/ΛQCD and the spectrum of states is linear in the radial
and angular momentum quantum numbers: M ∼ 2n + L. In the soft wall model
a smooth infrared cutoff is chosen to model confinement and reproduce the usual
Regge behavior M2 ∼ n + L [35]. The resulting models, although ad hoc, provide
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a simple semi-classical approximation to QCD which has both constituent counting
rule behavior at short distances and confinement at large distances.

It is thus natural, as a useful first approximation, to use the isometries of AdS
to map the local interpolating operators at the UV boundary of AdS space, into the
modes propagating inside AdS. Under conformal transformations the interpolating
operators transform according to their twist, and consequently the AdS isometries
map the twist scaling dimensions into the AdS modes [36]. A physical hadron in
four-dimensional Minkowski space has four-momentum Pµ and invariant mass given
by PµP

µ =M2. The physical states in AdS5 space are represented by normalizable
“string” modes ΦP (x, z) ∼ e−iP ·x Φ(z), with plane waves along the Poincaré coordi-
nates and a profile function Φ(z) along the holographic coordinate z, as illustrated
in Fig. 1. For small-z, Φ scales as Φ ∼ z∆, where ∆ is the conformal dimension of
the string state, the same dimension of the interpolating operator O which creates
a hadron out of the vacuum [34], 〈P |O|0〉 6= 0. The scale dependence of each string
mode Φ(x, z) is thus determined by matching its behavior at z → 0 with the scaling
dimension of the corresponding hadronic state at short distances x2 → 0. Changes
in length scale are mapped to evolution in the holographic variable z. The string
mode in z thus represents the extension of the hadron wave function into the fifth di-
mension. The eigenvalues of normalizable modes in AdS give the hadronic spectrum.
AdS modes represent also the probability amplitude for the distribution of quarks
and gluons at a given scale. There are also non-normalizable modes which are related
to external currents: they propagate into the AdS interior and couple to boundary
QCD interpolating operators [32, 33].

Following the approach described above, a limited set of operators is introduced
to construct phenomenological viable five-dimensional dual holographic models. This
simple prescription, which has been described as a “bottom-up” approach, has been
successful in obtaining general properties of scattering amplitudes of hadronic bound
states at strong coupling [34, 36, 37, 38, 39, 40], the low-lying hadron spectra [35,
41, 42, 43, 44, 45, 46, 47, 48, 49], hadron couplings and chiral symmetry break-
ing [41, 50, 51, 52, 53], quark potentials in confining backgrounds [54, 55], a descrip-
tion of weak hadron decays [56] and euclidean correlation functions [57]. Geometry
back-reaction in AdS may also be relevant to the infrared physics [58] and wall dynam-
ics [59]. The gauge theory/gravity duality also provides a convenient framework for
the description of deep inelastic scattering structure functions at small x [60, 61, 62],
a unified description of hard and soft pomeron physics [63] and gluon scattering am-
plitudes at strong coupling [64].

In the top-down approach, one introduces higher dimensional branes to the AdS5×
S5 background [65] in order to have a theory of flavor. One can obtain models with
massive quarks in the fundamental representation, compute the hadronic spectrum,
and describe chiral symmetry breaking in the context of higher dimensional brane
constructs [65, 66, 67, 68, 69]. However, a theory dual to QCD is unknown, and this
“top-down” approach is difficult to extend beyond theories exceedingly constrained
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by their symmetries [70].

As we shall discuss, there is a remarkable mapping between the AdS description
of hadrons and the Hamiltonian formulation of QCD in physical space-time quantized
on the light front. The light-front wavefunctions of bound states in QCD are relativis-
tic and frame-independent generalizations of the familiar Schrödinger wavefunctions
of atomic physics, but they are determined at fixed light-cone time τ = t+ z/c—the
“front form” advocated by Dirac [71]—rather than at fixed ordinary time t. The light-
front wavefunctions of a hadron are independent of the momentum of the hadron, and
they are thus boost invariant; Wigner transformations and Melosh rotations are not
required. The light-front formalism for gauge theories in light-cone gauge is particu-
larly useful in that there are no ghosts and one has a direct physical interpretation
of orbital angular momentum.

An important feature of light-front quantization is the fact that it provides exact
formulas to write down matrix elements as a sum of bilinear forms, which can be
mapped into their AdS/CFT counterparts in the semi-classical approximation. One
can thus obtain not only an accurate description of the hadron spectrum for light
quarks, but also a remarkably simple but realistic model of the valence wavefunctions
of mesons, baryons, and glueballs. In terms of light front coordinates x± = x0 ± x3

the AdS metric is

ds2 =
R2

z2

(
dx+dx− − dx2

⊥ − dz2
)
. (2)

At fixed light-front time x+ = 0, the metric depends only on the transverse x⊥ and
the holographic variable z. Thus we can find an exact correspondence between the
fifth-dimensional coordinate of anti-de Sitter space z and a specific impact variable ζ
in the light-front formalism. The new variable ζ measures the separation of the con-
stituents within the hadron in ordinary space-time. The amplitude Φ(z) describing
the hadronic state in AdS5 can then be precisely mapped to the light-front wave-
functions ψn/h of hadrons in physical space-time [45], thus providing a relativistic
description of hadrons in QCD at the amplitude level. This connection allows one to
compute the analytic form [45] of the light-front wavefunctions of mesons and baryons.
AdS/CFT also provides a non-perturbative derivation of dimensional counting rules
for the power-law fall-off of form factors and exclusive scattering amplitudes at large
momentum transfer. The AdS/CFT approach thus leads to a model of hadrons which
has both confinement at large distances and the conformal scaling properties which
reproduce dimensional counting rules for hard exclusive reactions.

2 Gauge/Gravity Semiclassical Correspondence

The formal statement of the duality between a gravity theory on (d+ 1)-dimensional
Anti-de Sitter AdSd+1 space and the strong coupling limit of a conformal field theory
(CFT) on the d-dimensional asymptotic boundary of AdSd+1 at z = 0 is expressed in
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terms of the d+ 1 partition function for a field Φ(x, z) propagating in the bulk

Zgrav[Φ(x, z)] = eiSeff [Φ] =

∫
D[Φ]eiS[Φ], (3)

where Seff is the effective action of the AdSd+1 theory, and the d-dimensional gener-
ating functional of the conformal field theory in presence of an external source Φ0(x),

ZCFT [Φ0(x)] = eiWCFT [Φ0] =

〈
exp

(
i

∫
ddxΦ0(x)O(x)

)〉
. (4)

The functional WCFT is the generator of connected Green’s functions of the boundary
theory and O(x) is a QCD local interpolating operator. The precise relation of the
gravity theory on AdS space to the conformal field theory at its boundary is [32, 33]

Zgrav

[
Φ(x, z)|z=0 = Φ0(x)

]
= ZCFT [Φ0] , (5)

where the partition function (3) on AdSd+1 is integrated over all possible configura-
tions Φ in the bulk which approach its boundary value Φ0. If we neglect the contribu-
tions from the non-classical configurations to the gravity partition function, then the
generator WCFT of connected Green’s functions of the four-dimensional gauge theory
(4) is precisely equal to the classical (on-shell) gravity action (3)

WCFT [φ0] = Seff

[
Φ(x, z)|z=0 = Φ0(x)

]
on−shell

, (6)

evaluated in terms of the classical solution to the bulk equation of motion. This
defines the semiclassical approximation to the conformal field theory. In the limit
z → 0, the independent solutions behave as

Φ(z, x)→ z∆ Φ+(x) + zd−∆ Φ−(x), (7)

where ∆ is the conformal dimension. The non-normalizable solution Φ− is the bound-
ary value of the bulk field Φ which couples to a QCD gauge invariant operator O in
the z → 0 asymptotic boundary, thus Φ− = Φ0. The normalizable solution Φ+(x) is
the response function and corresponds to the physical states [72]. The interpolating
operators O of the boundary conformal theory are constructed from local gauge-
invariant products of quark and gluon fields and their covariant derivatives, taken at
the same point in four-dimensional space-time in the x2 → 0 limit. Their conformal
twist-dimensions are matched to the scaling behavior of the AdS fields in the limit
z → 0 and are thus encoded into the propagation of the modes inside AdS space.

