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Preface

This book describes “real-world” applications of the AdS/CFT duality for beginning

graduate students in particle physics and for researchers in the other fields.

The AdS/CFT duality is a powerful tool for analyzing strongly-coupled gauge

theories using classical gravitational theories. The duality originated from string

theory, so it has been actively investigated in particle physics. But, in recent years,

the duality has been discussed beyond theoretical particle physics. In fact, the orig-

inal AdS/CFT paper by Maldacena has been cited in all physics arXivs. This is

because the duality is becoming a powerful tool to analyze the “real-world.” Ex-

amples are QCD, nuclear physics, nonequilibrium physics, and condensed-matter

physics. For example, it turns out that one prediction of AdS/CFT is indeed close

to the experimental results of the real quark-gluon plasma. Since then, the duality

has been applied to various fields of physics; examples are QCD, nuclear physics,

nonequilibrium physics, and condensed-matter physics.

In order to carry out such researches, one has to know many topics such as string

theory, general relativity, nuclear physics, nonequilibrium physics, and condensed-

matter physics. The aim of this book is to provide these background materials as

well as some key applications of the AdS/CFT duality in a single textbook. The

emphasis throughout the book is on a pedagogical and intuitive approach focusing

on the underlying physical concepts. Yet it also includes step-by-step computations

for important results which are useful for beginners. Most of them are written in the

appendices.

Following conventions of many textbooks, I often do not refer to original research

papers and refer only to the other textbooks and reviews which may be more useful

to readers. Also, the choice of references reflects my knowledge, and I apologize in

advance for possible omissions.

Initially, this project had started for the book which was published in Japanese

(Saiensu-sha Co., Ltd, 2012), and this is the “translated” one. But I used this oppor-

tunity to improve many explanations and add more materials to the Japanese edition.

So, this book is the “second edition” in this sense.

I will be happy to receive comments on this book, in particular, conceptual, com-

putational, and English errors. Please send them to makoto.natsuume@icloud.com.
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vi Preface

I hope that this book will help readers to explore new applications of the

AdS/CFT duality.
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Chapter 1

Introduction

1.1 Overview of AdS/CFT

In this chapter, we shall describe an overall picture of the AdS/CFT duality. Many

terms appear below, but we will explain each in later chapters, so readers should not

worry about them too much for the time being.

The AdS/CFT duality is an idea which originated from superstring theory. Su-

perstring theory is the prime candidate of the unified theory which unify four funda-

mental forces in nature, namely gravity, the electromagnetic force, the weak force,

and the strong force (Chap. 5).

Roughly speaking, the AdS/CFT duality claims the following equivalence be-

tween two theories:

Strongly-coupled 4-dimensional gauge theory

= Gravitational theory in 5-dimensional AdS spacetime
(1.1)

AdS/CFT claims that four-dimensional physics is related to five-dimensional physics.

In this sense, AdS/CFT is often called a holographic theory. An optical hologram

encodes a three-dimensional image on a two-dimensional object. Similarly, a holo-

graphic theory encodes a five-dimensional theory by a four-dimensional theory.

The gauge theory (on the first line) describes all forces except gravity, namely

the electromagnetic force, the weak force, and the strong force. For example, the

electromagnetic force is described by a U(1) gauge theory, and the strong force is

described by a SU(3) gauge theory which is known as quantum chromodynamics, or

QCD (Sect. 4.1). The theoretical foundation behind these three forces is understood

as gauge theory, but it is not an easy task to compute a gauge theory at strong cou-

pling. So, when the strong force is literally strong, we do not understand the strong

force well enough. The AdS/CFT duality claims that one can analyze a strongly-

coupled gauge theory using a curved spacetime, namely the AdS spacetime.

The AdS spacetime (on the second line) stands for the anti-de Sitter spacetime

(Chap. 6). A sphere is a space with constant positive curvature. In contrast, the AdS

1
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spacetime is a spacetime with constant negative curvature. De Sitter was a Dutch

astronomer who in 1917 found a solution of the Einstein equation with a constant

positive curvature (de Sitter spacetime). The AdS spacetime instead has a constant

negative curvature; this explains the prefix “anti.” The AdS spacetime has a natural

notion of a spatial boundary (AdS boundary). The gauge theory is supposed to “live”

on the four-dimensional boundary1.

Typically, a duality states the equivalence between two theories that look differ-

ent at first glance. In the AdS/CFT duality, the gauge theory and the gravitational

theory look different; even their spacetime dimensions differ. However, in a duality,

one theory is strongly-coupled when the other theory is weakly-coupled2. This has

two consequences:

• The strong/weak-coupling relation suggests why two superficially different the-

ories can be ever equivalent under the duality. When one theory (e.g., gauge

theory) is strongly-coupled, it may not be appropriate to use its weakly-coupled

variables, gauge fields. Rather, it may be more appropriate to use different vari-

ables. The duality claims that the appropriate variables are the weakly-coupled

variables of the gravitational theory, gravitational fields.

• Because the duality relates two different theories, it is conceptually interesting,

but it is practically important as well. Even if the gauge theory is strongly-

coupled, one can use the weakly-coupled gravitational theory instead, which

makes analysis much easier.

The above relation corresponds to the case at zero temperature. At finite temper-

ature, it is replaced by

Strongly-coupled gauge theory at finite temperature

= Gravitational theory in AdS black hole
(1.2)

In the gravitational theory, a black hole appears since a black hole is also a thermal

system. A black hole has a notion of temperature because of the Hawking radiation

(Chap. 3). The aim of this book is to analyze nonequilibrium phenomena using the

finite-temperature AdS/CFT.

Using the black hole, one can get a glimpse of holography, namely why a five-

dimensional gravitational theory corresponds to a four-dimensional field theory. As

a finite-temperature system, a black hole has the notion of the entropy (Chap. 3),

but the black hole entropy is proportional to the “area” of the black hole horizon

(Chap. 2). This behavior is very different from the usual statistical entropy which

is proportional to the “volume” of the system. But an “area” in five dimensions is a

“volume” in four dimensions. This implies that if a black hole can be ever described

1 The gauge theory is often called the “boundary theory” whereas the gravitational theory is called

the “bulk theory.”
2 Normally, one would not use the word “weakly-coupled gravity,” but this means that the space-

time curvature is small. The gravitational theory satisfies this condition when the gauge theory is

strongly-coupled. Conversely, when the gravitational theory is strongly-coupled in the above sense,

the gauge theory is weakly-coupled.
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by a four-dimensional field theory, the black hole must live in five-dimensional

spacetime.

Rewriting relations (1.1) and (1.2) more explicitly, AdS/CFT claims that gener-

ating functionals (or partition functions) of two theories are equivalent:

Zgauge = ZAdS , (1.3)

where Zgauge is the generating functional of a gauge theory, and ZAdS is the gen-

erating functional of a gravitational theory. In brief, this book discusses what this

relation means and discusses what kinds of physical quantities one can compute

from the relation.

AdS/CFT enables one to analyze a strongly-coupled gauge theory using the AdS

spacetime. However, there are several important differences between the realistic

SU(3) gauge theory and the gauge theory studied in AdS/CFT. First, AdS/CFT typ-

ically considers a SU(Nc) gauge theory. In such a theory, Nc plays a role of a pa-

rameter, and the “strong coupling” is the so-called large-Nc limit, where one tunes

Nc in an appropriate way (Sect. 4.2).

Second, AdS/CFT typically considers a supersymmetric gauge theory which has

supersymmetry. In particular, the N = 4 super-Yang-Mills theory (SYM) provides

the simplest example of AdS/CFT (Sect. 5.3.2). Here, N = 4 denotes the number

of supersymmetry the theory has3. The theory also has the scale invariance since the

theory has no dimensionful parameter. Furthermore, the theory has a larger symme-

try known as the conformal invariance which contains the Poincaré invariance and

the scale invariance. Such a theory is in general known as a conformal field theory,

or CFT . This is the reason why the duality is called AdS/CFT.

However, the use of AdS/CFT is not limited to CFTs. One can discuss vari-

ous theories with dimensionful parameters, so they lack the scale invariance. Thus,

the name “AdS/CFT” is not very appropriate and has only the historical meaning4.

When one chooses a particular gauge theory on the left-hand side of Eq. (1.3), one

has to choose an appropriate spacetime on the right-hand side (Sect. 11.1). But one

typically considers spacetime which approaches the AdS spacetime at radial infinity.

3 Note that N denotes the number of supersymmetry whereas Nc denotes the number of “colors”

in the SU(Nc) gauge theory.
4 Since the name AdS/CFT is not really appropriate, various alternative names have been proposed.

The name “holographic theory” is one of them. The other strong candidate is the “gauge/gravity

duality,” but this name becomes inconvenient since one started to apply AdS/CFT not only to QCD

but to field theory in general. One may see phrases such as “bulk/boundary duality” or “field the-

ory/gravity duality.” The name “gauge/string duality” is adopted in the PACS (Physics and Astron-

omy Classification Scheme) code by American Institute of Physics. This name is also appropriate

since the dual of a gauge theory is really a string theory as we will see later. Anyway, they all

mean the same. In this book, we use the most common name “AdS/CFT duality” without making

a new name since it is not clear at this moment how far AdS/CFT will be applied. A digression:

AdS/CFT keeps having troubles with name from the beginning. It was originally called the “Mal-

dacena’s conjecture.” But it is common that a duality is hard to prove and first starts as a conjecture,

so the name became obsolete.
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cond-mat

nucl-th

gr-qc

nucl-ex
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quant-ph

physics

math-ph

astro-ph

hep-ex

Fig. 1.1 The AdS/CFT duality spans all physics arXivs.

The gauge theories analyzed by AdS/CFT are not very realistic. However, this

is typical of any analytic method. One often encounters strongly-coupled problems

in field theory, but only a few analytic methods and exactly solvable models are

available. But those examples played vital roles to develop our intuitions on field

theory. Such techniques are valuable and brought important progress to field theory

even if they only apply to a restricted class of theories. One would regard AdS/CFT

as another example of such techniques.

Finally, we should stress that AdS/CFT has not been proven and it remains a

conjecture although there are many circumstantial evidences. We will not discuss

these evidences much in this book.

1.2 AdS/real-world

The AdS/CFT duality originated from string theory, so it had been discussed in

string theory. But the situation is changing in recent years, and AdS/CFT has been

discussed beyond theoretical particle physics. This is because AdS/CFT is be-

coming a powerful tool to analyze the “real-world.” Examples are QCD, nuclear

physics, nonequilibrium physics, and condensed-matter physics. In fact, the origi-

nal AdS/CFT paper [1] has been cited in all physics arXivs (Fig. 1.1).

For example, the theoretical foundation behind the strong force has been well-

understood as QCD. But the perturbation theory often fails because the strong force

is literally strong. However, according to AdS/CFT, one can analyze a strongly-

coupled gauge theory using the AdS spacetime. So, there are many attempts to ana-

lyze the strong force using AdS/CFT5.

One such example is the quark-gluon plasma (QGP). According to QCD, the

fundamental degrees of freedom are not protons or neutrons but quarks and glu-

5 QCD is a SU(3) gauge theory, but AdS/CFT typically considers a SU(Nc) supersymmetric gauge

theory, so one should note that AdS/CFT gives only approximate results.
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Fig. 1.2 When one adds perturbations, a black hole behaves like a hydrodynamical system. In

hydrodynamics, the dissipation is a consequence of viscosity.

ons. Under normal circumstances, they are confined inside protons and neutrons.

But at high enough temperatures, they are deconfined and form the quark-gluon

plasma (Sect. 4.1.2). The QGP experiments are in progress (Sect. 4.1.3). Accord-

ing to the experiments, QGP behaves like a fluid with a very small shear viscosity.

This implies that QGP is strongly coupled, which makes theoretical analysis dif-

ficult (Sects. 4.1.4 and 12.2). However, it turns out that the value of the viscosity

implied by the experiments is very close to the value predicted by AdS/CFT using

black holes (Chap. 12). This triggers the AdS/CFT research beyond string theory

community.

How is the black hole related to the viscosity? Here, we give an intuitive ex-

planation (Fig. 1.2). Consider adding a perturbation to a thermal system which is

in equilibrium. For example, drop a ball in a water pond. Then, surface waves are

generated, but they decay quickly, and the water pond returns to a state of stable

equilibrium. This is a dissipation which is a consequence of viscosity.

This behavior is very similar to a black hole. Again, drop an object to a black

hole. Then, the shape of the black hole horizon becomes irregular, but such a pertur-

bation decays quickly, and the black hole returns to the original symmetric shape. If

one regards this as a dissipation as well, the dissipation occurs since the perturba-

tion is absorbed by the black hole. Thus, one can consider the notion of viscosity for

black holes as well, and the “viscosity” for black holes should be calculable from

the above process.

Such a phenomenon is in general known as a relaxation phenomenon. In a relax-

ation phenomenon, one adds a perturbation and sees how it decays. The relaxation

phenomenon is the subject of nonequilibrium statistical mechanics or hydrodynam-

ics. The important quantities there are transport coefficients. The viscosity is an

example of transport coefficients. A transport coefficient measures how some ef-

fect propagates. The correspondence between black holes and hydrodynamics may

sound just an analogy, but one can indeed regard that black holes have a very small

viscosity; one purpose of this book is to show this.
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The AdS/CFT applications are not limited to QCD. Strongly-coupled systems of-

ten arise in condensed-matter physics such as high-Tc superconductivity (Sect. 13.2.3).

Partly inspired by the “success” of AdS/QGP, researchers try to apply AdS/CFT to

condensed-matter physics (Chap. 14).

As one can see, the applications of AdS/CFT has the “cross-cultural” charac-

ter, so researchers in other fields often initiated new applications. For example, the

applications of AdS/CFT to the quark-gluon plasma were initiated by nuclear physi-

cists. As another example, the Fermi surface was first discussed in AdS/CFT by a

condensed-matter physicist.

1.3 Outline

This book describes applications of AdS/CFT, but it is not our purpose to cover

all applications of AdS/CFT. This is because so many applications exit and new

applications have been proposed very often. We would rather explain the basic idea

than cover all applications. Then, as examples, we discuss following applications:

• Chap. 8: Wilson loops, or quark potentials

• Chap. 12: application to QGP (transport coefficients)

• Sect. 12.3.3: application to hydrodynamics (second-order hydrodynamics)

• Sect. 14.3: holographic superconductor

But once one gets accustomed to the basic idea, it is not very difficult to apply

AdS/CFT to various systems. Essentially what one should do is to repeat a similar

exercise.

This book assumes knowledge on elementary general relativity and elementary

field theory but does not assume knowledge on black holes and string theory. Also,

AdS/CFT has been applied to many different areas of physics, so we explain basics

of each area:

• Chap. 2 and 3: black holes, black hole thermodynamics

• Chap. 4: quantum chromodynamics

• Chap. 5: superstring theory

• Chap. 9: nonequilibrium statistical mechanics, hydrodynamics

• Chap. 13: condensed-matter physics

The readers with enough backgrounds may skip some of these chapters.

This book devotes some pages to explain how one reaches AdS/CFT. But some

readers may first want to get accustomed to AdS/CFT through actual computations.

In such a case, one would skip Sect. 4.2 and Chap. 5.

Sections and footnotes with “ � ” are somewhat advanced topics and may be

omitted in a first reading.
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1.4 Notation and conventions

We use the natural units h̄ = c = 1. We often set the Boltzmann constant kB = 1 for

thermodynamic analysis. We restored these constants in some sections though.

We use the metric signature (−,+, . . . ,+), which is standard in general relativity

and in string theory. We follow Ref. [2] for the quantities made from the metric, such

as the Christoffel symbols and curvature tensors. For vector and tensor components,

we use Greek indices µ,ν , . . . following the standard convention in general relativ-

ity until Sect. 5.3. However, in this book, we have the four-dimensional spacetime

where a gauge theory lives and the five-dimensional spacetime where a gravitational

theory lives, and we have to distinguish which spacetime dimensions we are talking

of. Starting from Sect. 5.3,

• Greek indices µ,ν , . . . run though 0, . . . ,3 and are used for the four-dimensional

spacetime where a gauge theory lives. We write boundary coordinates in several

ways: x = xµ = (t,xxx) = (t,x,y,z).
• Capital Latin indices M,N, . . . run though 0, . . . ,4 and are used for the five-

dimensional spacetime where a gravitational theory lives.

In field theory, both the Lorentzian formalism and the Euclidean formalism exit.

AdS/CFT has both formalisms as well. The Euclidean formalism is useful to dis-

cuss an equilibrium state whereas the Lorentzian formalism is useful to discuss a

nonequilibrium state, so we use both depending on the context, and we try to be

careful so that readers are not confused.

1.5 Some useful textbooks

For a review article on AdS/CFT, see Ref. [3]. This is a review written in early days

of the AdS/CFT research, but this is still the best review available.

This book explains the minimum amount of string theory. If one would like to

learn more details, see Refs. [4, 5, 6]. Reference [4] is the standard textbook till

mid 1990s. Reference [5] is the standard textbook since then. Reference [4] is a

useful supplement to Ref. [5] however since the former covers materials which are

not covered by the latter. Anyhow, these textbooks are written to grow string theory

experts. Advanced undergraduate students and researchers in the other fields may

find Ref. [6] more accessible.

The other string theory textbooks relatively recently are Refs. [7, 8, 9]. These

textbooks in recent years cover AdS/CFT.

This book explains basics of black holes but assumes basics of general relativity

itself. For textbooks in general relativity, see Refs. [10, 11, 12]. References [10, 11]

are elementary textbooks (but Ref. [11] is very modern with many advanced topics

in recent years), and Ref. [12] is an advanced one.

We will mention textbooks in the other fields in appropriate places.
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Finally, we list review articles which cover applications of AdS/CFT [13, 14, 15,

16, 17, 18, 19]. These cover the materials which are not covered in this book and

are useful complements.
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Chapter 2

General relativity and black holes

In this book, black holes frequently appear, so we will describe the simplest black hole, the

Schwarzschild black hole and its physics.

Roughly speaking, a black hole is a region of spacetime where gravity is strong

so that even light cannot escape from there. The boundary of a black hole is called

the horizon. Even light cannot escape from the horizon, so the horizon represents

the boundary between the region which is causally connected to distant observers

and the region which is not.

General relativity is mandatory to understand black holes properly, but a black

hole-like object can be imagined in Newtonian gravity. Launch a particle from the

surface of a star, but the particle will return if the velocity is too small. In Newtonian

gravity, the particle velocity must exceed the escape velocity in order to escape from

the star. From the energy conservation, the escape velocity is determined by

1

2
v2 =

GM

r
. (2.1)

If the radius r becomes smaller for a fixed star mass M, the gravitational potential

becomes stronger, so the escape velocity becomes larger. When the radius becomes

smaller, eventually the escape velocity reaches the speed of light. Then, no object

can escape from the star. Setting v = c in the above equation gives the radius

r =
2GM

c2
, (2.2)

which corresponds to the horizon. For a solar mass black hole, the horizon radius is

about 3 km, which is 2.4×105 times smaller than the solar radius.

To be precise, the above argument is false from several reasons:

1. First, the speed of light is arbitrary in Newtonian mechanics. As a result, the

speed of light decreases as light goes away from the star. But in special relativity

the speed of light is the absolute velocity which is independent of observers.

2. Newtonian mechanics cannot determine how gravity affects light.

9
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3. In the above argument, light can temporally leave from the “horizon.” But in

general relativity light cannot leave even temporally.

The Newtonian argument has various problems, but the horizon radius (2.2) itself

remains true in general relativity, and we utilize Newtonian arguments again later.

Below we explain black holes using general relativity, but we first discuss the

particle motion in a given spacetime. For the flat spacetime, this is essentially a

review of special relativity. We take this approach from the following reasons: (i)

We study the particle motion around black holes later in order to understand black

hole physics; (ii) The main purpose of this book is not to obtain a new geometry

but to study the behavior of a “probe” such as a particle in a known geometry; (iii)

String theory is a natural extension of the particle case below.

2.1 Particle action

Flat spacetime case — review of special relativity First, let us consider the par-

ticle motion in the flat spacetime. We denote the particle’s coordinates as xµ :=
(t,x,y,z). According to special relativity, the distance which is invariant relativisti-

cally is given by

ds2 =−dt2 +dx2 +dy2 +dz2 . (2.3)

The distance is called timelike when ds2 < 0, spacelike when ds2 > 0, and null when

ds2 = 0. For the particle, ds2 < 0, so one can use the proper time τ given by

ds2 =−dτ2 . (2.4)

The proper time gives the relativistically invariant quantity for the particle, so it

is natural to use the proper time for the particle action:

S=−m

∫

dτ . (2.5)

The action takes the familiar form in the nonrelativistic limit. With the velocity

vi := dxi/dt, dτ is written as dτ = dt(1− v2)1/2, so

S=−m

∫

dt(1− v2)1/2 ≃−m

∫

dt

(

1− 1

2
v2 + · · ·

)

, (v ≪ 1) . (2.6)

In the final expression, the first term represents the particle’s rest mass energy, and

the second term represents the nonrelativistic kinetic energy.

A particle draws a world-line in spacetime (Fig. 2.1). Introducing an arbitrary

parametrization λ along the world-line, the particle coordinates or the particle mo-

tion are described by xµ(λ ). Using the parametrization,

dτ2 =−ηµν dxµ dxν =−ηµν ẋµ ẋν dλ 2 (˙ := d/dλ ) , (2.7)
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λ

x
0

x
1

Fig. 2.1 A particle draws a world-line in spacetime

so the action is written as

S=−m

∫

dλ
√

−ηµν ẋµ ẋν =
∫

dλ L . (2.8)

The parametrization λ is a redundant variable, so the action should not depend on

λ . In fact, the action is invariant under

λ ′ = λ ′(λ ) . (2.9)

The canonical momentum of the particle is given by

pµ =
∂L

∂ ẋµ
=

mẋµ√
−ẋ2

= m
dxµ

dτ
(2.10)

(ẋ2 := ηµν ẋµ ẋν ). Note that the canonical momentum satisfies

p2 = m2 ẋ2

−ẋ2
=−m2 , (2.11)

so its components are not independent:

p2 =−m2 . (2.12)

The Lagrangian does not contain xµ itself but contains only ẋµ , so pµ is conserved.

Thus, pµ = mdxµ/dτ = (constant), which describes the free motion.

The particle’s four-velocity uµ is defined as

uµ :=
dxµ

dτ
. (2.13)
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In terms of the ordinary velocity vi,

uµ =
dt

dτ

dxµ

dt
= γ(1,vi) ,

(

dτ

dt

)2

= 1− v2 := γ−2 . (2.14)

Since pµ = muµ and p2 =−m2, uµ satisfies u2 =−1.

The action (2.5) is proportional to m, and one cannot use it for a massless particle.

The action which is also valid for a massless particle is given by

S=
1

2

∫

dλ
{

e−1ηµν ẋµ ẋν − em2
}

. (2.15)

From this action,

Equation of motion for e: ẋ2 + e2m2 = 0 , (2.16)

Canonical momentum: pµ =
∂L

∂ ẋµ
=

1

e
ẋµ =

mẋµ√
−ẋ2

. (2.17)

Use Eq. (2.16) at the last equality of Eq. (2.17). Using Eq. (2.16), the Lagrangian

reduces to the previous one (2.8):

1

2

{

e−1ẋ2 − em2
}

=−m
√

−ẋ2 . (2.18)

This action also has the reparametrization invariance: the action (2.15) is invari-

ant under

λ ′ = λ ′(λ ) , (2.19)

e′ =
dλ

dλ ′ e . (2.20)

Particle action (curved spacetime) Now, move from special relativity to general

relativity. The invariant distance is given by replacing the flat metric ηµν with a

curved metric gµν(x):

ds2 = gµν dxµ dxν . (2.21)

Here, we first consider the particle motion in a curved spacetime and postpone the

discussion how one determines gµν .

The action is obtained by replacing the flat metric ηµν with a curved metric gµν :

S=−m

∫

dτ =−m

∫

dλ
√

−gµν(x)ẋµ ẋν . (2.22)

Just like the flat spacetime, the canonical momentum is given by

pµ = m
gµν(x)ẋ

ν

√
−ẋ2

, ẋ2 := gµν(x)ẋ
µ ẋν , (2.23)
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and the constraint p2 =−m2 exists. Also1,

If the metric is independent of xµ , its conjugate momentum pµ is conserved.

The variational principle δS = 0 gives the world-line which extremizes the ac-

tion. For the flat spacetime, the particle has the free motion and has the “straight”

world-line. For the curved spacetime, the world-line which extremizes the action is

called a geodesic. The variation of the action with respect to xµ gives the equation

of motion for the particle:

d2xµ

dτ2
+Γ

µ
ρσ

dxρ

dτ

dxσ

dτ
= 0 . (2.24)

This is known as the geodesic equation2. Here, Γ α
µν is the Christoffel symbol:

Γ α
µν =

1

2
gαβ (∂ν gβ µ +∂µ gβν −∂β gµν) . (2.25)

The particle motion is determined by solving the geodesic equation. However, black

holes considered in this book have enough number of conserved quantities so that

one does not need to solve the geodesic equation.

The massless particle action is also obtained by substituting ηµν with gµν in

Eq. (2.15). The particle action described here can be naturally extended into string

and the objects called “branes” in string theory (Sect. 8.3).

2.2 Einstein equation and Schwarzschild metric

So far we have not specified the form of the metric, but the metric is determined by

the Einstein equation3:

Rµν −
1

2
gµν R = 8πGTµν , (2.26)

where G is the Newton’s constant, and Tµν is the energy-momentum tensor of matter

fields. The Einstein equation claims that the spacetime curvature is determined by

the energy-momentum tensor of matter fields.

We will encounter various matter fields. Of prime importance in this book is

1 What is conserved is pµ which may not coincide with pµ in general. In the flat spacetime, pµ

and pµ are the same up to the sign, but in the curved spacetime, the functional forms of pµ and pµ

differ by the metric gµν (x).
2 Note that we use the proper time τ here not the arbitrary parametrization λ . The equation of

motion does not take the form of the geodesic equation for a generic λ . A parameter such as τ is

called an affine parameter. As one can see easily from the geodesic equation, the affine parameter

is unique up to the linear transformation τ → aτ +b (a,b: constant). For the massless particle, the

proper time cannot be defined, but the affine parameter is possible to define.
3 In Sect. 2.5, we summarize the formalism of general relativity for the readers who are not familiar

to it.
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Tµν =− Λ

8πG
gµν , (2.27)

where Λ is called the cosmological constant. In this case, the Einstein equation

becomes

Rµν −
1

2
gµν R+Λgµν = 0 . (2.28)

From Eq. (2.27), the cosmological constant acts as a constant energy density, and the

positive cosmological constant, Λ > 0, has been widely discussed as a dark energy

candidate. On the other hand, what appears in AdS/CFT is the negative cosmological

constant, Λ < 0. The anti-de Sitter spacetime used in AdS/CFT is a solution of this

case (Chap. 6).

For now, let us consider the Einstein equation with no cosmological constant and

with no matter fields:

Rµν −
1

2
gµν R = 0 . (2.29)

The simplest black hole, the Schwarzschild black hole, is the solution of the above

equation:

ds2 =−
(

1− 2GM

r

)

dt2 +
dr2

1− 2GM
r

+ r2dΩ 2
2 . (2.30)

Here, dΩ 2
2 := dθ 2 + sin2 θdϕ2 is the line element of the unit S2. We remark several

properties of this black hole:

• The metric approaches the flat spacetime ds2 →−dt2 +dr2 + r2dΩ 2
2 as r → ∞.

• As we will see in Sect. 2.3.2, M represents the black hole mass. We will also see

that the behavior GM/r comes from the four-dimensional Newtonian potential.

• The horizon is located at r = 2GM where g00 = 0.

• A coordinate invariant quantity such as

Rµνρσ Rµνρσ =
48G2M2

r6
(2.31)

diverges at r = 0. This location is called a spacetime singularity, where gravity

is infinitely strong.

We now examine the massive and massless particle motions around the black hole

to understand this spacetime more.

2.3 Physics of the Schwarzschild black hole

2.3.1 Gravitational redshift

The gravitational redshift is one of three “classic tests” of general relativity; the

other two are mentioned in Sect. 2.3.2. The discussion here is used to discuss the
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A

dtA = dt

dtB = dt

B
t

r

Fig. 2.2 Exchange of light between A and B.

surface gravity (Sect. 3.1.2) and to discuss the gravitational redshift in the AdS

spacetime (Sect. 6.2).

Consider two static observers at A and B (Fig. 2.2). The observer at A sends light,

and the observer at B receives light. The light follows the null geodesics ds2 = 0, so

ds2 = g00dt2 +grrdr2 = 0 , (2.32)

dt2 =
grr

−g00
dr2 →

∫ B

A
dt =

∫ B

A

√

grr(r)

−g00(r)
dr . (2.33)

The right-hand side of the final expression does not depend on when light is sent, so

the coordinate time until light reaches from A to B is always the same. Thus, if the

observer at A emits light for the interval dt, the observer at B receives light for the

interval dt as well.

However, the proper time for each observer differs since dτ2 = |g00|dt2:

dτ2
A ≃ |g00(A)|dt2 , (2.34)

dτ2
B ≃ |g00(B)|dt2 . (2.35)

But both observers should agree to the total number of light oscillations, so

ωBdτB = ωAdτA . (2.36)

The energy of the photon is given by E = h̄ω , so EBdτB = EAdτA, or

EB

EA

=

√

g00(A)

g00(B)
. (2.37)
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For simplicity, consider the Schwarzschild black hole and set rB = ∞ and rA ≫
GM. Then,

E∞ =
√

|g00(A)|EA ≃ EA −
GM

rA

EA < 0 . (2.38)

Here, we used
√

|g00(A)| = (1− 2GM/rA)
1/2 ≃ 1− (GM)/rA. Thus, the energy

of the photon decreases at infinity. The energy of the photon decreases because

the photon has to climb up the gravitational potential. Indeed, the second term of

Eq. (2.38) takes the form of the Newtonian potential for the photon. Also, suppose

that the point A is located at the horizon. Since g00(A) = 0 at the horizon, E∞ → 0,

namely light gets an infinite redshift.

2.3.2 Particle motion

Motion far away The particle motion can be determined from the geodesic equa-

tion (2.24). However, there are enough number of conserved quantities for a static

spherically symmetric solution such as the Schwarzschild black hole, which com-

pletely determines the particle motion without solving the geodesic equation.

• First, because of spherical symmetry, the motion is restricted to a single plane,

and one can choose the equatorial plane (θ = π/2) as the plane without loss of

generality.

• Second, as we saw in Sect. 2.1, when the metric is independent of a coordinate

xµ , its conjugate momentum pµ is conserved. For a static spherically symmetric

solution, the metric is independent of t and ϕ , so the energy p0 and the angular

momentum pϕ are conserved.

Then, the particle four-momentum is given by

p0 =: −mE , (2.39a)

pϕ =: mL , (2.39b)

pr = m
dr

dτ
, (2.39c)

pθ = 0 . (2.39d)

(E and L are the energy and the angular momentum per unit rest mass.) Because the

four-momentum satisfies the constraint p2 =−m2,

g00(p0)
2 +m2grr

(

dr

dτ

)2

+gϕϕ(pϕ)
2 =−m2 . (2.40)

Substitute the metric of the Schwarzschild black hole. When the angular momentum

L = 0,
(

dr

dτ

)2

= (E2 −1)+
2GM

r
. (2.41)
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Since (dr/dτ)2 ≃ E2 − 1 as r → ∞, E = 1 represents the energy when the particle

is at rest at infinity, namely the rest mass energy of the particle. Differentiating this

equation with respect to τ and using τ ≃ t in the nonrelativistic limit, one gets

d2r

dt2
≃−GM

r2
, (2.42)

which is nothing but the Newton’s law of gravitation. Thus, M in the Schwarzschild

black hole (2.30) represents the black hole mass.

Similarly, when L 6= 0,

(

dr

dτ

)2

= E2 −
(

1− 2GM

r

)(

1+
L2

r2

)

(2.43)

= (E2 −1)+
2GM

r
− L2

r2
+

2GML2

r3
. (2.44)

The third term in Eq. (2.44) represents the centrifugal force term. On the other hand,

the fourth term is a new term characteristic of general relativity. General relativity

has “classic tests” such as

• The perihelion shift of Mercury

• The light bending

in addition to the gravitational redshift, and both effects come from this fourth term4.

The fourth term is comparable to the third term only when the particle approaches

r ≃ 2GM. This distance corresponds to the horizon radius of the black hole and is

about 3km for a solar mass black hole, so the effect of this term is normally very

small.

We will generalize the discussion here to a generic static metric in order to dis-

cuss the surface gravity in Sect. 3.1.2. We will also examine the particle motion in

the AdS spacetime in Sect. 6.2.

Motion near horizon We now turn to the particle motion near the horizon. How

long does it take until the particle reaches the horizon? For simplicity, we assume

that the particle is at rest at infinity (E = 1) and that the particle falls radially (L= 0).

From Eq. (2.41), the particle motion for E = 1 and L = 0 is given by

(

dr

dτ

)2

=
r0

r
(2.45)

(r0 = 2GM). Near the horizon,
dr

dτ
≃−1 . (2.46)

We choose the minus sign since the particle falls inward (r decreases as time passes).

So, to go from r = r0 +R to r = r0 + ε ,

4 For the light bending, use the equation for the massless particle instead of Eq. (2.40).
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τ ≃−
∫ r0+ε

r0+R
dr = R− ε . (2.47)

Namely, the particle reaches the horizon in a finite proper time.

However, the story changes from the point of view of the coordinate time t.

By definition, p0 = mdt/dτ , and from the conservation law, p0 = g00 p0 = m(1−
r0/r)−1. Then,

dτ

dt
=

r− r0

r
. (2.48)

Thus,
(

dr

dt

)2

=

(

dr

dτ

)2(
dτ

dt

)2

=
r0(r− r0)

2

r3
(2.49)

or
dr

dt
≃− r− r0

r0
(2.50)

near the horizon, and

t ≃−r0

∫ r0+ε

r0+R

dr

r− r0
= r0(lnR− lnε) , (2.51)

so t → ∞ as ε → 0. Namely, it takes an infinite coordinate time until the particle

reaches the horizon. Incidentally, Eq. (2.50) near the horizon takes the same form

as the massless case below. Namely, the particle moves with the speed of light near

the horizon.

Let us consider the massless case. For the massless particle, p2 = 0 or ds2 = 0,

so

ds2 = g00dt2 +grrdr2 = 0 (2.52a)

→
(

dr

dt

)2

=−g00

grr

=
(

1− r0

r

)2

(2.52b)

→ dr

dt
=−

(

1− r0

r

)

≃− r− r0

r0
. (2.52c)

Near the horizon, the expression takes the same form as the massive case (2.50) as

promised. We considered the infalling photon, but one can consider the outgoing

photon. In this case, t → ∞ until the light from the horizon reaches the observer at

finite r.

There is nothing special to the horizon from the point of view of the infalling

particle. But there is a singular behavior from the point of view of the coordinate

t. This is because the Schwarzschild coordinates (t,r) are not well-behaved near

the horizon. Thus, we introduce the coordinate system which is easier to see the

infalling particle point of view.
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r = (constant)

t = (constant)

r = (constant)

r = 0

u

v

r 
= r

0
  t

 = ∞
 

Fig. 2.3 Kruskal coordinates. The light-cones are kept at 45◦, which is convenient to see the causal

structure. The dashed line represents an example of the particle path. Once the particle crosses the

horizon, it must reach the singularity.

2.4 Kruskal coordinates

The particle motion discussed so far can be naturally understood by using a new co-

ordinate system, the Kruskal coordinates. The Kruskal coordinates (u,v) are defined

by

r > r0











u =
(

r
r0
−1
)1/2

er/(2r0) cosh
(

t
2r0

)

v =
(

r
r0
−1
)1/2

er/(2r0) sinh
(

t
2r0

)
(2.53)

r < r0











u =
(

1− r
r0

)1/2

er/(2r0) sinh
(

t
2r0

)

v =
(

1− r
r0

)1/2

er/(2r0) cosh
(

t
2r0

)
(2.54)

By the coordinate transformation, the metric (2.30) becomes

ds2 =
4r3

0

r
e−r/r0(−dv2 +du2)+ r2dΩ 2

2 . (2.55)

Here, we use not only (u,v) but also use r, but r should be regarded as r = r(u,v)
and is determined by

(

r

r0
−1

)

er/r0 = u2 − v2 . (2.56)
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One can see the following various properties from the coordinate transformation

and the metric (see also Fig. 2.3):

• The metric (2.55) is not singular at r = r0. There is a singularity at r = 0. The

transformation (2.53) is singular at r = r0, but this is not a problem. Because the

transformation relates the coordinates which are singular at r = r0 to the coor-

dinates which are not singular at r = r0, the transformation should be singular

there.

• The null world-line ds2 = 0 is given by dv =±du. In this coordinate system, the

lines at 45◦ give light-cones just like special relativity, which is convenient to see

the causal structure of the spacetime.

• The r = (constant) lines are hyperbolas from Eq. (2.56).

• In particular, in the limit r = r0, the hyperbola becomes a null line, so the horizon

r = r0 is a null surface. Namely, the horizon is not really a spatial boundary but is

a light-cone. In special relativity, the events inside light-cones cannot influence

the events outside light-cones. Similarly, the events inside the horizon cannot

influence the events outside the horizon. Then, even light cannot reach from r <
r0 to r > r0.

• For r < r0, the r = (constant) lines become spacelike. This means that a particle

cannot remain at r = (constant) because the geodesics of a particle cannot be

spacelike. The singularity at r = 0 is spacelike as well. Namely, the singularity is

not a point in spacetime, but rather it is the end of “time.”

• The t = (constant) lines are straight lines. In particular, the t → ∞ limit is given

by u= v. One can see that it takes an infinite coordinate time to reach the horizon.

To summarize, the particle falling into the horizon cannot escape and necessarily

reaches the singularity.

New keywords

After you read each chapter, try to explain the terms in “New keywords” by yourself

to check your understanding.

horizon

proper time

world-line

four-velocity

geodesic

affine parameter

cosmological constant

Schwarzschild black hole

spacetime singularity

gravitational redshift

Kruskal coordinates

2.5 Appendix: Review of general relativity

Consider a coordinate transformation
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x′µ = x′µ(x) . (2.57)

Under a coordinate transformation, a quantity is called a vector if it transforms as

V ′µ =
∂x′µ

∂xν
V ν , (2.58)

and as a 1-form if it transforms “oppositely”:

V ′
µ =

∂xν

∂x′µ
Vν . (2.59)

The tensors with a multiple number of indices are defined similarly.

In general, the derivative of a tensor such as ∂µV ν does not transform as a tensor,

but the covariant derivative ∇µ of a tensor transforms as a tensor. The covariant

derivatives of the vector and the 1-form are given by

∇µV ν = ∂µV ν +V αΓ ν
αµ , (2.60)

∇µVν = ∂µVν −VαΓ α
µν . (2.61)

As a useful relation, the covariant divergence of a vector is given by

∇µV µ =
1√−g

∂µ

(√−gV µ
)

, (2.62)

where g := detg. This can be shown using a formula for a matrix M:

∂µ(detM) = detM tr(M−1∂µ M) . (2.63)

For example, dxµ transforms as a vector

dx′µ =
∂x′µ

∂xν
dxν (2.64)

and the metric transforms as

g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ (x) . (2.65)

Thus, the line element ds2 = gµν dxµ dxν is invariant under coordinate transforma-

tions. Under the infinitesimal transformation x′µ = xµ −ξ µ(x), Eq. (2.65) is rewrit-

ten as

g′µν(x−ξ ) =
(

δ
ρ
µ +∂µ ξ ρ

)

(δ σ
ν +∂ν ξ σ )gρσ (2.66)

or

g′µν(x) = gµν(x)+(∂µ ξ ρ)gρν +(∂ν ξ ρ)gµρ +ξ ρ ∂ρ gµν (2.67)

= gµν +∇µ ξν +∇ν ξµ . (2.68)
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In general relativity, an action must be a scalar which is invariant under coordi-

nate transformations. From Eq. (2.64),

d4x′ =

∣

∣

∣

∣

∂x′

∂x

∣

∣

∣

∣

d4x , (2.69)

where |∂x′/∂x| is the Jacobian of the transformation. On the other hand,
√−g trans-

forms in the opposite manner:

√

−g′ =

∣

∣

∣

∣

∂x

∂x′

∣

∣

∣

∣

√−g . (2.70)

Thus, d4x
√−g is the volume element which is invariant under coordinate transfor-

mations.

The metric is determined by the Einstein-Hilbert action:

S=
1

16πG

∫

d4x
√−gR . (2.71)

Here, G is the Newton’s constant, and the Ricci scalar R is defined by the Riemann

tensor Rα
µνρ and the Ricci tensor Rµν as follows:

Rα
µνρ = ∂νΓ α

µρ −∂ρΓ α
µν +Γ α

σνΓ σ
µρ −Γ α

σρΓ σ
µν , (2.72)

Rµν = Rα
µαν , R = gµν Rµν . (2.73)

The variation of the Einstein-Hilbert action gives

δS=
1

16πG

∫

d4x
{√−gRµν(δgµν)+(δ

√−g)Rµν gµν

+
√−g(δRµν)g

µν
}

, (2.74)

where gµν is the inverse of gµν . The second term can be rewritten by using5

δ
√−g =−1

2

√−ggµν δgµν . (2.75)

One can show that the third term reduces to a surface term, so it does not contribute

to the equation of motion6. Therefore,

δS=
1

16πG

∫

d4x
√−g

(

Rµν −
1

2
gµν R

)

δgµν , (2.76)

5 Using Eq. (2.63) gives δ (
√−g) = 1

2

√−ggµν δgµν . Then, use another matrix formula δM =

−Mδ (M−1)M which can be derived from MM−1 = I. Then, δgµν = −gµρ gνσ δgρσ . Note that

δgµν 6= gµρ gνσ δgρσ . Namely, we do not use the metric to raise and lower indices of the metric

variation.
6 Care is necessary to the surface term in order to have a well-defined variational principle. This

issue will be discussed in Sects. 7.5 and 12.5.
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and by requiring δS= 0, one gets the vacuum Einstein equation:

Rµν −
1

2
gµν R = 0 . (2.77)

The contraction of Eq. (2.77) gives Rµν = 0.

When one adds the matter action Smatter, the equation of motion becomes

Rµν −
1

2
gµν R = 8πGTµν , (2.78)

where Tµν is the energy-momentum tensor for matter fields:

Tµν :=− 2√−g

δSmatter

δgµν
. (2.79)

Various matter fields appear in this book, but the simplest term one can add to the

Einstein-Hilbert action is given by

Scc =− 1

8πG

∫

d4x
√−gΛ , (2.80)

which is the cosmological constant term. From Eq. (2.79),

Tµν =− Λ

8πG
gµν , (2.81)

so the Einstein equation becomes

Rµν −
1

2
gµν R+Λgµν = 0 . (2.82)





Chapter 3

Black holes and thermodynamics

Quantum mechanically, black holes have thermodynamic properties just like ordinary sta-

tistical systems. In this chapter, we explain the relation between black holes and thermody-

namics using the example of the Schwarzschild black hole.

3.1 Black holes and thermodynamics

For the Schwarzschild black hole, the horizon radius is given by r0 = 2GM/c2. The

horizon radius is proportional to the black hole mass, so if matter falls in the black

hole, the horizon area increases:

A = 4πr2
0 =

16πG2M2

c4
. (3.1)

Also, classically nothing comes out from the black hole, so the area is a non-

decreasing quantity1, which reminds us of thermodynamic entropy. Thus, one ex-

pects that a black hole has the notion of entropy S:

S ∝ A? (3.2)

We henceforth call S as the black hole entropy.

In fact, a black hole obeys not only the second law but also all thermodynamic-

like laws as we will see (Fig. 3.1). First of all, a stationary black hole has only a few

parameters such as the mass, angular momentum, and charge. This is known as the

no-hair theorem (see, e.g., Refs. [1, 2] for reviews.) Namely, a black hole does not

depend on the properties of the original stars such as the shape and the composition.

Conversely, a black hole is constrained only by a few initial conditions, so there

are many ways to make a black hole. For example, even if the black hole formed

1 As the black hole evaporates by the Hawking radiation, the horizon area decreases. But the total

entropy of the black hole entropy and the radiation entropy always increases (generalized second

law).

25
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Thermodynamics Black hole

Zeroth law Temperature T is constant Surface gravity κ is constant

at equilibrium for a stationary solution

First law dE = T dS dM = κ
8πG

dA

Second law dS ≥ 0 dA ≥ 0

Third law S → 0 as T → 0 S → 0 as T → 0?

Fig. 3.1 Comparison between laws of thermodynamics and black hole thermodynamics.

from gravitational collapse is initially asymmetric, it eventually becomes the simple

spherically symmetric Schwarzschild black hole (when the angular momentum and

the charge vanish).

This property of the black hole itself is similar to thermodynamics. Thermody-

namics is the theory of many molecules or atoms. According to thermodynamics,

one does not have to specify the position and the momentum of each molecule to

characterize a thermodynamic system. The system can be characterized only by a

few macroscopic variables such as temperature and pressure. The prescription to

go from microscopic variables to macroscopic variables is known as the coarse-

graining.

The black hole is described only by a few parameters. This suggests that some-

how the black hole is a coarse-grained description. But at present the details of this

coarse-graining is not clear. This is because we have not completely established the

microscopic theory of the black hole or the quantization of the black hole.

3.1.1 Zeroth law

Let us compare the black hole laws and thermodynamic laws2. A thermodynamic

system eventually reaches a thermal equilibrium, and the temperature becomes con-

stant everywhere. This is the zeroth law of thermodynamics. Recall that a black hole

eventually becomes the spherically symmetric one even if it is initially asymmetric.

Spherical symmetry implies that the gravitational force is constant over the horizon.

Then, to rephrase the no-hair theorem, gravity over the horizon eventually becomes

constant even if it was not constant initially. This is similar to the zeroth law, and

gravity on the horizon corresponds to the temperature. Also, both temperature and

gravity are non-negative. A stationary black hole, whose horizon gravity becomes

constant, is in a sense a state of equilibrium.

The gravitational force (per unit mass) or the gravitational acceleration on the

horizon is called the surface gravity. In Newtonian gravity, the gravitational accel-

2 See Sect. 9.2 to refresh your memory of thermodynamics.
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eration is given by

a =
GM

r2
, (3.3)

so at the horizon r = r0,

κ = a(r = r0) =
c4

4GM
. (3.4)

We used Newtonian gravity to derive the surface gravity, but one should not take

the argument too seriously. This is just like the Newtonian gravity result for the

horizon radius in Chap. 2. The surface gravity is the force which is necessary to

stay at the horizon, but in general relativity, one has to specify who measures it.

As discussed below, the surface gravity is the force measured by the asymptotic

observer. The infalling observer cannot escape from the horizon, no matter how

large the force is. So, the necessary force diverges for the infalling observer himself.

But if this force is measured by the asymptotic observer, the force remains finite

and coincides with the Newtonian result. Two observers disagree the values of the

acceleration because of the gravitational redshift.

3.1.2 Surface gravity �

Consider a generic static metric of the form

ds2 =− f (r)dt2 +
dr2

f (r)
+ · · · . (3.5)

Here, · · · represents the line element along the horizon which is irrelevant to our

discussion. Following Sect. 2.3.2, the particle motion is determined from

(

dr

dτ

)2

= E2 − f → d2r

dτ2
=−1

2
f ′ , (′:= ∂r) . (3.6)

For the Schwarzschild black hole, f = 1−2GM/r, so d2r/dτ2 =−GM/r2. As we

saw in Sect. 2.3.2, the expression takes the same form as Newtonian gravity.

In this sense, we used Newtonian gravity to derive the particle’s acceleration in

the last subsection. But this acceleration is not the covariant acceleration aµ but is

just the ar component. It is more suitable to use the proper acceleration which is the

magnitude of the covariant acceleration3:

a2 := gµν aµ aν =
f ′2

4 f
, (3.7)

a =
f ′

2 f 1/2
. (3.8)

3 One can check a0 = 0 for the particle at rest.
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particle

“string”

E∞ 

W∞ 

δs

convert work Wr into radiation Er

 ∞ r

=

Fig. 3.2 In order to obtain the surface gravity, the asymptotic observer pulls the particle by a

massless “string.” The work done to the particle is then converted into radiation. The radiation is

subsequently collected at infinity.

The proper acceleration diverges at the horizon since f (r0) = 0 at the horizon. This

is not surprising since the particle cannot escape from the horizon.

The surface gravity is the force (per unit mass) a∞(r0), which is necessary to hold

the particle at the horizon by an asymptotic observer. In order to obtain the force,

suppose that the asymptotic observer pulls the particle at r by a massless “string”

(Fig. 3.2). If the observer pulls the string by the proper distance δ s, the work done

is given by

W∞ = a∞δ s (asymptotic infinity) , (3.9)

Wr = aδ s (location r) . (3.10)

Now, convert the work Wr into radiation with energy Er =Wr at r, and then collect

the radiation at infinity. The energy received at infinity, E∞, gets the gravitational

redshift (Sect. 2.3.1). The redshift formula is Eq. (2.37):

EB

EA

=

√

g00(A)

g00(B)
. (3.11)

So, E∞ is given by

E∞ =

√

f (r)

f (∞)
Er = f (r)1/2aδ s , (3.12)

where we used f (∞) = 1. The energy conservation requires W∞ = E∞, so a∞ =
f 1/2a = f ′/2 or

κ := a∞(r0) =
f ′(r0)

2
, (3.13)

which coincides with the naive result (3.6).
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3.1.3 First law

If the black hole mass increases by dM, the horizon area increases by dA as well.

So, one has a relation

dM ∝ dA . (3.14)

To have a precise equation, compare the dimensions of both sides of the equation.

First, the left-hand side must be GdM because the Newton’s constant and mass

appear only in the combination GM in general relativity. The Einstein equation tells

how the mass energy curves the spacetime, and G is the dictionary to translate from

the mass to the spacetime curvature.

Then, one can easily see that the right-hand side must have a coefficient which

has the dimensions of acceleration. It is natural to use the surface gravity for this

acceleration. In fact, the first law dE = T dS tells us that temperature appears as the

coefficient of the entropy, and we saw earlier that the surface gravity plays the role

of temperature. Thus, we reach

GdM ≃ κdA . (3.15)

By differentiating Eq. (3.1) with respect to M, one can see that

GdM =
κ

8π
dA (3.16)

including the numerical constant. This is the first law of black holes.

We discuss the third law of black holes in Sect. 3.3.3.

3.2 From analogy to real thermodynamics

3.2.1 Hawking radiation

We have seen that black hole laws are similar to thermodynamic laws. However, so

far this is just an analogy. The same expressions do not mean that they represent

the same physics. Indeed, there are several problems to identify black hole laws as

thermodynamic laws:

1. Nothing comes out from a black hole. If the black hole really has the notion of

temperature, a black hole should have a thermal radiation.

2. The horizon area and the entropy behave similarly, but they have different di-

mensions. In the unit kB = 1, thermodynamic entropy is dimensionless whereas

the area has dimensions. One can make it dimensionless by dividing the area by

length squared, but so far we have not encountered an appropriate one.

The black hole is not an isolated object in our universe. For example, matter

can make a black hole, and the matter obeys quantum mechanics microscopically.
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So, consider the quantum effect of matter. If one considers this effect, the black

hole indeed emits the black body radiation known as the Hawking radiation, and its

temperature is given by

kBT =
h̄κ

2πc
(3.17)

=
h̄c3

8πGM
, (Schwarzschild black hole). (3.18)

This is a quantum effect because the temperature is proportional to h̄. We explain

later how to derive this temperature, the Hawking temperature. Anyway, once the

temperature is determined, we can get the precise relation between the black hole

entropy S and the horizon area A. The first law of black hole (3.16) can be rewritten

as

d(Mc2) =
κc2

8πG
dA (3.19)

=
h̄κ

2πkBc

kBc3

4Gh̄
dA = T

kBc3

4Gh̄
dA . (3.20)

So, comparing with the first law of thermodynamics dE = T dS, one obtains

S =
A

4Gh̄
kBc3 =

1

4

A

l2
pl

kB . (3.21)

Here, lpl =
√

Gh̄/c3 ≈ 10−35m is called the Planck length. The Planck length is the

length scale where quantum gravity effects become important. Note that one cannot

make a quantity whose dimension is the length from the fundamental constants of

classical mechanics alone, G and c. The black hole entropy now becomes dimen-

sionless because we divide the area by the Planck length squared. Equation (3.21)

is called the area law.

A few remarks are in order. First of all, our discussion here does not “derive”

S as the real entropy. Microscopically, the entropy is the measure of the degrees

of freedom of a system, but we have not counted microscopic states. We are still

assuming that classical black hole laws are really thermodynamic laws.

Second,

• The black hole entropy is proportional to the “area.”

• On the other hand, the statistical entropy is proportional to the “volume” of a

system.

This difference is extremely important for AdS/CFT and gives a clue on the nature

of microscopic states of black holes. Because these entropies behave differently,

a four-dimensional black hole cannot correspond to a four-dimensional statistical

system. But the five-dimensional “area” is the four-dimensional “volume.” Then, a
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five-dimensional black hole can correspond to a four-dimensional statistical system.

Namely,

First clue of AdS/CFT:

The black hole entropy suggests that a black hole can be described by

the usual statistical system whose spatial dimension is one dimension

lower than the gravitational theory.

AdS/CFT claims that this statistical system is a gauge theory. Such an idea is called

the holographic principle in general [3, 4]. The holographic principle is the first clue

for AdS/CFT, and we will see another clue, the large-Nc gauge theory, in Sect. 4.2.

Now, our discussion so far uses the Schwarzschild black hole as an example,

but the formula (3.21) itself is generic. The black hole entropy is always given by

Eq. (3.21) as long as the gravitational action is written by the Einstein-Hilbert ac-

tion4:
1

16πGd

∫

ddx
√−gR . (3.22)

Namely, Eq. (3.21) is true not only for black holes in general relativity but also for

black holes in string theory and in the other gravitational theories.

3.2.2 Hawking temperature and Euclidean formalism

There are several ways to compute the Hawking temperature. Hawking originally

computed it by quantizing matter fields in the black hole background. But the simple

way is to require that the Euclidean spacetime be smooth. To do so, one needs a

periodic identification in imaginary time, and the temperature is the inverse of this

period β .

By the analytic continuation to Euclidean signature tE = it, the metric (3.5) be-

comes

ds2
E =+ f (r)dt2

E +
dr2

f (r)
+ · · · . (3.23)

Let us focus on the region near the “horizon” r ≃ r0. Near the horizon, f (r0) = 0,

so one can approximate5 f ≃ f ′(r0)(r− r0). Then,

ds2
E ≃ dr2

f ′(r0)(r− r0)
+ f ′(r0)(r− r0)dt2

E (3.24)

= dρ2 +ρ2d

(

f ′(r0)

2
tE

)2

, (3.25)

4 For a generic gravitational action, the black hole entropy is given by the Wald formula [5].
5 Here, we assume f ′(r0) 6= 0. This assumption fails for extreme black holes where two horizons

are degenerate (Sect. 3.3.3).
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where we introduced a new coordinate ρ := 2
√

(r− r0)/ f ′(r0). In this coordinate,

the metric takes the same form as a plane in polar coordinates if f ′(r0)tE/2 has the

period 2π . Otherwise, the metric has a conical singularity at ρ = 0. The periodicity

of tE is given by β = 4π/ f ′(r0) or

T =
f ′(r0)

4π
. (3.26)

If one compares this result with Eq. (3.13), one gets T = κ/(2π) which is Eq. (3.17).

For the Schwarzschild black hole, f (r) = 1− r0/r, so

T =
1

4πr0
=

1

8πGM
. (3.27)

Note that the Euclidean metric does not cover inside the horizon r < r0 since the

horizon is the origin of polar coordinates.

What is behind the Euclidean formalism is quantum statistical mechanics. In

quantum statistical mechanics, the periodicity in the imaginary time is naturally

associated with the inverse temperature. We mimic this technique of quantum sta-

tistical mechanics and apply to black holes. Then, the “first-principle” computation

of black hole thermodynamic quantities is carried out as follows [6]. (This approach

naturally leads to the GKP-Witten relation in AdS/CFT later.)

The problem of quantum gravity is not completely solved, but it is natural to

expect that quantum gravity is defined by a path integral such as

Z =
∫

DgeiSL[g] . (3.28)

Here, SL is the gravitational action, and the above equation shows the path integral

over the metric g schematically. We consider the Euclidean formalism with tE = it,

SE =−iSL:

Z =
∫

Dge−SE[g] . (3.29)

As we saw above, the Euclidean black hole is periodic in time. Then, it is natu-

ral to associate the statistical mechanical partition function to the black hole and

is natural to regard Z as such a partition function. However, it is not clear how to

carry out the path integral because it diverges. Also, string theory does not evalu-

ate Eq. (3.29) itself. In any case, whether one uses string theory or uses the above

approach, semiclassical results themselves should agree. Semiclassically, the most

dominant contribution to the path integral comes from an extremum of the action,

or the classical solution (saddle-point approximation). Under the approximation,

Z ≃ e−SE . (3.30)
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Here, SE is the on-shell action which is obtained by substituting the classical solu-

tion to the action. The free energy F is then given by SE = βF . For example, for the

Schwarzschild black hole, one can show that

F =
r0

4G
=

1

16πGT
. (3.31)

Then, one can get thermodynamic quantities:

S =−∂T F =
1

16πGT 2
=

πr2
0

G
=

A

4G
, (3.32)

E = F +T S =
1

8πGT
=

r0

2G
= M . (3.33)

We will not carry out the actual computation for the Schwarzschild black hole

here but will carry out for the Schwarzschild-AdS5 black hole in Sect. 7.5 and

Sect. 14.2. AdS/CFT identifies the black hole partition function Z as the gauge the-

ory partition function.

3.2.3 On the origin of black hole entropy �

What represents the black hole entropy? It is not easy to answer to the question as

we will see below, but let us make some general remarks.

When we are speaking of the entropy of the sun, the meaning is clear. Although

a thermodynamic system looks same macroscopically, the system can have differ-

ent microscopic states. There are number of ways one can distribute, e.g., a given

energy to a multiple number of particles. The entropy counts the number of possible

quantum states when macroscopic variables such as energy are specified. In general,

this number becomes larger when the number of particles becomes larger. So, the

entropy is generically proportional to the number of particles.

This suggests that the black hole entropy counts the microscopic states a black

hole can have. This number can be estimated as follows [7]. Let us imagine to make

a black hole by collecting particles in a small region. The entropy is proportional to

the number of particles. To have a larger entropy, we let the total number of particles

as many as possible, or we make the black hole from light particles. However, the

Compton wavelength of a particle with mass m is about λ ≃ h̄/m. We cannot col-

lect particles in a smaller region than the Compton wavelength. But to make a black

hole, we must collect them within the Schwarzschild radius. Thus, if the Compton

wavelength is larger than the Schwarzschild radius, a black hole is not formed. Con-

sequently, we cannot choose the particle mass freely, and the lightest particle we

can use has mass which satisfies h̄/m ≃ 2GM. Then, the total number of particles is

given by

Nmax ≃
M

m
≃ M

h̄
2GM

≃ (GM)2

Gh̄
≃ A

Gh̄
, (3.34)



34 3 Black holes and thermodynamics

which is the right order-of-magnitude for the black hole entropy.

This is fine for a rough estimate, but how can one derive the black hole entropy

statistical mechanically? The Planck length lpl appears in the denominator of the

area law (3.21). This means that the microscopic derivation of the black hole en-

tropy is likely to require quantum gravity. But the formulation of quantum gravity

is a difficult problem, so the problem of the black hole entropy is not completely

resolved. String theory is the prime candidate of the unified theory including quan-

tum gravity, and string theory can derive the black hole entropy microscopically for

some black holes (see, e.g., Refs. [8, 9] for reviews).

In Sect. 3.2.2, we briefly discussed the semiclassical computation of the black

hole entropy. It is natural that such a computation gives the black hole entropy and

is not just a coincidence. There should be something behind which justifies the com-

putation. But one can say that it is not satisfactory as the microscopic derivation of

the black hole entropy, namely as the statistical derivation of the black hole entropy:

• First, Eq. (3.29) itself is not well-defined and cannot be estimated beyond the

semiclassical approximation.

• Also, the computation does not tell us what degrees of freedom the black hole

entropy corresponds to.

But AdS/CFT gives an interesting interpretation to the semiclassical result.

AdS/CFT identifies the partition function computed in this way as the partition

function of a gauge theory. AdS/CFT claims the equivalence between two theo-

ries, a gauge theory and a gravitational theory, and there are two points of view one

can take:

• Namely, one can use the gravitational theory to know about the gauge theory.

• Or, one can use the gauge theory to know about the gravitational theory.

Because AdS/CFT claims the equivalence, it is hard to say which point of view

is more fundamental, namely which theory is more fundamental, but let us take

the latter point of view for now. If so, one can regard the origin of the black hole

entropy as the entropy of the corresponding gauge theory, namely the number of

microscopic states of the gauge theory. Then, the black hole entropy is nothing but

the usual statistical entropy.

However, black holes in AdS/CFT are the ones in AdS spacetime. It is not clear

if one can make such an interpretation for any black holes, in particular for the

Schwarzschild black hole. The holographic principle seems to suggest that this is

somehow possible.
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3.3 Other black holes

3.3.1 Higher-dimensional Schwarzschild black holes

The four-dimensional Schwarzschild black hole can be generalized to d-dimensional

spacetime:

ds2
d =− f (r)dt2 +

dr2

f (r)
+ r2dΩ 2

d−2 , (3.35a)

f (r) = 1−
( r0

r

)d−3

= 1− 16πGd

(d −2)Ωd−2

M

rd−3
, (3.35b)

Ωn =
2π

n+1
2

Γ ( n+1
2
)
. (3.35c)

Here, Gd is the Newton’s constant in d-dimensional spacetime, dΩ 2
n is the line ele-

ment of the unit Sn (see Sect. 6.1.5 for an explicit construction), and Ωn is its area

which is written by the Gamma function Γ (n+1/2). Some explicit forms of Ωn are

given by

Ω0 = 2 , Ω1 = 2π , Ω2 = 4π , Ω3 = 2π2 ,

Ω4 =
8

3
π2 , Ω5 = π3 , Ω6 =

16

15
π3 , Ω7 =

1

3
π4 . . . . (3.36)

The behavior 1/rd−3 in f (r) comes from the fact that the Newtonian potential be-

haves as 1/rd−3 in d-dimensional spacetime.

Using Eqs. (3.21) and (3.26), one gets thermodynamic quantities:

T =
f ′(r0)

4π
=

d −3

4πr0
, (3.37)

S =
A

4Gd

=
rd−2

0 Ωd−2

4Gd

. (3.38)

One can check the first law with these quantities and the mass (3.35b).

3.3.2 Black branes

The black holes in previous subsection are simply the extensions of the four-

dimensional black hole, but in higher dimensions, there exist black holes which do

not appear in four-dimensions. The Schwarzschild black hole has a spherical hori-



36 3 Black holes and thermodynamics

zon, but the horizon can take other topologies in higher dimensions6. In particular,

the horizon can have an infinite extension.

A simple example is the five-dimensional “neutral black string,” which is the

four-dimensional Schwarzschild black hole times R:

ds2
5 =−

(

1− r0

r

)

dt2 +
dr2

1− r0
r

+ r2dΩ 2
2 +dz2 , (3.39)

where z represents the R coordinate. For the five-dimensional Schwarzschild black

hole, the horizon, the r = r0 surface has the line element r2
0dΩ 2

3 which represents

the S3-horizon. Here, the horizon is still given by r = r0, but the horizon has the

line element r2
0dΩ 2

2 + dz2. So, the horizon has the topology S2 ×R and extends

indefinitely in z-direction. Such a horizon is called a planar horizon. When we say

the word “black hole” in this book, it is mostly a black hole with a planar horizon.

A black hole with planar horizon is often called a black brane.

The black branes arise with various dimensionalities. A black brane with R
p

horizon is called a black p-brane. Namely,

p = 0 black hole

p = 1 black string

p = 2 black membrane
...

...

To obtain thermodynamic quantities of the neutral black string, notice that the black

string is just the four-dimensional Schwarzschild black hole if one compactifies the

z-direction. Then, the black string and the four-dimensional Schwarzschild black

hole have the same thermodynamic quantities. Take the periodicity of z as V1. By

the compactification,

1

16πG5

∫

d5x
√−g5R5 =

V1

16πG5

∫

d4x
√−g4 (R4 + · · ·) , (3.40)

where the dots denote matter fields which appear by the compactification. Thus,

the four-dimensional Newton’s constant G4 is written as 1/G4 = V1/G5 from the

five-dimensional point of view. Then, thermodynamic quantities are

T =
1

4πr0
, S =

πr2
0

G4
=

πr2
0

G5

V1 , M =
r0

2G4
=

r0

2G5

V1 , P =− r0

4G5

, (3.41)

where we used the first law dM = T dS−PdV1 to derive the pressure P. The entropy

of the black string is rewritten as

Sstring = 4πG5

M2

V1
. (3.42)

6 For four-dimensional asymptotically flat black holes, the topology of black hole horizons must

be S2 under appropriate conditions on matter fields. This is known as the topology theorem (see,

e.g., Proposition 9.3.2 of Ref. [10]) which is part of the no-hair theorem.
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Fig. 3.3 Gregory-Laflamme instability.

Gregory-Laflamme instability � As a side remark, the neutral black string actu-

ally has the so-called Gregory-Laflamme instability [11]. The black string is not the

only neutral solution allowed, but the five-dimensional Schwarzschild black hole is

also allowed. Even though the z-direction is compactified, the metric (3.35a) should

be good approximately when the horizon radius r̃0 satisfies r̃0 ≪V1. The thermody-

namic quantities behave as

M ≃ r̃2
0

G5

, SBH5
≃ r̃3

0

G5

≃
√

G5M3/2 . (3.43)

On the other hand, the entropy of the black string behaves as Eq. (3.42). Consider

the microcanonical ensemble with fixed M. Then, SBH5
> Sstring for a large enough

V1, so the black hole is favorable entropically. Then, the black string is unstable and

would decay to the black hole, but it is still not clear if the transition really occurs

(Fig. 3.3). Anyway, it has been shown numerically that the neutral black string is

unstable under perturbations7.

3.3.3 Charged black holes

A black hole can have a charge Q. The solution is known as the Reissner-Nordström

black hole (RN black hole hereafter):

7 It has been argued that the Gregory-Laflamme instability is related to the Rayleigh-Plateau insta-

bility in hydrodynamics [12].
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ds2 =−
(

1− 2GM

r
+

GQ2

r2

)

dt2 +
dr2

1− 2GM
r

+ GQ2

r2

+ r2dΩ 2
2 (3.44a)

=−
(

1− r+

r

)(

1− r−
r

)

dt2 +
dr2

(

1− r+
r

)(

1− r−
r

) + r2dΩ 2
2 , (3.44b)

Fr0 =
Q

r2
, (3.44c)

where 2GM = r++ r− and GQ2 = r+r−. We chose the dimensions of Q as dimen-

sionless. (The charge is dimensionless in the units c = h̄ = 1.)

The RN black hole is a solution of the Einstein-Maxwell theory8:

S=
∫

d4x
√−g

(

1

16πG
R− 1

16π
F2

)

. (3.45)

The equations of motion from the above action is given by

Rµν −
1

2
gµν R = 2G

(

Fµρ F
ρ

ν − 1

4
gµν F2

)

, (3.46)

∇ν Fµν = 0 . (3.47)

Here, we check only the Maxwell equation:

∇ν Fµν =
1√−g

∂ν(
√−gFµν) = 0 . (3.48)

When a black hole has an electric charge, Fr0 =Er 6= 0, and the only nontrivial equa-

tion is ∂r(
√−gFr0) = 0. For the above metric, Fr0 =−Fr0 and

√−g = r2 sin2 θ , so

the solution to the Maxwell equation is given by Eq. (3.44c). The field strength Fµν

is written by the gauge potential Aµ as Fµν = ∂µ Aν − ∂ν Aµ . For our electric field,

one may choose the gauge potential A0 as

A0 =−Q

r
. (3.49)

The black hole (3.44b) has two horizons r = r±, where

r± = GM±
√

G2M2 −GQ2 . (3.50)

But note that

• When
√

GM > Q, two horizons exist.

• When
√

GM < Q, there is no horizon since Eq. (3.50) becomes complex.

• The limiting case
√

GM = Q or r+ = r− is called the extreme black hole.

Also, the black hole has a spacetime singularity at r = 0.

8 Note the normalization of the Maxwell action. This choice is standard for the RN black hole.
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Thermodynamic quantities Again using Eqs. (3.21) and (3.26), one gets

T =
r+− r−
4πr2

+

=
1

2π

√

G2M2 −GQ2

2GM
(

GM+
√

G2M2 −GQ2
)

−GQ2
, (3.51)

S =
4πr2

+

4G
=

π

G

(

GM+
√

G2M2 −GQ2
)2

. (3.52)

The black holes with
√

GM > Q emit the Hawking radiation and eventually settle

into the extreme black hole. The extreme black hole has zero temperature9.

When a thermodynamic system exchanges particle numbers or charges with the

environment, the first law becomes

dM = T dS+µdQ , (3.53)

where µ is the “chemical potential.” This is just the gauge potential A0 in this case.

However, the value of A0 itself is not meaningful due to the gauge invariance:

A0(x)→ A0(x)+∂0Λ(x) . (3.54)

What is physical is the difference of the gauge potential.

Imagine to add a charge ∆Q from the asymptotic infinity to the black hole. This

requires energy ∆E proportional to the difference of A0 between the asymptotic

infinity and the horizon (for a same sign charge as the black hole). Then, µ should

be given by

µ = A0|r=∞ − A0|r=r+
, (3.55)

and ∆E = µ∆Q which takes the form of the first law. Thus,

µ =
Q

r+
=

√

1

G

r−
r+

. (3.56)

Using these thermodynamic quantities, one can show the first law (3.53)10.

Third law According to the third law of thermodynamics, S → 0 as T → 0 (Nernst-

Planck postulate). On the other hand, the entropy of the RN black hole remains finite

as
√

GM → Q, so the black hole seems to violate the third law.

9 Since the Hawking temperature is proportional to the surface gravity, a zero temperature black

hole has zero surface gravity. Then, does the black hole have no gravitational force? As we saw

previously, the surface gravity is the gravitational force measured by the asymptotic observer. But

the asymptotic observer and the observer near the horizon disagree the value of the force because of

the gravitational redshift. Although there is a gravitational force for the observer near the horizon,

it vanishes for the asymptotic observer.
10 On the other hand, for the RN black hole (and for the Schwarzschild black hole), the other

thermodynamic relations such as the Euler relation and the Gibbs-Duhem relation do not take

standard forms (Sect. 3.5).
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This point is still controversial, but a finite entropy at zero temperature means that

ground states are degenerate, and there is nothing wrong about degenerate ground

states quantum mechanically. However, such a degeneracy is often true only in ide-

alized situations, and the degeneracy is normally lifted by various perturbations.

Similarly, the degeneracy of the RN black hole may be lifted by various interac-

tions.

3.4 Summary

• A black hole behaves as a thermodynamic system and has thermodynamic quan-

tities such as energy (mass), entropy, and temperature.

• The black hole entropy is proportional to the horizon area. This suggests that a

black hole can be described by the usual statistical system whose spatial dimen-

sion is one dimension lower than the gravitational theory (holographic principle).

• To derive black hole thermodynamic quantities, use the Euclidean path integral

formulation and evaluate the path integral by the saddle-point approximation.

• These are various black objects (black branes) in higher dimensions.

New keywords

black hole thermodynamics

black hole entropy

no-hair theorem

surface gravity

Hawking temperature

Planck length

area law

holographic principle

Euclidean formalism

planar horizon

black brane

Reissner-Nordström black hole

extreme black hole

3.5 Appendix: Black holes and thermodynamic relations �

We saw that black holes satisfy the first law. The first law should be always satisfied

because the law simply represents the energy conservation. On the other hand, the

other thermodynamic relations such as the Euler relation and the Gibbs-Duhem re-

lation do not take standard forms for black holes with compact horizon. The story is

different for black branes though: these relations take standard forms like standard

thermodynamic systems.

For example, thermodynamic quantities of the Schwarzschild black hole are

given by
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T =
1

4πr0
, S =

πr2
0

G4
, E =

r0

2G4
. (3.57)

So, the Euler relation does not take the form E = T S, but

E = 2T S , (3.58)

which is known as the Smarr’s formula.

For black holes with compact horizon, thermodynamic relations do not take stan-

dard forms because these black holes do not satisfy fundamental postulates of ther-

modynamics (Sect. 9.2). In particular, thermodynamics requires that the entropy is

additive over the subsystems. This requirement is unlikely to hold in the presence

of a long-range force such as gravity. Another related problem is that the volume V

and its conjugate quantity, pressure P, do not appear in those black holes (at least as

independent variables.)

The postulate in particular implies that the so-called fundamental relation of a

standard thermodynamic system

S = S(E,V ) (3.59)

is a homogeneous first order function of extensive variables:

S(λE,λV ) = λS(E,V ) . (3.60)

Then, the Euler relation and the Gibbs-Duhem relation follow from the fundamental

relation. However, if one rewrites Eq. (3.57) in the form of the fundamental relation,

one gets

SBH4
= 4πG4E2 , (3.61)

which is a homogeneous second order function in E. Thus, it is no wonder that

thermodynamic relations do not take standard forms.

However, the story is different for branes. For branes, one has an additional ex-

tensive variable, volume V , and the entropy is additive over the subsystems along

the brane direction V =VA +VB. In this sense, the entropy of branes is additive, and

branes satisfy the standard postulates of thermodynamics. A simple example is the

neutral black string (3.39). In Eq. (3.42), we wrote the entropy of the black string in

the form of the fundamental relation:

Sstring = 4πG5

E2

V1
. (3.62)

This is indeed a homogeneous first order function in extensive variables. As a re-

sult, one can check that the black string does satisfy the standard thermodynamic

relations E = T S−PV1 and SdT −V1dP = 0. Note that Eqs. (3.61) and (3.62) are

actually the same equation since V1/G5 = 1/G4.
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Chapter 4

Strong interaction and gauge theories

So far we discussed black holes, but this chapter describes another important element of

AdS/CFT, gauge theory. After we overview the theory of strong interaction, namely QCD,

its phase structure, and heavy-ion experiments, we explain the idea of the large-Nc gauge

theory. This idea naturally leads us to AdS/CFT.

4.1 Strong interaction and QCD

4.1.1 Overview of QCD

Protons and neutrons are made out of more fundamental particles, quarks. Under

normal circumstances, quarks are bound together inside protons and neutrons, and

one cannot liberate them. The strong interaction is the force which bounds quarks

together. The theory of the strong interaction is described by quantum chromody-

namics, or QCD. QED is a gauge theory based on U(1) gauge symmetry, and QCD

is based on SU(3) gauge symmetry. The strong interaction is meditated by gluons,

which are the SU(3) gauge fields.

A quark belongs to the fundamental representation of SU(3) and can take 3

states. These degrees of freedom are called color; this is the origin of the word

‘chromo’ in quantum chromodynamics. If we denote the color degrees of freedom

by index i, a quark can be written as qi (i = 1,2,3)1. An antiquark q̄i has an an-

ticolor. For the electromagnetic interaction, an electric charge is the source of the

interaction; similarly, for the strong interaction, a “color charge” is the source of the

interaction.

A quark has a color, but the quark color typically changes by a quark-gluon in-

teraction. The difference of color is carried off by the gluon. Thus, the gluon carries

1 Quarks have the additional degrees of freedom, flavor. There are 6 flavors, up u, down d, strange

s, charm c, bottom b, and top t.
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one color and one anticolor. A gluon behaves as a quark-antiquark pair2 q̄iq j. Then,

using a 3×3 matrix on index (i, j), one can write a gluon as (Aµ)
i
j. Namely, a gluon

belongs to the adjoint representation of SU(3).
A gluon, the force carrier itself has color charges, so a gluon has the self-

interactions. This point is very different from QED; the force carrier of the elec-

tromagnetic force, photon, is electrically neutral. This aspect changes the dynamics

of QCD from QED drastically.

The QCD interaction becomes weak at high energy (asymptotic freedom), and

one can rely on the perturbative QCD. This was helpful to confirm QCD as the

theory of strong interaction since the predictions from the perturbative QCD can

be compared with the results from the deep inelastic scattering experiments. On

the other hand, the QCD interaction becomes stronger at low energy. Because of

this property, quarks and gluons are confined into particles collectively known as

hadrons, and only the “color-neutral” particles appear3. This is known as the color

confinement, but this has not been proven yet.

QCD has the invariance under the quark phase transformation q → eiθ q. This is

the global U(1)B symmetry associated with the baryon number conservation.

4.1.2 Phase structure of QCD

QCD becomes strongly-coupled at low energy, and one cannot rely on the pertur-

bation theory. But this situation suggests that QCD has rich phenomena, richer than

QED. In fact, QCD has a rich phase structure, and the full details of the phase struc-

ture are still unclear (Fig. 4.1)4. The region “χSB” in this figure is the phase where

quarks are confined.

At high temperature, many light particles are excited, and the interaction between

quarks is screened by light particles in between. This is the Debye screening, a

phenomenon which also occurs in QED5. The quark-gluon plasma, or QGP, is the

phase where quarks and gluons are deconfined by the screening6.

Just like the usual electromagnetic plasma, QGP is made of “charged ionized”

particles in a sense. The differences lie in the meaning of the “charge” and “ioniza-

tion.” For QGP, we mean color charges, not electric charges. The quarks of course

carry electric charges as well, but it is not important here. Also, what we meant

by ionization is the deconfinement for QGP. The transition to QGP is estimated as

Tc ≈ 150−200MeV ≈ 1fm ≈ 2×1012K. However, according to lattice simulations,

2 This does not mean that a gluon is a quark-antiquark pair. It simply means that a gluon transforms

like a quark-antiquark pair under SU(3).
3 Strictly speaking, one should say that only color singlets appear.
4 Such a rich phase structure is not limited to QCD and is common to Yang-Mills gauge theories.

The large-Nc gauge theories seem to have a rich phase structure in general as we will see gradually.
5 What is screened in QCD is not electric charge but color charges. As a result, the strong interac-

tion becomes weak.
6 See Ref. [2] for the textbook in QGP.
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Fig. 4.1 QCD phase diagram [1]. The vertical axis represents temperature, and the horizontal axis

represents the so-called “baryon chemical potential,” which is associated with the baryon number

conservation (see footnote 10 in Sect. 9.2 for the use of the terminology chemical potential). In

the figure, “χSB” (which stands for chiral symmetry breaking) represents the hadron phase, and

“CSC” represents the so-called color superconducting phase. This is just a schematic diagram, and

the full details of the phase diagram are still unclear; at this moment, it is not clear if there are any

other phases in this diagram, and the boundaries of each phases are not clear either.

this is not a sharp phase transition but a smooth “cross-over” at zero baryon chem-

ical potential. (In Fig. 4.1, the solid line which represents the phase boundary does

not cross the vertical axis, which means the cross-over.)

Naively, one would expect that the perturbation theory is valid in the plasma

phase since the deconfinement occurs there. It is true that the plasma should be-

have like a free gas at high enough temperatures. But the strong interaction does not

become weak enough at the temperatures one can realize in current experiments.

This is because the QCD coupling constant decreases only logarithmically with en-

ergy, 1/ logE. In fact, there is an experimental indication that QCD is still strongly-

coupled in the plasma phase (Sect. 4.1.4). But then, even if one would like to discuss

plasma properties theoretically, one cannot rely on the perturbative QCD. We need

another approach to study QGP.

The lattice simulation is a useful approach at strong coupling, which becomes

very powerful in recent years. But this approach is the imaginary-time formalism

not the real-time formalism. As a consequence, this is very powerful for equilib-

rium problems but is not powerful yet for nonequilibrium problems which are the

situation at QGP experiments. Also, currently the analysis at finite density is diffi-

cult as well.
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4.1.3 Heavy-ion experiments

The quark-gluon plasma is a natural phenomenon from QCD. In fact, theoretically

it has been known for a long time. But it was never formed in an experiment, let

alone to measure physical properties. But in recent years, there exist heavy-ion ex-

periments whose goals are to form QGP and to measure its physical properties.

Particle accelerators usually collide e+e−, pp or pp̄, but the heavy-ion experi-

ments collide heavy nuclei such as gold nuclei. Heavy atoms themselves are elec-

trically neutral. In order to accelerate them, one has to strip electrons and to ionize

them. So, such an experiment is called a heavy-ion experiment.

One notable heavy-ion accelerator is the Relativistic Heavy Ion Collider (RHIC),

which is located at Brookhaven National Laboratory and is in operation since 2000.

Another heavy-ion experiment has been performed at CERN since 2010 using the

Large Hadron Collider (LHC). The plasma temperature by these colliders are esti-

mated as about 2Tc at RHIC and about 5Tc at LHC.

In heavy-ion experiments, one first collides heavy nuclei, and the plasma is

formed if the temperature is high enough. But the plasma exists only transiently;

the high temperature of the plasma causes it to expand, and then the plasma cools

down by the expansion. In the end, the temperature is below the transition tem-

perature, so quarks are confined into hadrons. What is observed is these secondary

particles. The above history shows the difficulties of the experiment and its analysis:

• The plasma has a very complicated time-evolution so that its analysis is not easy.

• What is observed is not QGP itself but only its by-products such as hadrons. One

has to infer what happened from the by-products. Thus, it is not an easy job to

confirm even the QGP formation.

• Many secondary particles are involved in the experiments. The purpose here is

the QGP property as a thermal system, so one has to keep track of these particles

as many as possible.

• Finally, the perturbative QCD is not very effective for theoretical analysis as

discussed below.

4.1.4 “Unexpected connection between string theory and RHIC

collisions”

In 2005, the first detailed RHIC results were announced at the APS annual meeting.

This press release has an interesting statement [3]: “The possibility of a connection

between string theory and RHIC collisions is unexpected and exhilarating.”7 (Direc-

tor of the DOE Office of Science) Here, “string theory” meant the AdS/CFT duality.

What is the “unexpected connection” between string theory and RHIC collisions?

7 As far as I know, this is the first time string theory has been mentioned in the announcement of a

major experiment.
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v

L

F

x

Fig. 4.2 Left: when one moves the upper plate, the fluid is dragged due to the viscosity and the

lower plate experiences a force. Right: the close-up view of the fluid.

In the RHIC announcement, it was stressed that quark-gluon-plasma does not

behave like a free gas but behaves more like a perfect fluid8. The difference between

a free gas and a perfect fluid is that the latter has no viscosity. We will discuss the

viscosity and hydrodynamics in Chap. 9 in details, but let us remind you of freshman

physics of viscosity.

As a simple example, consider a fluid between two plates and move the upper

plate with velocity v (Fig. 4.2). As the fluid is dragged, the lower plate experiences

a force. This force is the manifestation of the viscosity. In this case, the force the

lower plate experiences per unit area F/A is given by

F

A
= η

v

L
. (4.1)

The proportionality constant η is called the shear viscosity.

Microscopically, the viscosity arises due to the momentum transfer between

molecules. Figure 4.2(right) shows a close-up view of the fluid and we put an

artificial boundary to divide the fluid into two parts. The molecules collide with

each other and are exchanged randomly through the boundary. But in the situation

where we move the upper plate, the molecules in the upper-half part, on average,

have more momentum in the x-direction than the ones in the lower-half part. These

molecules are exchanged, which means that momentum in the x-direction is trans-

ported through the boundary. This is the microscopic origin of the viscosity.

8 Actually, the announcement stated that QGP behaves like a perfect “liquid” to avoid the technical

term “fluid,” but it was slightly misleading. See footnote 9 for more details.
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The shear viscosity has units of [η ] = Pa · s = kg ·m−1 · s−1 from Eq. (4.1). Thus,

one would expect from dimensional analysis that the shear viscosity is given by

η ≃ ρ v̄lmfp ≃ ετmfp (4.2)

(ρ: mass density, v̄: mean velocity of particles, lmfp: mean-free path, ε: energy den-

sity, τmfp: mean-free time). Now, change the coupling constant. At strong coupling,

the mean-free path becomes shorter. The viscosity arises due to the momentum

transfer, and the transfer is less effective at strong coupling. So, the viscosity be-

comes smaller at strong coupling. In particular, a perfect fluid has no viscosity, so a

perfect fluid is a strong coupling limit. This is somewhat confusing, but an ideal gas

is the free limit, and a perfect fluid is the strong coupling limit9.

A small viscosity implies the strong interaction. According to RHIC, QGP has a

small viscosity, so this implies that QGP is strongly-coupled. This is an interesting

discovery, but then how can one study such a strong coupling problem theoretically?

One cannot rely on the perturbative QCD. This is one main obstacles in the QGP

research. String theory may be a good place to study such an issue. It turns out

that the prediction of the shear viscosity using AdS/CFT is close to the RHIC result

(Chap. 12). This is the “unexpected connection” the RHIC announcement meant.

We will further discuss heavy-ion experiments and their results in Sect. 12.2.

4.2 Large-Nc gauge theory

In QCD, the perturbation theory has a limited power, and it is still difficult to solve

QCD nonperturbatively. An approximation method, the so-called large-Nc gauge

theory, was proposed by ’t Hooft, and this idea is naturally related to string theory

[5]10.

There are three colors in QCD, but in the large-Nc gauge theory, one considers

a large number of colors. For example, consider a U(Nc) gauge theory. The gauge

field is written as an Nc ×Nc matrix, (Aµ)
i
j.

Then, the theory has two parameters,

gauge theory coupling constant gYM, number of colors Nc .

9 The argument here has some limitations. First, the fluid must be a Newtonian fluid. [The New-

tonian fluids are the fluids which satisfy Eq. (4.1).] Second, among Newtonian fluids, we consider

only the fluids where the momentum transfer occurs due to the mechanism described in the text.

For example, “honey” satisfies neither of these conditions.

This is an appropriate place to go back to the RHIC announcement of “perfect liquid.” In our

discussion, the fluid is always gas-like and the momentum transfer is kinematic (i.e., the momentum

is transferred by particle motion), whereas in a liquid, the momentum transfer by potential energy

among particles is more effective (see, e.g., Ref. [4]). What we have in mind is the strong coupling

limit of the QGP gas. In this sense, saying that QGP is a perfect liquid is slightly misleading. But

in the strong coupling limit, the distinction between a gas and a liquid becomes rather subtle.
10 See Chap. 8 of Ref. [6] for the details of the large-Nc gauge theory.
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Fig. 4.3 The propagator of the gauge field (wavy lines) and the interaction vertex by double-line

notations (top, middle). The bottom figure is an example of vacuum amplitudes.

Instead, we will use Nc and the ’t Hooft coupling λ := g2
YMNc as independent pa-

rameters. The large-Nc limit is given by11

Nc → ∞ while λ is kept fixed and large.

This is a nontrivial limit as we will see. Namely, the theory does not reduce to the

free one in this limit because the effective coupling is given by λ . Thus, λ ≫ 1 is a

strong coupling limit.

The large-N limit of, e.g., O(N) vector model often appears in condensed-matter

physics. The large-Nc gauge theory has the same spirit but has important differences.

The vector model is solvable in this limit, but the gauge theory is hard to solve even

in this limit. Also, the vector model essentially reduces to a classical theory. The

gauge theory also reduces to a classical theory, but this classical theory is a classical

gravitational theory as we will see in a moment.

In Feynman diagrams, a gauge theory propagator is represented by a single line.

But to keep track of colors, it is convenient to use the “double-line notation,” where

the propagator is represented by a double-line with opposite arrows (Fig. 4.3). Then,

draw diagrams so that the direction of arrows is preserved. As far as color indices are

concerned, the gauge field behaves as a quark-antiquark pair, so one can regard the

double-line as the pair. Namely, one line represents the rows of the matrix (Aµ)
i
j,

and the other represents the columns.

11 If one recovers gYM, the limit implies gYM → 0.



50 4 Strong interaction and gauge theories

Or, in string theory context, a double-line represents the propagation of an open

string because an open string represents a gauge field (Chap. 5). A double-line cor-

responds to the endpoints of a string12.

The Lagrangian of a gauge field is schematically written as

L =
1

g2
YM

{∂A∂A+A2∂A+A4}= Nc

λ
{· · ·} . (4.3)

From the Lagrangian, one can derive Feynman rules to obtain amplitudes. Here is

the summary of rules:

• Associate the factor λ/Nc for each propagator.

• Associate the factor Nc/λ for each interaction vertex13.

• Associate the factor Nc for each loop (because of the summation over Nc colors).

Denote the number of vertices as V , the number of propagators as E, and the number

of loops as F . From the Feynman rules, one gets

(

Nc

λ

)V ( λ

Nc

)E

NF
c = λ E−V NV−E+F

c . (4.4)

For example, the diagram 4.4(a) has (V,E,F) = (2,3,3), so

(

Nc

λ

)2( λ

Nc

)3

N3
c = λN2

c . (4.5)

The diagram 4.4(b) has (V,E,F) = (4,6,4), so

(

Nc

λ

)4( λ

Nc

)6

N4
c = λ 2N2

c . (4.6)

Thus, these results are summarized schematically as

(1+λ +λ 2 + · · ·)N2
c = f0(λ )N

2
c . (4.7)

But it is not always the case that diagrams take the form (4.7). For example, the

diagram 4.4(c) has (V,E,F) = (4,6,2), so

(

Nc

λ

)4( λ

Nc

)6

N2
c = λ 2 . (4.8)

The diagrams such as Fig. 4.4(a), (b) are called planar, and the diagrams such as

Fig. 4.4(c) are called non-planar. The word “planar” (“non-planar”) means that one

12 We will encounter string theory again in the large-Nc limit below, but this string is not the same

as the open string here. String theory appeared below is a closed string theory.
13 In Fig. 4.4, the vertex is represented by a gray dot. Below we will take care only of the factors

Nc and λ in diagrams, and we will discuss only “vacuum amplitudes” with no external lines.
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(a) (b) (c)

Fig. 4.4 Examples of vacuum amplitudes. Fig. (a) and (b) are planar diagrams, and (c) is a non-

planar diagram.

Fig. 4.5 Relation between a diagram and a two-dimensional surface.

can (cannot) draw the diagrams on a plane. Including non-planar diagrams, the dia-

grams are written as

f0(λ )N
2
c + f1(λ )N

0
c + f2(λ )

1

N2
c

+ · · · . (4.9)

In the large-Nc limit, the first term of Eq. (4.9), the planar diagrams, dominate.

Whether diagrams dominate in the large-Nc limit depends on whether one can

draw them on a plane (or a sphere). This strongly suggests the relation between the

diagrams and topology. In fact, one can draw the diagram 4.4(c) on a torus14.

In general, one can understand the relation between these diagrams and topology

in the following way. Let us fill in loops with surfaces. One can construct a closed

two-dimensional surface (Fig. 4.5). Each propagator is an edge of the surface (poly-

gon), and each vertex is a vertex of the polygon. Then, one can regard the number

of propagators E as the number of edges, and the number of loops F as the number

of faces of the polygons. Now, in this interpretation, the power of Nc in Eq. (4.4) is

the Euler characteristic χ , which is a topological invariant:

χ =V −E +F . (4.10)

For example, a sphere has χ = 2, and a torus has χ = 0. If we denote the number

of handles (genus) as h, one can also write χ = 2−2h. Namely, the planar diagram

14 This is beyond my ability to draw such an illustration. Anyway, such an illustration is hard to

see. I recommend readers to draw such an illustration on their own or to draw diagrams on an

object with a handle (such as a doughnut or a mug).
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Fig. 4.6 Diagrams and topology.

Fig. 4.4(a),(b) correspond to the sphere, and the non-planar diagram Fig. 4.4(c) cor-

responds to the torus (Fig. 4.6).

Now, the summation of vacuum diagrams is a partition function, so the partition

function is given by

lnZgauge =
∞

∑
h=0

Nχ
c fh(λ ) (4.11)

or

Second clue of AdS/CFT:

The partition function of a large-Nc theory is given by

a summation over the topologies of two-dimensional surfaces.

As one can see from Fig. 4.4(a), (b), the more propagators we have, the more

dominant a diagram is in the large-Nc limit. This limit is hard to evaluate in a field

theory. On the other hand, the two-dimensional surface point of view becomes bet-

ter in this limit. The diagrams become denser in this limit, and they approach a

smoother two-dimensional surface.

In the next chapter, we will see that the perturbative expansion of string theory

is also given by a summation over two-dimensional topologies (Fig. 5.12). This

“coincidence” leads one to guess that two theories, gauge theory and string theory,

are actually equivalent:

Zgauge = Zstring . (4.12)

In particular, a summation of two-dimensional closed surfaces corresponds to the

gravitational perturbative expansion. There, the sphere, the planar diagrams, corre-

sponds to classical gravity, and the torus, one of non-planar diagrams, corresponds

to gravity at one-loop. In Sect. 3.2.1, the holographic principle gives the first clue

for AdS/CFT, and the large-Nc gauge theory gives us the second clue.
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4.3 Summary

• According to heavy-ion experiments, QGP behaves as a perfect fluid with a very

small shear viscosity. This implies that QGP is strongly-coupled.

• It is difficult to compute gauge theories such as QCD at strong coupling. The

large-Nc gauge theory provides an approximation to compute a strong coupling

limit.

• The partition function of a large-Nc theory is given by a summation over the

topologies of two-dimensional surfaces.

New keywords

quarks

quantum chromodynamics (QCD)

gluons

fundamental/adjoint representation

color

flavor

asymptotic freedom

hadrons

color confinement

Debye screening

quark-gluon plasma (QGP)

heavy-ion experiments

perfect fluid

shear viscosity

’t Hooft coupling

large-Nc limit

double-line notation

planar/non-planar

topology
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Chapter 5

The road to AdS/CFT

In this chapter, we explain basics of string theory and how one reaches AdS/CFT. The

relation between string theory and gauge theory has been discussed for many years, and

AdS/CFT solved the “homework” to some extent.

We should give a warning about this chapter. The discussion in this chapter needs

string theory to some extent, which may be frustrating to readers. So, we choose to

explain string theory intuitively, but, on the other hand, our argument here is not

very rigorous. Anyway, readers do not have to worry about string theory part much

if you just want to know the AdS/CFT technique. This is because we rarely use string

theory itself in actual AdS/CFT computations. Nevertheless, we include the material

because

1. AdS/CFT makes a bold claim that a four-dimensional gauge theory is equivalent

to a five-dimensional gravitational theory: two theories look different, and even

their spacetime dimensions are different. The road to AdS/CFT gives us some

other clues why this can be true.

2. String theory was originally born as the theory of strong interaction. But there

were many problems for the approach at that time. Following the path to AdS/CFT,

one can understand how AdS/CFT circumvented these problems.

5.1 String theory: prehistory

The strong interaction is described by QCD, but string theory was originally born

as the theory of strong interaction before QCD.

For example, a meson is a quark-antiquark pair, and it is explained well by the

“string” which connects the pair (Fig. 5.1). The string has the tension. In order to

separate the pair, one needs energy proportional to the string length R, E ∝ R, so

quarks cannot be separated, which explains the confinement. In reality, when the

string length becomes large enough, the potential energy is large enough to create a

new quark-antiquark pair. Then, a string breaks into two strings. But the endpoints

55
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quark antiquark

tension

string

Fig. 5.1 The string model of a meson.

of strings are still quarks and antiquarks, and one cannot get individual quarks in

isolation.

Because the string has the tension T, it would collapse to a point. In order the

string not to collapse, one needs to oscillate the string. Or if the string rotates, the

string becomes stable by balancing the tension and the centrifugal force. But the

angular momentum J (or the oscillation) of the string contributes to the energy M of

the string, so there is a relation between J and M.

Such a relation can be obtained from the dimensional analysis. We consider the

relativistic string and use the unit c = 1. In this unit, [J] = ML and [T] = ML−1.