2.1 AdS Wave Equations

AdS coordinates are the Minkowski coordinates xµ and z, the holographic coordinate,
which we label xℓ = (xµ, z). The metric of the full space-time is ds2 = gℓmdx

ℓdxm,
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where gℓm = (R2/z2) ηℓm, and ηℓm has diagonal components (1,−1, · · · ,−1). Unless
stated otherwise, 5-dimensional fields are represented by capital letters such as Φ and
Ψ. Holographic fields in 4-dimensional Minkowski space are represented by φ and ψ
and constituent quark and gluon fields by q and G. We begin by writing the action for
scalar modes on AdSd+1. We consider a quadratic action of a free field propagating
in the AdS background

S[Φ] =
1

2

∫
dd+1x

√
g
[
gℓm∂ℓΦ∂mΦ− µ2Φ2

]
, (8)

where
√
g → (R/z)d+1 in the conformal limit and µ is a fifth dimensional mass.

Taking the variation of (8) we find the equation of motion

1√
g

∂

∂xℓ

(√
g gℓm ∂

∂xm
Φ
)

+ µ2Φ = 0. (9)

Integrating by parts and using the equation of motion, the bulk contribution to the
action vanishes, and one is left with a non-vanishing surface term in the ultraviolet
boundary

S =
Rd−1

2
lim
z→0

∫
ddx

1

zd−1
Φ∂zΦ, (10)

which can be identified with the boundary functional WCFT . Substituting the leading
dependence (7) of Φ near z = 0 in the ultraviolet surface action (10) and using the
functional relation δWCFT/δΦ0 = δSeff/δΦ0, it follows that Φ+(x) is related to the
expectation values of O in the presence of the source Φ0 [72]: 〈0|O(x)|0〉Φ0

∼ Φ+(x).
The exact relation depends on the normalization of the fields used [73]. The field Φ+

thus acts as a classical field, and it is the boundary limit of the normalizable string
solution which propagates in the bulk.

Factoring out the dependence of the hadronic modes along the Poincaré coordi-
nates xµ, ΦP (x, z) = e−iP ·xΦ(z) in (9), we find the effective AdS wave equation for
the scalar string mode Φ(z)

[
z2∂2

z − (d− 1)z ∂z + z2M2 − (µR)2
]
Φ(z) = 0. (11)

The eigenvalues of (11) are the hadronic invariant mass states PµP
µ = M2 and

the fifth-dimensional mass is related to the conformal dimension (µR)2 = ∆(∆− 4).
Stable solutions satisfy the condition (µR)2 ≥ −d2/4, according to the Breitenlohner-
Freedman bound [74].

Higher spin-S bosonic modes in AdS are described by a set of S+1 coupled
differential equations [75]. Each hadronic state of integer spin S, S ≤ 2, is dual
to a normalizable string mode ΦP (x, z)S

µ1µ2···µS
= ǫµ1µ2···µS

e−iP ·x ΦS(z), with four-
momentum Pµ and spin polarization indices along the 3+1 physical coordinates. For
string modes with all the polarization indices along the Poncaré coordinates, the cou-
pled differential wave equations for a spin-S bosonic mode reduce to the homogeneous
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equation [75]
[
z2∂2

z − (d−1−2S)z ∂z + z2M2− (µR)2
]
ΦS(z) = 0, (12)

with (µR)2 = (∆− S)(∆− d + S). We expect to avoid large anomalous dimensions
associated with S > 2 since modes with S ≤ 2 do not couple to stringy excitations.

3 The Holographic Light-Front Hamiltonian and

Schrödinger Equation

We shall show in Sect. 5 how the string amplitude Φ(z) can be mapped to the
light-front wave functions of hadrons in physical space-time [45]. In fact, we find an
exact correspondence between the holographic variable z and an impact variable ζ
which measures the transverse separation of the constituents within a hadron, we can
identify ζ = z. The mapping of z from AdS space to ζ in the LF space allows the
equations of motion in AdS space to be recast in the form of a light-front Hamiltonian
equation [76]

HLF |φ〉 =M2 |φ〉 , (13)

a remarkable result which maps AdS/CFT solutions to light-front equations in phys-
ical 3+1 space-time. By substituting φ(ζ) = ζ−3/2Φ(ζ), in the AdS scalar wave
equation (11) for d = 4, we find an effective Schrödinger equation as a function of the
weighted impact variable ζ

[
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (14)

with the conformal potential V (ζ)→ −(1− 4L2)/4ζ2, an effective two-particle light-
front radial equation for mesons [16, 45]. Its eigenmodes determine the hadronic
mass spectrum. We have written above (µR)2 = −4 + L2. The holographic hadronic
light-front wave functions φ(ζ) = 〈ζ|φ〉 are normalized according to

〈φ|φ〉 =

∫
dζ |〈ζ|φ〉|2 = 1, (15)

and represent the probability amplitude to find n-partons at transverse impact separa-
tion ζ = z. Its eigenvalues are set by the boundary conditions at φ(z = 1/ΛQCD) = 0
and are given in terms of the roots of Bessel functions: ML,k = βL,kΛQCD. The
normalizable modes are

φL,k(ζ) =

√
2ΛQCD

J1+L(βL,k)

√
ζJL(ζβL,kΛQCD) θ

(
ζ ≤ Λ−1

QCD

)
. (16)

The lowest stable state L = 0 is determined by the Breitenlohner-Freedman
bound [74]. Higher excitations are matched to the small z asymptotic behavior of
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each string mode to the corresponding conformal dimension of the boundary operators
of each hadronic state. The effective wave equation (14) is a relativistic light-front
equation defined at x+ = 0. The AdS metric ds2 (2) is invariant if x2

⊥ → λ2x2
⊥ and

z → λz at equal light-front time x+ = 0. The Casimir operator for the rotation group
SO(2) in the transverse light-front plane is L2. This shows the natural holographic
connection to the light front.

For higher spin bosonic modes we can also recast the wave equation AdS (12)
into its light-front form (13). Using the substitution φS(ζ) = ζ−3/2+SΦS(ζ), ζ = z,
we find a LF Schrödinger equation identical to (14) with φ → φS, provided that
(µR)2 = −(2−S)2+ν2. Stable solutions satisfy a generalized Breitenlohner-Freedman
bound (µR)2 ≥ −(d−2S)2/4, and thus the lowest stable state has scaling dimensions
∆ = 2, independent of S. The fundamental LF equation of AdS/CFT has the
appearance of a Schrödinger equation, but it is relativistic, covariant, and analytically
tractable.

The pseudoscalar meson interpolating operator O2+L = qγ5D{ℓ1 · · ·Dℓm}q, written
in terms of the symmetrized product of covariant derivatives D with total internal
space-time orbital momentum L =

∑m
i=1 ℓi, is a twist-two, dimension 3 + L operator

with scaling behavior determined by its twist-dimension 2 + L. Likewise the vector-
meson operator Oµ

2+L = qγµD{ℓ1 · · ·Dℓm}q has scaling dimension 2 + L. The scaling
behavior of the scalar and vector AdS modes is precisely the scaling required to
match the scaling dimension of the local pseudoscalar and vector-meson interpolating
operators. The light meson spectrum is compared in Figure 2 with the experimental
values.
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Figure 2: Light meson orbital states for ΛQCD = 0.32 GeV: (a) vector mesons and (b)
pseudoscalar mesons. The data are from [77].

3.1 Integrability of AdS/CFT Equations

The integrability methods of [78] find a remarkable application in the AdS/CFT
correspondence. Integrability follows if the equations describing a physical model can
be factorized in terms of linear operators. These ladder operators generate all the
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eigenfunctions once the lowest mass eigenfunction is known. In holographic QCD,
the conformally invariant 3 + 1 light-front differential equations can be expressed
in terms of ladder operators and their solutions can then be expressed in terms of
analytical functions. In the conformal limit the ladder algebra for bosonic (B) or
fermionic (F ) modes is given in terms of the operator (ΓB = 1, ΓF = γ5)

ΠB,F
ν (ζ) = −i

(
d

dζ
− ν + 1

2

ζ
ΓB,F

)
, (17)

and its adjoint

ΠB,F
ν (ζ)† = −i

(
d

dζ
+
ν + 1

2

ζ
ΓB,F

)
, (18)

with commutation relations

[
ΠB,F

ν (ζ),ΠB,F
ν (ζ)†

]
=

2ν + 1

ζ2
ΓB,F . (19)

For bosonic modes the Hamiltonian is written as a bilinear form: HB,F
LC = ΠB,F

ν
†
ΠB,F

ν .
For ν2 ≥ 0 the Hamiltonian is positive definite

〈φ |Hν
LC |φ〉 =

∫
dζ |Πνφ(z)|2 ≥ 0, (20)

and its eigenvalues are positive: M2 ≥ 0. For ν2 < 0 the Hamiltonian is not bounded
from below. The critical value of the potential corresponds to ν = 0 with potential
Vcrit(ζ) = 1/4ζ2. LF quantum-mechanical stability conditions are thus equivalent
to the stability conditions which follows from the Breitenlohner-Freedman stability
bound [74]. Higher orbital states are constructed from the L-th application of the
raising operator a† = −iΠB on the ground state |L〉 ∼ (a†)L|0〉. In the ζ light-front
coordinate representation

〈ζ|L〉 ∼
√
ζ (−ζ)L

(
1

ζ

d

dζ

)L

J0(ζM) ∼
√
ζJL (ζM) . (21)

In the fermionic case the eigenmodes also satisfy a first order LF Dirac equation as
will be shown in Sect. 4.

3.2 Soft-Wall Holographic Model

The predicted mass spectrum in the truncated space hard-wall (HW) model is linear
M ∝ L+2n at high orbital angular momentum L, in contrast to the quadratic depen-
dence M2 ∝ L+ n in the usual Regge parameterization. It has been shown recently
that by choosing a specific profile for a non-constant dilaton, the usual Regge depen-
dence can be obtained [35]. This procedure retains conformal AdS metrics (1) while
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introducing a smooth cutoff which depends on the profile of a dilaton background
field ϕ

S =

∫
d4x dz

√
g e−ϕ(z)L, (22)

where ϕ is a function of the holographic coordinate z which vanishes in the ultraviolet
limit z → 0. The IR hard-wall or truncated space holographic model corresponds to
a constant dilaton field ϕ(z) =ϕ0 in the confining region, z ≤ 1/ΛQCD, and to very
large values elsewhere: ϕ(z) → ∞ for z > 1/ΛQCD. The introduction of a soft
cutoff avoids the ambiguities in the choice of boundary conditions at the infrared
wall. A convenient choice [35] for the background field with usual Regge behavior
is ϕ(z) = κ2z2. The resulting wave equations are equivalent to the radial equation
of a two-dimensional oscillator, previously found in the context of mode propagation
on AdS5 × S5, in the light-cone formulation of Type II supergravity [79]. Also,
equivalent results follow from the introduction of a gaussian warp factor in the AdS
metric for the particular case of massless vector modes propagating in the distorted
metric [80]. A different approach to the soft-wall (SW) consists in the non-conformal
extension of the algebraic expressions found in the previous section to obtain directly
the corresponding holographic LF wave equations. This method is particularly useful
to extend the non-conformal results to the fermionic sector where the corresponding
linear wave equations become exactly solvable. The extended generators are given in
terms of the matrix-valued operator Π and its adjoint Π† (ΓB = 1, ΓF = γ5)

ΠB,F
ν (ζ) = −i

(
d

dζ
− ν + 1

2

ζ
ΓB,F − κ2ζ ΓB,F

)
, (23)

ΠB,F
ν (ζ)† = −i

(
d

dζ
+
ν + 1

2

ζ
ΓB,F + κ2ζ ΓB,F

)
, (24)

with commutation relations

[
ΠB,F

ν (ζ),ΠB,F
ν (ζ)†

]
=

(
2ν + 1

ζ2
− 2κ2

)
ΓB,F . (25)

An account of the extended algebraic holographic model and a possible supersymmet-
ric connection between the bosonic and fermionic operators used in the holographic
construction will be described elsewhere.

4 Baryonic Spectra in AdS/QCD

The holographic model based on truncated AdS space can be used to obtain the
hadronic spectrum of light quark qq, qqq and gg bound states. Specific hadrons are
identified by the correspondence of the AdS amplitude with the twist dimension of
the interpolating operator for the hadron’s valence Fock state, including its orbital
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angular momentum excitations. Bosonic modes with conformal dimension 2 + L are
dual to the interpolating operator Oτ+L with τ = 2. For fermionic modes τ = 3.

As an example, we will outline here the analysis of the baryon spectrum in
AdS/CFT. The action for massive fermionic modes on AdSd+1 is

S[Ψ,Ψ] =

∫
dd+1x

√
gΨ

(
iΓℓDℓ − µ

)
Ψ, (26)

with the equation of motion
[
i

(
zηℓmΓℓ∂m +

d

2
Γz

)
+ µR

]
Ψ(xℓ) = 0. (27)

Upon the substitution Ψ(x, z) = e−iP ·xz2ψ(z), z → ζ, we find the light-front Dirac
equation (

αΠF(ζ)−M
)
ψ(ζ) = 0, (28)

where the generator ΠF is given by (17) and iα =

(
0 I
−I 0

)
in the Weyl representa-

tion. The solution is

ψ(ζ) = C
√
ζ [JL+1 (ζM) u+ + JL+2 (zM) u−] , (29)

with γ5u± = u±. A discrete four-dimensional spectrum follows when we impose the
boundary condition ψ±(ζ = 1/ΛQCD) = 0: M+

α,k = βα,kΛQCD, M−
α,k = βα+1,kΛQCD,

with a scale-independent mass ratio [44].
Figure 3(a) shows the predicted orbital spectrum of the nucleon states and Fig.