(Recall J = r×p. The mass density has the same dimensions as T in these units.)

Classically, such a string has only the tension T as the dimensionful parameter [see,

e.g., Eq. (8.34)]. Thus, we must have

J ≃ 1

T
M2 + h̄ . (5.1)

Here, we added the second term which is a quantum correction.

Indeed, the meson spectrum satisfies such a relation. Phenomenologically, the

relation (5.1) is fitted by two parameters α ′ and α(0):

J = α ′M2 +α(0) . (5.2)

From the above discussion, 1/α ′ represents the tension, and α(0) represents the

quantum correction. (Note that in the units c = h̄ = 1, [α ′] = L2 and α(0) is di-

mensionless.) This relation is known as a Regge trajectory. Figure 5.2 is the Regge

trajectory for typical mesons1.

The pions are the most well-known among all mesons. They are made of u and d

quarks as well as their antiquarks. The ρ mesons are also made of them. Although

the pions have spin 0 (scalar meson), the ρ mesons have spin 1 (vector meson) and

heavier mass. Now, there is a series of mesons which are similar to the ρ mesons

but have larger spins and heavier masses. These mesons lie on a single line with2

α ′ ≈ 0.9GeV−2 , α(0)≈ 0.5 . (5.3)

1 Such a figure is known as a Chew-Frautschi plot [2].
2 To be precise, this line does not represent a single trajectory but represents degenerate trajectories

which are distinguished by the other quantum numbers. Incidentally, the ω mesons contain ss̄, but

they are similar to the ρ mesons in the sense that they do not carry quantum numbers such as

strangeness, charm, bottom, and top.
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Fig. 5.2 An example of Regge trajectories. The horizontal axis represents M2, and the vertical

axis represents spins. The mesons in square brackets are not well-known. The straight line is fitted

using Eq. (5.3). Reproduced with permission from Ref. [1].

Fig. 5.3 The QCD flux lines form a thin flux tube (right) unlike the electromagnetic flux lines

(left).

The mesons are explained by the string model well. Of course, eventually QCD

appeared as the theory of strong interaction, but the string model is not inconsis-

tent with QCD. The flux lines of electrodynamics spread in space. However, color

flux lines do not spread but rather form a thin flux tube because gluons have self-

interactions (Fig. 5.3). It is natural to imagine that mesons are well-described by the

string model when the thickness of the flux tube is negligible.

Thus, string theory has nice properties as a theory of strong interaction, but there

are shortcomings as well. In particular,

Problem 1: In order to quantize the string consistently, one needs a higher dimen-

sional spacetime. The bosonic string, which contains only bosons in the spec-

trum, requires 26-dimensional spacetime, and string theory which also contains

fermions requires 10-dimensional spacetime. Otherwise, the theory is not con-

sistent.

Problem 2: One can describe the confinement as a string connecting quarks, but

what appears in QCD is not only the confining potential. When the quark sep-

aration becomes smaller, the thickness of the flux tube is no longer negligible,

and the flux lines look more like the usual one. As a consequence, one has the

Coulomb-like potential, E ∝ −1/R. The simple string model is unlikely to de-
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Matter 6 kinds of quarks

6 kinds of leptons

Forces gravity general relativity (classical theory)

electromagnetic force

weak force

strong force







gauge theories (quantum theories)

Higgs boson

Fig. 5.4 The standard model of elementary particles.

scribe this effect. Also, in the plasma phase, one has the Debye screening by

thermally excited light quarks. From the string model point of view, the string

becomes easier to break by quark pairs, but this implies that the string descrip-

tion is not very adequate. In a nutshell, the string model looks like a model of

confinement only. If string theory really describes QCD, one should be able to

discuss the full phase diagram of QCD.

We will reexamine Problem 1 in Sect. 5.3 and Problem 2 in Sect. 8.2.

These problems suggest that something is clearly missing about the correspon-

dence between the strong interaction and string theory. Moreover, QCD was pro-

posed, and QCD was proved to be the right theory of the strong interaction as ex-

perimental results accumulated. So, string theory as the strong interaction was once

abandoned. Rather, string theory was reincarnated as the unified theory including

gravity. We will then quickly look at this aspect of string.

5.2 String theory as the unified theory

Figure 5.4 shows the contents of the standard model. There are 6 quarks and 6

leptons as matters and 4 forces act on matters. In principle, all phenomena can be

understood with these elements, but the standard model has many shortcomings as

well. We will not describe these shortcomings, but in brief, the problem is that the

standard model is a disjointed framework.

This is particularly clear in the force sector. Gravity is described by general rela-

tivity and this is a classical theory. On the other hand, the other 3 forces are described

by gauge theories, and gauge theories can be quantized. So, theoretical foundations

and concepts for these forces are completely different. Now, string theory is the

theory which unifies all these elements.

5.2.1 String oscillations and elementary particles

The fundamental object in string theory is the very small string (Fig. 5.5). There

are two kinds of string: open strings with endpoints and closed strings with no
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Fig. 5.5 Main ingredients of string theory. An open string with endpoints and a closed string

without endpoints.

endpoints. The string has only the tension T as the dimensionful parameter. Since

[T] =L−2, we introduce a parameter ls with the dimension of length3. The parameter

ls is called the string length and represents the characteristic length scale of the

string. The string length ls is the only fundamental length scale in string theory. The

string length is about 10−34 m. But currently the length we can see experimentally

is about 10−17 m. So, macroscopically the string is just a point particle.

But no matter how small the string is, there is a big difference between strings

and point particles; namely, a string can oscillate and a string can oscillate in vari-

ous ways. This is the advantage of the string. There are many kinds of elementary

particles in particle physics. String theory unifies all particles in nature as different

oscillations of string.

Let us look at string oscillations closely. Figure 5.6 shows the simplest open

string oscillation (in four dimensions). As one can see, the string can oscillate in

two directions. So, the open string has two degrees of freedom at this level. These

degrees of freedom represent two polarizations of a gauge field (photon). In this

sense, the open string represents a gauge theory4.

On the other hand, a closed string represents a graviton. Again, the easiest way to

see this is to look at how the string oscillates (Fig. 5.7). In general, the oscillations

on a string have two modes: the left-moving mode and right-moving mode. For

an open string, these modes mix each other at endpoints, but these modes become

independent for a closed string. So, one can oscillate the right-moving mode in one

direction and the left-moving mode in the other direction. In a sense, a closed string

oscillates in two directions simultaneously. This property explains the spin-2 nature

of the graviton. In fact, a graviton also oscillates in two directions simultaneously5.

3 The parameters T, α ′, and ls are related by

T=
1

2πα ′ =
1

2πl2
s

. (5.4)

4 Classically, such a string oscillation represents a massive particle as one can expect from

Eq. (5.2). But it is actually massless because of the quantum correction [the second term of

Eq. (5.2)]. This is true only in 26-dimensional spacetime for the bosonic string and in 10-

dimensional spacetime for superstrings. This is one reason why higher-dimensional spacetime is

necessary in string theory.
5 More precisely, the simplest oscillations of a closed string represents a graviton and two undis-

covered scalar particles, the dilaton and the axion. Since left and right-moving modes each have

two degrees of freedom, a closed string has four degrees of freedom at this level (in four dimen-

sions). The graviton has only two degrees of freedom, and two scalar fields cover the remaining

degrees of freedom.
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Fig. 5.6 The simplest oscillations of an open string. The initial configurations in thick curves

become gray curves after the half period. The “box” here is drawn to see the oscillations easier.

Fig. 5.7 A closed string has two independent modes, which corresponds to the spin-2 nature of the

graviton.

5.2.2 D-brane

An open string propagates through spacetime just like a closed string, but an open

string can also have its endpoints on an object, the so-called D-brane [Fig. 5.8(a)]

[3, 4]. Although these open strings are constrained to have their endpoints on the

D-brane, these are open strings, so they still describe gauge theories. But because

the endpoints are constrained on the D-brane, the gauge theory described by the

D-brane is localized on the D-brane.

If there are Nc coincident D-branes, open strings can have endpoints in various

ways. Open strings can have endpoints on the same brane or can have endpoints on

the different branes [two curved lines and one straight line in Fig. 5.8(b)]. These

new degrees of freedom correspond to SU(Nc) degrees of freedom6.

The D-branes arise with various dimensionalities. A D-brane with a p-dimensional

spatial extension is called the Dp-brane. Namely,

p = 0 point-like object

p = 1 string-like object

p = 2 membrane-like object
...

...

6 More precisely, the D-branes represent a U(Nc) gauge theory, but the U(1) part describes the

center of mass motion of the branes and decouple from the SU(Nc) part.
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(a) (b)

Fig. 5.8 (a) An open string can have endpoints on a D-brane. (b) The Nc coincident D-branes

represent a SU(Nc) gauge theory. In the figure, the branes are separated for illustration, but we

consider the coincident branes in reality.

Thus, the Dp-brane describes a (p+1)-dimensional gauge theory. We are interested

in four-dimensional gauge theories, so consider the D3-brane in order to mimic

QCD7.

The D-branes are related to the black branes in Sect. 3.3.2. Some of black branes

are gravitational descriptions of D-branes.

In Sect. 5.6, we discuss more about the D-brane, the gauge theory that the D3-

brane represents, and its role in AdS/CFT.

5.2.3 Why open and closed strings?

In string theory, there are two kinds of strings, the open string and the closed string.

Why are there two kinds of strings? Or one would say that string theory is not a

unified theory since there are two kinds of strings. But actually these are the same

object in a sense. To see this, let us consider how strings interact with each other.

Fig. 5.9 is the simplest interaction for open strings. Two open strings join into

one open string. But if the endpoints of two open strings can join, the endpoints

of a single open string can join as well. Otherwise, one has to require a nonlocal

constraint on the string dynamics. Thus, the endpoints of a single open string can

join to produce a closed string. Namely, if there are open strings, one has to have

closed strings. This is the reason why we have two kinds of strings8.

Because an open string represents a gauge theory and a closed string represents

gravity, string theory must contain both gauge theory and gravity. This is the unique

feature of string theory as the unified theory.

7 This is not necessarily the case if one compactifies part of brane directions (e.g., Sakai-Sugimoto

model [5]). Incidentally, the D1-brane is a string-like object, but it is different from the “funda-

mental string” we have discussed so far.
8 One can consider string theories with closed string alone, but we will not discuss such theories.
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Fig. 5.9 Top: the simplest interaction for open strings is the joining of two strings into one. Bottom:

if the endpoints of two open strings can join, the endpoints of a single open string can join as well.

(a)

~ gs

(b)

Fig. 5.10 (a) A Feynman diagram which represents an interaction vertex. (b) The corresponding

interaction for closed strings.

The AdS/CFT duality utilizes this unique feature. The AdS/CFT duality relates

a gauge theory to a gravitational theory. This is possible only for the unified theory

such as string theory. In conventional field theory, a gauge theory and a gravitational

theory are completely separated since theoretical foundations and concepts are very

different. As a result, there is no way to get a relation between a gauge theory and a

gravitational theory.

There is a bigger picture behind AdS/CFT. Namely, AdS/CFT requires the exis-

tence of a unified theory behind.

5.2.4 String interactions

A particle draws a wold-line in spacetime. Similarly, a string sweeps a two-dimensional

surface, a world-sheet, in spacetime. In Fig. 5.10(a), we draw a Feynman diagram

for a particle, which represents an interaction vertex. For a closed string, such an

interaction is replaced by Fig. 5.10(b).

In order to express the strength of the interaction, we assign the string coupling

constant gs for an emission/absorption of a closed string. A closed string 1-loop

(Fig. 5.11) has an emission and an absorption of a virtual closed string, so it is

proportional to g2
s . Figure 5.11 has one “handle,” so we can rephrase the rule to
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~ gs2

Fig. 5.11 A 1-loop of closed strings.

+ +       . . .gs2
1

gs2

Fig. 5.12 The perturbative expansion of string theory is given by the sum over the topologies of

world-sheet surfaces.

assign g2
s for each handle. If we have one more loop, we have one more handle, so

the diagram has the factor g4
s .

To summarize, string interactions are classified by the world-sheet topologies

(Fig. 5.12)9. If we denote the number of handles (genus) as h, a h-loop has the

factor g2h
s . The genus h is related to the Euler characteristic χ by χ = 2− 2h, and

vacuum amplitudes can be written as 1/g
χ
s using the Euler characteristic10.

The open string case is similar. Assign the open string coupling constant g̃s for

an emission of an open string. Then, the open string interactions are classified by the

topologies of world-sheets with holes (Fig. 5.13). However, the open string naturally

accompanies the closed string as we saw earlier, and open string interactions are

related to closed string interactions. In fact, an open string 1-loop can be viewed as

an emission of a closed string (Fig. 5.14), so we obtain

gs ≃ g̃2
s . (5.5)

5.2.5 Supergravity: classical gravity approximation of string theory

We have seen that the simplest oscillations of strings correspond to gauge theories

and gravity. But a string has an infinite number of harmonics, so string theory pre-

9 Below we often consider only vacuum amplitudes for simplicity, but one can consider scattering

amplitudes by adding appropriate external lines. Incidentally, gs looks like a free parameter of the

theory at this stage, but actually it is not a free parameter (Sect. 5.2.5).
10 If one adds three external lines (factor g3

s ) to the sphere 1/g2
s , the diagram is proportional to gs,

which is consistent with the interaction vertex in Fig. 5.10(b).
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~ gs
~

(a)

~ gs
2~

(b)

Fig. 5.13 (a) An open string interaction. (b) A 1-loop of open strings.

＝

Fig. 5.14 An open string 1-loop can be viewed as an emission of a closed string.

dicts an infinite number of elementary particles. Since string oscillations cost energy,

these infinite number of harmonics correspond to massive particles whose masses

are determined by energy of oscillations. This mass is typically O(1/ls), which is

extremely heavy as elementary particles. Thus, what normally matters is a set of the

lowest oscillations only; they correspond to known particles.

String theory describes a finite number of known particles when one can ignore

the string length ls, so string theory should be written by standard field theories.

Moreover, when gs ≪ 1, only the lowest order of topology expansion, tree diagrams,

dominates. In such a case, classical field theories should be enough to describe string

theory. Such a theory is known as supergravity11.

The form of supergravity action can be determined from general principles12.

For example, one can show that string theory graviton has general covariance, so

the gravity part should be given by

S=
1

16πG10

∫

d10x
√−gR (5.6)

just like general relativity. We write it as a 10-dimensional action since superstring

theory can be quantized consistently only in 10-dimensional spacetime. G10 is the

Newton’s constant in 10-dimensional spacetime. Similarly, one can show that gauge

fields in string theory have gauge invariance, so the gauge theory part should be

given by the usual gauge theory action.

11 See Ref. [6] for a textbook of supergravity. The name, supergravity, comes from the fact that the

theory has local supersymmetry, but we will not discuss the terms with fermions below.
12 More properly, one calculates string Feynman diagrams as in Sect. 5.2.4 and writes down a field

theory action which reproduces these scattering amplitudes.
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In string theory, the fundamental coupling constant is the string coupling con-

stant gs. In supergravity, coupling constants are G10 and the gauge field coupling

constant gYM. Then, one can relate gs to supergravity coupling constants. By ex-

panding gµν = ηµν +hµν , the graviton action is schematically written as

S=
1

16πG10

∫

d10x{∂h∂h+h∂h∂h+h2∂h∂h+ · · ·} . (5.7)

This implies that a graviton emission is proportional to G
1/2

10 . Since a closed string

emission is proportional to gs, one gets G10 ∝ g2
s .

Similarly, the gauge field action is schematically written as13

S=
1

g2
YM

∫

dp+1x{∂A∂A+A2∂A+A4} . (5.8)

This implies that a gauge field emission is proportional to gYM. Since an open string

emission is proportional to g̃s ≃ g
1/2
s ,

g2
YM ∝ gs . (5.9)

The dimensional analysis further constrains the form of field theory coupling

constants. Since we usually take the metric as dimensionless, the Newton’s constant

has dimensions [G10] = L8 from Eq. (5.7). In string theory, the fundamental string

scale is only the string length ls which represents the characteristic length scale of

the string. Thus, G10 ≃ g2
s l8

s . Similarly, the gauge field has dimensions [A] = L−1

from Eq. (5.8). In order for the action to be dimensionless, [g2
YM] = Lp−3. Thus,

g2
YM ≃ gsl

p−3
s . To summarize,

G10 ≃ g2
s l8

s , g2
YM ≃ gsl

p−3
s . (5.10)

The action (5.6) is the approximation when one can ignore the string length ls.

When the string length can no longer be ignored, the action has an infinite number

of terms with powers of curvature tensors such as

S=
1

16πG10

∫

d10x
√−g(R+ l2

s R2 + · · ·) . (5.11)

Such corrections are known as α ′-corrections14. From the field theory point of

view, these terms correspond to higher derivative terms in an effective field the-

ory15, and they originated from integrating out massive fields with mass O(1/ls).

13 We write the (p+ 1)-dimensional action instead of a 10-dimensional action because one can

consider (p+1)-dimensional gauge theories using D-branes.
14 Recall that the parameter α ′ is related to the string length ls by α ′ = l2

s .
15 See Ref. [7] for a review of effective field theories.
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Roughly speaking, these terms can be ignored when l2
s R ≪ 1, or the length scale of

the curvature is much larger than the string length.

In the topology expansion of string theory, these terms correspond to the lowest

order diagrams, the sphere. Note that the classical gravity approximation of string

theory corresponds to Eq. (5.11), not Eq. (5.6). However, one often considers the

case where the spacetime curvature is small. In such a case, the action (5.6) is

enough, or the action (5.11) with the lowest α ′-corrections is enough.

Finally, to be more precise, supergravity typically takes the form

S=
1

16πG10

∫

d10x
√−ge−2φ

{

R+4(∇φ)2
}

+ · · · (5.12)

instead of the action (5.6). Here, φ is a scalar field called the dilaton. One charac-

teristic feature of Eq. (5.12) is that the Ricci scalar part does not take the simple

Einstein-Hilbert form but has the dilaton factor e−2φ . This means that the Newton’s

constant or the string coupling constant actually correspond to the constant part of

the dilaton e−2φ0 . Readers do not have to worry this fact much since the dilaton is

constant in the simplest AdS/CFT (the D3-brane case in the language of D-branes in

Sect. 5.2.2). But the dilaton may have a nontrivial behavior in a generic AdS/CFT.

A nontrivial dilaton means that the Newton’s constant is not really a constant but it

can vary. Similarly, the gauge field coupling constants can vary because the gauge

theory actions can have a dilaton factor.

5.3 Reexamine string theory as the theory of strong interaction

5.3.1 Comparison of partition functions

We have seen in Sect. 4.2 that the vacuum amplitudes of large-Nc gauge theories

are given by a summation over the topologies of two-dimensional surfaces. This

structure is the same as the closed string amplitudes in Sect. 5.2.4. Since the closed

string represents gravity, the closed string expansion corresponds to the gravitational

perturbative expansion. In particular, the sphere corresponds to classical gravity, and

the torus corresponds to gravity at 1-loop.

This implies that a large-Nc gauge theory is represented by string theory and

in particular is represented by classical gravitational theory of string theory in the

large-Nc limit. This is an amazing conclusion. The original theory is a gauge theory

which does not include gravity, but it is represented by a gravitational theory in the

special limit. In this way, the relation between the gauge theory and string theory,

which was once abandoned (Sect. 5.1), again emerges.

More explicitly, we saw in Sect. 4.2 that the gauge theory partition function Zgauge

is given by

lnZgauge =
∞

∑
h=0

Nχ
c fh(λ ) . (5.13)
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On the other hand, from the discussion in this chapter, the string theory partition

function Zstring is given by

lnZstring =
∞

∑
h=0

(

1

gs

)χ

f̃h(ls) . (5.14)

Since string theory has α ′-corrections, We write the dependence as f̃h(ls). Equa-

tions (5.13) and (5.14) have the same structure, so we arrive at the relation

Zgauge = Zstring , (5.15)

and the parameters between two theories are related by16

N2
c ∝

1

g2
s

∝
1

G
, λ ↔ ls , (5.16)

where we also used the relation G ∝ g2
s .

The analysis of large-Nc gauge theories leads us to string theory as the theory of

strong interaction. However, as we mentioned before, one needs higher-dimensional

spacetime in order to quantize string theory consistently. If one assumes the d-

dimensional Poincaré invariance17 ISO(1,d − 1), d = 26 for the bosonic string

which contains only bosons in the spectrum, and d = 10 for string theory which

also contains fermions in the spectrum. String theory in four-dimensional spacetime

is not consistent. Namely,

• According to gauge theories, a large-Nc gauge theory is represented by a string

theory.

• On the other hand, string theory is not valid as a four-dimensional theory.

These two statements sound inconsistent.

These two statements are actually not inconsistent. To realize this, one should re-

call that string theory is a theory with gravity as well. Namely, string theory should

admit not only the flat spacetime as the solution but also curved spacetimes as the so-

lutions. One may use such a curved spacetime to represent a large-Nc gauge theory.

The curved spacetime itself can be a higher-dimensional one. The resulting theory

can be interpreted as a flat four-dimensional theory if the curved spacetime has only

the ISO(1,3) invariance instead of ISO(1,d − 1). For this purpose, the spacetime

dimensionality must be at least five-dimensions, and the fifth direction is curved.

The appearance of the five-dimensional curved spacetime is also natural from the

black hole entropy. A five-dimensional black hole has entropy which is proportional

to the five-dimensional “area.” But an “area” in five dimensions is a “volume” in

four dimensions: This is appropriate as the entropy of a four-dimensional statistical

system.

16 The parameters Nc and λ are dimensionless whereas G and ls are dimensionful, but we make

the dimensions to come out right in Sect. 5.3.3.
17 The Poincaré invariance is also called the inhomogeneous Lorentz invariance. ISO(1,3) =
R

1,3 ×SO(1,3).
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To summarize18,

A large-Nc gauge theory is represented by a five-dimensional curved

spacetime with four-dimensional Poincaré invariance ISO(1,3).

Such a metric is written as19

ds2
5 = Ω(w)2(−dt2 +dxxx2

3)+dw2 . (5.18)

Here, xµ = (t,xxx3) = (t,x,y,z). The metric contains the combination −dt2+dxxx2
3, so it

has the ISO(1,3) invariance on (t,xxx3). Thus, xxx3-directions correspond to the spatial

directions of the large-Nc gauge theory.

�
Hereafter, Greek indices µ,ν , . . . run though 0, . . . ,3 and are used for the four-

dimensional “boundary” spacetime where a gauge theory lives. On the other hand,

capital Latin indices M,N, . . . are used for the five-dimensional “bulk” spacetime

where a gravitational theory lives.

5.3.2 Scale invariance and its consequences

Without further information, we cannot go any further into the relation between the

large-Nc gauge theory and the curved spacetime. First, it is not clear what kind of

gauge theory is represented by the curved spacetime. Namely, it is not clear if such

a gauge theory is close to QCD or is the one which behaves differently from QCD.

Second, it is not clear what kind of curved spacetime is represented by the gauge

theory. One cannot determine the factor Ω(w). We will impose one more condition

to identify both the gauge theory and the curved spacetime. As we argue below, the

appropriate condition is the scale invariance.

Scale invariant gauge theory (classical) When a theory has no scale or no dimen-

sionful parameter, it is natural to expect that physics does not change under the scale

transformation:

xµ → axµ . (5.19)

The (classical) scale invariance is an important property of four-dimensional pure

gauge theories. For example, consider the Maxwell theory:

18 I am not aware of who first made this claim explicitly, but see, e.g., Refs. [8, 9] for early attempts.
19 The factor Ω does not depend on (t,xxx3) because of the translational invariance on (t,xxx3).
Incidentally, one can consider the metric of the form

ds2
5 = Ω1(w

′)2(−dt2 +dxxx2
3)+Ω2(w

′)2dw′2 , (5.17)

but the metric reduces to Eq. (5.18) by redefining w′.
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S=− 1

4e2

∫

d4xFµν Fµν . (5.20)

The action has no dimensionful parameter and is invariant under the scaling with

Aµ → 1

a
Aµ . (5.21)

If a field Φ transforms as

Φ → a−∆ Φ , (5.22)

under the scaling (5.19), we call that the field has scaling dimension20 ∆ . The

Maxwell field has scaling dimension 1. Roughly speaking, the scaling dimension

coincides with the mass dimension (the Maxwell field has mass dimension 1) al-

though these two dimensions are different notions.

The energy-momentum tensor of the Maxwell theory is given by

Tµν =
1

e2

(

Fµρ F
ρ

ν − 1

4
ηµν F2

)

. (5.23)

A convenient way to compute Tµν is to couple gravity to a field theory, use

Tµν =− 2√−g

δS

δgµν
, (5.24)

and then set gµν = ηµν . For the Maxwell theory, the energy-momentum tensor is

traceless:

T
µ
µ = 0 . (5.25)

This is related to the scale invariance. But the relation is rather subtle, so we leave

it to appendix (Sect. 5.5).

Scale invariant gauge theory (quantum) Pure gauge theories such as the Maxwell

theory are classically scale invariant in four dimensions. So, it is natural to impose

the scale invariance in our discussion. However, gauge theories are not scale in-

variant quantum mechanically. Renormalization introduces a renormalization scale

which breaks the scale invariance. As a result, the coupling constants change with

the energy scale, and we can have phenomena such as confinement. For example,

the 1-loop β -function for the SU(Nc) gauge theory is given by

β (gYM) = µ
dgYM

dµ
(5.26)

=− 11

48π2
g3

YMNc , (5.27)

20 The scaling dimension is also called the conformal weight or the conformal dimension.
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where µ is a renormalization scale. The β -function is negative, which means that

the theory is asymptotically free.

However, there is a special class of gauge theories which keep scale invariance

even quantum mechanically. For example, one would make the right-hand side of

Eq. (5.27) vanish by adding appropriate matter fields. We focus on such gauge

theories. In particular, the so-called N = 4 super-Yang-Mills theory (SYM) has

the largest symmetries among such theories. Here, N = 4 means that the theory

has 4 supercharges which are the maximum number of supercharges for a four-

dimensional gauge theory.

The field contents of the N = 4 SYM are given by

• gauge field Aµ ,

• 6 scalar fields φi,

• 4 Weyl fermions λI

(The color indices are suppressed for simplicity. We will also suppress the spinor

indices.) All these fields transform as adjoint representations of a gauge group.

The action for the N = 4 SYM is given by21

L =
1

g2
YM

tr

[

−1

2
F2

µν − (Dµ φi)
2 − iλ̄Iγ

µ Dµ λ I +O(φ 4)+O(λλφ)

]

.

First three terms are standard kinetic terms for the gauge field, the scalar fields, and

the fermions. In addition, the action contains interaction terms which are written

only schematically; φ 4 interactions and Yukawa-like interactions. The theory has

no dimensionful parameter and the theory is scale invariant classically. This can be

seen as follows. The gauge field and the scalars have mass dimension 1 and the

fermions have mass dimension 3/2, so all terms in the action have mass dimension

4, which means that all parameters must be dimensionless.

The N = 4 SYM is also scale invariant quantum mechanically. We will not

show this, but let us check it at 1-loop from the β -function. When there are adjoint

fermions and adjoint scalars, the 1-loop β -function for the SU(Nc) gauge theory is

given by

β (gYM) =− g3
YM

48π2
Nc

(

11−2n f −
1

2
ns

)

, (5.28)

where n f and ns are the numbers of Weyl fermions and real scalars, respectively.

The β -function indeed vanishes for the N = 4 SYM since n f = 4 and ns = 6.

Curved spacetime and scale invariance Now, consider how the four-dimensional

scale invariance (5.19) constrains the five-dimensional curved spacetime (5.18):

ds2
5 = Ω(w)2(−dt2 +dxxx2

3)+dw2 . (5.29)

Under the scale transformation xµ → axµ , the metric (5.29) is invariant if Ω(w)
transforms as

21 Here, Fµν := Fa
µν ta. We normalize the gauge group generators ta by tr(tatb) = 1

2
δ ab.
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Ω(w)2 → a−2Ω(w)2 . (5.30)

For this to be possible, w must be transformed in a nontrivial way, but the line

element along w is dw2. So, only the translation is allowed on w. Since w has the

dimension of length, let us introduce a parameter L which has the dimension of

length, and write the translation as22

w → w+L lna . (5.31)

Under the scale transformation and Eq. (5.31), Ω(w) must transform as Eq. (5.30).

This determines the form of Ω(w) uniquely:

ds2
5 = e−2w/L(−dt2 +dxxx2

3)+dw2 (5.32)

=
( r

L

)2

(−dt2 +dxxx2
3)+L2 dr2

r2
, (5.33)

where r = Le−w/L. This is known as the five-dimensional anti-de Sitter spacetime, or

the AdS5 spacetime (Chap. 6). The length scale L is known as the AdS radius. This

is the spacetime which corresponds to the scale-invariant large-Nc gauge theory.

The AdS5 spacetime is the solution of the Einstein equation with the negative

cosmological constant (Chap. 6):

S5 =
1

16πG5

∫

d5x
√−g5(R5 −2Λ) , (5.34)

where 2Λ :=−12/L2.

�
Readers may be puzzled that we introduce a scale L in a “scale-invariant theory.”

But the gravitational theory already has a scale G5 or ls. From the four-dimensional

gauge theory point of view, we will see that L appears only as the combination of

dimensionless quantities L3/G5 and L/ls.

So far we focused only on the Poincaré invariance and the scale invariance. Ac-

tually, both the N = 4 SYM and the AdS5 spacetime have a larger symmetry. It

is often the case in a relativistic field theory that the Poincaré invariance ISO(1,3)
and the scale invariance combine into a larger symmetry, the conformal invariance

SO(2,4) [10]. The AdS5 spacetime also has the SO(2,4) invariance (Chap. 6).

To summarize, by imposing a further condition, the scale invariance, we arrive at

• Scale-invariant gauge theories such as the N = 4 SYM, and

• The AdS5 spacetime.

22 We can set this without loss of generality. We can always bring the translation into this form by

redefining the parameter L.
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5.3.3 AdS/CFT, finally

We now have enough information to carry out actual computations. First of all,

Eq. (5.15) is replaced by

ZCFT = ZAdS5
. (5.35)

The left-hand side is the partition function of a gauge theory with scale invariance

(conformal invariance). The right-hand side is the partition function of string theory

on the AdS5 spacetime. Such a relation is known as the GKP-Witten relation23.

However, we do not really need to evaluate the full string partition function as we

argue below.

Relation of parameters Let us revisit the relation of parameters between two the-

ories (5.16):

N2
c ∝

1

g2
s

∝
1

G
, λ ↔ ls . (5.36)

We did not make the dimensions to come out right at that time, but the AdS5 space-

time introduces one more length scale L, so it is natural to expect

N2
c ≃ L3

G5

. (5.37)

The ’t Hooft coupling λ is related to the α ′-corrections. In the α ′-corrections, the

combination l2
s R appears (Sect. 5.2.5). The curvature of the AdS5 spacetime is R ≃

1/L2. Thus,

λ ≃
(

L

ls

)#

, (5.38)

where # is some number, which cannot be determined without additional informa-

tion. The results here can be justified using the D-brane (Sect. 5.6). The D-brane can

fix the number in Eq. (5.38) and the numerical coefficients in Eqs. (5.37) and (5.38)

as24

N2
c =

π

2

L3

G5

, λ =

(

L

ls

)4

. (5.39)

Such relations are known as the AdS/CFT dictionary.

The GKP-Witten relation in the large-Nc limit Going back to Eq. (5.35), one

does not really need to evaluate the full string partition function on the right-hand

side. In the large-Nc limit, it is enough to use the classical gravitational theory on

23 The word “GKP” are the initials of Gubser, Klebanov, and Polyakov who proposed such a

relation independently from Witten [11, 12].
24 The overall coefficient for λ = (L/ls)

4 depends on the normalization of gauge group generators

ta. See, e.g., Sect. 13.4 of Ref. [13]. We use tr(tatb) = 1
2

δ ab.
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the right-hand side. In such a case, one can use the saddle-point approximation just

like when we argued black hole thermodynamics (Sect. 3.2.2):

ZCFT (Nc ≫ 1) = e−SE+O(l2
s ) . (5.40)

Here, SE is the Euclidean action of action (5.34), and SE is the on-shell action which

is obtained by substituting the classical solution of the metric (AdS5 spacetime) to

the action.

In Eq. (5.40), O(l2
s ) represent the α ′-corrections. One can ignore the corrections

when the spacetime curvature is small. From Eq. (5.39), ignoring the α ′-corrections

corresponds to taking λ ≫ 1 in the gauge theory side. Therefore, we arrive at our

final relation:

ZCFT (Nc ≫ λ ≫ 1) = e−SE . (5.41)

This limit is hard to evaluate in a field theory even in the large-Nc limit. However, the

right-hand side tells us that this limit can be evaluated just using general relativity.

We evaluate this relation in various examples below.

Now, the AdS5 spacetime is not the only solution of Eq. (5.34). A black hole

can exist in the AdS5 spacetime (Chap. 7). As we saw in Chap. 3, a black hole is a

thermodynamic system, so the following correspondence is natural:

• Gauge theory at zero temperature ↔ AdS5 spacetime

• Gauge theory at finite temperature ↔ AdS5 black hole

The discussion in this section is heuristic. But one can make a more systematic argu-

ment using the D-brane in string theory. This is because the D-brane can “connect”

the N = 4 SYM and the AdS5 spacetime.

5.4 Summary

• In string theory, open strings represent a gauge theory, and closed strings repre-

sent a gravitational theory.

• The partition function of a closed string theory is given by a summation over the

world-sheet topologies. This reminds us of large-Nc gauge theories.

• This clue of the partition function and the holographic principle suggest that

a large-Nc gauge theory is represented by a five-dimensional curved spacetime

with four-dimensional Poincaré invariance ISO(1,3).
• The scale invariance is the useful guideline to determine the large-Nc gauge the-

ory and the curved spacetime in question.

• Classically, a four-dimensional pure gauge theory is scale invariant. Quantum

mechanically, it is not. However, there is a special gauge theory which keeps scale

invariance even quantum mechanically. This is the N = 4 SYM. The N = 4

SYM actually has a larger symmetry, the conformal invariance SO(2,4).
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• On the other hand, the Poincaré invariance and the scale invariance in four-

dimensions determine the curved spacetime counterpart as the AdS5 spacetime.

The AdS5 spacetime actually has a larger symmetry SO(2,4), which is the same

as the N = 4 SYM.

• Superstring theory has extended objects, D-branes, other than strings. Some of

black branes are the gravitational descriptions of D-branes. The D-branes are

useful to establish the precise relation between the gauge theory and the curved

spacetime.

In this chapter, the AdS spacetime and the AdS black hole appear, and we study

these spacetimes in details in the following chapters.

New keywords

Keywords in square brackets appear in appendices.

meson

Regge trajectory

superstring theory

open/closed string

string length

D-brane

world-sheet

string coupling constant

supergravity

α ′-corrections

dilaton

scale invariance

conformal invariance

[Weyl invariance]

conformal field theory (CFT)

scaling dimension

N = 4 super-Yang-Mills theory

anti-de Sitter (AdS) spacetime

AdS radius

GKP-Witten relation

AdS/CFT dictionary

[R-symmetry]

[decoupling limit]

[near-horizon limit]

[gauged supergravity]

5.5 Appendix: Scale, conformal, and Weyl invariance �

In this appendix, we discuss three closely related symmetries, the scale invariance,

the conformal invariance, and (local and global) Weyl invariances.

The scale transformation xµ → axµ implies ds2 = ηµν dxµ dxν → a2ηµν dxµ dxν .

So, it is convenient to consider the scale transformation of the metric gµν → a2gµν ,

which is called the Weyl transformation.

The local Weyl invariance We start with the local Weyl transformation gµν →
a(x)2gµν which is strongest among the symmetries we discuss here. The Maxwell

theory in the curved spacetime
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S=− 1

4e2

∫

d4x
√−ggµν gρσ Fµρ Fνσ (5.42)

is local Weyl invariant with Aµ → Aµ .

If a theory is local Weyl invariant under δgµν = ε(x)gµν or δgµν =−ε(x)gµν ,

0 = δS=
∫

d4x
δS

δgµν
δgµν

=
1

2

∫

d4x
√−gTµν (ε(x)g

µν) =
1

2

∫

d4x
√−gε(x)T

µ
µ . (5.43)

In order for this to be true for any ε(x), the energy-momentum tensor must be trace-

less:

T
µ
µ = 0 . (5.44)

When gµν = ηµν , the local Weyl invariance reduces to the conformal invariance.

Note that Aµ → a−1Aµ under the scale transformation xµ → axµ whereas Aµ →
Aµ under the local Weyl transformation. Thus, the scaling dimension under the local

Weyl transformation in general differs from the scaling dimension under the scale

transformation and from the naive mass dimension. As a related issue, for the local

Weyl transformation, one has to assign a scaling dimension to the metric since it

transforms nontrivially. Then, for a tensor, the scaling dimension depends on index

positions (i.e., either lower or upper). See, e.g., App. D of Ref. [14] and Ref. [15]

for more details.

The global Weyl invariance The global Weyl invariance δgµν =−εgµν requires

0 = δS=
ε

2

∫

d4x
√−gT

µ
µ , (5.45)

so the trace does not have to vanish but vanishes up to a total derivative. When

gµν = ηµν ,

T
µ
µ =−∂µ Kµ (5.46)

for some Kµ . The global Weyl invariance reduces to the scale invariance in the flat

spacetime.

The conformal invariance The conformal invariance is the flat spacetime limit of

the local Weyl invariance ηµν → a(x)2ηµν . For a scale-invariant theory, T
µ
µ vanishes

up to a total derivative. A theorem states [10] that for a conformal invariant theory,

Kµ =−∂ν Lνµ → T
µ
µ = ∂µ ∂ν Lνµ (5.47)

for some Lνµ and that there exists an “improved” energy-momentum tensor T̃µν

which is traceless. (In the flat spacetime, the energy-momentum tensor is not

unique. We discuss the related issue in the curved spacetime below.) For many four-

dimensional relativistic field theories, there is no nontrivial candidate for Kµ which

is not a divergence. Then, the scale invariance implies the conformal invariance.
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Scalar field example As another example, consider a scalar field:

S=−1

2

∫

d4x{(∂µ φ)2 +m2φ 2} . (5.48)

When m = 0, the theory is scale invariant with φ → a−1φ . The scalar field has

scaling dimension 1. But when m 6= 0, the theory is not scale invariant since we do

not scale m.

The energy-momentum tensor of the massless scalar field is given by

Tµν = ∂µ φ∂ν φ − 1

2
ηµν(∂φ)2 , (5.49)

so Tµν is not traceless:

T
µ
µ =−(∂φ)2 =−1

2
∂ 2φ 2 , (5.50)

where we used the equation of motion ∂ 2φ = 0 in the last equality. Comparing

with Eq. (5.46), Kµ = −∂ µ φ 2/2. However, Kµ is a divergence, so the “improved”

energy-momentum tensor T̃µν exists:

T̃µν = Tµν +
1

6
(ηµν ∂ 2 −∂µ ∂ν)φ

2 , (5.51)

which is traceless using the equation of motion. Then, the massless scalar theory is

conformally invariant.

Now, consider the Weyl invariance. In the curved spacetime, a simple extension

of the scalar theory (so-called “comma-goes-to-semicolon rule”) is

S=−1

2

∫

d4x
√−ggµν ∂µ φ∂ν φ . (5.52)

As one can see easily, the theory is global Weyl invariant with φ → a−1φ . How-

ever, it is not local Weyl invariant. As a result, the energy-momentum tensor is not

traceless as in Eq. (5.50).

However, given a flat spacetime action, the curved spacetime extension is not

unique. In the flat spacetime, Tµν is not unique, and this is its curved-spacetime

counterpart. There is a local Weyl invariant scalar theory:

S=−1

2

∫

d4x
√−g{(∇φ)2 +ξ Rφ 2} , (5.53)

where ξ = 1/6. The theory is local Weyl invariant with φ → a(x)−1φ . The energy-

momentum tensor is given by

Tµν = ∂µ φ∂ν φ − 1

2
gµν(∂φ)2 +ξ

{

gµν ∇2 −∇µ ∇ν +Rµν −
1

2
gµν R

}

φ 2. (5.54)
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One can show that it is traceless using the equation of motion. In the flat spacetime,

Eq. (5.54) reduces to

Tµν = ∂µ φ∂ν φ − 1

2
ηµν(∂φ)2 +ξ (ηµν ∂ 2 −∂µ ∂ν)φ

2 , (5.55)

which is the curved-spacetime counterpart of T̃µν (5.51).

5.6 Appendix: D-brane and AdS/CFT �

�
It is not necessary for beginners to understand this appendix completely. It is

enough to go back to this section after you get accustomed to AdS/CFT computa-

tions.

The D3-brane in Sect. 5.2.2 has two descriptions as

• gauge theory,

• black brane in supergravity.

As we see below, these two descriptions give the N = 4 SYM and the AdS5 space-

time in appropriate limits.

5.6.1 D-brane and gauge theory

In order to know more about the gauge theory the D-brane describes, let us look at

open string oscillations more carefully.

The open strings on a D-brane are bounded on the D-brane, so the D3-brane

represents a four-dimensional gauge theory, but superstring theory actually requires

10-dimensional spacetime for consistency. Then, the open strings on the D-brane

still oscillate in the full 10-dimensional spacetime. Thus, the simplest open string

oscillations have 8 degrees of freedom instead of 2. What are these degrees of free-

dom? In other words, what kind of gauge theory the D3-brane represents?

To see this, note that there are two types of string oscillations. First are the os-

cillations in the brane and the other are the oscillations out of the brane. From the

four-dimensional point of view [in terms of SO(1,3) representations], the former

represents a gauge field, and the latter represents scalars. The spatial dimension is

9 and the brane dimension is 3, so there are 6 scalar fields. Thus, the gauge the-

ory represented by the D3-brane inevitably comes with scalar fields. In addition,

there are fermions due to supersymmetry (which comes from the supersymmetry

in superstring but we omit the details.) The Lorentz transformation properties are

different, but they all come from similar string oscillations, which means that all
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these fields transform as the adjoint representation of SU(Nc). Namely, the theory

has no fundamental representation such as quarks25. These properties coincide with

the N = 4 SYM.

The D-brane consideration provides us one more important information about

the N = 4 SYM. If we have only D3-branes, as in the present case, the directions

transverse to the brane are all isotropic. These directions correspond to the scalar

fields φi, so the isotropy means that there is a global SO(6) symmetry for φi. Such

a global symmetry is known as R-symmetry. Thus, combining with the conformal

invariance SO(2,4),

The N = 4 SYM has the global SO(2,4)×SO(6)R symmetry.

We get the N = 4 SYM from the D-brane, but it is not yet clear if the D-brane

is simply described by a gauge theory. This is because string theory is more than a

gauge theory.

• In particular, string theory contains graviton since string theory is the unified

theory.

• The simplest oscillations (harmonics) of an open string corresponds to a gauge

theory as we saw before, but the string has higher harmonics which correspond

to massive particles.

At this point, it is not clear if these effects can be ignored.

First, let us consider gravity. According to general relativity, any energy-momentum

tensor curves spacetime. The D-brane has some energy, so how does the D-brane

curve spacetime? Since gravity is described by the Newtonian potential

φNewton ≃
GM

r
, (5.56)

one can measure the effect of curvature by GM. However, this is the case for a

point particle in three-dimensional space. We have to use the 10-dimensional New-

ton’s constant G10 instead of the four-dimensional Newton’s constant G4. Also, the

brane has the spatial extension. So, we have to use the mass density of the brane,

T3, instead of M. We also have to take into account that the number of the spatial

dimensions transverse to the brane is six. Then,

φNewton ≃
G10T3

r4
. (5.57)

According to string theory, the D-brane mass density is given by

T3 ≃
Nc

gs

1

l4
s

. (5.58)

Since G10 ≃ g2
s l8

s from Eq. (5.10),

25 We describe one simple way to include fundamental representations in Sect. 8.2.
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gs Nc >>1gs Nc <<1

Fig. 5.15 When gsNc ≪ 1, the curved spacetime region by the D-brane is small so that one can

approximate the geometry by a flat spacetime with a source (left). However, when gsNc ≫ 1, a

macroscopic curved spacetime appears (right).

φNewton ≃
gsNcl4

s

r4
. (5.59)

On the other hand, the effective coupling constant of the gauge theory is the

’t Hooft coupling constant λ := g2
YMNc ≃ gsNc. To summarize,

Gravity by brane: G10T3 ≃ gsNcl4
s , (5.60)

effective coupling of gauge theory: λ ≃ gsNc . (5.61)

If one takes the limit ls → 0 (decoupling limit), one can leave nontrivial dynamics

of the gauge theory and at the same time one can ignore the effect of gravity.

Second, let us consider the massive particles. They have the mass M ≃ 1/ls. Thus,

they also decouple from the theory in the limit ls → 0.

In conclusions, what we get from the D3-brane is

(N = 4 SYM)

+ (supergravity in the 10-dimensional flat spacetime)

5.6.2 D-brane and curved spacetime

The D3-brane describes the N = 4 SYM in the flat spacetime. But this conclusion

is not valid when gsNc ≫ 1 because the D-brane starts to curve the spacetime. Going

back to the Newtonian potential argument, we essentially took the GM → 0 limit in

order to ignore the effect of gravity. But one cannot ignore gravity near the origin

r → 0 even in this limit. As a consequence, a curved spacetime appears near the

origin r4 ≪ gsNcl4
s (Fig. 5.15).

In the gsNc ≪ 1 limit, the curved region is small. Then, one can consider that

there exists a source represented by the D-brane in the flat spacetime. This is the

case we considered in the above subsection. But a macroscopic curved spacetime

appears in the gsNc ≫ 1 limit.

The supergravity description is appropriate in the gsNc ≫ 1 limit. The black D3-

brane is given by [16]
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ds2
10 = Z−1/2(−dt2 +dxxx2

3)+Z1/2(dr2 + r2dΩ 2
5 ) , (5.62)

Z = 1+

(

L

r

)4

, L4 ≃ gsNcl4
s , (5.63)

where xxx3 = (x,y,z) represents the directions of the spatial extension of the brane.

The behavior of the factor Z comes from the Newtonian potential (5.59). We are

interested in how the D-brane curves the spacetime near the origin. So, taking the

limit r ≪ L (near-horizon limit), one gets

ds2
10 →

( r

L

)2

(−dt2 +dxxx2
3)+L2 dr2

r2
+L2dΩ 2

5 . (5.64)

The part L2dΩ 2
5 represents S5 with radius L. The remaining five-dimensional part

is the AdS5 spacetime. This near-horizon limit corresponds to the decoupling limit

from the gauge theory point of view26.

Therefore, let us roughly divide the spacetime made by the D3-brane into AdS5×
S5 near the origin and the nearly flat spacetime around:

(supergravity on AdS5 ×S5)

+ (supergravity in the 10-dimensional flat spacetime)

As we will see in Chap. 6, the AdS5 spacetime has the SO(2,4) invariance. In

addition, the full geometry (5.64) involves S5 which has the SO(6) invariance. This

is the same symmetry as the N = 4 R-symmetry. Thus,

The gravity side also has the global SO(2,4)×SO(6) symmetry.

The gauge theory description fails when gsNc ≫ 1. On the other hand, the super-

gravity description fails when gsNc ≪ 1. This is because the curvature of the metric

(5.64) behaves as

26 �To see the relation, we need to discuss the decoupling limit more carefully. Denote the typical

scale of the gauge theory as lobs. One can ignore the string length scale ls when

ls ≪ lobs . (5.65)

As lobs, let us take the “W-boson” mass scale. Here, the “W-boson” is the gauge boson which

arises by breaking the gauge group SU(Nc)→ SU(Nc −1)×U(1). This corresponds to separating

a D-brane from Nc D-branes. The gauge boson corresponds to an open string, but the open string

between the D-brane and (Nc −1) D-branes is stretched, and the open string has a tension. So, the

corresponding W-boson becomes massive. The mass is given by

1

lobs

≃ r

l2
s

(5.66)

[The tension of the open string is O(1/l2
s )]. From Eqs. (5.65) and (5.66), one gets

r ≪ ls . (5.67)

This is the decoupling limit.

When gsNc ≫ 1, the r ≪ ls limit implies r ≪ L, which is the near-horizon limit.
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gs Nc

gs

1

1

(a) N = 4 SYM

gs Nc

gs

1

1

(b) Supergravity on AdS5 ×S5

Fig. 5.16 We obtained two systems from the D3-brane, the N = 4 SYM and supergravity on

AdS5 × S5. These two theories are complementary to each other. Each theory has a region where

analysis is relatively easy (shaded region), but they do not overlap. AdS/CFT claims that two

systems are equivalent.

RMNPQRMNPQ ∝
1

gsNcl4
s

. (5.68)

When gsNc ≪ 1, the curvature becomes large. The α ′-corrections become impor-

tant, which can change the metric (5.64) in general. The metric such as Eq. (5.64) is

trustable when gsNc ≫ 1.

5.6.3 Gauge theory and curved spacetime

To summarize our discussion so far, we obtained two systems from the D3-brane, the

N = 4 SYM and supergravity on AdS5 × S5. We also obtained a common system

which is decoupled from the rest, supergravity in the 10-dimensional flat spacetime,

in both cases. Since this part is common, one can forget it. Then, the N = 4 SYM

corresponds to supergravity on AdS5 ×S5.

These two descriptions of the brane, gauge theory and supergravity, are comple-

mentary to each other (Fig. 5.16). The former description is valid when gs ≪ 1 and

gsNc ≪ 1, whereas the latter description is valid when gs ≪ 1 and gsNc ≫ 1.

However, in principle, both theories exist for all gs and gsNc. Taking Sect. 5.3

discussion into account, it is natural to imagine that both theories are equivalent for

all gs and gsNc. If this is true, we can make computations using one theory even

when the other theory is hard to compute.

We should stress that this is not a logical consequence. We obtained two systems

from the D3-brane. But these two systems are two different limits of the brane. In or-
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der to justify the above claim, one has to compare results in both theories computed

at the same gs and gsNc. There are many circumstantial evidences when one can rely

on supersymmetry, but we will not discuss such evidences in this book. Rather, we

go through computations related to actual applications, and we will see that gravity

results can indeed be interpreted as physical quantities of gauge theories. We also

compare the AdS/CFT results with experiments and with the other theoretical tools

such as the lattice gauge theory in order to see that AdS/CFT is likely to be true.

5.6.4 What D-brane tells us

The D-brane taught us two things. First, the GKP-Witten relation (5.35) becomes

more precise:

ZN = 4 = ZAdS5 ×S5 . (5.69)

The left-hand side is the partition function of the N = 4 SYM, and the right-hand

side is the partition function of string theory on AdS5 ×S5.

We mainly focused on the conformal invariance. But, in retrospect, we are able

to identify the gauge theory because we take the N = 4 R-symmetry into account.

One would say that we added S5 on the gravity side to reflect the R-symmetry on the

gauge theory side. Thus, when we try to find a gravity dual, it is in general important

to take care of the symmetries both theories have.

Second, from the D-brane, we are able to obtain the AdS/CFT dictionary (5.39).

This is possible by combining various expressions we encountered:

L4 ≃ gsNcl4
s , (5.70a)

G10 ≃ g2
s l8

s , (5.70b)

gs ≃ g2
YM . (5.70c)

Eliminating gs from these expressions give

N2
c ≃ L8

G10
, λ ≃

(

L

ls

)4

. (5.71)

Now, S5 corresponds to the R-symmetry from the point of view of the N = 4

SYM and is an important part of the theory. But one often compactifies S5 and

consider the resulting five-dimensional gravitational theory. The theory obtained in

this way is called gauged supergravity.

The actual procedure of the S5 compactification is rather complicated, and the

full gauged supergravity action is complicated as well. But in our case, we do not

have to go through such a computation, and we can infer the action. The five-

dimensional part is the AdS5 spacetime, so the five-dimensional action should be

given by Eq. (5.34). Since S5 has radius L, the compactification gives
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1

16πG10

∫

d10x
√−g10R10 =

L5Ω5

16πG10

∫

d5x
√−g5 (R5 + · · ·) .

Thus, the five-dimensional Newton’s constant is given by G5 ≃ G10/L5. Then, the

AdS/CFT dictionary (5.71) can be rewritten by G5. If one works out numerical

coefficients, the results are

N2
c =

π

2

L3

G5

, λ =

(

L

ls

)4

. (5.72)

Finite-temperature case The metric (5.62) is the zero-temperature solution of the

D3-brane, or the extreme black hole solution, which corresponds to the N = 4

SYM at zero temperature. In order to discuss the finite temperature gauge theory,

we use the finite temperature solution of the D3-brane:

ds2
10 = Z−1/2(−hdt2 +dxxx2

3)+Z1/2(h−1dr2 + r2dΩ 2
5 ) , (5.73a)

Z = 1+

(

L

r

)4

, (5.73b)

h = 1−
( r0

r

)4

. (5.73c)

The horizon is located at r = r0. Again take the near-horizon limit r ≪ L. In order to

remain outside the horizon r > r0 even in the near-horizon limit, take r0 ≪ L. Then,

the resulting geometry is

ds2
10 →

( r

L

)2

(−hdt2 +dxxx2
3)+L2 dr2

hr2
+L2dΩ 2

5 . (5.74)

This is known as the Schwarzschild-AdS5 black hole (Chap. 7). When h = 1, the

geometry reduces to the AdS5 spacetime. Also, the factor similar to h appeared in

the higher-dimensional Schwarzschild black holes.
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Chapter 6

The AdS spacetime

The AdS spacetime is one of spacetimes with constant curvature. To be familiar with the

AdS spacetime, we first discuss spaces with constant curvature such as the sphere and then

discuss spacetimes with constant curvature.

6.1 Spacetimes with constant curvature

6.1.1 Spaces with constant curvature

Before we discuss spacetimes with constant curvature such as the AdS spacetime,

let us consider a simple example, the sphere S2. Consider the three-dimensional

Euclidean space with metric

ds2 = dX2 +dY 2 +dZ2 . (6.1)

The sphere is defined by the surface which satisfies the constraint

X2 +Y 2 +Z2 = L2 . (6.2)

This constraint can be solved by the familiar spherical coordinates:

X = Lsinθ cosϕ , Y = Lsinθ sinϕ , Z = Lcosθ . (6.3)

In this coordinate system, the metric then becomes

ds2 = L2(dθ 2 + sin2 θ dϕ2) . (6.4)

The sphere S2 has the SO(3) invariance. This is because the surface (6.2) respects

the SO(3) invariance of the “ambient space,” the three-dimensional Euclidean space

(6.1). By an SO(3) transformation, any point on S2 can be mapped to the other

points. In this sense, S2 is homogeneous. The sphere has a constant positive curva-

85
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X+,Y+

Z-

Fig. 6.1 The embedding of H2 into R
1,2. The superscript signs refer to the signature of the ambient

spacetime (−: timelike, +: spacelike).

ture and the Ricci scalar is given by

R =
2

L2
. (6.5)

The space with constant negative curvature is known as the hyperbolic space

H2. It is much harder to visualize the space with constant negative curvature. It is

partly because the hyperbolic space cannot be embedded into the three-dimensional

Euclidean space unlike the sphere. But the hyperbolic space can be embedded into

the three-dimensional Minkowski space. The hyperbolic space is defined by

ds2 =−dZ2 +dX2 +dY 2 , (6.6)

−Z2 +X2 +Y 2 =−L2 , (6.7)

(Fig. 6.1). The hyperbolic space is homogeneous in the sense that it respects the

SO(1,2) invariance of the ambient Minkowski spacetime. Namely, any point on the

surface can be mapped to the other points by an SO(1,2) “Lorentz” transforma-

tion. Note that the hyperbolic space is not the familiar hyperboloid in the three-

dimensional Euclidean space:

ds2 = dZ2 +dX2 +dY 2 , (6.8)

−Z2 +X2 +Y 2 =−L2 . (6.9)

The hyperboloid is embedded into the three-dimensional Euclidean space. Thus, the

hyperboloid does not respect the SO(3) invariance of the ambient space, and it is not

homogeneous.

In order to solve the constraint (6.7), take a coordinate system which is slightly

different from the sphere:

X = Lsinhρ cosϕ , Y = Lsinhρ sinϕ , Z = Lcoshρ . (6.10)
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τ~

X
-

Y
+

Z
-

Fig. 6.2 The embedding of AdS2 into R
2,1. The timelike direction t̃ is periodic, so we consider the

covering space.

Then, the metric of the hyperbolic space is given by

ds2 = L2(dρ2 + sinh2 ρ dϕ2) . (6.11)

As one can see from this metric, the hyperbolic space itself does not have a timelike

direction although we embed it into the three-dimensional Minkowski spacetime.

Namely, the hyperbolic space is a space not a spacetime. The curvature is constant

negative:

R =− 2

L2
. (6.12)

It is not easy to visualize the hyperbolic space, but there is a familiar example.

The mass-shell condition (2.12) in special relativity is nothing but the hyperbolic

space. For the particle with mass m, the canonical momentum pµ = (p0, p1, p2)
satisfies

p2 =−(p0)
2 +(p1)

2 +(p2)
2 =−m2 . (6.13)

This takes the same from as the embedding equation (6.7) for H2.

6.1.2 Spacetimes with constant curvature

So far we discussed spaces with constant curvature, but now consider spacetimes

with constant curvature. The AdS2 spacetime can be embedded into a flat spacetime

with two timelike directions (Fig. 6.2):

ds2 =−dZ2 −dX2 +dY 2 , (6.14)

−Z2 −X2 +Y 2 =−L2 . (6.15)

The parameter L is called the AdS radius. The AdS2 spacetime has the SO(2,1)
invariance. Just like S2 and H2, take a coordinate system

Z = Lcoshρ cos t̃ , X = Lcoshρ sin t̃ , Y = Lsinhρ . (6.16)
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Z
-

X
+

Y
+

Fig. 6.3 The embedding of dS2 into R
1,2. The figure looks the same as Fig. 6.2, but the signature

of the ambient spacetime differs from Fig. 6.2.

Then, the metric becomes

ds2 = L2(−cosh2 ρ dt̃2 +dρ2) . (6.17)

This coordinate system (t̃,ρ) is called the global coordinates. Although we embed

the AdS spacetime into a flat spacetime with two timelike directions X and Y , the

AdS spacetime itself has only one timelike direction.

From Eq. (6.16), the coordinate t̃ has the periodicity 2π , so the timelike direction

is periodic. This is problematic causally1, so one usually unwraps the timelike di-

rection and considers the covering space of the AdS2 spacetime, where −∞ < t̃ < ∞.

The AdS spacetime in AdS/CFT is this covering space. The AdS2 spacetime has a

constant negative curvature R =−2/L2.

The de Sitter spacetime is another spacetime with constant curvature, but this

time constant positive curvature. It does not frequently appear in AdS/CFT, but the

spacetime itself has been widely discussed in connection with the dark energy in

cosmology. The two-dimensional de Sitter spacetime, or the dS2 spacetime is de-

fined by

ds2 =−dZ2 +dX2 +dY 2 , (6.18)

−Z2 +X2 +Y 2 =+L2 , (6.19)

(Fig. 6.3). The dS2 spacetime has the SO(1,2) invariance. In the coordinates

X = Lcosh t̃ cosθ , Y = Lcosh t̃ sinθ , Z = Lsinh t̃ , (6.20)

the metric becomes

ds2 = L2(−dt̃2 + cosh2 t̃ dθ 2) . (6.21)

1 One can have closed timelike curves, where causal curves are closed.
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The dS2 spacetime has a constant positive curvature R = 2/L2. One often considers

the AdS5 spacetime for applications to AdS/CFT, but for the dS spacetime, one often

considers the dS4 spacetime for applications to cosmology.

6.1.3 Relation with constant curvature spaces

We saw various spaces and spacetimes, but the spacetimes with constant curvature

are related to the spaces with constant curvature. Take a constant curvature space-

time. The Euclidean rotation of the timelike direction gives a constant curvature

space:

AdS2
Euclidean−−−−−→ H2

dS2
Euclidean−−−−−→ S2

(6.22)

The dS2 spacetime and S2 are defined by

dS2 : ds2 =−dZ2+dX2+dY 2 , −Z2+X2+Y 2 = L2 . (6.23)

S2 : ds2 = dZ2+dX2+dY 2 , Z2+X2+Y 2 = L2 . (6.24)

The dS2 spacetime becomes S2 by ZE = iZ. The AdS2 spacetime and H2 are defined

by

AdS2 : ds2 =−dZ2−dX2+dY 2 , −Z2−X2+Y 2 =−L2 . (6.25)

H2 : ds2 =−dZ2+dX2+dY 2 , −Z2+X2+Y 2 =−L2 . (6.26)

The AdS2 spacetime becomes H2 by XE = iX . The Euclidean spacetime is often

used in AdS/CFT.

6.1.4 Various coordinate systems of AdS spacetime

So far we discussed the AdS spacetime using the global coordinates (t̃,ρ):

ds2

L2
=−cosh2 ρ dt̃2 +dρ2 . (6.27)

But various other coordinate systems appear in the literature.

Static coordinates (t̃, r̃) The coordinate r̃ is defined by r̃ := sinhρ . The metric

becomes
ds2

L2
=−(r̃2 +1)dt̃2 +

dr̃2

r̃2 +1
. (6.28)
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θ = �/2

ρ = ∞ 

t
~

θ = -�/2

ρ = -∞ 
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r =
 0

r =
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r =
 0

Fig. 6.4 The AdS2 spacetime in conformal coordinates. The Poincaré coordinates cover only part

of the full AdS spacetime which is shown in the dark shaded region (Poincaré patch).

This coordinate system is useful to compare with the AdS black hole (Sect. 7.3).

Conformal coordinates (t̃,θ) The coordinate θ is defined by tanθ := sinhρ (θ :

−π/2 → π/2). The metric becomes flat up to an overfall factor (conformally flat)2:

ds2

L2
=

1

cos2 θ
(−dt̃2 +dθ 2) . (6.29)

The AdS spacetime is represented as Fig. 6.4 in this coordinate system. What is

important is the existence of the spatial “boundary” at θ =±π/2. This boundary is

called the AdS boundary. The AdS boundary is located at r̃ →∞ in static coordinates

and is located at r →∞ in Poincaré coordinates below. The existence of the boundary

means that one should specify the boundary condition on the AdS boundary in order

to solve initial-value problems. From the AdS/CFT point of view, this boundary

condition corresponds to specifying external sources one adds in the gauge theory

side (Chap. 10).

Poincaré coordinates (t,r) This coordinate system is defined by

2 The name “conformal coordinates” is not a standard one.
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Z =
Lr

2

(

−t2 +
1

r2
+1

)

, (6.30a)

X = Lrt , (6.30b)

Y =
Lr

2

(

−t2 +
1

r2
−1

)

, (6.30c)

(r > 0, t : −∞ → ∞). The metric becomes

ds2

L2
=−r2dt2 +

dr2

r2
. (6.31)

This is the most often used coordinate system in AdS/CFT. This coordinate system

is also useful to compare with the AdS black hole (Sect. 7.1).

6.1.5 Higher-dimensional cases

The spaces/spacetimes with constant curvature discussed so far can be easily gen-

eralized to the higher-dimensional case. In all examples, adding p spatial directions

to ambient spacetimes gives the (p+2)-dimensional cases.

The sphere Sp+2 The unit Sp+2 has the SO(p+3) invariance and is defined by

ds2
p+3 = dω2

1 + · · ·+dω2
p+3 , (6.32)

ω2
1 + · · ·+ω2

p+3 =+1 . (6.33)

The Sp+2 symmetry contains the SO(p+2) invariance as a subgroup, which can be

used to write the metric. For example, the unit S3 coordinates can be chosen using

S2 coordinates (θ2,θ3) as

ω2 = r cosθ2 , ω3 = r sinθ2 cosθ3 , ω4 = r sinθ2 sinθ3 , (6.34)

and ω2
1 = 1− r2. Then,

ds2 = dω2
1 +dr2 + r2dΩ 2

2 =
dr2

1− r2
+ r2dΩ 2

2 , (6.35)

where dΩ 2
2 = dθ 2

2 + sin2 θ2 dθ 2
3 . In the coordinate r2 = sin2 θ1 (0 ≤ θ1 < π),

dΩ 2
3 = dθ 2

1 + sin2 θ1dΩ 2
2 . (6.36)

The similar construction can be done for Sn. So, one can construct the Sn metric

iteratively:
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dΩ 2
n = dθ 2

1 + sin2 θ1dΩ 2
n−1 (6.37)

= dθ 2
1 + sin2 θ1dθ 2

2 + · · ·+ sin2 θ1 · · ·sin2 θn−1dθ 2
n , (6.38)

where 0 ≤ θi < π (1 ≤ i ≤ n−1) and 0 ≤ θn < 2π .

The hyperbolic space H p+2 H p+2 has the SO(1, p+ 2) invariance and is defined

by

ds2
p+3 =−dX2

0 +dX2
1 + · · ·+dX2

p+2 , (6.39)

−X2
0 +X2

1 + · · ·+X2
p+2 =−L2 . (6.40)

For p = 0, we set X0 = Z, X1 = X , and X2 = Y . The H p+2 symmetry contains the

SO(p+2) invariance as a subgroup, so one can utilize the unit Sp+1 coordinates ωi

(i = 1, . . . , p+2) to write the H p+2 metric:

X0 = Lcoshρ, Xi = Lsinhρ ωi . (6.41)

Then, the metric becomes

ds2

L2
= dρ2 + sinh2 ρ dΩ 2

p+1 . (6.42)

The AdSp+2 spacetime The AdSp+2 spacetime has the SO(2, p+ 1) invariance

and is defined by

ds2
p+3 =−dX2

0 −dX2
p+2 +dX2

1 + · · ·+dX2
p+1 , (6.43)

−X2
0 −X2

p+2 +X2
1 + · · ·+X2

p+1 =−L2 . (6.44)

For p = 0, we set X0 = Z, Xp+2 = X , and Xp+1 = Y . Just like AdS2, the AdSp+2

spacetime becomes H p+2 by XE = iXp+2.

The AdSp+2 symmetry contains the SO(p+1) invariance as a subgroup, and one

can utilize the unit Sp coordinates ωi (i = 1, . . . , p+1) to write the AdSp+2 metric:

X0 = Lcoshρ cos t̃ , Xp+2 = Lcoshρ sin t̃ , Xi = Lsinhρ ωi . (6.45)

This is the global coordinates for AdSp+2. The metric becomes

ds2

L2
=−cosh2 ρ dt̃2 +dρ2 + sinh2 ρ dΩ 2

p . (6.46)

One can define the other coordinate systems just like AdS2. In static coordinates

where r̃ := sinhρ , the metric becomes

ds2

L2
=−(r̃2 +1)dt̃2 +

dr̃2

r̃2 +1
+ r̃2dΩ 2

p . (6.47)

In conformal coordinates where tanθ := sinhρ , the metric becomes
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ds2

L2
=

1

cos2 θ
(−dt̃2 +dθ 2 + sin2 θ dΩ 2

p) . (6.48)

For AdSp+2, the Poincaré coordinates are defined by

X0 =
Lr

2

(

x2
i − t2 +

1

r2
+1

)

, (6.49a)

Xp+2 = Lrt , (6.49b)

Xi = Lr xi (i = 1, . . . , p) , (6.49c)

Xp+1 =
Lr

2

(

x2
i − t2 +

1

r2
−1

)

. (6.49d)

The metric becomes

ds2

L2
= r2(−dt2 +dxxx2

p)+
dr2

r2
. (6.50)

When p= 3, the metric coincides with the near-horizon limit of the D3-brane (5.64).

The dSp+2 spacetime The dSp+2 spacetime has the SO(1, p+2) invariance and is

defined by

ds2
p+3 =−dX2

0 +dX2
1 + · · ·+dX2

p+2 , (6.51)

−X2
0 +X2

1 + · · ·+X2
p+2 =+L2 . (6.52)

For p = 0, we set X0 = Z, X1 = X , and X2 = Y . Just like dS2, the dSp+2 spacetime

becomes Sp+2 by XE = iX0.

The dSp+2 symmetry contains the SO(p+ 2) invariance as a subgroup, and one

can utilize the unit Sp+1 coordinates ωi (i = 1, . . . , p+2) to write the dSp+2 metric:

X0 = Lsinh t̃, Xi = Lcosh t̃ ωi . (6.53)

Then, the metric becomes

ds2

L2
=−dt̃2 + cosh2 t̃ dΩ 2

p+1 . (6.54)

Maximally symmetric spacetimes We saw that these spacetimes have a large

number of symmetries like S2. In fact, they are called maximally symmetric space-

times which admit the maximum number of symmetry generators. As a familiar

example, the Minkowski spacetime is also a spacetime with constant curvature

(namely R = 0) and is a maximally symmetric space. The (p + 2)-dimensional

Minkowski spacetime has the ISO(1, p+ 1) Poincaré invariance. The number of

symmetry generators is (p+ 1)(p+ 2)/2 for SO(1, p+ 1) and (p+ 2) for trans-

lations, so (p+ 2)(p+ 3)/2 in total. This is the maximum number of generators.
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Space Symmetry Spacetime Symmetry

Sp+2 SO(p+3) dSp+2 SO(1, p+2)
H p+2 SO(1, p+2) AdSp+2 SO(2, p+1)

Fig. 6.5 Symmetries of spaces/spacetimes with constant curvature.

Figure 6.5 summarizes the symmetries of spaces/spacetimes with constant curva-

ture. They all have the same maximum number of generators.

As a consequence of a maximally symmetric spacetime, it is known that the

Riemann tensor is written as

RABCD =± 1

L2
(gACgBD −gADgBC) (6.55)

(+ for positive curvature and − for negative curvature). Then, the Ricci tensor and

the Ricci scalar are

RMN =± p+1

L2
gMN , R =± (p+1)(p+2)

L2
. (6.56)

When p = 0, we recover R = ±2/L2. Then, a maximally symmetric spacetime is

a solution of the Einstein equation with an appropriately chosen cosmological con-

stant Λ :

RMN − 1

2
gMNR =∓ p(p+1)

2L2
gMN , (6.57)

which fixes Λ =±p(p+1)/(2L2).

6.2 Particle motion in AdS spacetime �

Readers may skip this section in a first reading because the AdS physics is not

intuitively very clear.

Gravitational redshift Let us consider the gravitational redshift in static coordi-

nates (t̃, r̃). Consider two static observers, the observer A at the origin r̃ = 0 and the

observer B at r̃ = r̃B ≫ 1. The observer A sends a photon. From the redshift formula

(2.37), the photon energy received by B is given by

EB

EA

=

√

g00(A)

g00(B)
→ EB ≃

(

1

r̃B

)

EA . (6.58)

Thus, the photon energy decreases at B. In particular, when r̃B → ∞, EB → 0, so

the photon gets an infinite redshift. The gravitational redshift comes from the grav-

itational potential, so this implies that r̃ = 0 is the “bottom” of the gravitational
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potential well. The fact that the photon gets an infinite redshift is similar to a black

hole, but the AdS spacetime is not a black hole.

Photon motion Let us examine the photon and particle motions in the AdS space-

time. Such analysis can be done just like the particle motion analysis in the

Schwarzschild black hole (Sect. 2.3.2), but the photon and the particle have strange

behaviors in the AdS spacetime. Take the static coordinates and consider a particle

which starts from the bottom of the gravitational potential r̃ = 0 to r̃ = ∞. We set

L = 1 below for simplicity.

First, consider the photon motion ds2 = 0 from the point of view of the coordinate

time t̃. This is the simplest in conformal coordinates:

ds2 =
1

cos2 θ
(−dt̃2 +dθ 2) = 0 → dθ

dt̃
= 1 . (6.59)

Since r̃ = tanθ , r̃ : 0 → ∞ corresponds to θ : 0 → π/2, and

t̃ =
∫ π/2

0
dθ =

π

2
. (6.60)

Namely, the photon reaches the AdS boundary in a finite coordinate time. We thus

need a boundary condition at the AdS boundary: how the photon behaves at the AdS

boundary depends on the boundary condition at the AdS boundary (e.g., it reflects

back to the origin).

But consider the motion from the point of view of the “proper time” τ (one cannot

define the proper time for the photon, but one can define an affine parameter, so τ is

an affine parameter). From p2 = 0,

g00E2 +gr̃r̃

(

dr̃

dτ

)2

= 0 . (6.61)

We define the energy E for the photon as p0 =: −E. Then,

− E2

r̃2 +1
+

1

r̃2 +1

(

dr̃

dτ

)2

= 0 → dr̃

dτ
= E . (6.62)

Thus, r̃ = Eτ , namely it takes an infinite affine parameter time until the photon

reaches the AdS boundary.

Particle motion Now, consider the particle motion from the point of view of the

proper time τ . From p2 =−m2,

g00E2 +gr̃r̃

(

dr̃

dτ

)2

=−1 → − E2

r̃2 +1
+

1

r̃2 +1

(

dr̃

dτ

)2

=−1 (6.63)

→
(

dr̃

dτ

)2

= (E2 −1)− r̃2 . (6.64)
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r = 0

r = ∞ 

τ

~

~

Fig. 6.6 In the AdS spacetime, a particle cannot reach the boundary r̃ → ∞ and comes back to the

origin in a finite proper time and coordinate time.

Photon Particle

affine time τ ∞ (r̃ : 0 → ∞) π/2 (r̃ : 0 → r̃∗)
coordinate time t̃ π/2 (r̃ : 0 → ∞) π/2 (r̃ : 0 → r̃∗)

Fig. 6.7 The affine time and the static coordinate time t̃ for the particle and the photon to reach the

AdS boundary.

Take E > 1 so that the right-hand side of Eq. (6.64) is positive at r̃ = 0. But the

right-hand side becomes negative as r̃ → ∞, so the particle cannot reach the AdS

boundary r̃ → ∞. This is the effect of the gravitational potential well in the AdS

spacetime (Fig. 6.6). The turning point r̃∗ is given by r̃∗ =
√

E2 −1. Then,

τ =
∫ r̃∗

0

dr̃
√

(E2−1)−r̃2
=
∫ π/2

0
dϕ =

π

2
, (6.65)

where r̃ =:
√

E2 −1sinϕ .

How about the motion in the coordinate time t̃? By definition p0 = mdt̃/dτ , and

from the conservation law, p0 = g00 p0 =−mg00E. Thus,

dt̃

dτ
=

E

−g00
. (6.66)

Using Eq. (6.65), one gets

t̃ = E

∫ r̃∗

0

dr̃

(r̃2+1)
√

(E2−1)−r̃2
= E

∫ π/2

0

dϕ

(E2−1)sin2 ϕ+1
=

π

2
. (6.67)

Namely, the particle returns to r̃ = 0 with the same amount of the coordinate time

t̃ = π as the photon. The amount of time is the same in the particle proper time τ .

Also, the time for the particle to return does not depend on energy E. The particle

goes further as you increase E, but it always returns with the same amount of time.

These results are summarized in Fig. 6.7.
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Poincaré coordinates and Poincaré patch We examined the motion using the

static coordinate time t̃, but let us examine the same question using the Poincaré

coordinate time t. For simplicity, we consider only the photon motion. Consider the

photon motion from r = R to r = 0. From

ds2 =−r2dt2 +
dr2

r2
= 0 → dr

dt
=−r2 , (6.68)

one gets

t =−
∫ ε

R

dr

r2
=

1

r

∣

∣

∣

∣

ε

R

=
1

ε
− 1

R
→ ∞ . (6.69)

Thus, it takes an infinite coordinate time t until the photon reaches r = 0.

But this is not the case in the affine parameter τ . Just like Eq. (6.62),

dr

dτ
=−E , (6.70)

so it takes a finite affine time from r = R to r = 03.

The behavior of the Poincaré coordinates is similar to the Schwarzschild coor-

dinates. Because the photon reaches r = 0 in a finite affine parameter, the Poincaré

coordinates cover only part of the full AdS spacetime4. From the point of view of

the full AdS geometry, t → ∞ as r → 0 because of the ill-behaved coordinates just

like the Schwarzschild coordinates. The region covered by Poincaré coordinates is

called the Poincaré patch (Fig. 6.4).

In this sense, the location r = 0 is similar to the horizon but has a difference from

the horizon. The region inside the horizon cannot influence the region outside. But

the AdS spacetime does not have such a region. In conformal coordinates, clearly

there is no region which cannot influence the AdS boundary. The Poincaré patch is

rather similar to the Rindler spacetime:

ds2
p+2 =−r dt2 +

dr2

r
+dxxx2

p . (6.71)

The Rindler spacetime is just the Minkowski spacetime although it does not look

so. The difference is that the Rindler spacetime covers only part of the Minkowski

spacetime. Physically, the Rindler coordinates represent the observer who experi-

ences a constant acceleration and there is a horizon, r = 0, for the observer. But

the horizon is observer-dependent, and the Minkowski spacetime as a whole has no

horizon.

Similarly, there is a horizon at r = 0 for the observer inside the Poincaré patch,

but the AdS spacetime as a whole has no horizon. Whether r = 0 is a horizon or

3 As in Eq. (6.62), it takes an infinite affine time from r = ∞ to r = 0, but it takes a finite amount

of time from finite R to r = 0.
4 Otherwise, the spacetime would be geodesically incomplete which signals a spacetime singular-

ity. The geodesic incompleteness means that there is at least one geodesic which is inextensible in

a finite “proper time” (in a finite affine parameter). This is the definition of a spacetime singularity.
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not depends on the point of view5. As a finial remark, the Rindler spacetime has

a Hawking temperature, but the AdS spacetime in Poincaré coordinates has zero

temperature. The Rindler spacetime has the following thermodynamic quantities:

T =
1

4π
, s =

1

4G
, ε = 0 , P =

1

16πG
. (6.72)

6.3 Remarks on AdS/CFT interpretations

The symmetries of the AdS spacetime Let us rewrite the AdS5 spacetime in

Poincaré coordinates6:

ds2
5 =

( r

L

)2

(−dt2 +dx2 +dy2 +dz2)+L2 dr2

r2
. (6.73)

The spacetime has the SO(2,4) invariance, part of which can be seen easily in

Poincaré coordinates and are physically important:

1. Four-dimensional Poincaré invariance: The metric has the Poincaré invariance

ISO(1,3) on xµ = (t,x,y,z). This corresponds to the Poincaré invariance of the

dual gauge theory in four-dimensional spacetime, so xµ is interpreted as the

spacetime coordinates of the gauge theory. Similarly, for the AdSp+2 spacetime,

p represents the number of the spatial dimensions of the dual gauge theory.

2. Four-dimensional scale invariance: The metric is invariant under

xµ → axµ , r → 1

a
r . (6.74)

Under the scaling, r transforms as energy which is conjugate to t. This is one

reason why the gauge theory is four-dimensional whereas the gravitational theory

is five-dimensional. Namely, the r-coordinate has the interpretation as the gauge

theory energy scale. The N = 4 SYM has the scale invariance, but the invariance

is realized geometrically in the dual gravitational theory.

Let us examine more about the dual gauge theory energy. In AdS/CFT, the gauge

theory time corresponds to the coordinate t not to the proper time τ . The proper time

τr for the static observer at r is related to the coordinate t as

dτ2
r = |g00(r)|dt2 . (6.75)

5 For example, in the near-horizon limit, the extreme RN-AdS4 black hole becomes the AdS2

spacetime in Poincaré coordinates (Sect. 14.3.3). In this case, r = 0 corresponds to the true horizon

of the black hole. So, whether r = 0 is a true horizon or not depends on the context.
6 So far we took dimensionless coordinates, but we take dimensionful ones below.
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Then, the proper energy for the observer at r, E(r), is related to the gauge theory

energy, Et , as7

Et =
√

|g00(r)|E(r)≃
( r

L

)

E(r) . (6.76)

Consider an excitation in the AdS spacetime with a given proper energy (for exam-

ple, a string). The gauge theory energy depends on where the excitation is located.

The gauge theory energy is larger if the excitation is nearer the AdS boundary. The

relation (6.76) is called the UV/IR relation.

In general relativity, one does not put emphasis on a coordinate time since it

depends on coordinate systems. Rather one puts emphasis on the proper time. How-

ever, in AdS/CFT, the coordinate time plays the special role as the gauge theory

time. Thus, we use t for a gauge theory interpretation.

The Hawking temperature and the proper temperature � Similar remarks also

apply to thermodynamic quantities of the AdS black holes in Chap. 7. The Hawking

temperature is determined from the periodicity of the imaginary time tE. This means

that the Hawking temperature is the temperature measured by the coordinate t.

The Hawking temperature T differs from the temperature as seen by the observer

at r. The proper time τr and t are related to each other by Eq. (6.75), so the proper

temperature T (r) is given by

T (r) =
1

√

|g00(r)|
T . (6.77)

For asymptotically flat black holes, the proper temperature for the asymptotic ob-

server coincides with the Hawking temperature since |g00| → 1 as r → ∞. But for

AdS black holes, |g00| ∝ r2 as r → ∞, so the proper temperature for the asymptotic

observer vanishes8.

In AdS/CFT, the coordinate t has the special interpretation as the gauge theory

time. Therefore, when we discuss temperatures, we will use the Hawking tempera-

ture (gauge theory temperature) not the proper temperature.

6.4 Summary

• The AdS spacetime is the spacetime of constant negative curvature.

7 This equation looks similar to the gravitational redshift (6.58), but the interpretations are differ-

ent. The gravitational redshift compares proper energies at different radial positions. The UV/IR

relation compares the proper energy and the energy conjugate to the coordinate t at one radial

position.
8 This should coincide with the surface gravity (for the asymptotic observer). When we discussed

the surface gravity, we assumed that the spacetime is asymptotically flat [in the last expression

of Eq. (3.12), we used f (∞) = 1]. For AdS black holes, the surface gravity vanishes by taking

f (∞) → ∞ into account. The expression f ′(r0)/2 corresponds to the “surface gravity” in the t-

coordinate.
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• The AdS5 spacetime has the (3+1)-dimensional timelike boundary known as the

AdS boundary.

• The AdS5 spacetime has the SO(2,4) invariance. This symmetry is the same as

the (3+1)-dimensional conformal invariance of the N = 4 SYM.

• The AdS5 spacetime in Poincaré coordinates coincides with the near-horizon

limit of the D3-brane.

• In AdS/CFT, the gauge theory time is the coordinate time not the proper time.

Accordingly, the AdS radial coordinate has the interpretation as the gauge theory

energy scale. Given a proper energy of an excitation, the gauge theory energy is

larger if the excitation is nearer the AdS boundary.

New keywords

hyperbolic space

global coordinates

static coordinates

conformal coordinates

Poincaré coordinates

Poincaré patch

AdS boundary

de Sitter spacetime

maximally symmetric spacetimes

UV/IR relation

proper temperature



Chapter 7

AdS/CFT - equilibrium

In this chapter, we compute thermodynamic quantities for the Schwarzschild-AdS black

hole, from which one can get thermodynamic quantities of the strongly-coupled N = 4

super-Yang-Mills theory. We also compare the results with the free gas result.

7.1 The AdS black hole

Black holes can exist in the AdS spacetime. The simplest AdS black hole is known

as the Schwarzschild-AdS black hole (SAdS black hole hereafter). Just like the

Schwarzschild black hole, one can consider AdS black holes with spherical hori-

zon (Sect. 7.3), but we consider AdS black holes with planar horizon or AdS black

branes for the time being.

The SAdS5 black hole is a solution of the Einstein equation with a negative cos-

mological constant (6.57) like the AdS5 spacetime. The metric is given by

ds2
5 =−

( r

L

)2

h(r)dt2 +
dr2

(

r
L

)2
h(r)

+
( r

L

)2

(dx2+dy2+dz2) , (7.1)

h(r) = 1−
( r0

r

)4

. (7.2)

The horizon is located at r = r0. When r0 = 0, the metric reduces to the AdS5

spacetime in Poincaré coordinates (6.73). The g00 component contains the factor

r4
0/(L

2r2). The O(r−2) behavior comes from the Newtonian potential which behaves

as r−2 in the five-dimensional spacetime.

The coordinates (x,y,z) represent R3 coordinates. In the Schwarzschild black

hole, this part was r2dΩ 2 which represents a spherical horizon, but here the r = r0

horizon extends indefinitely in (x,y,z)-directions.

The AdS spacetime is a spacetime with constant curvature, but the SAdS5 black

hole is not. For example, there is a curvature singularity at r = 0.

101
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The AdS spacetime is invariant under the scaling xµ → axµ , r → r/a. Under the

scaling, the SAdS black hole metric becomes

ds2
5 →−

( r

L

)2
{

1−
(ar0

r

)4
}

dt2 + · · · , (7.3)

so one can always scale the horizon radius. Namely, black holes with different hori-

zon radii are all equivalent. As we will see, the temperature of the black hole is

T ∝ r0, so one can change the temperature by the scaling. This means that all tem-

peratures are equivalent and the physics is the same (except at zero temperature).

Thus, there is no characteristic temperature such as a phase transition. From the

gauge theory point of view, this is because the N = 4 SYM is scale invariant and

there is no dimensionful quantity except the temperature.

Another way of saying this is that the metric is invariant under

xµ → axµ , r → 1

a
r, r0 →

1

a
r0 . (7.4)

Using this scaling, one can obtain the functional form of the black hole tempera-

ture. The temperature T scales as the inverse time, so T → T/a under the scaling.

Comparing the scaling of r0, one gets T ∝ r0. The dimensional analysis then fixes

T ∝ r0/L2. See Eq. (7.6c) for the numerical coefficient.

7.2 Thermodynamic quantities of AdS black hole

7.2.1 Thermodynamic quantities

Here, we compute thermodynamic quantities of the SAdS5 black hole. In AdS/CFT,

they are interpreted as thermodynamic quantities of the dual N = 4 SYM at strong

coupling. In order to rewrite black hole results as gauge theory results, one needs

the relation of the parameters between two theories. This is given by the AdS/CFT

dictionary in Sect. 5.3.3:

N2
c =

π

2

L3

G5

, λ =

(

L

ls

)4

. (7.5)

On the left-hand side, we have gauge theory parameters which are written in terms

of gravity parameters on the right-hand side.

First, the temperature is given by
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T =
f ′(r0)

4π
(7.6a)

=
1

4π

1

L2

(

2r+
2r4

0

r3

)∣

∣

∣

∣

r=r0

(7.6b)

=
1

π

r0

L2
, (7.6c)

where we used Eq. (3.26).

For this black hole, the horizon has an infinite extension, and the entropy itself

diverges, so it is more appropriate to use the entropy density s. Let the spatial ex-

tension of the black hole as 0 ≤ x,y,z ≤ Lx,Ly,Lz. (This is just an infrared cutoff to

avoid divergent expressions.) The gauge theory coordinates are (x,y,z), so the gauge

theory volume is V3 := LxLyLz. This is different from the horizon “area” since the

line element is (r/L)2(dx2 +dy2 +dz2). Then, from the area law (3.21),

S =
A

4G5

=
1

4G5

( r0

L

)3

V3 (7.7)

or

s =
S

V3
=

1

4G5

( r0

L

)3

. (7.8)

One would write the area law as

s =
a

4G5

, (7.9)

where a := A/V3 is the “horizon area density.” Using the temperature (7.6c) and the

AdS/CFT dictionary, one gets

s =
π2

2
N2

c T 3 . (7.10)

The rest of thermodynamic quantities can be determined using thermodynamic re-

lations. The first law dε = T ds can determine the energy density ε1:

ε =
3

8
π2N2

c T 4 . (7.11)

The Euler relation ε = T s−P then determines the pressure P:

1 An integration constant is discarded. It is not allowed since we have only T as the dimensionful

quantity. This can be checked explicitly from the black hole partition function, but there are ex-

amples with nonvanishing integration constants when there are other dimensionful quantities (see,

e.g., Sect. 14.2).
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P =
1

8
π2N2

c T 4 → P =
1

3
ε . (7.12)

Here, we obtained thermodynamic quantities by the area law and thermodynamic

relations, but one can obtain these quantities by evaluating the black hole free energy

F(T,V3). In thermodynamics, the free energy is defined by F(T,V3) := E −T S =
−P(T )V3, so the result should be

F =− V3

16πG5

r4
0

L5
=− V3L3

16πG5

π4T 4 =−1

8
π2N2

c T 4V3 (7.13)

from Eq. (7.12), which is indeed confirmed in Sect. 7.5.

This is a simple exercise, but one can learn many from the results as described

below.

The temperature dependence The temperature dependence ε ∝ T 4 represents the

Stefan-Boltzmann law. The N = 4 SYM is scale invariant, and there is no dimen-

sionful quantity except the temperature. Then, it is obvious that we have the Stefan-

Boltzmann law from the field theory point of view. What is nontrivial is the propor-

tionality constant. We will compare the coefficient with the free gas case.

However, from the black hole point of view, it is highly nontrivial that a black

hole obeys the Stefan-Boltzmann law. For example, for the five-dimensional Schwarz-

schild black hole, M ∝ 1/T 2, so the black hole takes a completely different form

from the Stefan-Boltzmann form.

Moreover, the Schwarzschild black hole has a negative heat capacity C :=
dM/dT < 0, and there is no stable equilibrium. Namely, the black hole emits the

Hawking radiation, and the black hole loses its mass as the result of the radiation.

This raises the temperature of the black hole, which makes the Hawking radiation

more active. In this way, the temperature becomes high indefinitely, and the black

hole does not reach an equilibrium.

The absence of the stable equilibrium is true not only for the Schwarzschild black

hole but also for a gravitational system in general. In a gravitational system, once the

system deviates from the equilibrium, the fluctuations do not decay but grow in time,

and the system deviates further from the equilibrium2. Of course, this is one reason

why our universe is not uniform and is the driving force to produce astronomical

objects such as the solar system. Thus, usual black holes cannot correspond to the

standard statistical system such as the gauge theory. The AdS black hole is very

special in this sense.

Let us compare the Schwarzschild black hole and the AdS black hole more care-

fully:

2 This is because the gravitational force is a long-range force. The Schwarzschild black hole can be

stabilized if one confines it in a small enough “box” [1]. In the AdS black hole, there is a potential

barrier (Sect. 6.2) which gives a natural notion of the box.
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(5-dimensional) Schwarzschild: M ≃ 1

G5T 2
, (7.14)

(5-dimensional) Schwarzschild-AdS: ε =
(πL)3

4G5

T 4 . (7.15)

For the Schwarzschild black hole, there is no dimensionful quantities other than

G5 and T . On the other hand, for the AdS black hole, there is another dimen-

sionful quantity, the AdS radius L. As one can see from the AdS/CFT dictionary

(7.5), L3 and G5 combine to give only a dimensionless quantity Nc. In this way, the

Stefan-Boltzmann law can appear for the AdS black hole. On the other hand, for the

Schwarzschild black hole, one cannot eliminate the Newton’s constant G5, so the

Stefan-Boltzmann law cannot appear.

Also, note that the black hole entropy can be interpreted as a four-dimensional

statistical entropy because we consider a black hole in the five-dimensional space-

time. Unlike the usual statistical systems, the black hole entropy is not proportional

to the volume of the system but is proportional to the area of the horizon. That

is why the five-dimensional black hole entropy can be naturally interpreted as a

(3+1)-dimensional quantity.

The N2
c dependence The entropy density is proportional to O(N2

c ). This implies

that the dual gauge theory is in the unconfined plasma phase. The entropy counts the

degrees of freedom of a system. An SU(Nc) gauge theory has O(N2
c ) color degrees

of freedom. In the unconfined phase, these contribute to the entropy. In the confined

phase, only the SU(Nc) gauge singlets contribute to the entropy, and the entropy is

not proportional to O(N2
c ). The N = 4 SYM is scale invariant, and only the plasma

phase exists.

Traceless energy-momentum tensor The energy density and pressure satisfies

ε = 3P, so the energy-momentum tensor is traceless T
µ
µ = 0. This also comes from

the scale invariance of the N = 4 SYM. The N = 4 SYM has only the temperature

as a dimensionful quantity. When thermodynamic quantities are the only dimension-

ful quantities, the dimensional analysis (Stefan-Boltzmann law) and thermodynamic

relations immediately imply the traceless3.

Comparison with free gas result Let us compute the entropy density for the N =
4 SYM in the free gas limit in order to compare with the AdS/CFT result. First, for

the photon gas, the entropy density is given by

sphoton =
2π2

45
T 3 ×2 (7.16)

(Sect. 7.2.2). The last factor 2 comes from photon’s polarizations. The entropy den-

sity for the N = 4 SYM is given just by replacing the factor 2 with the N = 4

degrees of freedom Ndof. Let us count them. The theory has the gauge field and 6

3 Form the field theory point of view, the tracelessness T
µ
µ = 0 is an operator statement and is

valid irrespective of states (either the vacuum state or a thermal state) as long as there is no trace

anomaly.
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adjoint scalars, so the bosonic degrees of freedom are Nboson = (2+6)× (N2
c −1).

The theory has the adjoint fermions as well, but the fermionic degrees of free-

dom are the same as the bosonic ones from supersymmetry: Nfermion = Nboson.

Also, the fermions contribute 7/8 of the bosons to the entropy (Sect. 7.2.2). So,

Ndof = Nboson +(7/8)Nfermion = 15(N2
c − 1). Thus, the entropy density in the free

gas limit is given by

sfree =
2π2

45
NdofT

3 =
2π2

3
(N2

c −1)T 3 ≃ 2π2

3
N2

c T 3 . (7.17)

In the last equality, we took the large-Nc limit.

Equations (7.10) and (7.17) have the same functional form, but the coefficients

differ [2]. They are related to each other by

sBH =
3

4
sfree . (7.18)

Why the 3/4 “discrepancy”? The black hole computation or the AdS/CFT compu-

tation correspond to the strong coupling result (large-Nc limit) not to the free gas

result. Namely, AdS/CFT predicts that the entropy of the N = 4 SYM at strong

coupling becomes 3/4 of the free gas result. It is difficult to check the prediction

since technical tools to compute strongly-coupled gauge theories are rather limited,

but a similar behavior is obtained in lattice simulations (Chap. 12).

7.2.2 Free gas computation

Consider the partition function of free particles. Denote the energy level as ωi, and

denote the particle number occupying ωi as ni. The total energy of a microscopic

state is specified by n1,n2, . . . and is given by E(n1,n2, . . .) = ∑i niωi. The partition

function then becomes

Z = ∑e−βE(n1,n2,...) = ∑
n1

∑
n2

· · ·e−β (n1ω1+n2ω2+···) , (7.19)

where β := 1/T . For bosons, ni takes the value from 0 to ∞, so

ZB =

(

∞

∑
n1=0

e−βn1ω1

)

×·· ·=
∞

∏
i=1

1

1− eβωi
. (7.20)

Then,
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lnZB =−
∞

∑
i=1

ln(1− e−βωi) (7.21a)

→−V

∫

d3q

(2π)3
ln(1− e−βω) (7.21b)

=− V

(2π)3
4π

∫ ∞

0
dqq2 ln(1− e−βq) (7.21c)

=− V

2π2

1

β 3

∫ ∞

0
dxx2 ln(1− e−x) , (x := βq) (7.21d)

=V
π2

90β 3
. (7.21e)

Here, we replaced the sum by the integral in Eq. (7.21b) by taking the V → ∞ limit.

We also used the dispersion relation ω = |q| for massless particles in Eq. (7.21c).