3(b) the ∆ orbital resonances. The spin-3/2 trajectories are determined from the cor-
responding Rarita-Schwinger equation. The solution of the spin-3/2 for polarization
along Minkowski coordinates, ψµ, is identical to the spin-1/2 solution. The data for
the baryon spectra are from [77]. The internal parity of states is determined from the
SU(6) spin-flavor symmetry. Since only one parameter, the QCD mass scale ΛQCD

is introduced, the agreement with the pattern of physical states is remarkable. In
particular, the ratio of ∆ to nucleon trajectories is determined by the ratio of zeros
of Bessel functions.

We can solve the LF Dirac equation (28) with the non-conformal extended gen-
erator ΠF given by (23). The solutions to the Dirac equation are

ψ+(ζ) ∼ z
1
2
+νe−κ2ζ2/2Lν

n(κ2ζ2), (30)

ψ−(ζ) ∼ z
3
2
+νe−κ2ζ2/2Lν+1

n (κ2ζ2). (31)

with eigenvaluesM2 = 4κ2(n+ ν+1). Comparing with usual Dirac equation in AdS
space we find [

i

(
zηℓmΓℓ∂m +

d

2
Γz

)
+ µR + V (z)

]
Ψ(xℓ) = 0. (32)

with V (z) = κ2z. Thus for fermions the “soft-wall” corresponds to fermion modes
propagating in AdS conformal metrics in presence of a linear confining potential.
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Figure 3: Predictions for the light baryon orbital spectrum for ΛQCD = 0.25 GeV.
The 56 trajectory corresponds to L even P = +, and the 70 to L odd P = − states.

5 Hadronic Form Factors in AdS/QCD

The AdS/QCD correspondence is particularly relevant for the description of hadronic
form factors, since it incorporates the connection between the twist of the hadron to
the fall-off of its current matrix elements, as well as essential aspects of vector me-
son dominance. It also provides a convenient framework for analytically continuing
the space-like results to the time-like region. Recent applications to the electromag-
netic [81, 82, 83, 84, 85, 86, 87, 88] and gravitational [89] form factors of hadrons have
followed from the original work described in [60, 90].

5.1 Meson Form Factors

In AdS/CFT, the hadronic matrix element for the electromagnetic current has the
form of a convolution of the string modes for the initial and final hadrons with the
external electromagnetic source which propagates inside AdS. We discuss first the
truncated space or hard wall [34] holographic model, where quark and gluons as
well as the external electromagnetic current propagate freely into the AdS interior
according to the AdS metric. Assuming minimal coupling the form factor has the
form [60, 90]

ig5

∫
d4x dz

√
g Aℓ(x, z)Φ∗

P ′(x, z)
←→
∂ ℓΦP (x, z), (33)

where g5 is a five-dimensional effective coupling constant and ΦP (x, z) is a normal-
izable mode representing a hadronic state, ΦP (x, z) ∼ e−iP ·xΦ(z), with hadronic
invariant mass given by PµP

µ =M2. We consider the propagation inside AdS space
of an electromagnetic probe polarized along Minkowski coordinates (Q2 = −q2 > 0)
A(x, z)µ = ǫµe

−iQ·xJ(Q2, z), Az = 0, where J(Q2, z) has the value 1 at zero mo-
mentum transfer, since we are normalizing the bulk solutions to the total charge
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operator, and as boundary limit the external current Aµ(x, z → 0) = ǫµe
−iQ·x. Thus

J(Q2 = 0, z) = J(Q2, z = 0) = 1.
The propagation of the external current inside AdS space is described by the wave

equation [
z2∂2

z − z ∂z − z2Q2
]
J(Q2, z) = 0, (34)

with the solution J(Q2, z) = zQK1(zQ). Substituting the normalizable mode Φ(x, z)
in (33) and extracting an overall delta function from momentum conservation at the
vertex, we find the matrix element 〈P ′ |Jµ(0)|P 〉 = 2(P + P ′)µF (Q2), with

F (Q2) = R3

∫
dz

z3
Φ(z)J(Q2, z)Φ(z). (35)

The form factor in AdS is thus represented as the overlap of the normalizable modes
dual to the incoming and outgoing hadrons, ΦP and ΦP ′ , with the non-normalizable
mode, J(Q2, z), dual to the external source [60]. Since Kn(x) ∼

√
π/2x e−x for

large x, it follows that the external electromagnetic field is suppressed inside the
AdS cavity for large Q. At small z the string modes scale as Φ ∼ z∆. At large
enough Q, the important contribution to (35) is from the region near z ∼ 1/Q:

F (Q2) → (1/Q2)
∆−1

, and the ultraviolet point-like behavior [91] responsible for the
power law scaling [20, 21] is recovered. This is a remarkable consequence of truncating
AdS space since we are describing the coupling of an electromagnetic current to an
extended mode, and instead of soft collision amplitudes characteristic of strings, hard
point-like ultraviolet behavior is found [34].

The form factor in AdS space in presence of the dilaton background ϕ = κ2z2 has
the additional term e−κ2z2

in the metric

F (Q2) = R3

∫
dz

z3
e−κ2z2

Φ(z)Jκ(Q
2, z)Φ(z). (36)

Since the non-normalizable modes also couple to the dilaton field, we must study the
solutions of the modified wave equation describing the propagation in AdS space of
an electromagnetic probe. The solution is [84, 85]

Jκ(Q
2, z) = Γ

(
1 +

Q2

4κ2

)
U

(
Q2

4κ2
, 0, κ2z2

)
, (37)

where U(a, b, c) is the confluent hypergeometric function with the integral represen-
tation Γ(a)U(a, b, z) =

∫∞

0
e−ztta−1(1 + t)b−a−1dt. In the large Q2 limit, Q2 ≫ 4κ2 we

find that Jκ(Q, z) → zQK1(zQ). Thus, for large transverse momentum the current
decouples from the dilaton background.

We can compute the pion form factor from the AdS expressions (35) and (36) for
the hadronic string modes Φπ in the hard-wall (HW)

ΦHW
π (z) =

√
2ΛQCD

R3/2J1(β0,1)
z2J0 (zβ0,1ΛQCD) , (38)
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and soft-wall (SW) model

ΦSW
π (z) =

√
2κ

R3/2
z2, (39)

respectively. For the soft wall model the results for form factors can be expressed
analytically. For integer twist τ = n the form factor is expressed as a N − 1 product
of poles, corresponding to the first n−1 states along the vector meson trajectory [85].
Since the pion mode couples to a twist-two boundary interpolating operator which
creates a two-component hadronic bound state, the form factor is given in the SW
model by a simple monopole form. In Fig. 4, we plot the product Q2Fπ(Q2) for the
soft and hard-wall holographic models. When the results for the pion form factor are
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Q
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 (

Q
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Figure 4: Space-like scaling behavior for Q2Fπ(Q2) as a function of Q2 = −q2. The
continuous line is the prediction of the soft-wall model for κ = 0.375 GeV. The dashed
line is the prediction of the hard-model for ΛQCD = 0.22 GeV. The black triangles are
from the data compilation of Baldini et al. [92], and the red boxes and cobalt green
diamonds are JLAB data [93] .

analytically continued to the time-like region, q2 → −q2 we obtain the results shown
in Figure 5 for log (|Fπ(q2)|) in the SW model. The monopole form of the SW model
exhibits a pole at the ρ mass and reproduces well the ρ peak with Mρ = 4κ2 = 750
MeV. In the strongly coupled semiclassical gauge/gravity limit hadrons have zero
widths and are stable. The form factor accounts for the scaling behavior in the
space-like region, but it does not give rise to the additional structure found in the
time-like region since the ρ pole saturates 100% of the monopole form.
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Figure 5: Space and time-like behavior of the pion form factor log (|Fπ(q2)|) as a
function of q2 for κ = 0.375 GeV in the soft-wall model. The black (triangle) is
from the data compilation of Baldini et al. [92], and the red (box) and cobalt green
diamonds are JLAB data [93].