The integral in Eq. (7.21d) (as well as the corresponding integral for fermions be-

low) is evaluated as

∫ ∞

0
dxx2 ln(1− e−x) =−π4

45
,
∫ ∞

0
dxx2 ln(1+ e−x) =

7π4

360
. (7.22)

Therefore, thermodynamic quantities are given by

εB =− 1

V

∂ lnZB

∂β
=

π2

30β 4
, (7.23)

sB =
1

V
lnZB +βεB =

2π2

45β 3
. (7.24)

Similarly, for fermions, ni takes the value either 0 or 1, so

ZF = (1+ eβω1)×·· ·=
∞

∏
i=1

(1+ eβωi) , (7.25a)

lnZF =
∞

∑
i=1

ln(1+ e−βωi) (7.25b)

→V

∫

d3q

(2π)3
ln(1+ e−βω) (7.25c)

=
V

(2π)3
4π

∫ ∞

0
dqq2 ln(1+ e−βq) (7.25d)

=V
7π2

720β 3
. (7.25e)

Thus,

lnZF =
7

8
lnZB . (7.26)
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7.3 The AdS black hole with spherical horizon

The AdS black hole with spherical horizon is given by

ds2
5 =−

(

r2

L2
+1− r4

0

L2r2

)

dt2 +
dr2

r2

L2 +1− r4
0

L2r2

+ r2dΩ 2
3 . (7.27)

When r0 = 0, the metric reduces to the AdS5 metric in static coordinates. The hori-

zon is located at r = r+, where

r2
+

L2
+1− r4

0

L2r2
+

= 0 → r4
0 = r4

++L2r2
+ . (7.28)

Unlike the planar horizon case, black holes with different horizon radii are in-

equivalent. In particular, the large black hole limit corresponds to the planar horizon

case (7.1). To see this, consider the scale transformation t → at, r → r/a and take

the a → 0 limit. We want to consider the large black hole limit, but we keep the

coordinate value r+ of the horizon fixed under the scale transformation. To do so,

transform r+ → r+/a or r0 → r0/a [we consider the large black hole limit, so take

only the O(r4
+) term in Eq. (7.28) into account]. Then,

ds2
5 →−

(

r2

L2
+a2− r4

0

L2r2

)

dt2 +
dr2

r2

L2 +a2− r4
0

L2r2

+
( r

a

)2

dΩ 2
3 . (7.29)

The metric does not reduce to Eq. (7.27) under the scaling. The radius of the S3

horizon grows as r/a. In the a → 0 limit, the horizon becomes flat, and one can

approximate (r/a)2dΩ 2
3 ≃ (r/L)2dxxx2

3 using R
3 coordinates. The resulting geometry

is the planar horizon one.

Black holes with different horizon radii are inequivalent, so not all temperatures

are equivalent. In fact, we will see in Sect. 14.2 that a phase transition can occur for

the black hole.

Remark Readers do not have to worry much at this point, but we mainly focus on

the planar horizon in this book from the following reasons.

• As we saw in Sect. 5.6, the near-horizon limit of the D3-brane gives the black

hole with planar horizon.

• The coordinates (x,y,z) correspond to the gauge theory spatial coordinates, so

a black hole with planar horizon corresponds to a standard gauge theory on R
3.

A black hole with compact horizon corresponds to a gauge theory on compact

space. It is interesting in its own right because it has rich physics such as phase

transition. To put differently, such a black hole is more complicated, so we post-

pone the discussion.

• In later chapters, we add perturbations to black holes and take the low-energy

ω → 0, long-wavelength limit q → 0 for hydrodynamic analysis of large-Nc plas-
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mas. But for a black hole with compact horizon, the wavelength of the perturba-

tion necessarily becomes the black hole scale.

To be more precise, let us consider the perturbation of a field φ on black hole

backgrounds. For the planar horizon, we can decompose the perturbation as the

plane wave, φ ∝ e−iωt+iqz. In this case, one can take the ω → 0,q → 0 limits. For

the spherical horizon, we decompose the perturbation using spherical harmonics.

For S2 horizon, φ ∝ Ylm(θ ,ϕ). As a result, the spectrum is discrete so that we

cannot take the limit.

7.4 Summary

• In the AdS5 spacetime, a black hole with planar horizon exists. We consider black

holes with planar horizon from various reasons.

• The SAdS5 black hole (with planar horizon) obeys the (3+1)-dimensional

Stefan-Boltzmann law like a standard statistical system.

• The entropy of the (4+1)-dimensional black hole is interpreted as a (3+1)-
dimensional quantity because of the area law of the black hole entropy.

• The entropy of the SAdS5 black hole is 3/4 of the entropy of the N = 4 SYM

in the free gas limit. This implies that the entropy of the N = 4 SYM at strong

coupling becomes 3/4 of the free gas entropy.

New keywords

Schwarzschild-AdS black hole

Stefan-Boltzmann law

[Gibbons-Hawking action]

[extrinsic/intrinsic curvature]

[counterterm action]

[holographic renormalization]

7.5 Appendix: AdS black hole partition function �

In this section, we evaluate the semiclassical partition function for the SAdS5 black

hole. The partition function gives thermodynamic quantities in Sect. 7.24.

First of all, the gravitational action is schematically written as

SE = Sbulk +SGH +SCT . (7.30)

4 �There are actually several ways to compute thermodynamic quantities. For example, one can

use the Brown-York tensor [3]. Or one can read them directly from the “fast falloff” of the metric

(Chap. 10). These methods are simpler but are essentially equivalent to the method here. In this

book, we always start from the GKP-Witten relation if possible. You would learn these alternative

methods once you get accustomed to AdS/CFT computations.
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Here, Sbulk, SGH, and SCT are called the bulk action, the Gibbons-Hawking action,

and the counterterm action, respectively. We explain these actions below and evalu-

ate on-shell actions for the SAdS5 black hole. We use the following coordinates:

ds2
5 =

( r

L

)2

(hdt2
E +dxxx2

3)+L2 dr2

hr2
, h = 1−

( r0

r

)4

, (7.31)

=
( r0

L

)2 1

u2
(hdt2

E +dxxx2
3)+L2 du2

hu2
, h = 1−u4 , (7.32)

(u := r0/r). Note that we consider Euclidean actions and the Euclidean metric here5.

In the coordinate r, the black hole “horizon” is located at r = r0 and the AdS bound-

ary is located at r = ∞. In the coordinate u, the black hole “horizon” is located at

u = 1 and the AdS boundary is located at u = 0.

The bulk action The bulk action is the five-dimensional action. For the SAdSp+2

black hole, it is the standard Einstein-Hilbert action:

Sbulk =− 1

16πGp+2

∫

dp+2x
√

g(R−2Λ) , (7.33)

2Λ =− p(p+1)

L2
. (7.34)

The SAdS5 black hole corresponds to p = 3. The contraction of the Einstein equa-

tion

RMN − 1

2
gMNR+ΛgMN = 0 (7.35)

gives

R =− (p+1)(p+2)

L2
. (7.36)

Thus, the on-shell bulk action6 is

Sbulk =
p+1

8πGp+2L2

∫

dp+2x
√

g , (7.37)

i.e., it is proportional to the spacetime volume. For the SAdS5 black hole,

Sbulk =
1

2πG5

r4
0

L5

∫ β

0
dt

∫

dxxx

∫ 1

u
du

1

u5
(7.38a)

u→0−−→ βV3

8πG5

r4
0

L5

(

1

u4
−1

)∣

∣

∣

∣

u=0

(7.38b)

=:
βV3

16πG5

r4
0

L5
Ŝbulk , (7.38c)

5 The Lorentzian action SL and the Euclidean action SE are related by iSL = i
∫

dtL =
−∫ dtE(−L) =−SE from tE = itD
6 We write on-shell actions S as S below for simplicity.
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where V3 is the volume of xxx-directions. One can check that the factor in front of Ŝbulk

is common to the other on-shell actions, so we will set β =V3 = r0 = L= 16πG5 = 1

below.

The bulk action diverges as u → 0 because it is proportional to the spacetime

volume.

The Gibbons-Hawking action It is necessary to add the following “surface term”

to the Einstein-Hilbert action in order to have a well-defined variational problem

(Sect. 12.5):

SGH =− 2

16πGp+2

∫

dp+1x
√

γ K . (7.39)

The action is known as the Gibbons-Hawking action. This is a surface term evalu-

ated at u = 0. Here, γµν is the (p+ 1)-dimensional metric at the surface, and K is

the trace of the extrinsic curvature of the surface as described below.

�
This is a surface term, so it does not affect the equation of motion (Einstein equa-

tion), but it does affect the value of the on-shell action. Elementary general relativity

textbooks rarely put emphasis on the Gibbons-Hawking action since the equation of

motion is fundamentally important for the dynamics of curved spacetimes. But for

thermodynamic properties, one is interested in the whole value of the on-shell action

in the Euclidean formalism, so this action is equally important.

Moreover, in some cases, it is the only contribution to the on-shell action. For

the Schwarzschild black hole, R = 0, so the bulk action makes no contribution to

the on-shell action. The contribution to the on-shell action entirely comes from the

Gibbons-Hawking action.

For simplicity, consider a diagonal metric such as the SAdS black hole. The

(p+1)-dimensional metric γµν is given by decomposing the metric as (“The ADM

decomposition”)

ds2
p+2 = guudu2 + γµν dxµ dxν . (7.40)

The unit normal to the u = (constant) surface is given by7

gMNnMnN = 1 → nu =− 1√
guu

. (7.41)

Then, K is given by8

K = nu ∂u
√

γ
√

γ
. (7.43)

7 The vector nM is “outward-pointing” pointing in the direction of decreasing u or increasing r.
8 For a diagonal metric, the extrinsic curvature itself is given by

Kµν =
1

2
nu∂uγµν , (7.42)

and the trace is defined by K := γµν Kµν . Use the matrix formula (2.63) ∂µ (detM) =
detM tr(M−1∂µ M) to derive Eq. (7.43) from Kµν .
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R = 0

K ≠ 0

Fig. 7.1 For the cylinder, the intrinsic curvature vanishes (R = 0), but the extrinsic curvature can

be nonvanishing (K 6= 0).

There are two kinds of curvature: intrinsic and extrinsic. The Riemann tensor

is the former. The extrinsic curvature relies on the notion of a higher-dimensional

spacetime. Namely, the extrinsic curvature of a spacetime relies on how the space-

time is embedded into a higher-dimensional spacetime. The Riemann tensor does

not have to assume the existence of such a higher-dimensional spacetime.

For example, consider a cylinder (Fig. 7.1). The cylinder has no intrinsic curva-

ture R = 0 since the cylinder is just a flat space with a periodic boundary condition.

But the cylinder is “curved.” This is the curvature which arises by embedding it into

the three-dimensional space. This is the extrinsic curvature. In cylindrical coordi-

nates

ds2 = dz2 +dr2 + r2dθ 2 , (7.44)

the cylinder is the r = (constant) surface. Then, nr = 1, γµν = diag(1,r2), and
√

γ =
r, so the extrinsic curvature is indeed nonvanishing K = 1/r.

In general relativity, one considers the extrinsic curvature of a surface when one

embeds the surface into a spacetime or when one discusses the canonical formalism

(one slices the spacetime into a series of spacelike hypersurfaces). In our case, we

are talking of the extrinsic curvature of the four-dimensional timelike hypersurface

sliced at u = (constant) of the five-dimensional AdS black hole. This hypersurface

is the spacetime where the boundary gauge theory lives.

For the SAdS5 black hole, nu =−uh1/2 and
√

γ = u−4h1/2, so

SGH = 2uh1/2
[

u−4h1/2
]′
∣

∣

∣

∣

u=0

u→0−−→ − 8

u4
+4

∣

∣

∣

∣

u=0

. (7.45)

Note that the Gibbons-Hawking action also diverges as u → 0.

The counterterm action As we saw above, the bulk action and the Gibbons-

Hawking action diverge as u → 0. To cancel the divergence, we add to the action

another surface term, the counterterm action.

In AdS/CFT, this divergence is interpreted as the ultraviolet divergence of the

dual field theory. In the dual field theory, it is clear how to handle the divergence.

One carries out the renormalization and adds a finite number of local counterterms

to the bare action. Following this field theory prescription, we add a counterterm
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action in order to have a finite gravitational partition function. This procedure is

known as the holographic renormalization9.

Thus, the counterterm action is chosen so that

• It is written only in terms of boundary quantities (γµν and the quantities made of

γµν such as the Ricci scalar10 R).

• It consists of only a finite number of terms.

• The coefficients of these terms are chosen once and for all in order to cancel

divergences.

When p ≤ 5, the counterterm action is given by

SCT =
1

16πGp+2

∫

dp+1x
√

γ

{

2p

L
+

L

p−1
R

− L3

(p−3)(p−1)2

(

R
µν

Rµν −
p+1

4p
R

2

)

+ · · ·
}

. (7.46)

The above terms are enough to cancel power-law divergences for p≤ 5, but one may

need the other terms to cancel log divergences. For black holes with planar horizon,

Rµν = 0, so only the first term contributes to thermodynamic quantities:

SCT = 6u−4h1/2
∣

∣

∣

u=0

u→0−−→ 6

u4
−3

∣

∣

∣

∣

u=0

. (7.47)

The partition function and thermodynamic quantities To summarize our results

(7.38b), (7.45), and (7.47),

Sbulk =
2

u4
−2

∣

∣

∣

∣

u=0

, (7.48a)

SGH = − 8

u4
+4

∣

∣

∣

∣

u=0

, (7.48b)

SCT =
6

u4
−3

∣

∣

∣

∣

u=0

. (7.48c)

Combining these results, we get a simple result Sbulk + SBH + SCT = −1 after all

these computations. Recovering dimensionful quantities, we get

SE =− βV3

16πG5

r4
0

L5
. (7.49)

The on-shell action is related to the partition function Z and the free energy F as

9 See, e.g., Ref. [4] for a review of the holographic renormalization. The counterterm action con-

tains the AdS scale L, so one cannot regulate the divergence if the spacetime is not asymptotically

AdS. In particular, one cannot use this prescription for asymptotically flat black holes such as the

Schwarzschild black hole. See Sect. 14.2 for a prescription of such a case.
10 Readers should not confuse R with R, the Ricci scalar in the bulk spacetime. RMN is a tensor in

(p+2)-dimensions, and Rµν is a tensor in the (p+1)-dimensions.
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Z = e−SE , SE = βF . (7.50)

Then, the free energy becomes

F =− V3

16πG5

r4
0

L5
=− (πLT )4

16πG5L
V3 =−1

8
π2N2

c T 4V3 , (7.51)

where we used T = r0/(πL2). Thermodynamic quantities are then derived from the

free energy as

s =− 1

V3
∂T F =

(πLT )3

4G5

=
1

4G5

( r0

L

)3

=
1

2
π2N2

c T 3 , (7.52a)

P =−∂V3
F =

(πLT )4

16πG5L
=

1

16πG5L

( r0

L

)4

=
1

8
π2N2

c T 4 , (7.52b)

ε =
F

V3
+T s =

3(πLT )4

16πG5L
=

3

16πG5L

( r0

L

)4

=
3

8
π2N2

c T 4 . (7.52c)
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Chapter 8

AdS/CFT - adding probes

In real experiments, one often adds “probes” to a system to examine its response. Or one

adds impurities to a system to see how they change the properties of the system. In this

chapter, we discuss how to add probes in AdS/CFT. As a typical example, we add “quarks”

to gauge theories as probes and see the behavior of quark potentials.

Coupling new degrees of freedom to the original system often arises new phe-

nomena. Adding some new degrees of freedom to AdS/CFT should be also interest-

ing. This is practically important as well. The N = 4 SYM is clearly insufficient to

mimic real worlds completely since, e.g., it does not have quarks.

In string theory, there are various fields and branes, so one may would like to add

them. The resulting geometries or solutions have been known for some cases, but

it is in general very difficult to solve the Einstein equation when there are multiple

number of fields and branes.

So, one often adds them as “probes.” This is just like the particle motion anal-

ysis in curved spacetime (Sects. 2.3 and 6.2). One fixes the background geometry

and considers the case where the backreaction of the probe onto the geometry is

negligible.

In this chapter, as a typical example, we add “quarks” to large-Nc gauge theories

as a probe and analyze quark potentials. In Sect. 14.3, we see another example of a

probe system, holographic superconductors.

8.1 Basics of Wilson loop

The Wilson loop is an important observable in gauge theory, and it represents the

quark-antiquark potential physically. As an example, consider a U(1) gauge theory

with gauge transformation given by

φ(x)→ eiα(x)φ(x) , (8.1)

Aµ(x)→ Aµ(x)+∂µ α(x) . (8.2)

115
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x

y

P

(a)

R

T

(b)

Fig. 8.1 (a) Path P. (b) The Wilson loop represents a quark-antiquark pair.

A nonlocal operator such as φ(x)φ ∗(y) is not gauge invariant in general and is not

an observable. But the following quantity is gauge-invariant:

φ(x)ei
∫

P dxµ Aµ φ ∗(y) , (8.3)

where P is an arbitrary path from point x to y [Fig. 8.1(a)]. It transforms as

φ(x)ei
∫

P dxµ Aµ φ ∗(y)→ φ(x)eiα(x)ei
∫

P dxµ (Aµ+∂µ α)e−iα(y)φ ∗(y) (8.4)

= φ(x)ei
∫

P dxµ Aµ φ ∗(y) . (8.5)

Or if one takes a closed path P, WP itself is gauge invariant. Thus, we define the

following operator:

WP(x,y) = ei
∫

P dxµ Aµ (Wilson line) , (8.6)

WP(x,x) = ei
∮

dxµ Aµ (Wilson loop) . (8.7)

The Wilson loop represents the coupling of the gauge field to a test charge. Con-

sider a charged particle with world-line yµ(λ ). The current is given by

Jµ(x) =
∮

dλ
dyµ

dλ
δ (xµ − yµ(λ )) . (8.8)

The sign of the charge depends on the sign of dy/dλ . Here, we take dy/dλ >
0 for a positive charge. For a given closed path, dy/dλ can be both positive and

negative, so we have both a positive charge and a negative charge [Fig. 8.1(b)].

Namely, the closed path describes the process of creating a “quark-antiquark pair”

from the vacuum, pulling them a distance R apart, interacting for time T , and

annihilating them. If one uses Jµ , the coupling of the gauge field to the point particle

action is written as δS =
∫

d4xAµ Jµ . This perturbed action δS can be rewritten as
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the exponent of the Wilson loop:

δS=
∫

d4xAµ(x)J
µ(x) =

∮

dλ
dyµ

dλ
Aµ(y(λ )) =

∮

dyµ Aµ(y) . (8.9)

Therefore, the Wilson loop represents a partition function in the presence of a test

charge:

〈WP〉=
Z[J]

Z[0]
. (8.10)

Such a partition function gives the quark-antiquark potential. Let us write the

Euclidean partition function formally as

Z = 〈 f |e−HT |i〉 (8.11)

(|i〉 and | f 〉 are the initial state and the final state, respectively). If one uses a com-

plete set of energy eigenstates H|n〉= En|n〉,

Z = ∑
n

e−EnT 〈 f |n〉〈n|i〉 T →∞−−−→ e−E0T . (8.12)

Thus, in the T → ∞ limit, the Euclidean partition function is dominated by the

ground state and gives the ground state energy. When the kinetic energy is negligi-

ble, it gives the quark-antiquark potential energy1. Consequently,

〈WP〉 ≃ e−V (R)T . (8.13)

One can show that the horizontal parts of Fig. 8.1(b) are negligible in the large

T → ∞ limit.

When the quark is confined like QCD, the potential grows with the separation R,

so V (R)≃ σR(R ≫ 1), where σ is called the string tension. Then,

〈WP〉 ≃ e−O(RT ) = e−σA . (8.14)

The exponent is proportional to the area of the Wilson loop A =RT . This behavior

is known as the area law. An unconfined potential behaves differently. The Coulomb

potential decays with the separation, and one can show that

〈WP〉 ≃ e−O(R) (when R = T ≫ 1) . (8.15)

This is known as the perimeter law. In this way, the Wilson loop provides a criterion

for the confinement.

Here, we consider only the U(1) gauge theory, but a similar discussion can be

done for a Yang-Mills theory.

1 From tE = it, the Lorentzian action SL, the Euclidean action SE , and the potential V are related

to each other by iSL = i
∫

dt(−V ) =−∫ dtEV =−SE .
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(a) (b)

Fig. 8.2 (a) An open string can have endpoints on a D-brane. The Nc coincident D-branes represent

a SU(Nc) gauge theory. (b) A long string represents a massive “quark.”

8.2 Wilson loops in AdS/CFT: intuitive approach

Let us consider the Wilson loop in AdS/CFT. The Wilson loop in AdS/CFT give a

typical example of adding a probe system to the original system. The AdS/CFT re-

sults can be understood intuitively. So, before we go through an actual computation,

we first explain what kind of results one can expect in various situations. Then, we

confirm our intuitive explanation via an actual computation.

The matter fields in the N = 4 SYM are all in the adjoint representation. So,

one first has to understand how to realize the fundamental representation such as a

quark in AdS/CFT. Below, we describe one simple way to add such matter.

To do so, recall how the adjoint representation appeared for the D-brane [Fig. 8.2(a)].

The open strings can have endpoints on a D-brane, but when there are multiple num-

ber of D-branes, an open string can have endpoints in various ways; there are N2
c

possibilities. This means that the string transforms as the adjoint representation of

SU(Nc) gauge theory.

Now, consider an infinitely long string [Fig. 8.2(b)]. In this case, the string can

have endpoints in Nc different ways. This means that the string transforms as the

fundamental representation of SU(Nc) gauge theory. In this sense, such a long string

represents a “quark.” Such a string has an extension and tension, so the string has a

large mass, which means that the long string represents a heavy quark. We discuss

the Wilson loop in AdS/CFT using such a string.

We saw earlier that the string model of QCD does not describe potentials other

than the confining potential (Problem 2 of Sect. 5.1). However, one can avoid this

problem in AdS/CFT, and one can get the Coulomb potential which appears at short

distances in QCD. The AdS/CFT result differs from the simple string model one

essentially because of the curved spacetime effect as discussed below. Note that we

avoided Problem 1 of Sect. 5.1 by the same trick.

First, we discuss the simplest case, the pure AdS case, to understand the basic

idea of the AdS/CFT quark potential. In this case, one gets only the Coulomb po-

tential. We then consider a more generic AdS spacetime and get a confining potential

as well. Also, if we consider a black hole, we can recover behaviors in plasma phase.
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r = 0

r = ∞ 

x

r

Fig. 8.3 Schematically drawn AdS spacetime. The horizontal direction represents one of three-

dimensional space the gauge theory lives. The vertical direction represents the AdS radial coor-

dinate. The radial coordinate extends from r = 0 to r = ∞, but we draw in a compact region for

illustration.

rm

string

string

quark antiquark

R

r = ∞ 

r = 0

Fig. 8.4 The straight string is not the lowest energy state (left), and the string which goes inside

the AdS spacetime is the lowest energy state (right).

The pure AdS spacetime The AdS metric in Poincaré coordinates is written as

ds2 =
( r

L

)2

(−dt2 +dx2 + · · ·) . (8.16)

The line element has the factor r2. We measure the gauge theory time and distance

using t and x, but they differ from the proper time and distance of the AdS spacetime.

This is the important point, and the qualitative behavior of the quark potential can

be understood using this fact.

Figure 8.3 shows the AdS spacetime schematically. Denote the quark-antiquark

separation as ∆x = R. The quark-antiquark pair is represented by a string which

connects the pair. The string has the tension, so the tension tends to minimizes the

string length. At first glance, one would connect the pair by a straight string at

r = ∞ (Fig. 8.4). But this does not minimize the string length. This is because the

coordinate distance does not represent a true distance (proper distance) in a curved

spacetime. The figure does not show the proper length properly, so one needs a care.

For the AdS spacetime, the proper length of the string actually gets shorter if the

string goes inside the AdS spacetime (r 6= ∞). The line element has the factor r2, so

the proper length r∆x gets shorter near the origin.



120 8 AdS/CFT - adding probes

potential part

r = ∞ 

r = 0

Fig. 8.5 The string which connects the quark pair (left) is approximated by a rectangular string.

The energy of the horizontal string gives the quark potential.

r = ∞ 

r = 0

Fig. 8.6 The behavior of the string as we vary the quark separation. The larger R lowers the string

turning point rm as rm ∝ 1/R.

According to the analysis of Sect. 8.4, this string is roughly divided into two

parts: the part the string extends vertically, and the part the string extends horizon-

tally. So, for simplicity, let us approximate the configuration by a rectangular string

(Fig. 8.5). Only the horizontal string contributes to the quark potential. This part

varies as we vary the quark separation R. On the other hand, the vertical string does

not vary much. This part simply describes the quark mass.

We need a little more information to compute the potential. The explicit compu-

tation shows that the string turning point r = rm behaves as

rm ∝ L2/R (8.17)

(Fig. 8.6). Also, the line element (8.16) gives two consequences. First, the proper

length of the horizontal string is (r/L)R, so the string energy E(r) is given by

E(r) ∝

( r

L

)

R . (8.18)

Second, this energy is the proper energy and not the gauge theory energy. The time-

like direction also has the factor r2 as in Eq. (8.16). The gauge theory time is the

coordinate time t not the proper time. As a result, the gauge theory energy differs

from the proper energy E(r). From Eq. (8.16), the proper time τr is related to the

gauge theory time by τr = (r/L)t, so the proper energy is related to the gauge theory

energy Et by

Et =
( r

L

)

E(r) . (8.19)
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r = rc

r = ∞ 

Fig. 8.7 In the cutoff AdS spacetime, the string reaches the end of the space, r = rc, when the

quark separation is large enough.

This is the UV/IR relation in Sect. 6.3 [1, 2]. Thus, the potential is given by

Et =
( rm

L

)

E(r) ∝

( rm

L

)2

R (8.20)

∝
L2

R
, (8.21)

where we also used Eq. (8.17). This result [3, 4] has two important points:

1. First, we obtained the Coulomb potential E ∝ 1/R not the confining potential

E ∝ R. Namely, the string connecting the quark-antiquark pair does not neces-

sarily implies a confining potential, but it can describe an unconfining potential

using the curved spacetime. In this way, we resolved Problem 2 of the string

model in Sect. 5.1. But then, how can we describe the confining potential in

AdS/CFT? We will discuss this point below.

2. Second, the potential is proportional to L2. According to the AdS/CFT dictionary,

L2 ∝ λ 1/2, so the potential is proportional to (g2
YMNc)

1/2. But perturbatively, the

potential is proportional to g2
YMNc. This is because the AdS/CFT result corre-

sponds to the large-Nc limit and represents a nonperturbative effect2.

Let us evaluate the potential for a generic metric for later use. By repeating the

above argument, the potential energy becomes

Et =
√−g00|rmE(r) =

1

2πl2
s

√−g00gxx|rm R , (8.22)

where the metric is evaluated at r = rm. We also included the factor of the string

tension T = 1/(2πl2
s ) which we ignored in Eq. (8.18).

The confining phase AdS/CFT can also describe the confining potential which the

old string model can describe qualitatively well. The pure AdS spacetime corre-

sponds to the N = 4 SYM not to QCD. The N = 4 SYM is scale invariant and

2 For the N = 4 SYM at zero temperature, the potential is evaluated nonperturbatively from the

field theory point of view, and it indeed behaves as λ 1/2 at strong coupling [5, 6].
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r = r0

r = ∞ 

r = 0

Fig. 8.8 The plasma phase case. The shaded region represents the black hole.

the confining phase does not exist even at zero temperature. We need to modify the

simple AdS geometry to describe a theory which is closer to QCD.

Many examples are known about how the AdS spacetime is deformed if one

deforms the N = 4 SYM. But we use a simple model to simplify our analysis here

[7]. The AdS spacetime extends from r = ∞ to r = 0, but in this model, we cut off

the AdS spacetime at r = rc (Fig. 8.7). Let us suppose that the confinement happens

at a low-energy scale Λ . In AdS/CFT, the r-coordinate has the interpretation as the

gauge theory energy scale. So, the confinement means that the AdS spacetime is

modified deep inside the AdS spacetime r ∝ Λ . The cutoff AdS roughly represents

this effect3.

Even though we modify the spacetime, there is little difference if the string is far

enough from the cutoff r = rc. One gets the Coulomb potential like the pure AdS

spacetime. But if the quark separation R is large enough, there is a new effect.

In the AdS spacetime, the turning point of the string behaves as rm ∝ 1/R. But in

the cutoff AdS spacetime, the string reaches at r = rc for a large enough R. Once the

string reaches there, the string cannot go further. Thus, from Eq. (8.22), the energy

of the horizontal string is given by

Et ∝ r2
cR ≃ O(R) , (8.23)

which is indeed the confining potential.

After all, what contributes to the potential energy is the string at the cutoff

r = rc, so the AdS/CFT computation essentially reduces to the old string model

one. AdS/CFT takes the advantage of the old string model and at the same time

overcomes the difficulty of the model.

The plasma phase We now consider the finite temperature case or the plasma

phase. According to AdS/CFT, the N = 4 SYM at finite temperature corresponds

to the AdS black hole (Fig. 8.8).

At finite temperature, there is a black hole horizon at r = r0. But if the string is far

enough from the black hole, the geometry is approximately the AdS spacetime, so

one approximately has the Coulomb potential. But if the string reaches the horizon,

there is a new effect.

3 The cutoff AdS is a toy model for the confinement, but we discuss an explicit example in Sect. 8.6.
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?

Jets

Fig. 8.9 Left: the collision of nuclei in vacuum. Right: jet quenching in the plasma. The ellipsoid

represents the plasma.

For a black hole, the line element in the timelike direction has the unique behav-

ior, and the relation (8.19) between E(r) and Et is modified. For the Schwarzschild-

AdS5 (SAdS5) black hole, the line element is given by

ds2 =−
( r

L

)2
{

1−
( r0

r

)4
}

dt2 + · · · , (8.24)

so g00 = 0 at the horizon r = r0. Thus, Eq. (8.22) gives

Et = 0 . (8.25)

Namely, the horizontal string has no contribution to the energy. Thus, there is no

force when the quark separation is large enough. This is the Debye screening in

AdS/CFT [8, 9, 10].

Return of Wilson loops The Wilson loop argument here was proposed in less than

two weeks after the systematic AdS/CFT researches started in 1998. Various exten-

sions were made within a month. But people started to come back to such simple

analysis since 2006.

What changed the situation? In the past, such a computation was made to find

circumstantial evidences of AdS/CFT. Namely, one would like to check whether

AdS/CFT correctly reproduces the behavior of gauge theories or not. People do not

really have real applications in mind. This is understandable since supersymmetric

gauge theories are different from QCD, so probably one was reluctant to apply them

to the “real world.” But in recent years, people revisits such analysis and compute

various effects by taking into account the real experimental situations.

As discussed in Sect. 4.1.2, the perturbative QCD is not very effective even in the

plasma phase. Thus, heavy-ion physicists try to identify the typical “fingerprints” of

QGP. Some of the fingerprints discussed to date are

1. small shear viscosity (Chap. 4, 12)

2. jet quenching

3. J/Ψ -suppression

In the parton hard-scattering, jets are often formed. A jets is a collection of

hadrons which travel roughly in the same direction. If jets are formed in the plasma
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v

energy

r = ∞ 

r = r0

r = 0

Fig. 8.10 Jet quenching in AdS/CFT.

medium, the energy of the jets are absorbed by the medium, so the number of ob-

served hadrons are suppressed. This is the jet quenching (Fig. 8.9).

Another fingerprint is the J/Ψ -suppression [11]. J/Ψ is a “charmonium” which

consists of cc̄. Since a charm quark is heavy (≈ 4.2 GeV), the charm pair production

occurs only at the early stage of heavy-ion collisions. Now, if the production occurs

in the plasma medium, the interaction between cc̄ is screened by the light quarks

and gluons in between, which is the Debye screening. Then, the charm quark is

more likely to bind with the plasma constituents rather than the charm antiquark.

The result is the suppression of J/Ψ production.

These phenomena have been discussed in AdS/CFT. For example, consider the

jet quenching [12, 13, 14, 15, 16, 17]. So far, we considered the static quark to obtain

the potential. But in this case, one is interested in how the quark loses its energy.

So, move the quark (string) with velocity v along the x-direction. Then, the string is

dragged as in Fig. 8.10. The string is dragged because the energy of the string flows

towards the horizon. This energy loss is interpreted as the energy loss of the quark

in the plasma medium.

8.3 String action

In order to confirm the intuitive explanation in the last section, let us first consider

the string action. The string action is obtained using the similar argument as the

particle action in Sect. 2.1. A particle draws a world-line in spacetime. Similarly,

a string sweeps a two-dimensional surface, a world-sheet, in spacetime (Fig. 8.11).

We write the particle action by the proper length of the world-line. Similarly, it is

natural to write the string action by the area A of the world-sheet:

S=−T

∫

dA . (8.26)

The parameter T has the dimensions [T] = L−2, which makes the action dimen-

sionless. Physically, it represents the string tension. It is convenient to introduce a

parameter ls with the dimension of length and to write the tension as
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σ0

σ1

x
0

x
1

Fig. 8.11 A string sweeps a world-sheet in spacetime.

T=
1

2πl2
s

. (8.27)

The parameter ls represents the characteristic length scale of the string (string

length).

Just as the particle action, introduce coordinates σa = (σ0,σ1) on the world-

sheet. Then, the world-sheet is described by xM(σa). Using the world-sheet coordi-

nates σa, the spacetime metric is written as

ds2 = ηMNdxMdxN = ηMN

∂xM

∂σa

∂xN

∂σb
dσadσb (8.28)

=: hab dσadσb , (8.29)

where hab is known as the induced metric. What we are doing here is essentially

the same as the embedding of a hypersurface into a higher-dimensional spacetime

in Chap. 6. For example, embed S2 into R
3:

ds2 = dX2 +dY 2 +dZ2 = dθ 2 + sin2 θ dϕ2 (8.30)

In this case, we take S2 coordinates as σa = (θ ,ϕ), and the induced metric is given

by

hab =

(

1 0

0 sin2 θ

)

. (8.31)

Using the world-sheet coordinates, one can write the area element as

dA = d2σ
√

−dethab . (8.32)

For S2, dA = sinθ dθ dϕ , which is the familiar area element for S2. The coordinates

σa are just parametrizations on the world-sheet, so the area element is invariant

under

σa′ = σa′(σb) . (8.33)
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The situation is similar to general relativity. In general relativity, one writes the

volume element as ddx
√−g, and the volume element is invariant under coordi-

nate transformations. The only difference is whether one considers a spacetime or

a world-sheet. In general relativity, one considers the volume element in spacetime

and the coordinate transformation in spacetime, whereas Eq. (8.32) is the area el-

ement on the world-sheet and Eq. (8.33) is the coordinate transformation on the

world-sheet.

Using Eq. (8.32), one gets the Nambu-Goto action:

SNG =−T

∫

d2σ
√

−dethab . (8.34)

From Eq. (8.28), the induced metric is written as

hab =

(

ẋ · ẋ ẋ · x′
ẋ · x′ x′ · x′

)

(˙ := ∂σ0 , ′ := ∂σ1) . (8.35)

Just as in Eq. (8.31), this is a matrix on (a,b) indices. Using this, we can write the

Nambu-Goto action as

SNG =−T

∫

d2σ
√

(ẋ · x′)2 − ẋ2x′2 . (8.36)

One can consider a few extensions of the action:

1. Here, we used the Minkowski spacetime as the ambient spacetime. But one can

get the curved spacetime case by replacing ηMN by gMN(x) like the particle action

case in Sect. 2.1.

2. A brane action is obtained similarly. For the Dp-brane, with the (p+1)-dimensional

induced metric hab, one writes the action as4

SDp =−Tp

∫

dp+1σ e−φ
√

−dethab . (8.37)

Such a brane can be added as a probe just like the string.

8.4 Wilson loops in AdS/CFT: actual computation

In this section, we confirm our intuitive explanation in Sect. 8.2 by an actual com-

putation. As an example, we compute the Wilson loop in the pure AdS5 spacetime.

4 Note the factor of the dilation e−φ . The dilaton φ and the string coupling constant gs are related

by gs ≃ eφ , so this factor means that the mass density of the D-brane is proportional to 1/gs

[Eq. (5.58)].
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rm

x

r

r = ∞ 

-R/2 R/2

Fig. 8.12 The configuration to compute the Wilson loop

The quark potential is given by the energy of the string in AdS/CFT. So, the start-

ing point is the Nambu-Goto action (8.34). The action has the reparametrization

invariance on the world-sheet, so we can choose convenient world-sheet coordi-

nates by coordinate transformations (gauge fixing). Here, we take the static gauge5

(Fig. 8.12):

σ0 = t , σ1 = r , x = x(r) . (8.38)

The induced metric on the AdS5 spacetime is given by

ds2
5 =

( r

L

)2

(−dt2 +dxxx2
3)+L2 dr2

r2
(8.39)

=−
( r

L

)2

dt2 +

{

(

L

r

)2

+
( r

L

)2

x′2
}

dr2 (′:= ∂r) , (8.40)

so the determinant of the induced metric becomes

−dethab = 1+
( r

L

)4

x′2 . (8.41)

Then, the action is given by

S=− 1

2πl2
s

∫

d2σ
√

−dethab =− T

2πl2
s

∫

dr

√

1+
( r

L

)4

x′2 , (8.42)

where T is the time duration in t. The Lagrangian does not contain x, so there is a

conserved momentum px which is conjugate to x:

px =
∂L

∂x′
∝

(

r
L

)4
x′

√

1+
(

r
L

)4
x′2

= (constant) . (8.43)

Let us determine the constant. The string has the turning point at r = rm. At the

turning point, ∂rx|r=rm = ∞, so the constant is given by

5 The string has the turning point at r = rm, so our gauge is not well-defined in reality. But this is

no problem because it is enough to consider only the half of the string by symmetry. One normally

takes the gauge σ0 = t, σ1 = x, and r = r(x) instead of Eq. (8.38). The computation is slightly

easier in our gauge.
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(constant) =

(

r
L

)4
x′

√

1+
(

r
L

)4
x′2

∣

∣

∣

∣

∣

∣

r=rm

=
( rm

L

)2

. (8.44)

Solving Eq. (8.43) in terms of x′, one gets

x′2 =

(

L

r

)4
1

(

r
rm

)4

−1

. (8.45)

One can determine the string configuration x(r) by solving Eq. (8.45). We take

x = 0 at r = rm, so x(r) is given by the integral

∫ x

0
dx =

∫ r

rm

(

L

r

)2
dr

√

(

r
rm

)4

−1

. (8.46)

In particular, x = R/2 at r → ∞, so Eq. (8.46) gives

R

2
=

L2

rm

∫ ∞

1

dy

y2
√

y4 −1
(y := r/rm) (8.47)

=
L2

rm

√
2π3/2

Γ ( 1
4
)2

. (8.48)

From Eq. (8.48),

rm ≃ L2

R
, (8.49)

which justifies Eq. (8.17). Also, when r ≫ rm, Eq. (8.46) gives

R

2
− x =

L2

rm

∫ ∞

r/rm

dy

y2
√

y4 −1
≃ r−3 . (8.50)

The string quickly approaches x = R/2 for large r, which confirms the Fig. 8.5

behavior.

We determined the string configuration. We now evaluate the action (8.42) to

compute the quark potential. Substituting Eq. (8.45) into Eq. (8.42), one gets

S=− T

2πl2
s

∫ ∞

rm

dr

(

r
rm

)2

√

(

r
rm

)4

−1

. (8.51)

Then, the potential energy is given by
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E =−2S

T
=

2

2πl2
s

rm

∫ ∞

1

y2dy
√

y4 −1
. (8.52)

The integral actually diverges, but this reflects the fact that the quark is infinitely

heavy. We must subtract the quark mass contribution6. The isolated string config-

uration is given by x′ = 0. By substituting x′ = 0 into Eq. (8.42), one obtains the

quark mass contribution:

S0 =− T

2πl2
s

∫ ∞

0
dr , (8.53)

E0 =
2

2πl2
s

∫ ∞

0
dr . (8.54)

Thus,

E −E0 =
2

2πl2
s

rm

{

∫ ∞

1

(

y2

√

y4 −1
−1

)

dy−1

}

. (8.55)

The expression is proportional to rm, but rm ≃ L2/R from Eq. (8.49), so we get the

Coulomb potential E ≃ 1/R. The evaluation of the integral in Eq. (8.55) gives

E −E0 =− 4π2

Γ ( 1
4
)4

λ 1/2

R
, (8.56)

which agrees with our intuitive explanation (8.21).

8.5 Summary

• Adding probes to the original system is a simple but useful way to explore the

system further.

• As an example, we add Wilson loops to various asymptotically AdS spacetimes.

The Wilson loop is an important nonlocal observable in a gauge theory, and it

represents the quark-antiquark potential.

• In AdS/CFT, the Wilson loop corresponds to adding an infinitely long string

extending from the AdS boundary.

• In the pure AdS spacetime, the holographic Wilson loop gives the Coulomb

potential which is a curved spacetime effect. The potential is proportional to

(g2
YMNc)

1/2 which represents a strong coupling effect.

• If one changes background geometries, one gets various quark potentials such as

the confining potential and the Debye screening. Also, if one considers dynamical

strings, one can discuss dynamical problems such as the jet quenching in the

plasma phase.

6 See Ref. [18] for a more appropriate procedure.
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New keywords

Wilson loop

cutoff AdS spacetime

jet quenching

J/Ψ -suppression

induced metric

Nambu-Goto action

static gauge

[AdS soliton]

8.6 Appendix: A simple example of the confining phase

In the text, we discussed the cutoff AdS spacetime as a toy model of the confining

phase. Here, as an explicit example, we discuss the S1-compactified N = 4 SYM

and its dual geometry.

AdS soliton The SAdS5 black hole is given by

ds2
5 =

( r

L

)2

(−hdt2 +dx2 +dy2 +dz2)+L2 dr2

hr2
, (8.57)

h = 1−
( r0

r

)4

. (8.58)

We now compactify the z-direction as 0 ≤ z < l.

However, the compacfified SAdS5 black hole is not the only solution whose

asymptotic geometry is R1,2 ×S1. The “double Wick rotation”

z′ = it , z = it ′ (8.59)

of the black hole gives the metric

ds2
5 =

( r

L

)2

(−dt ′2 +dx2 +dy2 +hdz′2)+L2 dr2

hr2
, (8.60)

which has the same asymptotic structure R
1,2 × S1. The geometry (8.60) is known

as the AdS soliton [19].

As Euclidean geometries, they are the same, but they have different Lorentzian

interpretations. The AdS soliton is not a black hole. Rather, because of the factor h

in front of dz′2, the spacetime ends at r = r0 just like the Euclidean black hole. From

the discussion in the text, this geometry describes a confining phase.

For the SAdS black hole, the imaginary time direction has the periodicity

β = πL2/r0 to avoid a conical singularity. Similarly, for the AdS soliton, z′ has

the periodicity l given by

l =
πL2

r0
. (8.61)

Wilson loop Let us consider the quark potential in this geometry. Take the quark

separation as R in the x-direction. This corresponds to a Wilson loop on the t ′-x
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plane. Since the geometry ends at r = r0, the formula (8.22) gives

Et ∝
√−gt ′t ′gxx|r0

R =
( r0

L

)2

R , (8.62)

which is a confining potential.

In Sect. 8.2, we considered the Wilson loop in the SAdS black hole and discussed

the Debye screening. Here, we consider a Wilson loop in the same Euclidean geom-

etry, but the Wilson loop here is different from the one in Sect. 8.2:

• For the AdS soliton, we consider the Wilson loop on the t ′-x plane (temporal

Wilson loop), but as the black hole, this is a Wilson loop on the z-x plane or a

spatial Wilson loop.

• For the black hole, we considered the temporal Wilson loop on the t-x plane, but

as the AdS soliton, this is a spatial Wilson loop on the z′-x plane.

At high temperature T l > 1, the AdS soliton undergoes a first-order phase tran-

sition to the SAdS black hole (Sect. 14.2.1).
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Chapter 9

Basics of nonequilibrium physics

So far we discussed equilibrium physics. In order to apply AdS/CFT to nonequilibrium

physics, we explain the basics of nonequilibrium physics. We explain it both from the mi-

croscopic point of view (linear response theory) and from the macroscopic point of view

(hydrodynamics).

9.1 Linear response theory

9.1.1 Ensemble average and density matrix

In statistical mechanics, one considers an ensemble average. An ensemble average

of an operator O is defined by

〈O〉 := ∑
i

wi〈αi|O|αi〉 . (9.1)

The states |αi〉 do not have to form a complete set, but they are normalized. The

coefficient wi represents the statistical weight and satisfies ∑i wi = 1 and wi ≥ 0.

Inserting a complete set |b〉 twice, one gets

〈O〉= ∑
b′,b′′

(

∑
i

wi〈b′′|αi〉〈αi|b′〉
)

〈b′|O|b′′〉 . (9.2)

Introducing the density matrix ρ defined by

ρ := ∑
i

wi|αi〉〈αi| , (9.3)

one can rewrite

133
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〈O〉= 〈b′′|ρ|b′〉〈b′|O|b′′〉 (9.4)

= tr [ρO] . (9.5)

The condition ∑i wi = 1 is rewritten as tr(ρ) = 1.

As an example, consider spin-1/2 systems:

Sz|±〉=±1

2
|±〉 . (9.6)

With the Sz basis, the pure ensemble1 which contains |+〉 only is

ρ = |+〉〈+|=
(

1

0

)

(

1, 0
)

=

(

1 0

0 0

)

. (9.7)

One can easily check ρ2
pure = ρpure, tr(ρ2

pure) = 1 for a pure ensemble. The mixed

ensemble which contains |+〉 and |−〉 with equal weights is

ρ =
1

2

(

1 0

0 1

)

. (9.8)

In the Schrödinger picture, a state evolves in time. Denoting the time-evolution

operator as U(t, t0), the time evolution is written as |α, t〉=U(t, t0)|α, t0〉. Then, the

density matrix evolves as

ρ(t) = ∑
i

wi|αi, t〉〈αi, t|=U(t, t0)ρ(t0)U
−1(t, t0) . (9.9)

9.1.2 Linear response theory

In real experiments, one often adds an external source and see the response to the

operator O, δ 〈O〉, which couples to the external source. Some examples are2

external source φ (0) → response to O

magnetic system: magnetic field H magnetization m

charged system: gauge potential µ charge density ρ

conductor: vector potential A
(0)
i current Ji

fluid: spacetime fluctuation h
(0)
µν energy-momentum tensor T µν

1 Traditionally, pure ensemble and mixed ensemble are called as pure states and mixed states.
2 Some explanation is probably necessary for the fluid. Of course, in real experiments, one does not

curve our spacetime. We regard the spacetime fluctuation as an external source here because we

would like to discuss the fluid on the same footing as the other systems such as the magnetic system.

(We explain this in Sect. 9.3.2, but this is convenient to derive the so-called Kubo formula.) In any

case, there is no problem to consider such a source and a response in principle since spacetime

fluctuations bring up fluctuations in the energy-momentum tensor according to general relativity.
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The purpose of the linear response theory is to examine such a response. The word

“linear” means that the response is studied at linear order in external source3.

The response can be determined using the time-dependent perturbation theory in

quantum mechanics. We start with the Schrödinger picture, where the operator O is

independent of time. Write the full Hamiltonian as

H = H0 +δH(t) , (9.10)

where H0 is the Hamiltonian when the external source is absent. Denote the per-

turbed Hamiltonian δH or the perturbed action δS as

δH(t) =−
∫

d3xφ (0)(t,xxx)O(xxx) , (9.11)

δS=
∫

d4xφ (0)(t,xxx)O(xxx) . (9.12)

We assume that the source vanishes when t < t0, or φ (0)(t < t0,xxx) = 0.

Using the time-evolution of the density matrix (9.9), one can write the ensemble

average of O as

〈O(t,xxx)〉s = tr [ρ(t)O(xxx)] (9.13)

= tr
[

ρ(t0)U
−1(t, t0)O(xxx)U(t, t0)

]

. (9.14)

The subscript “s” represents the average in the presence of the external source. The

second line corresponds to the Heisenberg picture where the operator evolves in

time if we define OH =U−1OU .

But we use the interaction picture here. Namely, the operator evolves in time with

the unperturbed Hamiltonian H0. The operator in the interaction picture OI(t, t0) is

then written as OI = U−1
0 OU0, where U0 is the time-evolution operator using H0.

From the Schrödinger equation, time-evolution operators satisfy

i∂tU = HU , (9.15)

i∂tU0 = H0U0 . (9.16)

Then, U is written as

U(t, t0) =U0(t, t0)U1(t, t0) , (9.17)

i∂tU1 = δHIU1 , (9.18)

where δHI := U−1
0 δHU0 is the perturbed Hamiltonian in the interaction picture.