5.2 The Nucleon Dirac Form Factors

As an example of a twist τ = 3 fall-off we compute the spin non-flip nucleon form
factor in the soft wall model. Consider the spin non-flip form factors

F+(Q2) = g+R
4

∫
dz

z4
e−κ2z2

Jκ(Q, z)|Ψ+(z)|2, (40)

F−(Q2) = g−R
4

∫
dz

z4
e−κ2z2

Jκ(Q, z)|Ψ−(z)|2, (41)

where the effective charges g+ and g− are determined from the spin-flavor structure of
the theory. We choose the struck quark to have Sz = +1/2. The two AdS solutions
Ψ+ and Ψ− correspond to nucleons with total angular momentum Jz = +1/2 and
−1/2. For the SU(6) spin-flavor symmetry

F p
1 (Q2) = R4

∫
dz

z4
e−κ2z2

Jκ(Q, z)|Ψ+(ζ)|2, (42)

F n
1 (Q2) = −1

3
R4

∫
dz

z4
e−κ2z2

Jκ(Q, z)
[
|Ψ+(z)|2 − |Ψ−(z)|2

]
, (43)

where F p
1 (0) = 1, F n

1 (0) = 0. The bulk-to-boundary propagator Jκ(Q, z) is the
solution (37) of the AdS wave equation for the external electromagnetic current, and
the plus and minus components of the twist 3 nucleon mode in the SW model are

Ψ+(z)=

√
2κ2

R2
z7/2, Ψ−(z)=

κ3

R2
z9/2. (44)
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For the SW model the results for Q4F p
1 (Q2) and Q4F n

1 (Q2) follow from the analytic
form for the form factors for any τ given in Appendix D of reference [85] and are
shown in Figure 6.
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Figure 6: Predictions forQ4F p
1 (Q2) andQ4F n

1 (Q2) in the soft wall model for κ = 0.424
GeV. The data compilation is from Diehl [94].

6 The Light-Front Fock Representation

The light-front expansion of any hadronic system is constructed by quantizing quan-
tum chromodynamics at fixed light-cone time [71] τ = t+z/c. In terms of the hadron
four-momentum P = (P+, P−,P⊥), P± = P 0 ± P 3, the light-cone Lorentz invariant
Hamiltonian for the composite system, HQCD

LF = P−P+ − P2
⊥, has eigenvalues given

in terms of the eigenmass M squared corresponding to the mass spectrum of the
color-singlet states in QCD [76].

The hadron wavefunction is an eigenstate of the total momentum P+ and P⊥ and
the longitudinal spin projection Sz, and is normalized according to

〈
ψh(P

+,P⊥, Sz)
∣∣ψh(P

′+,P′
⊥, S

′
z)
〉

= 2P+(2π)3 δSz ,S′
z
δ
(
P+−P ′+

)
δ(2)
(
P⊥−P′

⊥

)
. (45)

The momentum generators P+ and P⊥ are kinematical; i.e., they are independent
of the interactions. The LF time evolution operator P− = i d

dτ
can be derived di-

rectly from the QCD Lagrangian in the light-cone gauge A+ = 0. In principle, the
complete set of bound states and scattering eigensolutions of HLF can be obtained
by solving the light-front Heisenberg equation HLF |ψh〉 = M2

h |ψh〉, where |ψh〉
is an expansion in multi-particle Fock eigenstates { |n〉} of the free LF Hamilto-
nian: |ψh〉 =

∑
n ψn/h|ψh〉. The LF Heisenberg equation has in fact been solved for

QCD(1+1) and a number of other theories using the discretized light-cone quanti-
zation method [95]. The light-cone gauge has the advantage that all gluon degrees
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of freedom have physical polarization and positive metric. In addition, orbital an-
gular momentum has a simple physical interpretation in this representation. The
light-front wavefunctions (LFWFs) ψn/h provide a frame-independent representation
of a hadron which relates its quark and gluon degrees of freedom to their asymptotic
hadronic state.

Each hadronic eigenstate |ψh〉 is expanded in a Fock-state complete basis of non-
interacting n-particle states |n〉 with an infinite number of components

∣∣ψh(P
+,P⊥, Sz)

〉
=
∑

n,λi

∫ [
dxi

][
d2k⊥i

]
ψn/h(xi,k⊥i, λi)

1√
xi

∣∣n : xiP
+, xiP⊥+k⊥i, λi

〉
,

(46)
where the sum begins with the valence state; e.g., n ≥ 2 for mesons. The coefficients
of the Fock expansion

ψn/h(xi,k⊥i, λi) =
〈
n : xi,k⊥i, λi

∣∣ψh

〉
, (47)

are independent of the total momentum P+ and P⊥ of the hadron and depend only on
the relative partonic coordinates, the longitudinal momentum fraction xi = k+

i /P
+,

the relative transverse momentum k⊥i, and λi, the projection of the constituent’s
spin along the z direction. Thus, given the Fock-projection (47), the wavefunction of
a hadron is determined in any frame. The amplitudes ψn/h represent the probability
amplitudes to find on-mass-shell constituents i with longitudinal momentum xiP

+,
transverse momentum xiP⊥ + k⊥i, helicity λi and invariant mass

M2
n =

n∑

i=1

kµ
i kiµ =

n∑

i=1

k2
⊥i +m2

i

xi

, (48)

in the hadron h. Momentum conservation requires
∑n

i=1 xi = 1 and
∑n

i=1 k⊥i = 0. In

addition, each light front wavefunction ψn/h(xi, ~k⊥i, λi) obeys the angular momentum

sum rule [96] Jz =
∑n

i=1 S
z
i +

∑n−1
i=1 L

z
i , where Sz

i = λi and the n− 1 orbital angular

momenta have the operator form Lz
i = −i

(
∂

∂kx
i
ky

i − ∂
∂ky

i

kx
i

)
. It should be emphasized

that the assignment of quark and gluon spin and orbital angular momentum of a
hadron is a gauge-dependent concept. The LF framework in light-cone gauge A+ = 0
provides a physical definition since there are no gauge field ghosts and the gluon has
spin-projection Jz = ±1; moreover, it is frame-independent.

The LFWFs are normalized according to

∑

n

∫ [
dxi

] [
d2k⊥i

] ∣∣ψn/h(xi,k⊥i)
∣∣2 = 1, (49)

where the measure of the constituents phase-space momentum integration is

∫ [
dxi

]
≡

n∏

i=1

∫
dxi δ

(
1−

n∑

j=1

xj

)
, (50)
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∫ [
d2k⊥i

]
≡

n∏

i=1

∫
d2k⊥i

2(2π)3
(16π3) δ(2)

( n∑

j=1

k⊥j

)
, (51)

for the normalization given by (45). The spin indices have been suppressed.
Given the light-front wavefunctions ψn/h, one can compute a large range of hadron

observables. For example, the valence and sea quark and gluon distributions which
are measured in deep inelastic lepton scattering are defined from the squares of the
LFWFs summed over all Fock states n. Form factors, exclusive weak transition ampli-
tudes [97] such as B → ℓνπ, and the generalized parton distributions [98] measured in
deeply virtual Compton scattering are (assuming the “handbag” approximation) over-
laps of the initial and final LFWFs with n = n′ and n = n′ + 2. In the case of deeply
virtual meson production such as γ∗p → πX and γ∗p → ρp, the meson enters the
amplitude directly through its LFWF. In inclusive reactions such as electron-positron
annihilation to jets, the hadronic light-front wavefunctions are the amplitudes which
control the coalescence of comoving quarks and gluons into hadrons. Thus one can
study hadronization at the amplitude level. Light-front wavefunctions also control
higher-twist contributions to inclusive and semi-inclusive reactions [99, 100].