The equation for U1 is formally solved as

3 In this book, we consider only at the linear level, but nonlinear cases are interesting both in

statistical mechanics and in AdS/CFT.
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U1(t, t0) = 1− i

∫ t

t0

dt ′δHI(t
′)

+(−i)2
∫ t

t0

dt ′
∫ t ′

t0

dt ′′δHI(t
′)δHI(t

′′)+ · · · (9.19)

=: T exp

[

−i

∫ t

t0

dt ′δHI(t
′)

]

, (9.20)

where T is the time-ordered product. In the interaction picture, Eq. (9.14) is written

as

〈O(t,xxx)〉s = tr
[

ρ(t0)U
−1
1 (t, t0)OI(t,xxx)U1(t, t0)

]

. (9.21)

Write this equation explicitly using Eq. (9.19) but taking only up to first order in

φ (0):

〈O(t,xxx)〉s = tr

[

ρ(t0)

(

1+ i

∫ t

t0

dt ′δHI(t
′)+ · · ·

)

OI(t,xxx)

×
(

1− i

∫ t

t0

dt ′δHI(t
′)+ · · ·

)]

(9.22)

= tr [ρ(t0)OI(t,xxx)]

− i tr

[

ρ(t0)
∫ t

t0

dt ′[OI(t,xxx),δHI(t
′)]

]

+ · · · . (9.23)

The first term is the ensemble average when the external source is absent, namely

〈O(t,xxx)〉. Taking t0 →−∞, we get

δ 〈O(t,xxx)〉 := 〈O(t,xxx)〉s −〈O(t,xxx)〉 (9.24a)

= i

∫ t

−∞
dt ′
∫ ∞

−∞
d3x′

〈

[O(t,xxx),O(t ′,xxx′)]
〉

φ (0)(t ′,xxx′) (9.24b)

= i

∫ ∞

−∞
d4x′ θ(t − t ′)

〈

[O(t,xxx),O(t ′,xxx′)]
〉

φ (0)(t ′,xxx′) , (9.24c)

where θ(t − t ′) is the step function. Equation (9.24c) tells us that the response is de-

termined by the ensemble average with the equilibrium density matrix ρ(t0). Note

that O(t,xxx) evolves in time with H0. This is the great advantage as well as the lim-

itation of the linear response theory. Namely, we need only the equilibrium density

matrix to compute the response, which simplifies our analysis. At the same time, we

circumvent the question of what the nature of nonequilibrium statistical mechanics

is.

We define the retarded Green’s function GOO
R as

GOO
R (t − t ′,xxx− xxx′) :=−iθ(t − t ′)

〈

[O(t,xxx),O(t ′,xxx′)]
〉

. (9.25)
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Then, Eq. (9.24c) becomes4

δ 〈O(t,xxx)〉=−
∫ ∞

−∞
d4x′ GOO

R (t − t ′,xxx− xxx′)φ (0)(t ′,xxx′) . (9.26)

The Fourier transformation of this equation gives

δ 〈O(k)〉=−GOO
R (k)φ (0)(k) , (9.27)

where kµ = (ω,qqq), and GOO
R (k) is the retarded Green’s function in momentum

space:

GOO
R (k) =−i

∫ ∞

−∞
d4xeiωt−iqqq·xxxθ(t)〈[O(t,xxx),O(0,000)]〉 . (9.28)

AdS/CFT can determine the Green’s function GR. In condensed-matter physics,

χ :=−GR is called the response function5.

Let us look at several examples:

• For fluids, a perturbed Lagrangian is given, e.g., by δL = h
(0)
xy (t)T

xy(x), and

δ 〈T xy〉=−G
xy,xy
R h

(0)
xy , (9.29)

G
xy,xy
R =−i

∫ ∞

−∞
d4xeiωt−iqqq·xxxθ(t)〈[T xy(t,xxx),T xy(0,000)]〉 . (9.30)

• The case where a conserved current Jµ exists:

– For a charged system, δL = A
(0)
0 (t)J0(x), and

δ 〈ρ〉=−G
ρρ
R µ , (9.31)

G
ρρ
R =−i

∫ ∞

−∞
d4xeiωt−iqqq·xxxθ(t)〈[ρ(t,xxx),ρ(0,000)]〉 , (9.32)

where ρ = J0 is the charge density, and µ = A
(0)
0 is the gauge potential conju-

gate to ρ .

– For a conductor, δL = A
(0)
x (t)Jx(x), and

δ 〈Jx〉=−Gxx
R A

(0)
x , (9.33)

Gxx
R =−i

∫ ∞

−∞
d4xeiωt−iqqq·xxxθ(t)〈[Jx(t,xxx),Jx(0,000)]〉 . (9.34)

4 Various conventions are found in the literature about the sign of the perturbed Hamiltonian δH

(the sign of the perturbed action δS) and the sign of the retarded Green’s function GR. Accordingly,

the linear response relation (9.26) or (9.27) may have a sign difference.
5 The response function differs from the Green’s function by a minus sign traditionally since it is

natural to define the response function as χ = δ 〈O〉s/δφ (0).
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9.1.3 Transport coefficient: an example

The Green’s functions are related to transport coefficients. As a simple example, let

us see this for the conductivity σ .

The conductivity is given by Ohm’s law δ 〈Jx〉=σE
(0)
x . In the gauge A

(0)
0 = 0, the

external electric field is E
(0)
x =−∂tA

(0)
x

FT→ iωA
(0)
x (“

FT→” means Fourier-transformed

quantities), so

δ 〈Jx〉= iωσA
(0)
x . (9.35)

But this is the linear response relation for the current (9.33):

δ 〈Jx〉=−Gxx
R A

(0)
x .

Thus,6

σ(ω) =−Gxx
R (ω,qqq = 0)

iω
. (9.37)

Such a relation, a relation between a transport coefficient and a Green’s function, is

called a Kubo formula.

Below we consider fluids and relate G
xy,xy
R to the viscosity while we explain the

basics of hydrodynamics.

9.2 Thermodynamics

Below we summarize basic thermodynamics. See Ref. [1] for the details; we follow

the axiomatic approach of this reference.

Fundamental postulates of thermodynamics

• Postulate 1: The equilibrium state is completely described by a set of extensive

variables (energy E, volume V , and particle number7 Q). These extensive vari-

ables are independent variables of a thermodynamic system.

• Postulate 2: There exists the entropy S at equilibrium. The entropy is additive

over the subsystems, continuous, differentiable, and a monotonically increasing

function of the energy. The equilibrium state of a composite system is the state

which maximizes the entropy, i.e., the state where the sum of subsystem entropies

is maximized.

6 This is the AC conductivity or the frequency-dependent conductivity. The DC conductivity is

given by the ω → 0 limit of Eq. (9.37):

σ(ω → 0) =− lim
ω→0

1

ω
ImGxx

R (ω,qqq = 0) . (9.36)

7 We consider a system of one particle species for simplicity.
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The fundamental relation From the postulates, the entropy is a function of the

extensive variables and is written as

S = S(E,V,Q) . (9.38)

This relation is called the fundamental relation. Since the entropy is additive, the

fundamental relation is a homogeneous first order function of the extensive vari-

ables8:

S(λE,λV,λQ) = λS(E,V,Q) . (9.39)

The monotonic property implies

∂S

∂E

∣

∣

∣

∣

V,Q

> 0 . (9.40)

The continuity, differentiability, and monotonic property imply that the fundamental

relation is invertible with the entropy:

E = E(S,V,Q) , (9.41)

with

E(λS,λV,λQ) = λE(S,V,Q) . (9.42)

Equation (9.38) is called the entropy representation, and Eq. (9.41) is called the

energy representation. In general, a “representation” specifies a set of independent

variables. The independent variables are (E,V,Q) in the entropy representation. Be-

low we utilize the energy representation.

The fundamental relation has all thermodynamic information about a system, and

all thermodynamic relations below are derived from the fundamental relation.

As an example, consider the photon gas. The fundamental relation is given by9

E(S,V ) =
3

4
c1/3S4/3V−1/3 , c =

45

4π2
. (9.43)

This equation is indeed a homogeneous first order function of the extensive vari-

ables.

The intensive variables The temperature T , the pressure P, and the “chemical

potential”10 µ are defined by partial derivatives of the fundamental relation:

8 This does not hold for black holes with compact horizon. See Sect. 3.5.
9 This relation can be derived from statistical mechanics using the results of Sect. 7.2.2. Rewrite

εB in terms of sB (by taking into account that the photon has two degrees of freedom).
10 Thermodynamics is traditionally applied to systems with various chemical components, so µ is

called the chemical potential. But the use of µ is not limited to a chemical system. For example,

µ can be a gauge potential for a charged particle or can be a potential which is conjugate to non-

chemical particle number (such as the baryon number). We use the same terminology, chemical

potential, even for those cases. In any case, µ represents the potential energy for a matter flow.
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T =

(

∂E

∂S

)

V,Q

= T (S,V,Q) , (9.44a)

P =−
(

∂E

∂V

)

S,Q

= P(S,V,Q) , (9.44b)

µ =

(

∂E

∂Q

)

S,V

= µ(S,V,Q) . (9.44c)

Because the fundamental relation is a first order homogeneous function of the ex-

tensive variables, the intensive variables are zeroth order homogeneous functions

as they should be. These equations which express intensive variables by extensive

variables are called the equations of state. From Eq. (9.40), one gets T > 0.

The first law of thermodynamics The fundamental relation and the definition of

intensive variables give

dE = T dS−PdV +µdQ . (9.45)

The Euler relation Differentiating Eq. (9.42) with respect to λ

∂E(λS, . . .)

∂ (λS)

∂ (λS)

∂λ
+ · · ·= E(S,V,Q) , (9.46)

and setting λ = 1 gives

E = T S−PV +µQ . (9.47)

The Euler relation is not a fundamental relation because it involves intensive vari-

ables.

The Gibbs-Duhem relation The relation among intensive variables. From the Eu-

ler relation and the first law, one gets

SdT −V dP+Qdµ = 0 . (9.48)

Thermodynamic potentials So far, we used representations by extensive variables

(E,V,Q) or (S,V,Q). But in real experiments, one can control intensive variables,

e.g., temperature, more easily than extensive variables. In such a case, it is more

convenient to use some of intensive variables as independent variables. For that

purpose, we use thermodynamic potentials which are obtained by the partial Leg-

endre transformation of the fundamental relation. The equilibrium is given by the

state which minimizes thermodynamic potentials. Thermodynamic potentials have

all thermodynamic information about a system as well11.

For example, the free energy F = F(T,V,Q) is defined by

F(T,V,Q) := E −T S . (9.49)

11 In this sense, a thermodynamic potential should be called a fundamental relation in a particular

representation.
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From

dF =−SdT −PdV +µdQ , (9.50)

one gets

S =−
(

∂F

∂T

)

V,Q

. (9.51)

As an example, consider the free energy for the photon gas. From the funda-

mental relation (9.43), the temperature is given by T (S,V ) = ∂E/∂S = (cS/V )1/3.

Solving this equation in terms of S, one gets S(T,V ) = T 3V/c. Thus,

F = E −T S =−1

4
c1/3S4/3V−1/3 =− 1

4c
T 4V . (9.52)

The grand canonical potential Ω = Ω(T,V,µ) is defined by

Ω(T,V,µ) := E −T S−µQ (9.53)

=−P(T,µ)V . (9.54)

We used the Euler relation on the second line. From

dΩ =−SdT −PdV −Qdµ , (9.55)

one gets

S =−
(

∂Ω

∂T

)

V,µ

, Q =−
(

∂Ω

∂ µ

)

T,V

. (9.56)

Thermodynamic potentials are related to the partition function Z in statistical me-

chanics. For example,

Z = e−βΩ . (9.57)

Spatially homogeneous system In such a case, it is convenient to use the energy

density ε := E/V , the entropy density s := S/V , and the number density ρ := Q/V .

Then, the first law becomes

dε = T ds+µdρ . (9.58)

9.3 Hydrodynamics

9.3.1 Overview of hydrodynamics

We have seen that the retarded Green’s function represents the response of a sys-

tem from the microscopic point of view. But it is a different issue whether one can

actually compute the Green’s function microscopically. AdS/CFT can compute the

Green’s function. On the other hand, one can narrow down the necessary informa-

tion from the Green’s function using macroscopic considerations such as conserva-
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tion laws and the low-energy effective theory. Namely, we do not have to know the

complete form of the Green’s function. This formalism is hydrodynamics12.

Hydrodynamics describes the macroscopic behavior of a system. Of primary in-

terest is conserved quantities. This is because they are guaranteed to survive in the

low-energy ω → 0, long-wavelength limit q → 0 (hydrodynamic limit). For exam-

ple, in the diffusion problem below, the current conservation takes the form

∂0ρ +∂iJ
i = 0 . (9.59)

When Fourier transformed [Eq. (9.67)], this equation implies a mode with ω → 0

as q → 0.

Typical macroscopic variables other than conserved quantities are

• Nambu-Goldstone mode (if there is a continuous symmetry breaking) ,

• Order parameter (if there is a phase transition).

Hydrodynamics refers to dynamics of these macroscopic variables in any system. In

particular, note that hydrodynamics is not limited to the literal fluids such as water.

For example, a spin system in condensed-matter physics is a hydrodynamic system.

From the field theory point of view, hydrodynamics is an effective theory. In

an effective theory, one writes down an action with all terms consistent with sym-

metry, but the coefficients of terms depend on the details of a microscopic theory,

so one cannot determine them in the formalism of effective theory alone. For hy-

drodynamics, these coefficients are called transport coefficients. These coefficients

are necessary information for us to know responses. We do not need the complete

Green’s functions but need part of Green’s functions which are represented by trans-

port coefficients as we will see below13. AdS/CFT can carry out computations of

microscopic theories using gravitational theories, so AdS/CFT can determine these

coefficients for particular theories.

9.3.2 Example: diffusion problem

The problem of fluids, in particular the viscous fluids, is rather complicated. So, let

us first consider a simple example, the diffusion problem of a charge. The various

issues we encounter in the diffusion problem are common to the fluid problem.

Consider a current Jµ , where ρ := J0 is a conserved charge density. Here, we do

not specify the current explicitly:

• In condensed-matter applications, the current may be the usual electromagnetic

current, but it is not limited to the electromagnetic current.

• For example, in QCD, there is the U(1)B current associated with the baryon

number conservation.

12 Landau-Lifshitz [2] is rather old, but it is still a good textbook on hydrodynamics.
13 For example, in order to extract the conductivity, it is enough to know the O(ω) part of the

Green’s function Gxx
R in the qqq → 0 limit. See Eq. (9.36).
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• In the N = 4 SYM, there are R-currents associated with the R-symmetry.

In any case, ρ is a “number density” or a “charge density” in the Noether’s theorem

sense associated with a global U(1) symmetry.

For the diffusion problem, the variables and the conservation law are

variables: Jµ = (ρ,Ji) , (9.60)

conservation law: ∂µ Jµ = 0 . (9.61)

In (3+ 1)-dimensions, there are four variables whereas the conservation law gives

only one equation, so the equation of motion is not closed. In order to close the

equation of motion, we introduce the constitutive equation which is a phenomeno-

logical equation. For the diffusion problem, the constitutive equation is known as

Fick’s law:

Ji =−D∂ iρ . (9.62)

Fick’s law tells that a charge gradient produces a current; this is natural physically.

The proportionality constant D is the diffusion constant. If one combines the con-

servation law with Fick’s law, ρ and Ji decouple, and one gets the equation for ρ
only:

0 = ∂µ Jµ = ∂0ρ +∂iJ
i = ∂0ρ −D∂ 2

i ρ . (9.63)

This is the diffusion equation.

Let us solve the diffusion equation in (1+ 1)-dimensions. We take the initial

condition ρ(t = 0,x) = δ (x). Make a Fourier transformation in space and a Laplace

transformation in time:

ρ(t,q) =
∫ ∞

−∞
dxe−iqxρ(t,x) , (9.64)

ρ̃(ω,q) =
∫ ∞

0
dt eiωtρ(t,q) . (9.65)

Then, Eq. (9.63) is solved as

ρ̃(ω,q) =
1

−iω +Dq2
ρ(t = 0,q) =

1

−iω +Dq2
. (9.66)

Namely, ρ̃(ω,q) has a pole on the negative imaginary axis in the complex ω-plane:

ω =−iDq2 . (9.67)

We will encounter such a dispersion relation over and over again.

Make the inverse transformation to rewrite the momentum space solution by the

real space solution. By the inverse transformation in t, the contour integral picks up

the pole, so ρ(t,q) decays exponentially in time: ρ(t,q) ∝ e−Dq2t . Then, the time

scale of the diffusion, the relaxation time, is τ ≃ 1/(Dq2). The inverse transforma-

tion in x gives
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0

Fig. 9.1 The charge diffusion.

ρ(t,x) =
1√

4πDt
exp

(

− x2

4Dt

)

(t ≥ 0) . (9.68)

The solution shows that the delta-function distribution of the charge is spread as

time passes (Fig. 9.1).

The constitutive equation (9.62) is physically natural, but in general it is deter-

mined to satisfy the second law of thermodynamics. As a simple example, consider

the heat diffusion (or heat conduction). In this case, the conservation law and the

first law of thermodynamics are given by

∂0ε +∂iq
i = 0 , (9.69)

dε = T ds , (9.70)

(qi: heat flow). Combining them, we get

0 = ∂0s+
1

T
∂iq

i (9.71)

= ∂0s+∂i

(

1

T
qi

)

+
∂iT

T 2
qi . (9.72)

Then, the evolution of the entropy is given by

∂0S =
∫

d3x∂0s =−
∫

d3x
∂iT

T 2
qi , (9.73)

where we discarded a surface integral. If we require

qi =−κ ∂ iT (9.74)

(and κ ≥ 0), the entropy satisfies the second law:

∂0S = κ

∫

d3x

(

∂iT

T

)2

≥ 0 . (9.75)
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The coefficient κ is called the heat conductivity, which is a transport coefficient.

Equation (9.74) is similar to Fick’s law, but for the heat diffusion, it is called

Fourier’s law14.

As we saw earlier, a transport coefficient can be obtained from the linear response

theory microscopically, but one needs a little trick to obtain the Kubo formula for

the diffusion constant. Our discussion of the linear response so far considers the

case

external source φ0 → response δ 〈O〉 . (9.76)

But, in the diffusion problem, we are interested in the behavior of charge fluctuation

δ 〈ρ〉. Such a problem is statistical in nature and cannot be expressed as a perturbed

Hamiltonian. Rather, it should arise from the nonequilibrium density matrix. But

then we lose the advantage of the linear response theory, where a response can be

computed just using the equilibrium density matrix. What should we do? The heat

diffusion δε and the fluid case δ 〈T µν〉 share the same problem. They are the case

thermal internal force → response δ 〈O〉 . (9.77)

In this case, one can imagine the inhomogeneity of ρ as coming from an external

source. Then, one can apply the linear response theory. We apply an inhomogeneous

chemical potential µ and produce an inhomogeneous ρ:

Ji =−D∂ iρ =−D

(

∂ρ

∂ µ

)

∂ iµ . (9.78)

Now, χT := ∂ρ/∂ µ is the thermodynamic susceptibility, and E i := −∂ iµ is the

“electric field” for the current. Then,

Ji = (DχT )E
i . (9.79)

But this is nothing but Ohm’s law Ji = σE i, where σ is the conductivity. Then, there

is a simple relation among the diffusion constant, the thermodynamic susceptibility,

and the conductivity:

σ = DχT . (9.80)

Because we have a Kubo formula for σ (Sect. 9.1.3), we can determine D from the

Kubo formula and Eq. (9.80):

D =− 1

χT

lim
ω→0

1

ω
ImGxx

R (ω,qqq = 0) . (9.81)

The lesson here is to rewrite a thermal internal force problem in terms of an external

source problem. We will do the same thing for fluids. When we will derive the

Kubo formula for the viscosity, we apply a “fictitious” gravitational field and see the

14 In order to obtain a closed expression from Eq. (9.69) and Eq. (9.74), use the heat capacity

C = ∂ε/∂T . Then, one gets ∂0ε = (κ/C)∂ 2
i ε . The heat diffusion constant DT satisfies κ = DTC,

which is the heat version of Eq. (9.80).
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response δ 〈T µν〉 (Sect. 9.3.6)15. But in AdS/CFT, this fictitious gravitational field

will have a new interpretation: it is part of the “real” five-dimensional gravitational

field.

There is a different method to obtain D. The linear response relation for ρ reads

as

δ 〈ρ〉=−G
ρρ
R µ . (9.82)

Since ρ has a pole at ω = −iDq2, G
ρρ
R should have the pole, and from the pole

we can determine D. Note that we use a Green’s function different from Eq. (9.81).

Also, we are interested in the value of the Green’s function Gxx
R , whereas we are

interested in the pole of the Green’s function G
ρρ
R .

To summarize our discussion so far,

• Hydrodynamics describes dynamics of macroscopic variables. Typical macro-

scopic variables are conserved quantities (such as charge density, energy density,

and momentum density), Nambu-Goldstone modes, and order parameters.

• For conserved quantities, we obtain a closed form expression from the conserva-

tion law and the constitutive equation.

• The constitutive equation is introduced phenomenologically, and it is determined

to satisfy the second law of thermodynamics. The constitutive equation intro-

duces a transport coefficient.

• Local thermal equilibrium: we consider a nonequilibrium situation, but it is close

to an equilibrium. Namely, we assume that thermodynamic equilibrium holds in

smaller scales than the characteristic length scale of the problem and that time

and position-dependent thermodynamic quantities make sense. For example, the

temperature is originally defined at equilibrium and is constant everywhere, but

we consider T (t,x) for the heat diffusion problem.

• We would like to determine responses. The linear response theory narrows down

to retarded Green’s functions, and hydrodynamics further narrows down to trans-

port coefficients. AdS/CFT can determine transport coefficients from the micro-

scopic point of view. However, AdS/CFT does not have to assume the formalism

of hydrodynamics here. Namely, we can cross-check the formalism of hydrody-

namics itself (Sect. 12.3.3).

• There are two ways to determine a transport coefficient:

– The method from the O(ω) coefficient of Gxx
R (Kubo formula).

– The method from the pole of G
ρρ
R and the dispersion relation.

We have more to say about the diffusion problem: we will come back to the problem

in Sect. 12.3.3.

15 The philosophy is somewhat similar to the derivation of the energy-momentum tensor in

Sect. 5.3.2. Even if one is not really interested in field theory in the curved spacetime, the cou-

pling with gravity is a convenient way to derive the energy-momentum tensor.
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9.3.3 Perfect fluid

As a simple fluid, we first consider the case where macroscopic variable is T µν only:

variables: T µν , (9.83)

conservation law: ∂µ T µν = 0 . (9.84)

T µν is a rank-two symmetric tensor, so in (3+ 1)-dimensions, it has 10 compo-

nents whereas the conservation law provides only four equations, so the equations

of motion are not closed like the diffusion problem. Again, one can construct the

constitutive equation which expresses currents in terms of conserved quantities (in

this case, the energy density and the momentum density). But it is more convenient

to introduce a new set of variables to close the equations of motion. We choose these

variables as

energy density ε(x) Cfour-velocity field of fluid uµ(x) .

The velocity field specifies the fluid velocity at each spacetime point. There are in

total four variables as we wish (one variable for ε and three for uµ . There are only

three independent components for uµ since u2 =−1.)

Below we determine the form of T µν via derivative expansion. The zeroth order

of the derivative expansion corresponds to the perfect fluid. If one is not allowed to

use ∂µ , the only symmetric combinations we can make are uµ uν and ηµν . We thus

write T µν as

T µν = (ε +P)uµ uν +Pηµν . (9.85)

This is the constitutive equation for the perfect fluid. We explain below how we

choose the coefficients (ε +P) and P. Here, we introduced the pressure P, but it is

not an independent variable as we saw in Sect. 9.2. Consider the (local) rest frame,

where uµ RF
= (1,0,0,0) (“

RF
=” denotes an expression which is valid only in the rest

frame). In the rest frame, T µν takes the form

T µν RF
=









ε 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P









. (9.86)

Each component of T µν has the following physical meaning:

• T 00 represents the energy density. T 00 RF
= ε , so ε is the energy density in the rest

frame. (In hydrodynamics, all scalar quantities are defined in the rest frame.)

• T 0i represents the momentum density. There is no fluid motion in the rest frame,

so it vanishes in the frame. Note that the momentum density T 0i = (ε +P)u0ui

has the contribution not only from the energy density but also from the pressure

as well in a relativistic fluid16.

16 The appearance of (ε +P) in a relativistic fluid plays a vital role in various phenomena. The

gravitational collapse of a star to a black hole comes from this effect. For a star to be stable, a
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• Roughly speaking, T ji represents forces between adjacent fluid elements. For the

perfect fluid, T i j RF
= Pδ i j. The pressure is the same in all directions (isotropy) and

is perpendicular to the surface. This is known as Pascal’s law. In general, the force

does not have to be perpendicular to the surface (Recall Fig. 4.2). We have the

isotropy because we construct T µν from uµ and ηµν alone. For an anisotropic

fluid, one has a new vector, say V µ , which specifies a particular spatial direc-

tion. Using V µ , one can add a new symmetric term to T µν which is absent in

Eq. (9.85).

We now write down closed expressions using the constitutive equation as in the

diffusion problem. Each components of Eq. (9.84) correspond to hydrodynamic

equations as

∂µ T µ0 = 0 → continuity equation, (9.87)

∂µ T µi = 0 → Euler equation. (9.88)

First, consider Eq. (9.87):

∂0T 00 +∂iT
i0 = 0 . (9.89)

In order to see the physical meaning of the equation, integrate it over some volume

V and use Gauss’ law:

∂0

∫

V
d3xT 00 +

∫

∂V
dSniT

i0 = 0 , (9.90)

where ni is the outward unit normal to the surface ∂V . The first term represents

the energy change in the volume, so the second term represents energy flowing

out through the surface in unit time. Or T i0 represents the energy flux across the i

surface, the xi = (constant) surface. The energy flux is equivalent to the i momentum

density T 0i.

Contract Eq. (9.84) with uν . In the rest frame, this corresponds to Eq. (9.87):

uν ∂µ {(ε +P)uµ uν +Pηµν}= 0 . (9.91)

Since uµ is normalized as u2 =−1,

0 = ∂µ u2 = 2uν ∂µ uν . (9.92)

Then, Eq. (9.91) reduces to

0 = uµ ∂µ ε +(ε +P)∂µ uµ (9.93)

=
dε

dτ
+(ε +P)∂µ uµ , (9.94)

pressure is necessary to overcome gravity. But for a massive enough star, once nuclear reactions

are over, no pressure can hold the star. In general relativity, the whole T µν is the source of the

gravitational field, so a large pressure is self-destructive; it only increases the source. As a result, a

black hole is born.
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where d/dτ := uµ ∂µ . This is the relativistic continuity equation (see below).

Second, consider Eq. (9.88):

∂0T 0i +∂ jT
ji = 0 . (9.95)

Again, integrating it over some volume gives

∂0

∫

V
d3xT 0i +

∫

∂V
dSn jT

ji = 0 . (9.96)

The first term represents the i momentum change in the volume, so the second term

represents the momentum flowing out through the surface in unit time. Or T ji repre-

sents the i momentum flux across the j surface. The momentum flux is force per unit

area, so T ji represents the force between adjacent fluid elements. Then, Eq. (9.95)

is essentially Newton’s second law, F = ma.

Evaluating ∂µ T µi = 0, we get

0 = ∂µ

{

(ε +P)uµ ui +Pηµi
}

(9.97)

RF
= (ε +P)uµ ∂µ ui +∂ iP . (9.98)

In the rest frame, ui must be differentiated; otherwise, it vanishes. The derivative of

ui is nonvanishing even in the rest frame. In an arbitrary frame, one can show that

Eq. (9.98) is replaced by

(ε +P)
dui

dτ
+ui dP

dτ
+∂ iP = 0 , (9.99)

which is the relativistic Euler equation (see below).

The continuity equation, the first law dε = T ds, and the Euler relation ε+P= T s

lead to

0 = uµ ∂µ ε +(ε +P)∂µ uµ = T ∂µ(suµ) . (9.100)

The entropy is conserved, and the fluid is called adiabatic. Namely, there is no dis-

sipation (no viscosity, no heat conduction) in a perfect fluid.

Non-relativistic limit The non-relativistic limit corresponds to scaling

xi → a−1xi , t → a−2t , v → av , P → a2P , (9.101)

and taking the a → 0 limit. The scaling implies v ≪ 1 and ε ≫ P. The scaling also

implies L/T ≪ 1, where L and T are the characteristic length and time scales for

changes in the fluid. Under the scaling,

uµ = γ(1,vi)→ (1,avi) , uµ ∂µ = γ(∂0 + vi∂i)→ a2(∂0 + vi∂i) . (9.102)

Then, at lowest order in a, Eq. (9.94) becomes
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dε

dτ
+(ε +P)∂µ uµ → a2{∂0ε + vi∂iε + ε∂iv

i}+O(a4) , (9.103)

so we get the non-relativistic continuity equation:

∂0ε +∂i(εvi) = 0 . (9.104)

Similarly, Eq. (9.99) becomes

(ε +P)
dui

dτ
+ui dP

dτ
+∂ iP → a3{ε(∂0 + v j∂ j)v

i +∂ iP}+O(a5) , (9.105)

so we get the non-relativistic Euler equation:

ε(∂0 + v j∂ j)v
i +∂ iP = 0 . (9.106)

9.3.4 Viscous fluid

Let us proceed to the next order in the derivative expansion. At next order, one can

include the effect of the dissipation which is not included in the perfect fluid. We

write new terms appearing at this order as τµν :

T µν = (ε +P)uµ uν +Pηµν + τµν . (9.107)

In the rest frame, T 0i = 0 since the momentum density must vanish in this frame.

Also, we define ε := T 00 in the rest frame. Then, the only nonzero components are

τ i j in the rest frame. Assuming the isotropy, one gets two independent transport

coefficients:

τi j
RF
= −η

(

∂iu j +∂ jui −
2

3
δi j∂kuk

)

−ζ δi j∂kuk . (9.108)

traceless trace

The coefficient η in the traceless part is the shear viscosity, and the coefficient ζ in

the trace part is the bulk viscosity. One can notice that the shear viscosity part is the

differential form of the fluid example between two plates (Sect. 4.1.4).

As in the diffusion problem, the constitutive equation (9.108) is justified from

the second law of thermodynamics. We saw that the time evolution of the entropy

follows from the continuity equation, so let us consider the continuity equation for

the viscous fluid. As in the perfect fluid,

0 = uν ∂µ T µν (9.109a)

=−uµ ∂µ ε − (ε +P)∂µ uµ +uν ∂µ τµν (9.109b)

=−T ∂µ(suµ)− τµν ∂µ uν . (9.109c)
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Here, we used τµν uν = 0 which implies τ00 = τ0i RF
= 0 in the rest frame. Unlike the

perfect fluid, the entropy is not conserved due to the second term of Eq. (9.109c).

Now, a symmetric tensor Ai j can be written as

Ai j = A〈i j〉+Aδ i j , (9.110)

where A〈i j〉 :=
1

2
(Ai j +A ji −2Aδ i j) , A := Ai

i/3 . (9.111)

Using this expression, Eq. (9.109c) can be rewritten as

T ∂µ(suµ)
RF
= −τ〈i j〉σi j + τθ , (9.112)

σi j := ∂〈iu j〉 , θ := ∂kuk , (9.113)

in the rest frame. Then, if we require

τ〈i j〉 =−2ησ i j , τ =−ζ θ , (9.114)

(and η ,ζ ≥ 0), the right-hand side of Eq. (9.112) is non-negative:

T ∂µ(suµ)
RF
= 2ησ i jσi j +ζ θ 2 ≥ 0 . (9.115)

Equation (9.114) leads to Eq. (9.108).

We considered the continuity equation. The rest of the conservation equation,

∂µ T µi = 0, gives the equation of motion for the viscous fluid. However, in this

book, we do not use the hydrodynamic equations directly, and we go back to the

conservation law each time, so here we give only the form in the rest frame:

(ε +P)
dui

dτ
+∂ iP−η∂ 2

j ui −
(

ζ +
1

3
η

)

∂ i∂ ju
j RF
= 0 . (9.116)

This corresponds to the non-relativistic hydrodynamic equation for the viscous fluid:

ε(∂0 + v j∂ j)v
i +∂ iP−η∂ 2

j vi −
(

ζ +
1

3
η

)

∂ i∂ jv
j = 0 . (9.117)

In the non-relativistic case, one often considers the Navier-Stokes equation:

ε(∂0 + v j∂ j)v
i +∂ iP−η∂ 2

j vi = 0 . (9.118)

In the Navier-Stokes equation, one assumes incompressibility or the constant energy

density. Then, the continuity equation gives ∂iv
i = 0, so the last term of Eq. (9.117)

vanishes. However, the assumption is problematic in special relativity because the

speed of sound c2
s := ∂P/∂ε diverges. Thus, we do not impose incompressibility

for a relativistic fluid17.

17 One can discuss incompressible fluids using a variation of AdS/CFT and the Rindler spacetime

(6.71) [3].
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9.3.5 When a current exists �

Perfect fluid with current Let us go back to the leading order in the derivative

expansion, and consider the case where a current Jµ also exits as macroscopic vari-

ables.

variables: T µν , Jµ , (9.119)

conservation laws: ∂µ T µν = 0 , ∂µ Jµ = 0 . (9.120)

We choose the number density ρ(t,x) instead of Jµ to close the equations of motion.

At this order, the current must be proportional to uµ :

T µν = (ε +P)uµ uν +Pηµν , (9.121)

Jµ = ρuµ . (9.122)

In the diffusion problem, the constitutive equation is written as Ji = −D∂ iρ , but

this equation contains a derivative. Such a term arises at next order. The term ρuµ

represents the fluid motion or the convection which is not included in the diffusion

problem.

The continuity equation is the same as the perfect fluid. One can show the entropy

conservation equation ∂µ(suµ) = 0 from the continuity equation.

Viscous fluid with current Let us proceed to the next order in the derivative ex-

pansion:

T µν = (ε +P)uµ uν +Pηµν + τµν , (9.123)

Jµ = ρuµ +νµ . (9.124)

As in the viscous fluid, we define ε := T 00 and ρ := J0 in the rest frame. Then, only

nonzero components are τ i j and ν i.

We have spatial flows, but in this case, there are two currents (current and mo-

mentum density). These two currents do not have to coincide with each other. Then,

the notion of the “rest frame” is ambiguous; the rest frame depends on which current

we choose. In the rest frame, ui = 0, so the ambiguity implies that the definition of

uµ depends on the rest frame we choose.

The definition here follows Landau and Lifshitz, and uµ represents the momen-

tum density (energy flux). Thus, the momentum density T 0i vanishes in the rest

frame. On the other hand, in this definition, the particle flux Ji does not vanish in

the rest frame due to ν i.

The particle flux vanishes when Ji = ρui + ν i = 0, so ui 6= 0. The particle flux

vanishes, but the energy flux is nonvanishing in this case. Then, this energy flux

represents the heat conduction, and ν i ∝ κ , where κ is the heat conductivity. For

a perfect fluid, the particle flux coincides with the energy flux, so there is no heat

conduction. Thus, each term of Jµ has the physical meaning as
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Jµ = ρuµ+νµ . (9.125)

convection conduction/diffusion

The explicit form of ν i can be determined like τ i j, but we omit the discussion here.

We choose the energy flux as uµ , which is known as the Landau-Lifshitz frame.

Alternatively, one can choose the particle flux as uµ , which is known as the Eckart

frame18:

energy flux for uµ → Landau-Lifshitz frame

particle flux for uµ → Eckart frame

In the Eckart frame, uµ represents the particle flux, so νµ = 0, whereas T µν needs

an additional term q(µ uν), where qµ is the heat current.

In principle, the choice of uµ should be just a choice of frames, but actually it is

not; there is a subtle issue (Sect. 12.3.3).

9.3.6 Kubo formula for viscosity

A transport coefficient is related to a retarded Green’s function. We now have

enough knowledge of hydrodynamics to derive the Kubo formula for the viscos-

ity.

As in the diffusion problem, the shear viscosity arises as the response under a

thermal internal force. A quick way to derive the Kubo formula is to couple fictitious

gravity to the fluid and see the responses of T µν under gravitational perturbations

h
(0)
µν . Of course, one does not curve our spacetime for real fluid experiments. This is

just a convenient way to derive the Kubo formula.

However, according to general relativity, spacetime fluctuations bring up fluc-

tuations in the energy-momentum tensor. Also, if one considers hydrodynamics

in astrophysics, one really needs the effect of spacetime curvature. Moreover, the

derivation here has a natural interpretation in AdS/CFT (Chap. 10).

�
Note that we consider the four-dimensional curved spacetime g

(0)
µν where the

gauge theory lives, not the five-dimensional curved spacetime like AdS/CFT. In

AdS/CFT, g
(0)
µν has the five-dimensional origin, but the argument here itself is inde-

pendent of AdS/CFT.

Thus, following the philosophy of the linear response theory,

18 The Eckart frame is also called as the Particle frame and the N-frame. The corresponding names

for the Landau-Lifshitz frame are the Energy frame and the E-frame. (The E-frame does not stand

for Eckart, which is rather confusing.)
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1. Add a gravitational perturbation in the four-dimensional spacetime. As in the

diffusion problem, the perturbation specifies hydrodynamic variables uµ . Use

hydrodynamics to write the response δ 〈T µν〉.
2. Comparing the expression with the linear response theory, one relates the shear

viscosity to a retarded Green’s function.

In order to consider a gravitational perturbation, the constitutive equation (9.107)

with (9.108) is not appropriate since it is defined in the flat spacetime. We first

extend the constitutive equation to the curved spacetime. The extension is given by

T µν = (ε +P)uµ uν +Pg(0)µν + τµν , (9.126)

τµν =−Pµα Pνβ

{

η

(

∇α uβ+∇β uα − 2

3
g
(0)
αβ

∇·u
)

+ζ g
(0)
αβ

∇·u
}

. (9.127)

Here,

• ∇µ represents the covariant derivative in the curved spacetime.

• The tensor Pµν := g(0)µν + uµ uν is called the projection tensor along spatial

directions. The projection tensor enables us to write the constitutive equation in

a covariant manner. (This tensor is also necessary in the flat spacetime to get the

Lorentz-invariant expression.) In the flat spacetime, the rest frame takes uµ RF
=

(1,0,0,0), so

Pµν RF
= diag(0,1,1,1) . (9.128)

Thus, Pµν clearly acts as the projection along spatial directions.

We write the coordinate system as xµ = (t,x,y,z). One can consider a generic

perturbation, but the following form is enough to evaluate the shear viscosity:

g
(0)
µν =









−1 0 0 0

0 1 h
(0)
xy (t) 0

0 h
(0)
xy (t) 1 0

0 0 0 1









. (9.129)

We use Eq. (9.127) and compute τxy to linear order in the perturbation. (The symbol

“∼” below denotes terms up to the linear order.)

This is a spatially homogeneous perturbation, so even if the fluid has a motion,

the fluid motion must be homogeneous ui = ui(t). But a motion in a particular direc-

tion is forbidden from the parity invariance. Consequently, there is no fluid motion,

and uµ = (1,0,0,0) or uµ = (−1,0,0,0)19. Then, the nonzero contribution in the

covariant derivative comes from the Christoffel symbol only:

∇xuy = ∂xuy −Γ α
xy uα =−Γ 0

xyu0 = Γ 0
xy . (9.130)

19 In this case, the simple physical consideration was enough to determine uµ . In general, given an

external perturbation, the conservation equation determines hydrodynamic variables uµ and ε in

terms of the perturbation.
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The component ∇yux is obtained similarly. The other components vanish. The com-

ponent ∇xuy is already linear in perturbation, so (∇ ·u) is second order. Thus, only

the first two terms in the curly brackets in Eq. (9.127) contribute to τxy:

δ 〈τxy〉 ∼ −η(∇xuy +∇yux) . (9.131)

For the projection tensor, it is enough to use Eq. (9.128) since the quantities inside

the curly brackets are already first order. Evaluating the Christoffel symbol, we get

Γ 0
xy =

1

2
g(0)00(∂yg

(0)
0x +∂xg

(0)
0y −∂0g

(0)
xy ) =

1

2
∂0h

(0)
xy . (9.132)

Thus,

δ 〈τxy〉=−2ηΓ 0
xy =−η∂0h

(0)
xy . (9.133)

After the Fourier transformation,

δ 〈τxy(ω,qqq = 0)〉= iωηh
(0)
xy . (9.134)

This is the desired result. The result takes the same form as the linear response

relation (9.29). Comparing (9.29) and (9.134) gives the Kubo formula for η :

η =− lim
ω→0

1

ω
ImG

xy,xy
R (ω,qqq = 0) . (9.135)

Using a similar argument, one can get the Kubo formula for the other transport

coefficients such as ζ 20:

ζ =−1

9
lim
ω→0

1

ω
ImGtr

R(ω,qqq = 0) , (9.137)

Gtr
R =−i

∫ ∞

−∞
d4xeiωt−iqqq·xxxθ(t)

〈

[T i
i(t,xxx),T

j
j(0,000)]

〉

. (9.138)

9.3.7 Linearized hydrodynamic equations and their poles

In the diffusion problem, there are two ways to determine the diffusion constant:

the Kubo formula (9.81) and the pole of the response δ 〈ρ〉 (9.82). Similarly, the

other components of δ 〈T µν〉 have poles from which one can determine the shear

viscosity.

20 To derive this result, consider the perturbation of the form

g
(0)
µν = diag

(

−1,1+h(0)(t),1+h(0)(t),1+h(0)(t)
)

. (9.136)
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Linearization In order to obtain the diffusion pole, it was enough to solve the

diffusion equation. Similarly, it is not necessary to couple to the external source,

gravitational fields, to obtain the poles. So, we return to the flat spacetime and simply

linearize hydrodynamic equations.

We define

ε(t,xxx) = δε(t,xxx)+ ε̄ , vi(t,xxx) = δvi(t,xxx) , (9.139)

and so on. Here, “ ¯ ” denotes an equilibrium value, and δ denotes the deviation

from the equilibrium. We keep only the linear order in δ . One can set v̄i = 0

without loss of generality. The four-velocity uµ and the velocity vi are related by

u0 = 1/
√

1− v2 ∼ 1, ui = vi/
√

1− v2 ∼ vi.

Tensor decomposition We are interested in dispersion relations, so we consider

inhomogeneous perturbations. One can take the perturbations of the form

ui = ui(t,z) , P = P(t,z) . (9.140)

Then, there is a little group SO(2) acting on xa = (x,y). We classify T µν compo-

nents by their transformation properties under SO(2). The tensor decomposition is

convenient because each modes transform differently and their equations of motion

are decoupled with each other.

• As a warm-up exercise, first classify Jµ components:

vector mode: Ja , (9.141)

scalar mode: J0,Jz . (9.142)

The scalar mode components do not transform under SO(2), and the vector mode

components transform as vectors. Then, the diffusion problem in Sect. 9.3.2 is

summarized in the language of the tensor decomposition as follows:

– The charge density ρ belongs to the scalar mode, so the scalar mode has a

pole at ω =−iDq2 from the diffusion equation.

– The current Jx belongs to the vector mode, so the vector mode gives the con-

ductivity σ from Ohm’s law.

• Similarly, we classify T µν components as follows:

tensor mode: T xy,T xx =−T yy , (9.143a)

vector mode: T 0a,T za , (9.143b)

scalar mode: T 00,T 0z,T zz,T xx = T yy . (9.143c)

The derivation of the Kubo formula in Sect. 9.3.6 utilized the tensor mode.

Because each mode is decoupled, we consider the linearized equation of motion for

each mode. One can start with hydrodynamic equations such as Eq. (9.117), but here

we start with the original conservation law ∂µ T µν = 0 and the constitutive equation.
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Vector mode Let us write down the vector mode components:

T za = (ε +P)uzua −η(∂ zua +∂ auz)∼−η∂ zua , (9.144)

T 0a = (ε +P)u0ua ∼ (ε̄ + P̄)ua . (9.145)

For the perturbation of the form ua ∼ e−iωt+iqz, the a-component of the conservation

law becomes

0 = ∂0T 0a +∂zT
za ∼ (ε̄ + P̄)∂0ua −η∂ 2

z ua ∝ −iω(ε̄ + P̄)+ηq2 . (9.146)

Thus, the dispersion relation is given by

ω =−i
η

ε̄ + P̄
q2 (9.147)

=−i
η

T̄ s̄
q2 (for µ = 0) . (9.148)

Comparing with the diffusion problem (9.67), one can see that Dη := η/(ε̄ + P̄)
plays the role of a diffusion constant. The corresponding quantity in the non-

relativistic limit (P̄ ≪ ε̄), ν := η/ε̄ , is called the kinematic viscosity.

As we will see in Chap. 12, the combination η/s̄ is a particularly interesting

quantity in AdS/CFT21. When there is a chemical potential, µ 6= 0, η/s̄ 6= T̄ Dη , but

what is important is η/s̄ not T̄ Dη . This is because AdS/CFT predicts a universal

result for η/s̄.

Scalar mode Similarly, the scalar mode components are

T 00 = (ε +P)u0u0 −P ∼ ε , (9.149a)

T 0z = (ε +P)u0uz ∼ (ε̄ + P̄)uz , (9.149b)

T zz = (ε +P)uzuz +P−η

(

2− 2

3

)

∂zu
z −ζ ∂zu

z (9.149c)

∼ P−
(

4

3
η +ζ

)

∂zu
z . (9.149d)

The t and z components of the conservation law become

0 = ∂0T 00 +∂zT
z0 ∼ ∂0ε +(ε̄ + P̄)∂zu

z , (9.150)

0 = ∂0T 0z +∂zT
zz . (9.151)

Subtracting the time derivative of Eq. (9.150) from the z-derivative of Eq. (9.151)

gives

21 In later chapters, we omit “ ¯ ” for simplicity, so we will write η/s instead of η/s̄.
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T µν Jµ

tensor η (Kubo, Sect. 9.3.6) −
vector η (pole, Sect. 9.3.7) σ (Kubo, Sect. 9.3.2)

scalar η ,ζ ,cs (pole, Sect. 9.3.7) D (pole, Sect. 9.3.2)

Fig. 9.2 Tensor decomposition of conserved quantities and transport coefficients one can derive

from each mode. “Kubo” and “pole” indicate the methods used to derive transport coefficients.

0 =−∂ 2
0 T 00 +∂ 2

z T zz (9.152a)

=−∂ 2
0 ε +∂ 2

z P−
(

4

3
η +ζ

)

∂ 3
z uz (9.152b)

=−∂ 2
0 ε +∂ 2

z P+
4
3
η +ζ

ε̄ + P̄
∂0∂ 2

z ε , (9.152c)

where we used Eq. (9.150) in the last expression. Using the speed of sound cs, ∂ 2
z P

is written as ∂ 2
z P = (∂P/∂ε)∂ 2

z ε =: c2
s ∂ 2

z ε . Then, in momentum space, one gets

ω2 + iΓsωq2 − c2
s q2 = 0 , (9.153)

Γs :=
1

ε̄ + P̄

(

4

3
η +ζ

)

. (9.154)

Rewrite Eq. (9.153) in the form of the dispersion relation ω = . . .. In hydrodynamics,

we consider the derivative expansion, and the equation of motion for the viscous

fluid contains at most two derivatives. So, we keep terms O(q2) in the dispersion

relation:

ω =±csq−
i

2
Γsq

2 +O(q3) . (9.155)

The first term represents a pair of sound waves which propagate with velocity cs.

The second term takes the same form as Eq. (9.67) and represents the damping of

sound waves. The coefficient is called the sound attenuation constant. Unlike the

vector mode, the sound wave damping depends both on η and ζ .

Figure 9.2 summarizes transport coefficients one can derive from each mode.

This table does not exhaust all possibilities to determine transport coefficients

though. (For example, as mentioned in Sect. 9.3.6, there is a Kubo formula for ζ
which is a scalar mode computation.)