The gauge-invariant distribution amplitude φH(xi, Q) defined from the integral
over the transverse momenta k2

⊥i ≤ Q2 of the valence (smallest n) Fock state pro-
vides a fundamental measure of the hadron at the amplitude level [101, 102]; they are
the nonperturbative input to the factorized form of hard exclusive amplitudes and
exclusive heavy hadron decays in perturbative QCD. The resulting distributions obey
the DGLAP and ERBL evolution equations as a function of the maximal invariant
mass, thus providing a physical factorization scheme [23]. In each case, the derived
quantities satisfy the appropriate operator product expansions, sum rules, and evo-
lution equations. However, at large x where the struck quark is far-off shell, DGLAP
evolution is quenched [103], so that the fall-off of the DIS cross sections in Q2 satisfies
inclusive-exclusive duality at fixed W 2.

The holographic mapping of hadronic LFWFs to AdS string modes is most trans-
parent when one uses the impact parameter space representation. The total position
coordinate of a hadron or its transverse center of momentum R⊥, is defined in terms
of the energy momentum tensor T µν

R⊥ =
1

P+

∫
dx−

∫
d2x⊥ T

++ x⊥. (52)

In terms of partonic transverse coordinates xir⊥i = xiR⊥+b⊥i, where the r⊥i are
the physical transverse position coordinates and b⊥i frame independent internal co-
ordinates, conjugate to the relative coordinates k⊥i. Thus,

∑
i b⊥i = 0 and R⊥ =∑

i xir⊥i. The LFWFs ψn(xj,k⊥j) can be expanded in terms of the n−1 independent
transverse coordinates b⊥j, j = 1, 2, . . . , n− 1

ψn(xj,k⊥j) = (4π)(n−1)/2 exp
(
i

n−1∑

j=1

b⊥j · k⊥j

)
ψ̃n(xj,b⊥j). (53)
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The normalization is defined by

∑

n

n−1∏

j=1

∫
dxjd

2b⊥j

∣∣∣ψ̃n(xj,b⊥j)
∣∣∣
2

= 1. (54)

6.1 The Form Factor in Light-Front QCD

One of the important advantages of the light-front formalism is that current matrix
elements can be represented without approximation as overlaps of light-front wave-
functions. In the case of the elastic space-like form factors, the matrix element of
the J+ current only couples Fock states with the same number of constituents. It is
convenient to choose the light-front frame coordinates

P = (P+, P−,P⊥) =
(
P+,

M2

P+
,~0⊥

)
, (55)

q = (q+, q−,q⊥) =
(
0,
−q2

P+
,q⊥

)
,

where q2 = −Q2 = −2P · q = −q2
⊥ is the space-like four momentum squared trans-

ferred to the composite system. The electromagnetic form factor of a meson is de-
fined in terms of the hadronic amplitude of the electromagnetic current evaluated
at light-cone time x+ = 0: 〈P ′ |J+(0)|P 〉 = 2 (P + P ′)+ F (Q2), where P ′ = P + q
and F (0) = 1. If the charged parton n is the active constituent struck by the cur-
rent, and the quarks i = 1, 2, . . . , n − 1 are spectators, then the Drell-Yan West
formula [104, 105, 106] in impact space is

F (q2) =
∑

n

n−1∏

j=1

∫
dxjd

2b⊥j exp
(
iq⊥ ·

n−1∑

j=1

xjb⊥j

) ∣∣∣ψ̃n(xj,b⊥j)
∣∣∣
2

, (56)

corresponding to a change of transverse momenta xjq⊥ for each of the n−1 spectators.
This is a convenient form for comparison with AdS results, since the form factor is
expressed in terms of the product of light-front wave functions with identical variables.

7 Light-Front /AdS Duality

We can now establish an explicit connection between the AdS/CFT and the LF
formulae. To make more transparent the holographic connection between AdS5 and
the conformal quantum field theory defined at its asymptotic z → 0 boundary, it is
convenient to use the AdS metric (2) in terms of light front coordinates x± = x0±x3.
It is also useful to express (56) in terms of an effective single particle transverse
distribution ρ̃ [45]

F (q2) = 2π

∫ 1

0

dx
(1− x)
x

∫
ζdζ J0

(
ζq

√
1− x
x

)
ρ̃(x, ζ), (57)
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where we have introduced the variable

ζ =

√
x

1− x
∣∣∣

n−1∑

j=1

xjb⊥j

∣∣∣, (58)

representing the x-weighted transverse impact coordinate of the spectator system.
On the other hand the form factor in AdS space (35) is represented as the overlap in
the fifth dimension coordinate z of the normalizable modes dual to the incoming and
outgoing hadrons, ΦP and ΦP ′ , with the non-normalizable source mode, J(Q, z) =
zQK1(zQ). If we compare (57) in impact space with the expression for the form
factor in AdS space (35) for arbitrary values of Q using the identity

∫ 1

0

dx J0

(
ζQ

√
1− x
x

)
= ζQK1(ζQ), (59)

then we can identify the spectator density function appearing in the light-front for-
malism with the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
|Φ(ζ)|2
ζ4

. (60)

Equation (60) gives a precise relation between string modes Φ(ζ) in AdS5 and the
QCD transverse charge density ρ̃(x, ζ). The variable ζ represents a measure of the
transverse separation between point-like constituents, and it is also the holographic
variable z characterizing the string scale in AdS. Consequently the AdS string mode
Φ(z) can be regarded as the probability amplitude to find n partons at transverse
impact separation ζ = z. Furthermore, its eigenmodes determine the hadronic spec-
trum [45]. In the case of a two-parton constituent bound state, the correspondence

between the string amplitude Φ(z) and the light-front wave function ψ̃(x,b) is ex-
pressed in closed form [45]

∣∣∣ψ̃(x, ζ)
∣∣∣
2

=
R3

2π
x(1− x) |Φ(ζ)|2

ζ4
, (61)

where ζ2 =x(1− x)b2
⊥. Here b⊥ is the impact separation conjugate to k⊥.

Hadron form factors can thus be predicted from the overlap integral of string
modes propagating in AdS space with the boundary electromagnetic source which
probes the AdS interior, or equivalently by using the Drell-Yan-West formula in physi-
cal space-time. If both quantities represent the same physical observable for any value
of the transfer momentum q2, an exact correspondence can be established between
the string modes Φ in fifth-dimensional AdS space and the light-front wavefunctions
of hadrons ψn/h in 3+1 spacetime [45]. One can thus use holography to map the func-
tional from of the string modes Φ(z) in AdS space to the light front wavefunctions in
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physical space time by identifying z with the transverse variable ζ =
√
x/(1− x)|~η⊥|.