9.4 Summary

• The linear response theory provides the microscopic description of nonequilib-

rium physics (at linear level). According to the linear response theory, a response

of a system is represented by a retarded Green’s function.
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• On the other hand, hydrodynamics provides the macroscopic description of

nonequilibrium physics. According to hydrodynamics, we do not have to know

the full Green’s function in order to know the response. It is enough to know

transport coefficients.

• The shear viscosity arises in the derivative expansion of the fluid energy-momentum

tensor T µν . In order to know the shear viscosity, it is convenient to couple gravity

h
(0)
µν to the fluid.

• See also the summary of the diffusion problem in Sect. 9.3.2.

In later chapters, we obtain the transport coefficients of strongly-coupled gauge the-

ories using knowledge we obtained here. But before we do so, we now discuss

AdS/CFT in nonequilibrium situations. The philosophy of the linear response the-

ory will be useful there.

New keywords

density matrix

linear response theory

retarded Green’s function

response function

transport coefficients

conductivity

Kubo formula

hydrodynamics

constitutive equation

Fick’s law

diffusion constant

relaxation time

rest frame

velocity field

continuity equation

Euler equation

shear/bulk viscosity

Navier-Stokes equation

Landau-Lifshitz/Eckart frame

projection tensor

tensor decomposition

kinematic viscosity

speed of sound

sound attenuation constant
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Chapter 10

AdS/CFT - non-equilibrium

The GKP-Witten relation is the most important equation to apply AdS/CFT to nonequilib-

rium physics. We explain the relation using simple examples.

10.1 GKP-Witten relation

AdS/CFT claims the equivalence

Zgauge = ZAdS . (10.1)

In nonequilibrium situations, one can use the following relation (GKP-Witten rela-

tion in a narrow sense) [1, 2]1:

〈

exp

(

i

∫

φ (0)O

)〉

= eiS[φ |u=0=φ (0)] . (10.2)

Here,

• As in previous chapters, the left-hand side represents a four-dimensional gauge

theory (boundary theory), and the right-hand side represents a five-dimensional

gravitational theory (bulk theory).

• φ represents a particular field in the gravitational theory, and O represents a par-

ticular operator in the gauge theory. φ and O are written only schematically; some

explicit examples are discussed below.

1 The GKP-Witten relation is actually formulated as the Euclidean relation. Here, we are inter-

ested in dynamics, so we use the Lorentzian GKP-Witten relation. There exist several important

differences between the Euclidean relation and the Lorentzian relation. For example, there is a dif-

ference in the boundary condition at the black hole horizon (Sect. 10.2). Also, one should not take

the Lorentzian relation too literally (Sect. 10.4).

161
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horizon u = 1

bulk field φ

“bulk” 

(asymptotically AdS)

“boundary”

u = 0

“source” φ(0)

Fig. 10.1 This figure illustrates some of the conventions used for the GKP-Witten relation.

• The AdS boundary (Sect. 6.1.4) is located at u = 0 in an appropriate coordinate

system.

We explain the other conventions below (see also Fig. 10.1). Let us look at both

sides of the relation carefully to understand the relation.

Left-hand side (gauge theory) The left-hand side of the GKP-Witten relation is

(LHS) =

〈

exp

(

i

∫

φ (0)O

)〉

, (10.3)

where 〈· · ·〉 denotes an ensemble average. This is the generating functional of a four-

dimensional field theory when an external source φ (0) is added. This takes the same

form as Eq. (9.12) in the linear response theory. As we saw in the linear response

theory, if one can compute this left-hand side, one can know transport coefficients,

but the actual computation is difficult in general at strong coupling. In AdS/CFT, we

evaluate this using the right-hand side of the GKP-Witten relation, a gravitational

theory.

Right-hand side (gravitational theory) The right-hand side of the GKP-Witten

relation,

(RHS) = eiS[φ |u=0=φ (0)] (10.4)

is the generating functional of a five-dimensional gravitational theory. We use the

saddle-point approximation and approximate the generating functional by the clas-

sical solution of the gravitational theory. The procedure is similar to the computation

of black hole thermodynamic quantities in Sect. 3.2.2. From the gauge theory point

of view, the saddle-point approximation corresponds to the large-Nc limit (Chap. 5).

Thus, as in the computation of thermodynamic quantities,
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• S represents the on-shell action. Namely, one solves the equation of motion for

the bulk field2 φ under the boundary condition at the AdS boundary φ |u=0 = φ (0).

S is obtained by substituting the solution to the action.

• The bulk field φ satisfies the equation of motion, so the on-shell action reduces

to a surface term on the AdS boundary. In this way, we obtain a four-dimensional

quantity from the five-dimensional quantity. This surface term is identified as the

generating functional of the gauge theory.

In the above sense, the generating functional of the gauge theory is defined at the

AdS boundary. One loosely calls it that the gauge theory “lives” on the boundary.

From the four-dimensional point of view, φ (0) is an external source, but from

the five-dimensional point of view, φ is a field propagating in the five-dimensional

spacetime. Namely, AdS/CFT claims that an external source of the field theory can

have a five-dimensional origin, which is an important point of the GKP-Witten re-

lation. Or one could say that

A bulk field acts as an external source of a boundary operator.

We would like to obtain the generating functional of a gauge theory, and the

GKP-Witten relation claims that it can be obtained by evaluating the classical ac-

tion of a gravitational theory. Then, for example, the standard one-point function is

obtained from the GKP-Witten relation as

〈O〉= δS[φ (0)]

δφ (0)

∣

∣

∣

∣

∣

φ (0)=0

. (10.5)

But in the linear response theory, we are also interested in the response of a system.

In such a case, our interest is the one-point function in the presence of the external

source:

〈O〉s =
δS[φ (0)]

δφ (0)
. (10.6)

Below we compute this quantity in various examples.

The form of the gravitational theory From the discussion in Chap. 5, we use

the five-dimensional general relativity with the negative cosmological constant to

evaluate the on-shell action3:

S=
1

16πG5

∫

d5x
√−g(R−2Λ)+Smatter , (10.7)

2 The bulk field φ in the GKP-Witten relation is not just a scalar field like Eq. (10.8) but represents

bulk fields in the five-dimensional gravitational theory collectively. Incidentally, if φ is not constant

as u → 0 but behaves as φ ∼ u∆− , one defines φ (0) as φ |u=0 = φ (0)u∆− (see the massive scalar field

example below).
3 �In addition to the bulk action (10.7), one generally needs to take into account appropriate bound-

ary actions such as the Gibbons-Hawking action and the counterterm actions (both for gravity and

for matter fields) as we saw in Sect. 7.5.
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where the matter action Smatter typically includes the Maxwell field and the scalar

field4

Smatter =
1

16πG5

∫

d5x
√−g

{

−L2

4
F2

MN − 1

2
(∇Mφ)2 −V (φ)

}

. (10.8)

What kind of five-dimensional bulk matter fields actually appear depends on the

four-dimensional boundary gauge theory we consider. In order to know the details,

one generally needs the knowledge of string theory and D-branes (Chap. 5), but we

see several examples in Chap. 11.

There are various asymptotically AdS spacetimes as solutions to such an action.

In particular, we often have in mind the Schwarzschild-AdS or SAdS black hole:

ds2
5 =

( r0

L

)2 1

u2
(−hdt2 +dxxx2

3)+L2 du2

hu2
, h = 1−u4 , (10.9)

(matter) = 0 . (10.10)

The AdS boundary is located at u = 0, and the horizon is located at u = 1. But for

now, we focus only on the asymptotic behavior:

ds2
5 ∼

1

u2
(−dt2 +dxxx2

3 +du2) , (u → 0) . (10.11)

For simplicity, we set r0 = L = 16πG5 = 1 here and for the rest of this chapter. The

symbol “∼” denotes an equality which is valid asymptotically. Then, the computa-

tion goes as follows:

1. Consider such a spacetime as the background and add a perturbation.

2. The perturbation can be gravitational perturbations or matter perturbations. Choose

a perturbation of a bulk field φ corresponding to the boundary operator O which

we would like to compute.

3. Once we obtained the classical solution of the perturbation, obtain the on-shell

action by substituting the solution into the action.

We now consider a few simple examples.

10.2 Example: scalar field

�
This section is the typical example of the AdS/CFT computation. After all, com-

putations in AdS/CFT are more or less similar to this example.

4 We choose the dimensions of matter fields as [AM ] = L−1 = M and [φ ] = L0 = M0 so that the

dimensions here coincide with the scaling dimensions which appear later.



10.2 Example: scalar field 165

Correspondence between a bulk field and a boundary operator As the simplest

example of a bulk field, let us consider the massless scalar field5:

S=−1

2

∫

d5x
√−g(∇Mφ)2 . (10.12)

This is just an illustrative example, so we do not explicitly specify the boundary

operator which couples to the scalar. We simply denote the operator as O.

We evaluate the on-shell action of Eq. (10.12), but here we focus on the asymp-

totic behavior at the AdS boundary u → 0. So, it is enough to use the metric (10.11).

Also, for simplicity, we consider a static homogeneous solution φ = φ(u) along the

boundary directions. Using
√−g ∼ u−5, guu ∼ u2, and integrating Eq. (10.12) by

parts, we get

S∼
∫

d4xdu − 1

2u3
φ ′2 (′:= ∂u) (10.13a)

=
∫

d4x

∫ 1

0
du

(

− 1

2u3
φφ ′
)′

+

(

1

2u3
φ ′
)′

φ (10.13b)

=
∫

d4x
1

2u3
φφ ′
∣

∣

∣

∣

u=0

+
∫

d4xdu

(

1

2u3
φ ′
)′

φ . (10.13c)

The second term of Eq. (10.13c) is simply the equation of motion:

(

1

2u3
φ ′
)′

∼ 0 . (10.14)

The equation of motion is second order in derivatives, so there are two independent

solutions. Their asymptotic forms are

φ ∼ φ (0)
(

1+φ (1)u4
)

, (u → 0) . (10.15)

One can check this easily by substituting the solution into Eq. (10.14).

Using the equation of motion, the action (10.13c) reduces to a surface term on

the AdS boundary:

S∼
∫

d4x
1

2u3
φφ ′
∣

∣

∣

∣

u=0

. (10.16)

Thus, substituting the asymptotic form of the solution (10.15), we get

S[φ (0)] =
∫

d4x2φ (0)2φ (1) . (10.17)

Then, the one-point function is obtained from the GKP-Witten relation as

5 It is enough to consider the scalar action only for the discussion below because the Einstein-

Hilbert action is independent of the scalar field.
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〈O〉s =
δS[φ (0)]

δφ (0)
= 4φ (1)φ (0) . (10.18)

To summarize our result,

φ ∼ φ (0)+
1

4
〈O〉s u4 , (u → 0) (10.19)

or6

slow falloff of bulk field → source

fast falloff of bulk field → response
(10.20)

This is the scalar field example, but a similar relation holds for the Maxwell field

and the gravitational field. The procedure is more complicated but is the same7.

At this stage, the O(1) and O(u4) terms are independent solutions. But they

should be related by a linear response relation. In AdS/CFT, this arises by imposing

a boundary condition inside the bulk spacetime (on the black hole horizon). We dis-

cuss the boundary condition below, but after we impose a boundary condition, φ (1)

is uniquely determined, or the O(1) and O(u4) terms are uniquely determined up to

an overall coefficient φ (0) for a linear perturbation. This is the reason why we write

the asymptotic form as Eq. (10.15).

Then, Eq. (10.18) is nothing but the linear response relation (9.26):

δ 〈O(t,xxx)〉=−
∫ ∞

−∞
d4x′ GOO

R (t − t ′,xxx− xxx′)φ (0)(t ′,xxx′) . (10.21)

Comparing Eqs. (10.18) and (10.21), one can see that AdS/CFT determines the

retarded Green’s function GR as8

GOO
R (k = 0) =−4φ (1) . (10.22)

This is just an example, so we do not really compute φ (1) here9, but we will essen-

tially compute it for the time-dependent case in Sect. 12.1.4. Note that we need to

find a solution throughout the bulk spacetime. What we need is a quantity on the

AdS boundary, but we need to solve the equation of motion in the entire bulk space-

6 �More precisely, the fast falloff means a normalizable mode. A normalizable mode can be quan-

tized, whereas a non-normalizable mode cannot be quantized and should be regarded as an external

source. Then, there are cases where even the slow falloff is a normalizable mode. This indeed hap-

pens, and one can exchange the role of the external source and the operator in such a case [3]. One

should take this into account for the field/operator correspondence to really work.
7 �“The fast falloff as the response” is a useful phrase to remember, but it is not always true. In

some cases, additional terms in the action may modify the relation. In such a case, one should go

back to the GKP-Witten relation (see, e.g., Sects. 11.2.5 and 12.5.)
8 In many examples below, 〈O〉= 0, so δ 〈O〉= 〈O〉s −〈O〉= 〈O〉s.
9 �This problem is actually trivial in the sense that φ (1) = 0 for the static homogeneous perturbation

from the conformal invariance. One can show this by computing φ (1) in the SAdS black hole

background with the regularity condition at the horizon.
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time since we have to impose a boundary condition inside the bulk spacetime. This

is typical in AdS/CFT.

Scaling dimension The AdS spacetime has the scale invariance under

xµ → axµ , u → au . (10.23)

If a quantity Φ transforms as

Φ → a−∆ Φ , (10.24)

under the scaling, we call that the quantity has scaling dimension ∆ . From the

boundary point of view, Eq. (10.23) is the scale transformation (5.19) of a four-

dimensional field theory, and the definition of the scaling dimension here coincides

with the field theory one (5.22).

From the bulk point of view, the scale transformation is just a coordinate trans-

formation, so the bulk field φ is invariant under the scale transformation. Then, from

Eq. (10.19),

φ (0) → φ (0) : φ (0) has scaling dimension 0 ,

〈O〉s → a−4〈O〉s : 〈O〉s has scaling dimension 4 .
(10.25)

Then, the perturbed action of the boundary theory is invariant under the scale trans-

formation:

δSQFT =
∫

d4xφ (0)O (10.26)

↓ ↓ ↓
a4 a0 a−4

The gravitational field h
(0)
µν and the energy-momentum tensor T µν have such scaling

dimensions (Sect. 10.3.3).

The field/operator correspondence: explicit examples What kind of boundary

operators actually correspond to the bulk fields? In order to know the correspon-

dence, one in general needs the knowledge of string theory. But here let us focus on

the “universal sector” of the theory that is common to any theory.

In hydrodynamics, one is primarily interested in conserved quantities such as

T µν and a current Jµ . If a theory has the associated symmetries, any theory has these

operators. From the discussion in Chap. 9, these operators are the responses under

the external sources h
(0)
µν and A

(0)
µ . The corresponding bulk fields are obtained by

promoting the external sources into the five-dimensional propagating fields. There-

fore,
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Boundary operators external sources Bulk fields

T µν ↔ h
(0)
µν → gravitational field hMN

Jµ ↔ A
(0)
µ → Maxwell field AM

The explicit forms of the field/operator correspondence are described below.

�
The Maxwell field AM in the above table is a five-dimensional bulk U(1) field

and is different from a four-dimensional boundary SU(Nc) gauge field (Aµ)
i
j. For

example, this Maxwell field may be the external electromagnetic field which couples

to the N = 4 SYM.

Boundary condition at horizon We impose a boundary condition inside the bulk

spacetime. For a time-independent perturbation, we impose the regularity condition

at the horizon. We add a perturbation in a background geometry, so the effect of the

perturbation should remain small and should not affect the geometry. As a result,

the energy-momentum tensor TMN of the perturbation must be finite. (It is more

appropriate to use coordinate-invariant quantities such as the trace.)

For a time-dependent perturbation, we impose the so-called “incoming-wave”

boundary condition at the horizon or perturbations are only absorbed by the hori-

zon. The boundary condition is physically natural since nothing comes out from the

horizon10.

This boundary condition is the origin of the dissipation. General relativity itself

is invariant under the time-reversal, but a dissipation is not a time-reversal process.

What breaks the time-reversal invariance is this boundary condition. See Sect. 12.1.4

for an explicit computation.

10.3 Other examples

10.3.1 Maxwell field

As another example, let us consider the boundary theory with a U(1) current Jµ .

At this stage, we do not specify the current explicitly. The current may be the

usual electromagnetic current, but it is not restricted to the electromagnetic cur-

rent (Sect. 9.3.2). In any case, ρ := 〈J0〉 is a number density or a charge density. Let

µ as the chemical potential which is conjugate to ρ .

From the above discussion, such a case corresponds to adding a bulk Maxwell

field A0. Then, we now evaluate the action

10 �This boundary condition is a difference from the Euclidean formalism. In the Euclidean formal-

ism, there is no region inside the “horizon,” so one does not impose the incoming-wave boundary

condition.
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S=−1

4

∫

d5x
√−gF2

MN . (10.27)

For simplicity, consider A0 = A0(u). The Lagrangian becomes
√−gg00guu(Fu0)

2 ∼
−u−5u4A′2

0 =−u−1A′2
0 , so the equation of motion is

(u−1A′
0)

′ ∼ 0 . (10.28)

(For the SAdS5 black hole, this equation of motion is actually valid for all u.) Then,

the asymptotic behavior is given by

A0 ∼ A
(0)
0

(

1+A
(1)
0 u2

)

, (u → 0) (10.29)

instead of Eq. (10.15). The physical meaning of the behavior is clear. The slow

falloff is constant because of the gauge invariance. (The gauge potential appears

with a derivative in FMN .) The fast falloff represents Coulomb’s law in the bulk

five-dimensional spacetime.

As in the scalar field example, the evaluation of the on-shell Maxwell action gives

the relation such as

µ = A
(0)
0 , (10.30)

〈J0〉s =−cAA
(1)
0 A

(0)
0 , (10.31)

where cA is an appropriate factor which can be obtained by actually evaluating the

on-shell action (see Sect. 12.8 for the explicit expression for the N = 4 SYM.) The

latter equation is the linear response relation (9.31) for J0.

A similar relation holds for Ax:

〈Jx〉s = cAA
(1)
x A

(0)
x , (10.32)

which corresponds to Eq. (9.35). But we saw in Sect. 9.1.3 that the conductivity σ
is given by Ohm’s law:

〈Jx〉s = σE
(0)
x = iωσA

(0)
x . (10.33)

Thus,

σ(ω) = cA

A
(1)
x

iω
. (10.34)

Then, the conductivity is obtained by solving the bulk Ax equation of motion and

extracting A
(1)
x . For the holographic superconductor (Sect. 14.3), one shows the di-

vergence of the conductivity from such a computation.

Scaling dimension The Maxwell field is a one-form, so under the scale transfor-

mation (10.23), it transforms as AM(x,u)→ AM/a. Namely, the Maxwell field has

scaling dimension 1. Then, following the scalar field example, one gets
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A
(0)
µ (x)→ a−1A

(0)
µ ,

〈Jµ(x)〉s → a−3〈Jµ〉s .
(10.35)

Namely, the current has scaling dimension 3. This scaling dimension coincides with

the naive mass dimension of a current. (In the units c = h̄ = 1, the charge is dimen-

sionless.)

Remark on chemical potential The chemical potential is given by µ = A0|u=0. Of

course, the constant of A0 itself is not meaningful due to the gauge invariance. What

is physical is the difference of the gauge potential (Sect. 3.3.3). Or the relation itself

is not gauge invariant. In AdS/CFT, one normally chooses the gauge A0 = 0 at the

black hole horizon u = 1. Then,

µ = A0|u=0 − A0|u=1 (10.36)

reduces to the above relation.

10.3.2 Massive scalar field

For a massive scalar field,

S=−1

2

∫

dp+2x
√−g{(∇Mφ)2 +m2φ 2} . (10.37)

A scale-invariant four-dimensional boundary theory cannot have a mass term, but

it is perfectly fine for the dual five-dimensional bulk field to have a mass term. A

five-dimensional mass corresponds to adding an operator with a different scaling

dimension in the four-dimensional boundary theory.

The equation of motion is given by

1√−g
∂M

(√−ggMN∂Nφ
)

−m2φ = 0 . (10.38)

Solve the equation asymptotically to obtain the asymptotic behavior. Instead of

Eq. (10.15), one obtains

φ ∼ u∆ , ∆(∆ − p−1) = m2 , (10.39)

or

∆± =
p+1

2
±
√

(p+1)2

4
+m2 . (10.40)

Equation (10.40) implies that the theory is stable even for m2 < 0 if

m2 ≥− (p+1)2

4
, (10.41)
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which is known as the Breitenlohner-Freedman bound [4].

The slow falloff behaves as φ ∼ u∆− . So, we define φ (0) as

φ ∼ φ (0)u∆− + cφ 〈O〉s u∆+ , (u → 0) (10.42)

where cφ is an appropriate factor which can be obtained by actually evaluating the

on-shell scalar action. As in the massless scalar,

φ (0) → a−∆−φ (0) ,

〈O〉s → a−∆+〈O〉s .
(10.43)

From Eq. (10.40), ∆++∆− = p+1, so the boundary action δSQFT =
∫

dp+1xφ (0)O

is again scale invariant. When p = 3 and m = 0, (∆−,∆+) = (0,4), which reduces

to the massless scalar example.

When m2 > 0, the slow falloff diverges as φ ∼ u∆− at the AdS boundary. Such

a perturbation has a diverging energy-momentum tensor TMN and affects the back-

ground geometry, so it cannot be added as a perturbation. From the field theory point

of view, O is an irrelevant operator whose dimension is ∆+ > p+ 1, and its effect

grows in the UV.

10.3.3 Gravitational field

Boundary metric The AdS metric takes the form

ds2
5 =

1

u2
(ηµν dxµ dxν +du2) . (10.44)

Note that the metric in the boundary theory is ηµν . This is not the bulk metric itself,

and they are related to each other by the factor u−2. Then, when the bulk metric

takes a more general form

ds2
5 = gµν dxµ dxν +

du2

u2
, (10.45)

it is natural to define the boundary metric g
(0)
µν as gµν |u=0 = g

(0)
µν u−2. This is anal-

ogous to the massive scalar case. Since φ behaves as φ ∼ u∆− , we define φ (0) as

φ |u=0 = φ (0)u∆− .

For the SAdS black hole (10.9), g00 differs from gii because of the factor h, but

the boundary metric remains flat from the above definition of the boundary metric.

The subleading term essentially represents the boundary energy-momentum tensor

〈T µν〉 at equilibrium as described below.

Fefferman-Graham coordinate In order to write down the field/operator corre-

spondence for the gravitational field, it is convenient to use the Fefferman-Graham
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coordinate instead of the SAdS coordinate. In the Fefferman-Graham coordinate,

gũũ = 1/ũ2. In the SAdS coordinate, guu 6= 1/u2, so we rewrite the solution in ũ.

The transformation is given by

u2 =
2ũ2/ũ2

0

1+ ũ4/ũ4
0

. (10.46)

Then, the metric becomes

ds2
5 =

1

ũ2

[

− (1− ũ4/ũ4
0)

2

1+ ũ4/ũ4
0

dt2 +(1+ ũ4/ũ4
0)dxxx2

3 +dũ2

]

, (10.47)

where the horizon is located at ũ = ũ0 =
√

2/(πT ). The metric asymptotically be-

haves as

ds2
5 ∼

1

ũ2

[

(−1+3ũ4/ũ4
0)dt2 +(1+ ũ4/ũ4

0)dxxx2
3 +dũ2

]

, (ũ → 0) . (10.48)

The field/operator correspondence In this subsection, we use the Fefferman-

Graham coordinate because the field/operator correspondence for the gravitational

field takes a particularly simple form in this coordinate:

gµν ∼ 1

ũ2

(

η
(0)
µν +4πG5〈T µν〉 ũ4

)

, (ũ → 0) , (10.49)

where we recovered G5.

In the SAdS coordinate u, the field/operator correspondence is modified. The

coordinates ũ and u are related by ũ = u{1+O(u4)}. They differ only at subleading

order, so the definition of the slow falloff is not affected, but the subleading term,

the fast falloff, is affected.

The bulk metric gµν is a tensor with 2 lower indices, so it transforms as gµν →
gµν/a2 under the scale transformation (10.23). Since the factor ũ−2 scales in the

same way,

η
(0)
µν → η

(0)
µν ,

〈T µν〉 → a−4〈T µν〉 .
(10.50)

Namely, 〈T µν〉 has scaling dimension 4, which coincides with the naive mass di-

mension of the energy-momentum tensor in (3+1)-dimensions.

We computed thermodynamics quantities in Chap. 7, but the field/operator corre-

spondence (10.49) gives a simple way to evaluate thermodynamic quantities. From

the asymptotic behavior (10.48),

〈T µν〉= 1

4πG5

1

ũ4
0

diag(3,1,1,1) =
π2

8
N2

c T 4diag(3,1,1,1) , (10.51)

which agrees with the result in Chap. 7.
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So far, we considered the case where the boundary metric remains flat. Similar

results hold when we add a boundary metric perturbation. For example, add the

tensor mode h
(0)
xy . The asymptotic behavior of the bulk perturbation hxy is given by

hxy ∼
1

ũ2

(

h
(0)
xy +4πG5〈T xy〉s ũ4

)

, (ũ → 0) , (10.52)

in the Fefferman-Graham coordinate. In Chap. 12, we will essentially derive this

result in the SAdS coordinate u.

10.4 On the Lorentzian prescription �

The GKP-Witten relation is actually formulated as the Euclidean relation. One en-

counters troubles if one takes the Lorentzian relation too literally. Here, we discuss

these problems and gives the prescription to get correct results. This issue is not

problematic for a static perturbation like Sect. 10.2 but is problematic for a time-

dependent perturbation.

Again, consider the massless scalar field as an example:

S=−1

2

∫

d5x
√−g(∇Mφ)2 . (10.53)

We consider the scalar in the SAdS5 black hole but this time not only asymptotically.

We consider an inhomogeneous perturbation along the boundary directions, and it

is convenient to make the Fourier transformation for the boundary directions xµ =
(t,xxx):

φ(t,xxx,u) =
∫

(dk)e−iωt+iqqq·xxxφk(u) , (dk) :=
d4k

(2π)4
. (10.54)

A computation similar to Sect. 10.2 leads to

S=−1

2

∫

d4xdu
√−g{gµν ∂µ φ∂ν φ +guuφ ′2} (10.55a)

=−1

2

∫

d4xdu

∫

(dk)(dk′)u−5{gµν(ik′µ)(ikν)φk′φk +hu2φ ′
k′φ

′
k}

× ei(k+k′)·x (10.55b)

=
∫

(dk)
∫ 1

0
du

{

− h

2u3
φ ′
−kφ ′

k −
gµν kµ kν

2u5
φ−kφk

}

(10.55c)

=
∫

(dk)
∫ 1

0
du

{(

− h

2u3
φ−kφ ′

k

)′
+

1

2
(EOM)φ−k

}

. (10.55d)

The equation of motion is given by
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(

h

u3
φ ′

k

)′
− gµν kµ kν

u5
φk = 0 . (10.56)

Asymptotically, it behaves as

u3

(

1

u3
φ ′

k

)′
− k2φk ∼ 0 , (10.57)

where k2 = ηµν kµ kν . Again, set φk ∼ u∆ . Then,

∆(∆ −4)u∆−2 − k2u∆ ∼ 0 . (10.58)

In this case, there is a k2-dependence, but it is subleading in u and can be ignored.

Thus, the asymptotic form (10.15) is unchanged.

From Eq. (10.55d), we obtain the on-shell action:

S=
∫

(dk)

{

h

2u3
φ−kφ ′

k

∣

∣

∣

∣

u=0

− h

2u3
φ−kφ ′

k

∣

∣

∣

∣

u=1

}

. (10.59)

Here, we take into account the contribution from the horizon since the horizon pro-

vides a boundary in the Lorentzian formalism unlike the Euclidean formalism. We

discuss this contribution further below. Write the solution as φk = φ
(0)
k fk(u). By

definition, fk satisfies fk(u → 0) = 1. Then,

S[φ (0)] =
∫

(dk)φ
(0)
−k {Fk|u=0 − Fk|u=1}φ

(0)
k , (10.60)

Fk(u) :=
h

2u3
f−k f ′k . (10.61)

According to the GKP-Witten relation, the one-point function is obtained by

〈Ok〉s =
δS[φ (0)]

δφ
(0)
−k

. (10.62)

Taking the derivative of Eq. (10.60) with respect to φ
(0)
−k gives

〈Ok〉s
?
= { (Fk +F−k)|u=0 − (Fk +F−k)|u=1}φ

(0)
k . (10.63)

But this is inappropriate as a one-point function. The Fourier-transformed one-point

function should be complex in general, but the above expression has no imaginary

part:

1. We take into account the contribution from the horizon since the horizon provides

a boundary in the Lorentzian formalism. But one can show that Fk|u=1
u=0 has no
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imaginary part since the imaginary part at the horizon cancels out the imaginary

part at the AdS boundary11.

2. Even if one throws away the contribution from the horizon, we still have a prob-

lem. Since the field φ(t,xxx,u) is real, the Fourier component satisfies φk(u) =
φ ∗
−k(u). Then, F−k ≃ fk f ′−k = f ∗−k f ′∗k ≃F ∗

k , so Fk+F−k =Fk+F ∗
k = 2ReFk,

and the one-point function still lacks the imaginary part.

These problems come from the fact that we use the Lorentzian GKP-Witten relation

too literally which was originally defined as the Euclidean relation. In order to obtain

the correct one-point function, use the following prescription [5]:

〈Ok〉s = 2Fk|u=0 φ
(0)
k . (10.64)

The prescription is justified using the real-time like formalism of finite-temperature

field theory [6]. We discussed only the one-point function, but the Lorentzian pre-

scription of the n-point function has been known as well [7].

10.5 Summary

• The GKP-Witten relation is the most important relation in AdS/CFT. The rela-

tion relates the generating functional of a four-dimensional gauge theory and the

generating functional of a five-dimensional gravitational theory.

• A boundary operator has a corresponding bulk field. For example, any boundary

theory with appropriate symmetries has T µν and Jµ . The corresponding bulk

fields are the gravitational field hMN and the Maxwell field AM .

• A bulk field φ has a slow falloff and a fast falloff as independent solutions. The

slow falloff represents φ (0), the external source of an operator O in the boundary

theory, and the fast falloff represents 〈O〉s, its response.

• The falloffs also determine the scaling dimensions of the external source and the

operator.

New keywords

bulk/boundary theory

slow/fast falloff

field/operator correspondence

incoming-wave boundary condition

Breitenlohner-Freedman (BF) bound

11 For example, this can be checked by substituting the O(ω) solution (12.42) of fk into Eq. (10.61).
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Chapter 11

Other AdS spacetimes

We discuss various spacetimes which often appear in AdS/CFT. We describe charged AdS

black holes, the Schwarzschild-AdS black hole in the other dimensions, various branes (M-

branes and Dp-branes), and some other examples. Many of them are asymptotically AdS

spacetimes, but some are not.

11.1 Overview of other AdS spacetimes

So far we discussed the AdS5 spacetime and the Schwarzschild-AdS5 (SAdS5) black

hole, but various other asymptotically AdS spacetimes appear in the literature. Here,

we briefly discuss them. We discuss some of the geometries further in Sect. 11.2.

Currently, one cannot directly compute QCD in AdS/CFT. So, one analyzes, e.g.,

the black hole which is dual to the N = 4 SYM, but the results are not the ones for

QCD. Therefore, when one computes a physical quantity, the result may be theory-

dependent. It is desirable to compute a physical quantity in various theories in order

to know the theory dependence.

There are various approaches below, but in all cases, the symmetry of both the

gauge theory and the gravitational theory plays an important role.

Charged AdS black holes

As in the asymptotically flat spacetime, one can consider charged black holes in

AdS spacetime. The Einstein-Maxwell theory gives a simple example:

S=
1

16πG5

∫

d5x
√−g

(

R−2Λ − L2

4
F2

MN

)

. (11.1)
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The bulk Maxwell field AM corresponds to the boundary current Jµ . So, the electric

charge case, A0 6= 0, corresponds to a finite chemical potential or a finite charge

density. The solution is known as the Reissner-Nordström AdS black hole (RN-AdS

black hole hereafter).

One generalization of the charged AdS black hole is the R-charged black hole

[1, 2, 3]. The R-charged black hole is dual to the N = 4 SYM at a finite chemical

potential. In this case, the bulk gravitational action is complicated, but it schemati-

cally takes the form

L5 = (Gravity)+ (three U(1) gauge fields)+ (two real scalars) . (11.2)

The N = 4 SYM is dual to the AdS5 × S5 spacetime. An R-charged black hole is

obtained by adding an angular momentum along S5. The sphere S5 has the SO(6)
symmetry which is rank three, so one can add at most three independent angular

momenta.

If one compactifies S5, one gets Kaluza-Klein gauge fields from the compactified

metric1. The angular momenta along S5 become the charges under the Kaluza-Klein

gauge fields from the five-dimensional point of view. The symmetry of S5 corre-

sponds to the internal symmetry of the dual gauge theory, R-symmetry, so such a

charge is called a R-charge.

When all three charges are equal, the R-charged black hole reduces to the RN-

AdS black hole above. However, the R-charged black hole in general differs from

the RN-AdS black hole. This is because scalar fields are nonvanishing for the R-

charged black hole. For asymptotically flat black holes, a scalar must vanish, and

the existence of a scalar does not affect a black hole solution [4]. This is because of

the no-hair theorem. But this is not the case for the R-charged black hole. Namely,

the no-hair theorem is often violated in the AdS spacetime.

The R-charged black hole undergoes a second-order phase transition [5, 6].

Schwarzschild-AdS black holes in arbitrary dimensions

From the gravitational theory point of view, one may consider the SAdSp+2 black

hole as a simple extension of the SAdS5 black hole. The dual gauge theory should

be a (p+1)-dimensional conformal theory. The details of the dual gauge theory are

unclear though because we do not go through the brane argument such as Sect. 5.6.

But when p = 2 and 5, there are brane realizations, the M2-brane and the M5-brane

below.

1 See Sect. 12.7 for the simple S1 compactification.
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Other branes (M-branes)

In string theory, there appear various branes, and the AdS/CFT duality based on

these branes has been discussed. (See, e.g., Ref. [7] for a review of these branes.)

The M-branes appear in the 11-dimensional theory known as the M-theory. The

M-theory does not yet have a microscopic formulation unlike string theory, but we

know several clues about the theory:

• First, the M-theory is not a theory of strings. For a superstring theory to be con-

sistent, the spacetime dimensionality must be 10.

• At low energy, the M-theory is described by the 11-dimensional supergravity.

This is just as superstring theories are described by 10-dimensional supergravities

at low energy. Just as the D-brane is a solution of a supergravity [c.f., Eq. (5.62)],

the M-brane is a solution of the 11-dimensional supergravity. What we know

about M-branes mostly comes from the 11-dimensional supergravity.

• Although the M-theory is not a string theory, it is related to string theory. The

S1-compactification of the M-theory becomes the so-called type IIA superstring

theory. As a result, the M-branes and the D-branes are related to each other.

There are two kinds of M-branes: the M2-brane and the M5-brane. The M2-brane

reduces to the AdS4×S7 spacetime in the near-horizon limit. From the symmetry of

the geometry, the dual gauge theory must be a (2+1)-dimensional conformal theory

with R-symmetry SO(8). Also, the M2-brane at finite temperature reduces to the

SAdS4 ×S7 spacetime. But the full details of the dual gauge theory are still unclear.

Unlike string theory, the M-theory does not yet have a microscopic formulation, so

we do not have a microscopic tool such as the D-brane.

Moreover, AdS/CFT predicts a characteristic behavior of thermodynamic quan-

tities. For example, the energy density of the M2-brane behaves as ε ∝ N
3/2
c T 3. The

temperature dependence T 3 is natural and comes from the Stefan-Boltzmann law

in (2+1)-dimensions. But the Nc-dependence is not easy to understand. For gauge

theories, it is natural to have the dependence N2
c like the D3-brane, but the M2-brane

does not have such a dependence. The power 3/2 implies that the M2-brane is not

described by a simple gauge theory but is described by a highly nontrivial gauge

theory. The dual gauge theory is not completely understood, but there are important

progresses in recent years, and the power 3/2 has been understood to some extent

[8, 9].

On the other hand, the M5-brane reduces to the AdS7×S4 spacetime in the near-

horizon limit. Then, the dual gauge theory must be a (5+1)-dimensional conformal

theory with R-symmetry SO(5). Also, the M5-brane at finite temperature reduces to

the SAdS7 × S4 spacetime. Again, thermodynamic quantities have a characteristic

behavior in Nc, e.g., ε ∝ N3
c T 6.
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Other branes (Dp-branes)

One can consider the Dp-brane with p 6= 3 [10]. As in the D3-brane case, the Dp-

brane is dual to the (p+ 1)-dimensional SYM. The geometry has the Poincaré in-

variance ISO(1, p) and R-symmetry SO(9− p). But the geometry does not reduce

to the AdS spacetime in the near-horizon limit, so it does not have a conformal in-

variance. In particular, there is no scale invariance2 because the dilaton is nontrivial

(Sect. 5.2.5). From the gauge theory point of view, the (p+ 1)-dimensional gauge

theory does not have a scale invariance because the coupling constant is dimension-

ful as [g2
YM] = Lp−3.

The energy density behaves as3

ε ∝ (g2
YMNc)

(p−3)/(5−p)N2
c T 2(7−p)/(5−p) . (11.3)

In this case, we do not have the (p+1)-dimensional Stefan-Boltzmann law because

we have a dimensionful quantity gYM other than the temperature. Also, thermody-

namic quantities depend on the ’t Hooft coupling λ unlike the D3-brane and the

M-branes.

However, there are exceptions. For p= 1, ε ∝ λ−1/2N2
c T 3 ∝ N

3/2
c T 3, which is the

same behavior as the M2-brane. Similarly, for p = 4, ε ∝ λN2
c T 3 ∝ N3

c T 6, which is

the same behavior as the M5-brane. These behaviors are not just coincidences. They

arise because some D-branes have their origins in the 11-dimensional M-branes

although we do not discuss the details here.

Extensions from the gauge theory point of view

One can add deformations to the N = 4 SYM. For example, the N = 4 SYM has

various matter fields in the adjoint representation, and one can add deformations

to make these fields massive. The resulting theories have less supersymmetry com-

pared to the N = 4 SYM. Also, the N = 4 SYM is scale invariant, so the theory

does not have the confining phase but has only the plasma phase. The deformations

of the N = 4 SYM are generally not scale invariant and some have a dynamical

confinement like QCD. Some examples of dual geometries are

• Pilch-Warner geometry (N = 2∗ theory) [12, 13],

• Polchinski-Strassler geometry (N = 1∗ theory) [14],

• Klebanov-Strassler geometry [15, 16].

This approach has both the advantage and the disadvantage:

• advantage: the dual gauge theory is clear.

2 The theory is scale invariant up to an overall scaling of the metric. An extension of such a

geometry is known as the hyperscaling geometry [11].
3 One normally considers the p < 5 case because the heat capacity diverges for p = 5 and becomes

negative for p > 5.
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• disadvantage: the resulting gravitational theory and the metric are often very

complicated and difficult to analyze.

Extensions from the gravitational theory point of view

When one adds a deformation to the N = 4 SYM, one starts with the gauge theory

point of view. In contrast, one could start with the gravitational theory point of view.

There are at least two approaches:

1. Start with a gravitational theory which is easy to handle. When one adds a defor-

mation, the resulting gravitational action is often highly complicated and is hard

to analyze. To avoid the problem, one could choose a theory which is natural

or simple from the gravitational theory point of view. The SAdSp+2 or RN-AdS

black holes are the examples. The holographic superconductor is another typical

example (Sect. 14.3). The holographic superconductor has the action

S=
∫

dp+2x
√−g

[

R−2Λ − 1

4
F2

MN −|DMΨ |2 −V (|Ψ |)
]

, (11.4)

DM := ∇M − ieAM , (11.5)

where Ψ is a complex scalar field.

2. Start with the symmetry of the metric. In this case, one first writes down the metric

with the desired symmetry and then tries to find a gravitational theory which

admits such a metric as a solution. A typical example is the Lifshitz geometry

[17]. The metric
ds2

L2
=−r2zdt2 + r2dxxx2

p +
dr2

r2
(11.6)

is invariant under the anisotropic scaling

t → azt ,xxx → axxx ,r → r/a (11.7)

instead of the scaling discussed so far which corresponds to z = 1. Such an

anisotropic scaling is partly motivated by the dynamic critical phenomena in

Sect. 13.1.4.

This approach starts with the metric, so the first questions one would ask are

what kind of gravitational theory admits such a solution and whether such a

gravitational theory is natural from the string theory point of view. Also, the

metric (11.6) has a spacetime singularity at r = 0 (when z 6= 1)4. The curva-

4 Unlike the Schwarzschild black hole, a curvature invariant such as RMNPQRMNPQ does not diverge

at this singularity, but the tidal force diverges there. Some branes have similar spacetime singulari-

ties. A spacetime singularity is called a s.p. (scalar polynomial) singularity if a curvature invariant

has a divergence and is called a p.p. (parallelly propagated) singularity if the tidal force diverges.

There are various kinds of spacetime singularities and one cannot completely classify them. Thus,

in general relativity, a spacetime singularity is defined operationally as geodesic incompleteness.



182 11 Other AdS spacetimes

ture becomes strong at the origin, and α ′-corrections could become important,

so physical quantities one computes may not be reliable.

These approaches also have both the advantage and the disadvantage:

• advantage: one can choose a simple gravitational theory. One can use various

gravitational theories.

• disadvantage: the dual field theory is not very clear. In particular, one lacks the

precise AdS/CFT dictionary which relates the parameters of the gravitational

theory and the field theory, so quantitative predictions may be difficult.

New keywords

Reissner-Nordström AdS black hole

R-charged black hole

Kaluza-Klein gauge field

M-branes

M-theory

Dp-brane

deformations

11.2 Appendix: Explicit form of other AdS spacetimes �

This appendix will be included in the published version.

11.2.1 SAdSp+2 black hole

11.2.2 M-branes

11.2.3 Dp-brane

11.2.4 RN-AdS black holes

11.2.5 d = 5 R-charged black hole and holographic current

anomaly
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Chapter 12

Applications to quark-gluon plasma

For strongly-coupled Yang-Mills plasmas, AdS/CFT predicts that the ratio of the shear vis-

cosity to the entropy density takes a universal small value. This is true for all known exam-

ples in the strong coupling limit. This prediction turns out to be close to the value of the real

quark-gluon plasma (QGP).

12.1 Viscosity of large-Nc plasmas

12.1.1 Transport coefficients of N = 4 plasma

We now compute transport coefficients for the N = 4 plasma. To summarize our

discussion so far,

• The N = 4 SYM is dual to the five-dimensional pure Einstein gravity with a

negative cosmological constant (Chap. 5). The solutions are the AdS5 spacetime

at zero temperature and the Schwarzschild-AdS5 (SAdS5) black hole at finite

temperature (Chap. 7).

• We will apply AdS/CFT to the quark-gluon plasma or QGP, so we will consider

the finite temperature case. We add perturbations to the black hole and solve per-

turbation equations. From the gauge theory point of view, this gives the response

to the operator which couples to the perturbation (Chap. 10).

• One can compute various transport coefficients of the N = 4 SYM depending

on which bulk perturbations one considers.

For later convenience, we repeat some of the equations in previous chapters. The

SAdS5 black hole metric is given by

ds2
SAdS5

=
( r0

L

)2 1

u2
(−hdt2 +dxxx2

3)+L2 du2

hu2
, h = 1−u4 , (12.1)
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where the horizon is located at u = 1 and the AdS boundary is located at u = 0. The

temperature and the entropy density of the black hole are computed in Eqs. (7.6c)

and (7.8):

T =
1

π

r0

L2
, s =

1

4G5

( r0

L

)3

. (12.2)

Also, the AdS/CFT dictionary is Eq. (5.39):

N2
c = 8π2 L3

16πG5

, λ =

(

L

ls

)4

. (12.3)

To begin with, the shear viscosity is the only nontrivial transport coefficient for

the N = 4 SYM as a fluid. In a scale invariant theory, the energy-momentum tensor

is traceless (Sect. 7.2):

T
µ
µ = 0 . (12.4)

This immediately fixes

bulk viscosity ζ = 0 , speed of sound c2
s :=

∂P

∂ε
=

1

3
. (12.5)

Of course, one can check if ζ and cs really take these values, which is an important

consistency check.

From the discussion in Sect. 9.3.6, if one adds the perturbation h
(0)
xy in the bound-

ary theory, the response δ 〈T xy〉 is given by

δ 〈τxy〉= iωηh
(0)
xy , (12.6)

where τxy is the dissipative part of T xy. Thus, one can determine η by computing

this response in AdS/CFT. So, we consider the bulk perturbation hxy:

ds2
5 = ds2

SAdS5
+2hxy dxdy . (12.7)

One can show that (gxxhxy) obeys the equation of motion for a massless scalar

field, so we can apply the results in Sect. 10.2. Namely, the asymptotic behavior is

given by

(gxxhxy)∼ h
(0)
xy

{

1+h
(1)
xy u4

}

, (u → 0) . (12.8)

Also, the fast falloff represents the response δ 〈τxy〉. The evaluation of the on-shell

gravitational action in Sect. 12.5 shows the field/operator correspondence:

δ 〈τxy〉= 1

16πG5

r4
0

L5
4h

(1)
xy h

(0)
xy . (12.9)

In the units r0 = L = 16πG5 = 1, Eq. (12.9) reduces to Eq. (10.18). Comparing

Eqs. (12.6) and (12.9), and using the temperature and the entropy density (12.2),

one gets
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iw
η

s
= h

(1)
xy , w :=

ω

T
. (12.10)

To determine h
(1)
xy , one has to actually solve the perturbation equation. This is

done in Sect. 12.1.4. In this example, the perturbation equation reduces to the mass-

less scalar, so it may sound easy to solve but it is not even in this case. This is

because the perturbation equation has more than three regular singular points, so

the analytic solution is not expected in general. This is a typical problem in black

hole physics, and as a result, the perturbation problem in a black hole background

typically requires a numerical computation.

Fortunately, our primary interest here is the hydrodynamic limit where ω → 0 as

q → 0. Then, one can expand the perturbation equation as a double series in (ω,q),
and it is enough to solve the low orders in the expansion. In this limit, perturbation

equations can often be solved analytically.

In this way, we solve the the perturbation equation in Sect. 12.1.4, and the result

(12.43) is

h
(1)
xy =

1

4π
iw+O(ω2,q2) . (12.11)

Comparing Eqs. (12.10) and (12.11), we obtain

η

s
=

1

4π
. (12.12)

The value of η itself is obtained by using the AdS/CFT dictionary (12.3) and the

entropy density (12.2):

η =
1

16πG5

( r0

L

)3

=
π

8
N2

c T 3 . (12.13)

The entropy density s = a/(4G5) is proportional to the the “horizon area density”

a, and η/s is constant, so η is also proportional to a. This is true not only for the

N = 4 SYM but also for the other large-Nc plasmas. We will see this in Sect. 12.1.3.

Remarks As we saw in Sect. 9.3, there are two methods to obtain η/s:

• The method from the O(ω) coefficient of the tensor mode δ 〈T xy〉 (“Kubo for-

mula method”). This is the method discussed here.

• The method from the pole of the vector mode and the dispersion relation

One can check that η/s from the dispersion relation gives the same result (Sects. 12.6

and 12.7).

The N = 4 SYM has R-symmetries and associated U(1) currents Jµ (Sect. 5.6.1).