Here ~η⊥ =
∑n−1

i=1 xib⊥i is the weighted impact separation, summed over the impact
separation of the spectator constituents. The leading large-Q2 behavior of form fac-
tors in AdS/QCD arises from small ζ ∼ 1/Q, corresponding to small transverse
separation. The form factor of a hadron at large Q2 thus arises from the small z kine-
matic domain in AdS space. According to the AdS/CFT duality, this corresponds to
small distances xµxµ ∼ 1/Q2 in physical space-time, the domain where the current
matrix elements are controlled by the conformal twist-dimension, ∆, of the hadron’s
interpolating operator. In the case of the front form, where x+ = 0, this corresponds
to small transverse separation xµxµ = −x2

⊥.
As we have shown, the eigenvalues of the effective light-front equation provide a

good description of the meson and baryon spectra for light quarks, and its eigensolu-
tions provide a remarkably simple but realistic model of their valence wavefunctions.
The resulting normalized light-front wavefunctions for the truncated space model are

ψ̃L,k(x, ζ) = BL,k

√
x(1− x)JL (ζβL,kΛQCD) θ

(
ζ ≤ Λ−1

QCD

)
, (62)

where BL,k = π− 1
2 ΛQCD/J1+L(βL,k). The results display confinement at large inter-

quark separation and conformal symmetry at short distances, thus reproducing di-
mensional counting rules for hard exclusive processes. We have also derived analogous
equations for baryons composed of massless quarks using a LF Dirac matrix represen-
tation for the baryon system. Most important, the eigensolutions of the AdS/CFT
equation can be mapped to light-front equations of the hadrons in physical space-
time, thus providing an elegant description of the light hadrons at the amplitude
level. The meson LFWF is illustrated in Fig.7.
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Figure 7: AdS/QCD Predictions for the light-front wavefunctions of a meson in the
hard-wall model: (a) n = 0, L = 0, (b) n = 0, L = 1, (c) n = 1, L = 0.

7.1 Light-Front Mapping in the Soft-Wall Model

As discussed above, in the soft-wall model the current decouples from the dilaton field
at large Q2 and we recover our previous scaling results for the ultraviolet behavior of
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matrix elements. To obtain the corresponding basis set of LFWFs we compare the
DYW expression of the form factor (57) with the AdS form factor (36) for large values
of Q. Thus, in the large Q limit we can identify the light-front spectator density with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x e
−κ2ζ2 |Φ(ζ)|2

ζ4
. (63)

When summed over all Fock states the Drell-Yan-West formula gives an exact
result. The formula describes the coupling of the free electromagnetic current to the
elementary constituents in the interaction representation. In the presence of a dila-
ton field in AdS space, or in the case where the electromagnetic probe propagates in
modified confining AdS metrics, the electromagnetic AdS mode is no longer dual to a
the free quark current, but dual to a dressed current, i.e., a hadronic electromagnetic
current including virtual qq pairs and thus confined. Consequently, at finite values of
the momentum transfer Q2 our simple identification discussed above has to be rein-
terpreted since we are comparing states in different representations: the interaction
representation in light-cone QCD versus the Heisenberg representation in AdS. How-
ever both quantities should represent the same observables. We thus expect that the
modified mapping corresponds to the presence of higher Fock states in the hadron.

8 Holographic Light-Front Wave Functions and Dis-

tribution Amplitudes of Flavored Mesons

As we have shown above, holographic light-front wave functions (LFWFs) of hadronic
bound states follow from the mapping to physical space-time of string modes Φ(z) in
AdS5 space [45]. For a two-parton bound state the mapping connects the transverse
impact variable ζ, the invariant separation between point-like constituents, identified
with the holographic variable z, ζ2 = z2 = x(1 − x)b2

⊥, where b⊥ is the internal
transverse position coordinate and x is the quark momentum fraction. In the soft-
wall holographic model, the pion LFWF in impact space in the limit of massless
constituents has the simple form [85]

ψ̃(x,b⊥)qq/π =
κ√
π

√
x(1− x) e− 1

2
κ2x(1−x)b2

⊥ . (64)

The LFWF (64) can also be regarded as as the solution of a transverse oscillator in
the light-front plane [85]. The LFWF in k⊥ space is the Fourier transform

ψ(x,k⊥) =
4π

κ
√
x(1− x)

e
−

k
2
⊥

2κ2x(1−x) . (65)

A simple generalization of the LFWF (65) for massive quarks follows from the
assumption that the momentum space LFWF is a function of the invariant off-energy
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shell quantity

M2 − E =
n∑

i=1

k2
⊥i +m2

i

xi

. (66)

Thus the holographic soft-wall LFWF ansatz for a meson bound state with massive
constituents

ψ(x,k⊥) ∼ 4π

κ
√
x(1− x)

e
− 1

2κ2

„

k
2
⊥

x(1−x)
+

m2
1

x
+

m2
2

1−x

«

. (67)

The Fourier transform of (67) is the impact space LFWF

ψ̃(x,b⊥) ∼ κ√
π

√
x(1− x) e−

1
2
κ2x(1−x)b2

⊥
− 1

κ2

»

m2
1

x
+

m2
2

1−x

–

. (68)

Impact space holographic LFWFs for the π, K, D, ηc, B and ηb mesons are depicted
in Fig. 8.
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and mb = 4.2 GeV. The value of κ = 0.375 GeV is from the pion form factor [85].
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The non-perturbative input to hard exclusive processes and heavy hadron decays
can be computed in terms of gauge invariant hadronic distribution amplitudes (DAs),
which describe the momentum-fraction distribution of partons at zero transverse im-
pact distance in a Fock state with a fixed number of constituents, and thus they
involve current or Lagrangian quark masses in the light-front wave function. The
meson DA is computed from the transverse integral of the valence quark light-front
wavefunction in the light-cone gauge [23]

φM(x,Q) =

∫
k

2
⊥

<Q2

d2k⊥

16π3
ψM(x,k⊥), (69)

and thus φ(x) ≡ φ(x,Q → ∞) → ψ̃(x,b⊥ → 0)/
√

4π. From (68) we obtain the
holographic distribution amplitude φ(x)

φM(x) ∼ κ

2π

√
x(1− x) e−

1
2κ2

»

m2
1

x
+

m2
2

1−x

–

, (70)

in the soft wall model. Predictions for the first and second moment of the meson
distribution amplitude

〈ξN〉M =

∫ 1

−1
ξNφM(ξ)

∫ 1

−1
φM(ξ)

, (71)

and comparisons with available lattice computations are given on Table 8 .

Table 1: Predictions for first and second moment of meson DA (top) and comparisons
with available lattice results (bottom). Values of quark masses and κ as in Fig. 8.

M 〈ξ〉M 〈ξ2〉M
π 0.25
K 0.04± 0.02 a 0.235± 0.005a

D 0.71 0.54
ηc 0.02
B 0.96 0.91
ηb 0.002

π 0.28± 0.03b

K 0.029± 0.002 b 0.27± 0.02 b

π 0.269± 0.039c

K 0.0272± 0.0005 c 0.260± 0.006 c

aThe results correspond to ms = 65± 25 MeV from [77].
bLattice results from Ref. [107]
cLattice results from Ref. [108]

It is interesting to note that the pion distribution amplitude predicted by AdS/QCD
has a quite different x-behavior than the asymptotic distribution amplitude predicted
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from the PQCD evolution [101] of the pion distribution amplitude. In the chiral limit,
the AdS distribution amplitude φAdS(x) ∼

√
x(1− x) gives for the second moment

〈ξ2〉AdS → 1/4, compared with the asymptotic value 〈ξ2〉PQCD → 1/5 from the PQCD
asymptotic DA φPQCD(x) ∼ x(1−x). This observation appears to be consistent with
the results of the Fermilab diffractive dijet experiment [109] which shows a broader x
distribution for the dijets at small transverse momentum k⊥ ≤ 1 GeV. The broader
shape of the pion distribution increases the magnitude of the leading twist pertur-
bative QCD prediction for the pion form factor by a factor of 16/9 compared to the
prediction based on the asymptotic form, bringing the PQCD prediction close to the
empirical pion form factor [110].

Since they are complete and orthonormal, the AdS/CFT model wavefunctions
can be used as an initial ansatz for a variational treatment or the basis states for the
diagonalization of the light-front QCD Hamiltonian HQCD

LF [76]. Even if one restricts
the proton basis to |uud〉, |uudgg〉, and |uudqq〉 Fock states, the resulting eigensolution
will contain the effects of gluon exchange, the lowest order contribution to the QCD
running coupling, intrinsic gluons and sea quarks.

9 Conclusions

One of the key difficulties in studies of quantum chromodynamics has been the absence
of an analytic first approximation to the theory which not only can reproduce the
hadronic spectrum, but also provides a good description of hadron wavefunctions. The
AdS/CFT correspondence provides an elegant semi-classical approximation to QCD,
which incorporates both color confinement and the conformal short-distance behavior
appropriate for a theory with an infrared fixed point. Since the hadronic solutions
are controlled by their twist dimension zτ at small z, one also reproduces dimensional
counting rules for hard exclusive processes. The AdS/CFT approach leads to a model
of hadrons which has both confinement at large distances and the conformal scaling
properties which reproduce dimensional counting rules for hard exclusive reactions.
The fundamental equations of AdS/CFT for mesons have the appearance of a radial
Schrödinger Coulomb equation, but they are relativistic, covariant, and analytically
tractable. The eigenvalues of the AdS/CFT equations provide a good description of
the meson and baryon spectra for light quarks [44, 81, 111, 112], and its eigensolutions
provide a remarkably simple but realistic model of their valence wavefunctions. One
can also derive analogous equations for baryons composed of massless quarks using a
Dirac matrix representation for the baryon system [16].

The lowest stable state of the AdS equations are determined by the Breitenlohner-
Freedman bound [74]. We can model confinement by imposing Dirichlet boundary
conditions at φ(z = 1/ΛQCD) = 0. The eigenvalues are then given in terms of the
roots of the Bessel functions: ML,k = βL,kΛQCD. Alternatively, one can introduce
a dilaton field [35] which provides a confinement potential −κ2ζ2 to the effective
potential V (ζ). The resulting hadron spectra are given by linear Regge trajectories in
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the square of the hadron massesM2, characteristic of the Nambu string model. The
AdS/CFT equations are integrable, and thus the radial and orbital excitations can
be obtained from ladder operators [16]. We have found that the equations describing
the propagation of light-front eigenmodes in 3+1 space possess remarkable algebraic
structures. We have also shown that a simple extension of the conformal algebraic
structure is equivalent to the soft-wall model. For fermionic modes it corresponds to
a linear confining potential in the holographic variable z.

In this work we have shown that the eigensolutions φH(z) of the AdS/CFT equa-
tions in the fifth dimension z have a remarkable mapping to the light-front wavefunc-
tions ψH(xi,b⊥i), the hadronic amplitudes which describe the valence constituents of
hadrons in physical space time, but at fixed light-cone time τ = t + z/c = 0. Sim-
ilarly, the AdS/CFT equations for hadrons can be mapped to equivalent light-front
equations. The correspondence of AdS/CFT amplitudes to the QCD wavefunctions
in light-front coordinates in physical space-time provides an exact holographic map-
ping at all energy scales between string modes in AdS space and hadronic boundary
states. Most important, the eigensolutions of the AdS/CFT equation can be mapped
to light-front equations of the hadrons in physical space-time, thus providing an ele-
gant description of the light hadrons at the amplitude level.

The mapping of AdS/CFT string modes to light-front wave functions thus pro-
vides a remarkable analytic first approximation to QCD. Since they are complete
and orthonormal, the AdS/CFT model wavefunctions can also be used as a basis
for the diagonalization of the full light-front QCD Hamiltonian, thus systematically
improving the AdS/CFT approximation.

We have also shown the correspondence between the expressions for current matrix
elements in AdS/CFT with the corresponding expressions for form factors as given
in the light-front formalism. In first approximation, where one takes the current
propagating in a non-confining background, one obtains the Drell-Yan West formula
for valence Fock states, corresponding to the interaction picture of the light-front
theory. Hadron form factors can thus be directly predicted from the overlap integrals
in AdS space or equivalently by using the Drell-Yan-West formula in physical space-
time. The form factor at high Q2 receives its main contributions from small ζ ∼ 1/Q,

corresponding to small ~b⊥ = O(1/Q) and 1 − x = O(1/Q). We have also shown
how to improve this approximation by studying the propagation of non-normalizable
solutions representing the electromagnetic current in a modified AdS confining metric,
or equivalently in a dilaton background. This improvement in the description of
the current corresponds in the light-front to multiple hadronic Fock states. The
introduction of the confined current implies that the timelike form factors of hadrons
will be mediated by vector mesons, including radial excitations. The wavefunction of
the normalizable vector meson states A(z) appearing in the spectral decomposition
of the Green’s function, which is dual to the non-normalizable photon propagation
mode in AdS, is twist-3 [85]. This is the expected result for even parity axial mesons
in QCD, or L = 1 odd parity vector mesons composed of a scalar squark and anti-
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squarks. In the case of quark-antiquark states, one also expects to find C = −1,
twist-2 meson solutions for the zero helicity component of the ρ with S = 1 and
L = 0, which is supposed to give a dominant contribution to the ρ form factor.

We have applied our formulation to both the spacelike and timelike pion form
factor. The description of the pion form factor in the spacelike domain is in good
agreement with experiment in both confinement models, the hard and the soft wall
holographic models. In the soft wall model the time-like pion form factor exhibits a
pole at the ρ mass with zero width since hadrons are stable in this theory. If one
introduces a width, the height of the ρ pole is in reasonable agreement with exper-
iment. The space-like Dirac form factor for the proton is also very well reproduced
by the double-pole analytic expression given in Appendix D of Ref. [85] for the case
N = 3.

The deeply virtual Compton amplitude in the handbag approximation can be
expressed as overlap of light-front wavefunctions [98]. The deeply virtual Compton
amplitudes can be Fourier transformed to b⊥ and σ = x−P+/2 space providing new
insights into QCD distributions [113, 114, 115, 116, 117]. The distributions in the
light-front direction σ typically display diffraction patterns arising from the inter-
ference of the initial and final state LFWFs [116, 118]. All of these processes can
provide detailed tests of the AdS/CFT LFWFs predictions.

The phenomenology of the AdS/CFT model is just beginning, but it can be antic-
ipated that it will have extensive applications to QCD phenomena. For example, the
model LFWFs obtained from AdS/QCD provide a basis for understanding hadron
structure functions and fragmentation functions as well as higher-twist contributions
to inclusive processes at the amplitude level; the same wavefunctions can describe
hadron formation from the coalescence of co-moving quarks. The spin and orbital
angular momentum correlations which underly single and double spin correlations
are also described by the AdS/CFT eigensolutions. The AdS/CFT hadronic wave-
functions also provide predictions for the generalized parton distributions of hadrons
and their weak decay amplitudes from first principles. The amplitudes relevant to
diffractive reactions could also be computed. We also anticipate that the extension of
the AdS/CFT formalism to heavy quarks will allow a great variety of heavy hadron
phenomena to be analyzed from first principles.
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