The gravitational dual actually has Maxwell fields (Sect. 11.2.5). One can add

Maxwell fields as probes and compute the diffusion constant D or the conductiv-

ity σ . The computations are very similar to the shear viscosity but are somewhat

easier (Sect. 12.8).
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12.1.2 Viscosity of ordinary materials

Let us compare the AdS/CFT result with the viscosity of ordinary materials. First,

recovering dimensionful quantities and using h̄ ≈ 1.05×10−34 J · s and kB ≈ 1.38×
10−23 J ·K−1, the AdS/CFT prediction is

η

s
=

h̄

4πkB
≈ 6.1×10−13 K · s . (12.14)

As an example of ordinary materials, take the nitrogen gas. According to Ref. [1],

the nitrogen has

η ≈ 16.6 µPa · s , s ≈ 189 J ·K−1 ·mol−1 (12.15)

at 273.15 K (0 °C) and atmospheric pressure (1 atm ≈ 0.1MPa = 1bar). The ideal

gas under the above condition occupies 22.4 ℓ (= 22.4×10−3m3) per mole, so

s ≈ 189× 1

22.4×10−3
≈ 8.4×103 J ·K−1 ·m−3 . (12.16)

Thus, η/s for the nitrogen is

η

s
≈ 16.6×10−6

8.4×103
≈ 2.0×10−9 K · s (12.17)

≈ 3.3×103 h̄

4πkB
, (12.18)

which is 3×103 times larger than the AdS/CFT result. Namely,

The strongly-coupled large-Nc plasma has an extremely small η/s

compared with ordinary materials.

12.1.3 Universality of η/s

We determined the shear viscosity in the simplest example, the SAdS5 black hole

which is dual to the N = 4 SYM. But as we discuss below, one can compute η/s

for various large-Nc gauge theories, and the result is η/s = 1/(4π) in all known

examples (in the large-Nc limit)1. Therefore, one concludes

The strongly-coupled large-Nc plasmas have the universal small value of

η/s = 1/(4π).

1 It was pointed out that the universality argument below does not hold for anisotropic plasmas

[2, 3].
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If large-Nc gauge theories are good approximations to QCD, one would imagine

that the result equally applies to QGP. In fact, according to RHIC experiments,

QGP behaves as a fluid with a very small η/s, and the value is close to Eq. (12.12)

(Sect. 12.2).

Remarks We make two remarks to understand the universality:

1. The ratio η/s is universal, but the values of η and s themselves have no univer-

sality, and they depend on the theory one considers.

The entropy density counts the degrees of freedom of a system, so it clearly de-

pends on the theory. Also, the entropy density of the N = 4 SYM is s ∝ T 3 from

the dimensional analysis, but if a system has the other scales, the entropy density

depends on these scales. For example, it depends on the chemical potential µ at

finite density.

What the universality implies is that η and s have the same functional form even

in such cases, so by taking the ratio η/s, the details of the system cancel, and

only the fundamental constants (h̄ and kB) appear. Of course, we discard many

information about the system by taking the ratio, but we obtain a robust predic-

tion.

2. We loosely mentioned “QGP has a very small viscosity,” but more precisely what

we meant is that η/s is small. It is natural to pay attention to this quantity be-

cause η appears in hydrodynamic equations with this combination [see, e.g.,

Eq. (9.148)].

This point is important because the viscosity of QGP itself is not small. The QGP

viscosity itself is very large because we consider plasmas at high temperature and

η ∝ T 3.

To understand the second point, let us consider the gφ 4-theory and estimate phys-

ical quantities at tree-level. The dimensional analysis determines the temperature

dependence of various quantities2:

number density: n ∝ T 3 , (12.19a)

cross section: σ ∝
g2

T 2
, (12.19b)

mean-free path: lmfp ≃
1

nσ
∝

1

g2T
, (12.19c)

energy density: ε ∝ T 4 , (12.19d)

shear viscosity: η ≃ εlmfp ∝
T 3

g2
. (12.19e)

(Here, we included the g-dependence which can be understood from tree diagrams.)

At high temperature, many particles are created and the number density becomes

2 For perturbative estimates, see, e.g., Ref. [4, 5] (gφ 4-theory), Ref. [6] (QCD), and Ref. [7] (N = 4

SYM).
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larger, so lmfp becomes shorter. However, this does not imply that the shear viscosity

itself becomes smaller. This is because the shear viscosity is the energy-momentum

transfer. At high temperature, each particle has a higher energy on average and many

particles are created. Therefore, the energy transfer becomes more effective at high

temperature, which results in a larger shear viscosity.

However, note the coupling constant dependence of the shear viscosity. Although

η ∝ T 3, a strongly-coupled fluid has a smaller viscosity than a weakly-coupled fluid

(if one fixes temperature). It is in this sense that the shear viscosity of QGP is small.

But it is rather confusing to take into account both the temperature dependence

and the coupling constant dependence. A better way is to make a dimensionless

quantity (in natural units) by combining with another physical quantity3:

η

s
≃ 1

g2
. (12.20)

Then, only the coupling constant dependence remains, and the meaning of the

“small viscosity” at strong coupling becomes clear. Also, as we mentioned, what

appears in hydrodynamic equations is this combination, so this is the appropriate

quantity to consider.

Major examples of universality Major examples which satisfy the universality

are

(i) Conformal theories [8, 9] (All examples below are the computations in plasma

phases.)

(ii) Non-conformal theories [10, 11]: The N = 4 SYM is scale invariant, but the

universality holds for theories with explicit scales, non-conformal theories. Some

examples are Dp-branes with p 6= 3 and the Klebanov-Strassler geometry at finite

temperature (Chap. 11). The latter theory has a dynamical confinement scale like

QCD.

(iii) Theories in the other spacetime dimensions [10, 12]: The universality holds in the

(p+ 1)-dimensional boundary spacetimes. Some examples are SAdSp+2 black

holes and Dp-branes.

(iv) Theories at finite chemical potential [13, 14, 15, 16, 17]: In the QCD phase dia-

gram, the chemical potential is equally as important as the temperature. The uni-

versality holds at a finite chemical potential. For the N = 4 SYM, one can add

chemical potentials associated with global R-symmetries. The dual geometries

are charged AdS black holes (Chap. 11). Historically, this example was impor-

tant since there was a conjecture that the universality no longer holds at a finite

chemical potential. Thus, the result was a surprise, which motivated many works

to study η/s under various circumstances.

(v) Theories with the fundamental representation such as quarks [18]: The theories

described so far have matter fields in the adjoint representation and not in the

fundamental representation such as quarks. However, the universality holds even

3 The entropy density depends on coupling constants only weakly as we saw for the N = 4 SYM

(Sect. 7.2).
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in the presence of the fundamental matter. One way to include the fundamental

matter is to include D7-branes in addition to D3-branes. We discussed one simple

way to realize the fundamental matter in Chap. 8, and the D3-D7 system is an

extension of the method. This D3-D7 system is known as Karch-Katz model

[19]. The D7-brane changes the metric, but one can evaluate the effect of its

backreaction perturbatively if one adds D7-branes as a probe.

(vi) Time-dependent N = 4 plasma [20]: Large-Nc plasmas described so far are sta-

tionary ones. The real plasma at heavy-ion experiments is of course a rapidly

changing system, and it is desirable to study such a plasma as well. In the gravity

side, this corresponds to a time-dependent black hole. The universality has been

shown for such a case.

How can one show the universality? In order to show the cases (i)-(iv), consider

a gravitational theory with various matter fields such as Maxwell fields and scalar

fields. One can solve the perturbation equation just like the SAdS5 case and obtain

Eq. (12.12) [17]. The technical reasons for the universality are two-folds:

• First, the perturbation hxy belongs to the tensor mode. We take the boundary

coordinates as xµ = (t,x,y,z) and consider the perturbation propagating in the

z-direction or kµ = (ω,0,0,q). Then, there is a little group SO(2) acting on

(x,y) which keeps kµ invariant. We can classify the energy-momentum tensor

and the gravitational perturbations by their transformation properties under the

little group. The components are classified as the scalar mode, the vector mode,

and the tensor mode (Sects. 9.3.7 and 12.6.1). The tensor decomposition is con-

venient because each modes transform differently and their equations of motion

are decoupled with each other.

Now, the perturbation hxy belongs to the tensor mode in this classification. Even if

a gravitational theory has Maxwell fields and scalar fields, they do not transform

as tensors, so they are not coupled with the tensor mode.

One can show the the perturbation equation for the tensor mode takes the same

form as the massless scalar in general. This equation can be solved for an arbi-

trary black hole background in the hydrodynamic limit, and one can show that η
is proportional to the horizon area density a.

• Second, as mentioned in Sect. 3.2.1, the entropy density is also proportional to a

as long as the gravitational action takes the form of the Einstein-Hilbert action.

• Thus, if one takes the ratio η/s, a cancels out and only the numerical coefficient

remains in the ratio which is Eq. (12.12).

Power of the duality This universality tells us the power of the duality. In prin-

ciple, one can reach the universality if one develops strong coupling computations

such as lattice simulation powerful enough. Then, one would wonder if we really

need the AdS/CFT duality. But the universality would not be very transparent in

such an approach. In AdS/CFT, the universality is transparent: it is tied to the uni-

versal nature of black holes, e.g., the area law of black hole entropy. Namely,
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Some results which are not very transparent in original variables (gauge theory)

can be transparent in different variables (gravitational theory).

In a duality, one can look at the same physics from a different point of view: this is

the power of a duality.

12.1.4 How to solve perturbation equation

Here, we actually solve the perturbation equation for the tensor mode and derive

Eq. (12.11). Setting φ := gxxhxy, one can show that φ obeys the equation of motion

for a massless scalar:
1√−g

∂µ(
√−ggµν ∂ν φ) = 0 (12.21)

(See Sect. 12.5 for the derivation). Consider the perturbation of the form φ =
φk(u)e

−iωt+iqz. In the SAdS5 black hole background, the perturbation equation be-

comes
u3

h

(

h

u3
φ ′

k

)′
+

w2 −q2h

π2h2
φk = 0 , (12.22)

where
′ := ∂u , w :=

ω

T
, q :=

q

T
. (12.23)

Below we solve this differential equation with q = 0. We impose the following

boundary conditions:

• The horizon u → 1: the “incoming-wave” boundary condition,

• The AdS boundary u → 0: the Dirichlet condition φk(u → 0) = φ
(0)
k .

When we have a differential equation, the first question we should ask is the

structure of singular points; how many singularities the equation has and whether

they are regular or not. Equation (12.22) has more than 3 regular singular points,

so the analytic solution cannot be expected in general. The equation has 4 regular

singular points at

u = 0 ,±1 ,∞ . (12.24)

However, in this computation, we are interested only in the hydrodynamic limit

ω → 0. In this limit, the equation can be solved analytically.

Incorporating boundary condition at horizon We first solve Eq. (12.22) near

the horizon u ≃ 1 in order to incorporate the “incoming-wave” boundary condition.

Near the horizon, h = 1−u4 ≃ 4(1−u), and the perturbation equation becomes

φ ′′
k − 1

1−u
φ ′

k +
(

w

4π

)2 1

(1−u)2
φk ≃ 0 . (12.25)

Setting φk ≃ (1−u)λ , one gets
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(1−u)λ−2

{

λ (λ −1)+λ +
(

w

4π

)2
}

= 0 . (12.26)

Thus, the solutions are

φk ∝ (1−u)±iw/(4π) , (u → 1) . (12.27)

One way to solve a differential equation is to utilize a power series expansion about

some u. In such a case, Eq. (12.26) is the indicial equation to determine the lowest

power of (1−u). Proceeding further, one can obtain the solution by the power series

expansion4, but we we do not need to take the approach here. See Sect. 14.5.

The solutions (12.27) may be unfamiliar, but there is a natural interpretation in

the tortoise coordinate. The tortoise coordinate r∗ is defined such that the metric in

the (t,r∗)-directions becomes conformally flat:

ds2 =− f (r)dt2 +
dr2

g(r)
= f (r)(−dt2 +dr2

∗) . (12.28)

This coordinate is useful for physical interpretations near the horizon since the

Laplacian takes the standard Minkowski form, ∇2 ∝ −∂ 2
t + ∂ 2

r∗ . The SAdS5 black

hole takes

ds2 =
( r0

L

)2 h

u2

{

−dt2 +
L4

r2
0

du2

h2

}

+ · · · , (12.29)

so the tortoise coordinate is given by

u∗ =−L2

r0

∫

du

h
(12.30)

∼ 1

4πT
ln(1−u) , (u → 1) . (12.31)

The horizon u = 1 corresponds to u∗ →−∞. As discussed in Sect. 2.3.2, if one uses

the Schwarzschild time coordinate t, it takes an infinite amount of coordinate time

to reach the horizon. In the tortoise coordinate, this familiar effect is interpreted that

the horizon is infinitely far away. Since ds2 ∝ −dt2+du2
∗, the infinite amount of the

coordinate time is possible if the horizon is located at infinity u∗ →−∞.

Using the tortoise coordinate and combining the time-dependence, the near-

horizon solutions are written as

φ ∝ e−iωt(1−u)±iw/(4π) ≃ e−iω(t∓u∗) . (12.32)

The solutions take the standard plane-wave form, and two solutions represent either

“incoming” to the horizon (the lower sign in the double sign expression) or “outgo-

ing” from the horizon. We impose the “incoming-wave” boundary condition, so we

4 This is possible if the power series solution about u = 1 has the radius of convergence 1. Note

that the differential equation must not have other singular points within the radius on the complex

u-plane. This holds for our problem since the nearest singular point of u = 1 is u = 0.
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choose the solution

φk ∝ (1−u)−iw/(4π) , (u → 1) (12.33)

≃ (1−u4)−iw/(4π) , (u → 1) . (12.34)

Below we solve the perturbation equation as a power series in w and compare

with the near-horizon solution. So, expand the near-horizon solution (12.34) in terms

of w as well. From ax ∼ 1+ x lna+ 1
2
x2(lna)2 + · · · ,

φk ∝ 1− iw

4π
ln(1−u4)+ · · · , (u → 1) . (12.35)

The solution (12.34) is valid near the horizon 1− u ≪ 1 or ln(1− u) ≫ 1. On the

other hand, the above w-expansion is valid when w ln(1− u)≪ 1. These two con-

ditions are satisfied for a small enough w.

The w-expansion We obtained the near-horizon solution, but we now obtain the

solution for all u as a power series in w:

φk = F0(u)+wF1(u)+ · · · . (12.36)

Then, Eq. (12.22) becomes
(

h

u3
F ′

i

)′
= 0 , (12.37)

where i = 0,1. Equation (12.37) is easily solved as

Fi = Ai +Bi ln(1−u4) , (12.38)

where Ai and Bi are integration constant. Thus,

φk = (A0 +wA1)+(B0 +wB1) ln(1−u4)+O(w2) . (12.39)

Finally, we impose boundary conditions. The boundary condition at the AdS bound-

ary u → 0 is given by φk(u → 0) = φ
(0)
k , so

A0 +wA1 = φ
(0)
k . (12.40)

The boundary condition at the horizon reduces to Eq. (12.35), which determines the

rest of integration constant:

B0 +wB1 =− iw

4π
φ
(0)
k . (12.41)

To summarize, the solution is given by
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φk = φ
(0)
k

{

1− iw

4π
ln(1−u4)+O(w2)

}

, (0 ≤ u ≤ 1) . (12.42)

∼ φ
(0)
k

{

1+
1

4π
iwu4 + · · ·

}

, (u → 0) . (12.43)

The O(w) coefficient 1/(4π) gives the value of η/s.

12.2 Comparison with QGP

12.2.1 How can one see viscosity in the experiment?

Experimentally, the shear viscosity of QGP can be measured through the phe-

nomenon called the elliptic flow. In heavy-ion experiments, one collides heavy nu-

clei. The elliptic flow is a phenomenon when nuclei undergo off-axis collisions in-

stead of head-on collisions (Fig. 12.1). In such a collision, the nuclei overlap in the

almond-shaped region in the figure. The strong interaction is a short-range force, so

the plasma formation occurs in this almond-shaped region.

Let us consider particles which are created near the center of the almond:

• Suppose that the particles initially have the momenta in the longer direction of

the almond. In this direction, the particles have to travel longer until they get out.

So, there are more chances to collide with the other particles. As a result, the

distribution of the finial momentum directions becomes more or less isotropic

due to the scatterings.

• On the other hand, if the particles initially have the momenta in the shorter di-

rection, the particles have less chances for collisions. Thus, the particles tend to

preserve the initial momentum directions.

Then, the overall particle distribution is not isotropic, and more particles should

be observed along the shorter direction. The important point is that the anisotropy

comes from interactions of particles, namely from the viscosity. For an ideal gas,

the particle distribution should be isotropic.

To represent such anisotropy, expand the produced particle number N as a Fourier

series:
dN

dϕ
= N {1+2v2 cos(2ϕ)+ · · ·} , (12.44)

where ϕ represents the angle from the shorter axis (reaction plane). The coefficient

v2 is called the elliptic flow.

Figures 12.2 compare experimental results with hydrodynamic analysis [21]. The

vertical axis represents v2. A larger v2 implies stronger interaction. For hydrody-

namic analysis, each figure plots four curves with different values of η/s. The ellip-

tic flow is indeed largest for the perfect fluid case which is the naive strong coupling

limit. From this analysis, they conclude that
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φ

Fig. 12.1 Elliptic flow. The nuclei overlap in the shaded region. The width of arrows represents

the produced particle number N.
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Fig. 12.2 Comparison between RHIC results and hydrodynamic simulations [21]. Figures (a) and

(b) use different sets of initial conditions. (“KLN” on the left and “Glauber” on the right indicate

sets of initial conditions.) The figures compare experimental results (plots with error bars) and

hydrodynamic simulations with various values of the viscosity (solid lines on the left and dashed

lines on the right.) The horizontal axis represents particle multiplicity per overlap area, and the

vertical axis represents the elliptic flow v2 (normalized by eccentricities ε of the overlap region.)

1

4π
<

η

s
< 2.5× 1

4π
, (Tc < T . 2Tc) . (12.45)

Main uncertainties come from different sets of initial conditions. (See also Ref. [22]

for the status of hydrodynamic simulations as of 2012.)

In such analysis, one numerically simulates the fluid using hydrodynamic equa-

tions. Since one does not know the values of transport coefficients such as the vis-

cosity, one tries simulations using various values of transport coefficients, fits with

experimental results, and determine the values of transport coefficients. However,

QGP has a complicated time-evolution, so hydrodynamic simulations alone cannot

determine the viscosity. There are various uncertainties:

• First, one has to specify the initial conditions as the fluid (such as initial velocity

fields and energy density). They depend on dynamics of the system before one
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can use hydrodynamics, namely before QGP achieves local equilibrium. One

specifies these conditions using QCD, but this is a difficult problem by itself. If

one does not know this dynamics well, one has to try various initial conditions as

well.

• Also, QGP expands and cools down by the expansion. Eventually, the temper-

ature is below the transition temperature, so quarks are confined into hadrons

(hadronization). But this process is not completely understood.

• To determine η , one needs at least (2+1)-dimensional simulations which require

more computational powers than the (1+1)-dimensional simulations. Such sim-

ulations become possible only in recent years.

• The standard relativistic viscous hydrodynamics actually has unphysical insta-

bilities, and numerical simulations of relativistic viscous fluids are not possible.

One can remove such instabilities, but this requires to introduce new transport

coefficients. But the results then depend on the values of these new transport co-

efficients. (So, the simulation of Fig. 12.2 is not the one of the standard relativistic

hydrodynamics.) We briefly discuss this issue in Sect. 12.3.3.

12.2.2 Comparison with lattice simulation

Hydrodynamic simulations above determine the value of viscosity phenomenologi-

cally by comparing with experiments. But, in principle, one can determine the value

using QCD. Namely, if one evaluates the Kubo formula in QCD, one can determine

the viscosity microscopically. Of course, such a computation is difficult analytically

at strong coupling (this is why we use AdS/CFT), but lattice simulations become

possible, and the results are close to Eq. (12.12). According to Ref. [23], pure SU(3)
gauge theory has

η

s
= 0.134(33) , (T = 1.65Tc) , (12.46)

cf.
η

s
=

1

4π
≈ 0.08 , (AdS/CFT) . (12.47)

(Fig. 12.3. See Ref. [24] for an early work.) This approach has both advantage and

disadvantage:

• advantage: Hydrodynamic simulations have various uncertainties which come

from the complicated QGP time-evolution, but this approach is free from such

uncertainties in principle. It should be able to answer the question if strongly-

coupled gauge theories really have a very small η/s.

• disadvantage: It does not answer the question if what one sees in heavy-ion ex-

periments are really the effects caused by a small η/s or not. Also, this compu-

tation in Fig. 12.3 itself partly uses AdS/CFT results, so it is not completely an

independent result from AdS/CFT.
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Fig. 12.3 A lattice simulation for η/s [23]. This is the result for pure SU(3) gauge theory.

The horizontal line corresponds to the AdS/CFT result. Adapted from slides at the conference

NFQCD2008.

Note that this is the result for pure SU(3) gauge theory. The AdS/CFT result applies

to supersymmetric gauge theories in the large-Nc limit. But this result [23] implies

that the universality holds in a good approximation even for gauge theories which

do not have supersymmetry and are not in the large-Nc limit.

12.2.3 Why study supersymmetric gauge theories?

One can study various gauge theories using AdS/CFT, but they are supersymmetric

gauge theories. This is because we do not yet have the gravitational dual to QCD.

So, in AdS/CFT, we use supersymmetric gauge theories such as the N = 4 SYM.

Then, one would ask if supersymmetric gauge theories have anything to do with real

QCD. There could be at least two possible answers:

• The first answer is “universality.” Here, the word universality means the observ-

ables which have universal behaviors among gauge theories. If one can find such

an observable and can compute it, one would expect that the result equally ap-

plies to QCD. The ratio η/s is one example.

• The first answer applies only to restricted class of observables. Although we lose

the rigor, the second answer is that “N = 4 SYM may not be far from QCD in

some cases.”

To be clear, we are not saying that the N = 4 SYM is always close to QCD. To

understand this point, let us compare the N = 4 SYM with QCD as we change the

temperature (Fig. 12.4). In general, these two theories are very different. At high

temperature, QCD runs to weak coupling, but the N = 4 SYM is scale invariant;

if it is strongly-coupled at one temperature, it remains strongly-coupled. At zero
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 (with massive adjoint matters)
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T > Tc

Fig. 12.4 Comparison between QCD and N = 4 SYM in three temperature regions.

temperature, these two theories are again different. QCD is confining whereas the

N = 4 SYM is not confining due to supersymmetry.

However, at intermediate temperature, both theories are strongly-coupled plas-

mas, and they show similar behaviors such as the deconfinement and the Debye

screening. Compared with QCD, the N = 4 SYM has extra matter fields in the

adjoint representation. However, at finite temperature, both adjoint fermions and

scalars have masses m2 ≃ O(λT 2). This effect breaks supersymmetry at finite tem-

perature5. Then, one expects that the N = 4 SYM at finite temperature is close to

a pure Yang-Mills theory. It is this region in which one expects that supersymmetric

gauge theories may be close to QCD.

For example, compare the speed of sound. In a scale-invariant theory, the energy

density ε and the pressure P are related by P = 3ε , so the speed of sound cs is given

by

c2
s =

dP

dε
=

1

3
. (12.48)

According to lattice simulations (Fig. 12.5), the speed of sound for QCD deviates

from 1/
√

3 significantly near the transition temperature Tc, but it quickly approaches

1/
√

3 around T > 2Tc. Thus, the N = 4 SYM may be a good approximation to

QCD in this temperature region.

As lattice simulation results, let us look at the entropy density as well. According

to AdS/CFT, the entropy density of the N = 4 SYM at strong coupling becomes

3/4 of the free gas result (Sect. 7.2). A similar behavior has been seen in lattice

simulations (Fig. 12.6). Just as the speed of sound, one should not compare the

5 We loosely mentioned “supersymmetric gauge theories” even at finite temperature, but this means

gauge theories which have supersymmetry at zero temperature.
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N = 4 SYM with QCD near the transition temperature. The numerical coefficient

of the entropy density decreases slightly from the free gas result6.

6 This decrease does not seem to agree with 3/4 of the AdS/CFT result. But (1) the number 3/4 is

likely to be theory-dependent [27]; (2) the AdS/CFT result is the strong coupling result. One has

to take these issues into account for comparison.
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Fig. 12.7 η/s for helium, nitrogen, and water (under certain pressures) [28]. There is a horizontal

line which almost overlaps with the horizontal temperature axis: this is the AdS/CFT value.

12.3 Other issues

12.3.1 Viscosity bound

We saw that η/s = 1/(4π), but this is the strong coupling limit or the large-Nc limit.

The shear viscosity is proportional to the mean-free path. As the interaction becomes

weaker, the mean-free path becomes longer. Thus, the shear viscosity increases at

weak coupling. So, one expects

η

s
≥ h̄

4πkB
. (12.49)

Naively, one would expect the perfect fluid in the strong coupling limit. But

AdS/CFT suggests that η/s cannot be small indefinitely and is saturated. We will

return to the corrections to the large-Nc limit in Sect. 12.3.2.

Now, we so far considered relativistic Yang-Mills plasmas. But there is a conjec-

ture [28] which claims that any fluid satisfies Eq. (12.49). Figure 12.7 shows η/s

for several fluids. These fluids certainly satisfy the relation.

A simple argument suggests the existence of the bound. In general, the shear

viscosity and the entropy density of a fluid are given by

η ≃ ρ v̄lmfp, s ≃ ρ

m
kB (12.50)

(ρ: mass density, v̄: mean velocity of particles of the fluid, lmfp: mean-free path,

m: particle mass). Then, the viscosity bound η/s & h̄/kB implies lmfp & h̄/(mv̄),
namely the mean-free path should be longer than the de Broglie wavelength. For

usual fluids, the particle picture is valid, so the relation is expected to hold.
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Care is necessary for superfluids. A superfluid such as the liquid helium 4He has

a nonzero viscosity (Fig. 12.7). It is true that no viscous resistance is observed when

the liquid helium goes through a narrow pipe. On the other hand, a viscous drag is

observed when a test body is moved in the liquid, which indicates that the liquid

helium has a component with a nonzero viscosity.

According to the two-fluid model, a superfluid consists of the superfluid compo-

nent and the normal component. The superfluid component has no viscosity, but the

normal component has a nonzero viscosity, so a superfluid has a nonzero viscosity

as a whole. The viscous drag in the liquid is caused by the normal component. The

normal component represents the effect of thermal fluctuation, and it always exists

at finite temperatures. The particle description is valid for the normal component.

12.3.2 Corrections to the large-Nc limit �

Here, we consider the corrections to the large-Nc limit further. First recall that the

strong coupling limit in AdS/CFT differs from the the strong coupling in QGP:

• QGP: λ = O(10)CNc = 3 (gYM = O(1))
• AdS/CFT: λ → ∞CNc → ∞ (gYM → 0)

The meaning of strong couplings differs, but it does not mean that AdS/CFT results

are useless. The real issue is whether the corrections are small or not when one

approximates the strongly-coupled QGP by AdS/CFT in the large-Nc limit.

AdS/CFT has two independent parameters, λ and Nc, so there are two kinds of

corrections. Here, we briefly discuss these corrections.

1/λ -corrections The 1/λ -corrections correspond to the α ′-corrections from the

gravitational point of view (Sect. 5.3.3). For the N = 4 SYM, the α ′-corrections in

the dual supergravity take the form

S=
1

16πG10

∫

d10x
√−g

{

R+ l6
s O(R4)+ · · ·

}

. (12.51)

From the AdS/CFT dictionary (12.3), l6
s means O(λ−3/2) corrections. If one takes

the corrections into account, η/s becomes [29, 30]

η

s
=

1

4π

(

1+
120

8
ζ (3)

1

λ 3/2
+ · · ·

)

, (12.52)

where ζ (3) = 1.20206 . . .. To estimate the magnitude of the correction, use αQCD :=
g2

YM/(4π) = 1/2 or λ = 6π , which is often used for QGP analysis. The correction

is about 22% increase if we use λ = 6π .

Although the universality holds for many different black holes, why does η/s

deviate from 1/(4π) with corrections?
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• First, the area law s = a/(4G5) holds as long as the gravitational action takes

the form of the Einstein-Hilbert action (Sect. 3.2.1). But the corrections (12.51)

do not satisfy the assumption. So, the area law does not hold.

• Second, when we solve the tensor mode perturbation, we use the fact that the

perturbation equation takes the form of the massless scalar field. But the 1/λ -

corrections are higher derivative terms, so the perturbation equation no longer

takes the form of the massless scalar field.

The deviation from 1/(4π) arises from these effects.

However, unlike the λ → ∞ result, there is no universality for the corrections

(12.52). Namely, the result is specific to the N = 4 SYM and is not universally true.

This is because the explicit form of α ′-corrections depend on the gauge theory or the

dual gravitational theory one considers. Moreover, generally many terms contribute

to the α ′-corrections and not all terms are known. So, it would be nice if one could

compute the 1/λ -corrections in the other gauge theories (e.g., Dp-branes with p 6=
3), but it is not possible in general. Thus, it is not clear either if the above estimate

of 22% increase is realistic or not.

Instead , one would simply choose a gravitational theory with some α ′-corrections

one can handle and study the 1/λ -corrections of the theory [31]. In this case, the

dual gauge theory is not clear though.

1/Nc-corrections The 1/Nc-corrections correspond to string loop corrections or

quantum gravity corrections from the gravitational point of view. String theory is the

theory of quantum gravity, but in general it is difficult to evaluate quantum gravity

effects. Thus, the 1/Nc-corrections are difficult to compute as well, and the correc-

tions have not been evaluated for the N = 4 SYM.

However, the 1/Nc-corrections have been studied from different motivations.

First of all, there are phenomena which are never visible in the large-Nc limit. Such

a phenomenon is essentially tied to fluctuations, and they are particularly important

in low spatial dimensions. For example, the fluctuations become large in low spatial

dimensions, and there is no spontaneously symmetry breaking. But the fluctuations

are suppressed in the large-Nc limit so that one has spontaneously symmetry break-

ing even in low spatial dimensions (Sects. 13.1.4 and 14.3).

In principle, such a phenomenon can be explored by taking the 1/Nc-corrections

into account. In practice, quantitative computations are difficult because they are

quantum gravity effects. But for those applications, one is mainly interested in qual-

itative behaviors of the phenomena, so the discussion is possible to some extent

[32, 33, 34, 35].

To conclude, the 1/λ -corrections have been evaluated for the N = 4 SYM and

may be small enough, but it is not clear for the other gauge theories. On the other

hand, the 1/Nc-corrections have not been evaluated for the N = 4 SYM. Therefore,

at this moment, it is not clear if the strong coupling expansion in AdS/CFT is good

enough to describe the real strongly-coupled QGP.
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12.3.3 Revisiting diffusion problem: hydrodynamic application �

When we solve the perturbation equation for the tensor mode, we solved it as a

power series expansion in ω . As one can see from Eq. (12.11), there should be

O(ω2,q2)-corrections to h
(1)
xy . The corrections must be the ones for the response

δ 〈T µν〉, but how can we interpret them in the boundary theory?

We utilized hydrodynamics for the boundary interpretation. From the field the-

ory point of view, “standard” hydrodynamics corresponds to low orders in effective

theory expansion. Namely,

• The zeroth order: the perfect fluid.

• The first order: the viscous fluid.

In Chap. 9, we stopped at the first order, but one can continue the derivative expan-

sion. The resulting hydrodynamics is called causal hydrodynamics or second-order

hydrodynamics. In particular, the Israel-Stewart theory [36, 37, 38] is well-known

and has been widely studied in the literature.

In such a theory, new parameters or new transport coefficients appear from the

higher order terms, but little is known about them. Just like hydrodynamics, second-

order hydrodynamics is a framework: it does not tell the values of these parameters.

However, AdS/CFT can determine these new transport coefficients if one solves the

bulk perturbation equation up to higher orders [39, 40, 41]. The results obtained in

AdS/CFT have been immediately applied to QGP hydrodynamic simulations.

The diffusion case To understand the physical meaning of causal hydrodynamics/second-

order hydrodynamics, let us go back to the diffusion problem. In Sect. 9.3.2, we saw

that the diffusion equation has the following solution:

ρ(t,x) =
1√

4πDt
exp

(

− x2

4Dt

)

. (12.53)

This solution starts with the delta-function distribution, and it is smeared as the time

passes. The point is that the solution is nonzero everywhere although it is exponen-

tial. In particular, it is nonvanishing even outside the light-cone x > ct. This implies

an infinite velocity for the signal propagation, so it does not satisfy causality.

Mathematically, the diffusion equation is parabolic (Fig. 12.8): it has first deriva-

tive in time but has second derivatives in space. Such an asymmetry is important for

the physics of diffusion which is asymmetric in time, but this means that it does not

satisfy causality.

So, what is wrong? We used two equations to derive the diffusion equation, the

conservation equation and the constitutive equation (Fick’s law). The conservation

equation has the fundamental importance, but Fick’s law is a phenomenological

equation, so what is wrong is Fick’s law:

Ji =−D∂iρ . (12.54)
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Parabolic: −∂0ρ +D∂ 2
i ρ = 0 diffusion equation
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Elliptic: ∂ 2
i φ = 0 Laplace equation

Fig. 12.8 The classification of differential equations and their typical examples in physics.

Suppose that the charge gradient vanishes at some instance, ∂iρ = 0 for t = 0. Then,

Fick’s law tells that the current vanishes immediately, i.e., Ji(t ≥ 0) = 0. But this

sounds unnatural; in reality, the current should decay in some finite time period. So,

modify Fick’s law as follows:

τJ∂0Ji + Ji =−D∂iρ . (12.55)

The first term is a new term added, and τJ is a new transport coefficient. When

τJ = 0, it gives the original Fick’s law. Equation (12.55) has the solution where the

current decays exponentially: Ji(t ≥ 0) = Ji(0)e
−t/τJ . Namely, τJ is the relaxation

time for the charge current7.

Now, combine the conservation equation with the modified law (12.55): in this

case, one gets the telegrapher’s equation:

τJ∂ 2
0 ρ +∂0ρ −D∂ 2

i ρ = 0 . (12.56)

This is a hyperbolic equation. The new term is second derivative in time, whereas

the original term is first derivative in time, so the new term becomes important for

rapid evolution.

A combination of D and τJ gives a quantity with a dimension of speed:

v2
front := D/τJ . (12.57)

This gives the characteristic velocity for the signal propagation. So, if v front < c,

causality is fine. This is the origin of the name, causal hydrodynamics. Let us rewrite

the telegrapher’s equation in momentum space. Eq. (12.56) is written as

− τJω2 − iω +Dq2 = 0 , (12.58)

so the dispersion relation becomes

ω =−iDq2 − iD2τJq4 +O(q6) (12.59)

for the hydrodynamic mode. The first term is the familiar dispersion relation (9.67)

we saw earlier, and the second term is the correction due to causal hydrodynamics.

What we have done so far is just an effective theory expansion in higher orders,

and τJ is a new transport coefficient associated with the higher order expansion.

7 One often calls it just as the “relaxation time” in literature, but one had better specify what is

relaxing. For example, the relaxation time for the charge density is given by τρ ≃ 1/(Dq2). The

relaxation time here is the one for the current.
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The original diffusion problem corresponds to the case where the current relaxation

happens very fast so that we can approximate τJ = 0. Namely, the time scale τ of

the problem is given by τ ≫ τJ .

From the point of view of an effective theory, one had better include O(ω3,q3)
terms further at higher energy and shorter wavelength which we ignored. In order

to check causality, one actually needs a dispersion relation which is valid for all

energy. So, the issue of causality can be answered only if we sum all terms in the

effective theory expansion. Equation (12.57) is just a rough estimate. This raises the

question if second-order hydrodynamics is really useful. Actually, standard “first-

order” hydrodynamics such as the diffusion equation has the other difficulties, and

second-order hydrodynamics is useful to solve these problems (see below).

Fluid case Now, move from the diffusion problem to the fluid problem. The prob-

lem of fluids is rather complicated, so we make only some general remarks. For

fluids, we again have two equations:

• The conservation equation: ∇µ T µν = 0,

• The constitutive equation:

T µν = (ε +P)uµ uν +Pg(0)µν + τµν , (12.60)

τµν =−Pµα Pνβ

{

η

(

∇α uβ+∇β uα − 2

3
g
(0)
αβ

∇·u
)

+ζ g
(0)
αβ

∇·u
}

. (12.61)

Once again, the constitutive equation is imposed as a phenomenological equation.

Higher orders in effective theory correspond to adding higher order terms in the

derivative expansion. As the result, the O(ω2,q2)-corrections appear in Eq. (12.61).

For example, the response δ 〈τxy〉 is modified from Eq. (12.6) as

δ 〈τxy〉=
[

iωη −ητπ ω2 +
κ

2
{(p−2)ω2 +q2}

]

h
(0)
xy , (12.62)

(for p≥ 3 conformal fluids) if we include O(ω2,q2)-corrections [39]. Here, τπ and κ
are two of new transport coefficients which appear in second-order hydrodynamics.

The coefficient τJ is the relaxation time for the current. Similarly, τπ has the physical

meaning as the relaxation time of the momentum flux. From the bulk point of view,

these new terms correspond to the O(ω2,q2)-corrections to h
(1)
xy .

AdS/CFT can determine these transport coefficients, but AdS/CFT tells us more.

The formalism of second-order hydrodynamics must be consistent with AdS/CFT

results. Second-order hydrodynamics has a long history: it has been discussed more

than 100 years if we include nonrelativistic cases. But no unique formalism has been

obtained. Namely, the Israel-Stewart theory may not be the most general effective

theory.

In fact, in order to interpret AdS/CFT results consistently, there should exist new

higher order terms which were missing in the Israel-Stewart theory. These new terms

introduce a further set of transport coefficients at second order which had not been

discussed. The coefficient κ in Eq. (12.62) is one example. Namely,
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One can cross-check the hydrodynamic framework itself using AdS/CFT results.

As we mentioned above, first-order hydrodynamics has difficulties other than

causality. Second-order hydrodynamics is useful to solve these problems:

1. Unphysical instabilities: Standard relativistic first-oder hydrodynamics has un-

physical instabilities [42, 43]. Second-order hydrodynamics is free from this

problem (at least for linear perturbations). From a practical point of view, the

instability implies that we have no control on numerical simulations as soon as

viscosity is introduced. Numerical simulation for first-order hydrodynamics sim-

ply does not exist. For a numerical simulation, we are forced to consider second-

order hydrodynamics. That is the reason why the AdS/CFT results for second-

order hydrodynamics was immediately applied to QGP numerical simulations.

2. Frame dependence: We have discussed the Landau-Lifshitz frame and the Eckart

frame (Sect. 9.3.5). For a nonequilibrium state, one in general has various flows

associated with different currents, so the notion of the “fluid rest frame” is am-

biguous: a different flow defines a different “fluid rest frame.” Two commonly

used choices are the Landau-Lifshitz frame and the Eckart frame.

In principle, these are just a choice of rest frames. However, they are not just

a choice of frame in first-order theories, and they are actually different theo-

ries. This is because the transformation of these “frames” is impossible within

the framework of first-order theories. Namely, first-order theories are frame-

dependent.

In order to guarantee the frame-independence, one needs to take into account

some second-order terms. But then one had better consider the full second-order

theory. This problem is clear in the above instability problem. In the Eckart

frame, the instability is more severe than the Landau-Lifshitz frame.

12.4 Summary

• According to AdS/CFT, a strongly-coupled large-Nc plasma has the universal

value of η/s = 1/(4π). This is true for all known examples (in the large-Nc

limit). The value is extremely small compared with ordinary materials.

• This universality is tied to the universal nature of black holes, e.g., the area law

of black hole entropy.

• QGP has a small η/s whose value is close to the AdS/CFT prediction. This is

supported by heavy-ion experiments and lattice simulations.

New keywords
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tortoise coordinate

elliptic flow

viscosity bound

causal/second-order hydrodynamics

[quasinormal mode]

12.5 Appendix: Tensor mode action �

In this appendix, we derive the action for the tensor mode and evaluate the on-shell

action. The on-shell action then gives the field/operator correspondence (12.9) for

the gravitational perturbation.

As we saw in Sect. 7.5, the gravitational action consists of the bulk action Sbulk,

the Gibbons-Hawking action SGH, and the counterterm action SCT
8:

S= Sbulk +SGH +SCT . (12.63)

Below we evaluate each action for the tensor mode perturbation. We use the coordi-

nate system (12.1). We also set φ = gxxhxy. We make the Fourier transformation in

the boundary spacetime directions xµ = (t,xxx) = (t,x,y,z):

φ(t,xxx,u) =
∫

(dk)e−iωt+iqqq·xxxφk(u) , (dk) :=
d4k

(2π)4
. (12.64)

The bulk action The bulk action is the standard Einstein-Hilbert action:

Sbulk =
1

16πG5

∫

d5x
√−g(R−2Λ) =

r4
0

16πG5L5
Ŝbulk , (12.65)

2Λ =− p(p+1)

L2
. (12.66)

One can check that the factor in front of Ŝbulk is common to the other on-shell

actions, so we will set r0 = L = 16πG5 = 1. For the tensor mode perturbation,

Sbulk ∼ S0 +S2 , (12.67)

where “∼” denotes terms up to O(φ 2), and one can show9

S0 =−
∫ 1

0
du

8V4

u5
(12.68)

S2 =
∫ 1

0
du

[

h

u3

(

3

2
φ ′
−k ·φ ′

k +2φ−k ·φ ′′
k

)

− 8

u4
φ−k ·φ ′

k

+

(

w2 −q2h

2u3h
+

4

u5

)

φ−k ·φk

]

, (12.69)

8 We consider the Euclidean action in Sect. 7.5 but we consider the Lorentzian action here.
9 This can be derived analytically, but one may use Mathematica.
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where V4 is the four-dimensional “volume” in the (t,xxx)-directions, and

f−k ·gk :=
∫

(dk) f−kgk ,
′ := ∂u , w :=

ω

T
, q :=

q

T
.

Note that the action contains the term with φ ′′ unlike the usual scalar field.

Let us consider a generic action of the form

S=
∫

duL (φ ,φ ′,φ ′′) . (12.70)

The variation of the action is given by

δS=
∫

du

(

∂L

∂φ

)

δφ +

(

∂L

∂φ ′

)

δφ ′+

(

∂L

∂φ ′′

)

δφ ′′ (12.71)

=

{

∂L

∂φ ′ −
(

∂L

∂φ ′′

)′}

δφ +
∂L

∂φ ′′ δφ ′
∣

∣

∣

∣

bdy

+
∫

du

{(

∂L

∂φ ′′

)′′
−
(

∂L

∂φ ′

)′
+

∂L

∂φ

}

δφ . (12.72)

The second line of Eq. (12.72) is the equation of motion. For the tensor mode, one

can check that it coincides with the massless scalar one:

u3

h

(

h

u3
φ ′

k

)′
+

w2 −q2h

π2h2
φk = 0 . (12.73)

Now, a quadratic action can be written as

2S∼
∫

du

(

∂L

∂φ

)

φ +

(

∂L

∂φ ′

)

φ ′+

(

∂L

∂φ ′′

)

φ ′′ . (12.74)

Following the similar steps as Eqs. (12.71)-(12.72), the on-shell action becomes10

2S∼
{

∂L

∂φ ′ −
(

∂L

∂φ ′′

)′}

φ +
∂L

∂φ ′′ φ
′
∣

∣

∣

∣

bdy

. (12.75)

Using the explicit form of the action (12.69), one gets

Ŝbulk
u→0−−→ V4

(

− 2

u4
+2

)

+

(

1

u4
−1

)

φ−k ·φk−
3

2u3
φ−k ·φ ′

k

∣

∣

∣

∣

u=0

. (12.76)

The Gibbons-Hawking action Upon variation of an action, surface terms arise.

As usual in the variational problem, setting δφ |bdy = 0 removes the terms which

are proportional to δφ |bdy. But the gravitational action (12.69) contains the term

with φ ′′ unlike the standard field theory action. Then, the variation gives the terms

10 We write the on-shell action S as S for simplicity.
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which are proportional to δφ ′|bdy as one can see on the first line of Eq. (12.72). The

Gibbons-Hawking action cancels the terms in order to have a well-defined varia-

tional problem:

SGH =
2

16πGp+2

∫

dp+1x
√−γ K . (12.77)

See Sect. 7.5 for notations. For the SAdS5 black hole, nu = −uh1/2 and
√−γ =

u−4h1/2(1−φ 2)1/2, so

LGH = 2
√−γK = 2nu∂u

√−γ (12.78a)

=−2uh1/2
[

u−4h1/2(1−φ 2)1/2
]′

(12.78b)

∼ 2u−3hφφ ′−2uh1/2(u−4h1/2)′
(

1− 1

2
φ 2

)

. (12.78c)

Thus,

SGH
u→0−−→ V4

(

8

u4
−4

)

+

(

− 4

u4
+2

)

φ−k ·φk+
2

u3
φ−k ·φ ′

k

∣

∣

∣

∣

u=0

. (12.79)

The δφ ′|u=0 term which arises from the Gibbons-Hawking action cancels with

the δφ ′|u=0 term which arises from the bulk action:

δLbulk =
∂Lbulk

∂φ ′′
k

δφ ′
k + · · ·

∣

∣

∣

∣

u=1

u=0

= − 2

u3
hφ−k ·δφ ′

k + · · ·
∣

∣

∣

∣

u=0

, (12.80)

δLGH =
∂LGH

∂φ ′
k

δφ ′
k + · · ·

∣

∣

∣

∣

u=0

= +
2

u3
hφ−k ·δφ ′

k + · · ·
∣

∣

∣

∣

u=0

, (12.81)

where · · · represents the terms which are proportional to δφ .

The counterterm action The counterterm action is given by

SCT =− 1

16πGp+2

∫

dp+1x
√−γ

{

2p

L
+

L

p−1
R

− L3

(p−3)(p−1)2

(

R
µν

Rµν −
p+1

4p
R

2

)

+ · · ·
}

. (12.82)

See Sect. 7.5 for notations. According to the Kubo formula, the shear viscosity arises

at O(ω) term in the response, and one can ignore the O(R) terms which contain at

least two derivatives. Evaluating only the first term gives

LCT =−6
√−γ (12.83a)

=−6u−4h1/2(1−φ 2)1/2 (12.83b)

∼−6u−4h1/2

(

1− 1

2
φ 2

)

. (12.83c)
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Thus,

SCT
u→0−−→ V4

(

− 6

u4
+3

)

+

(

3

u4
− 3

2

)

φ−k ·φk

∣

∣

∣

∣

u=0

. (12.84)

The full on-shell action To summarize our results (12.76), (12.79), and (12.84),

Sbulk = V4

(

− 2

u4
+2

)

+

(

1

u4
−1

)

φ−k ·φk −
3

2u3
φ−k ·φ ′

k

∣

∣

∣

∣

u=0

,

SGH = V4

(

8

u4
−4

)

+

(

− 4

u4
+2

)

φ−k ·φk +
2

u3
φ−k ·φ ′

k

∣

∣

∣

∣

u=0

,

SCT = V4

(

− 6

u4
+3

)

+

(

3

u4
− 3

2

)

φ−k ·φk

∣

∣

∣

∣

u=0

.

Combining these results, we get

S= V4 −
1

2
φ−k ·φk +

1

2u3
φ−k ·φ ′

k

∣

∣

∣

∣

u=0

. (12.85)

Field/operator correspondence If we recover dimensionful quantities, the on-

shell action becomes

S=
r4

0

16πG5L5

{

V4 +
∫

(dk)

[

−1

2
φ−kφk +

1

2u3
φ−kφ ′

k

]∣

∣

∣

∣

u=0

}

. (12.86)

The first term which does not depend on the fluctuation is the Lorentzian version

of the free energy computed in Sect. 7.5. The third term takes the same form as the

massless scalar case in Sect. 10.2, but we have an additional term, the second term.

We discuss the implication of the second term below.

Since φk satisfies the equation of motion for the massless scalar, the asymptotic

behavior is given by Eq. (10.15):

φk ∼ φ
(0)
k

(

1+φ
(1)
k u4

)

. (12.87)

Thus, the on-shell action becomes

S=
r4

0

16πG5L5

{

V4 +
∫

(dk)φ
(0)
−k

(

−1

2
+2φ

(1)
k

)

φ
(0)
k

}

. (12.88)

We now evaluate 〈T xy
k 〉s. The perturbed action in the boundary theory is

δS=
∫

d4x
1

2
h
(0)
µν T µν =

∫

d4xh
(0)
xy T xy (12.89)

from the definition of the energy-momentum tensor. Then, the GKP-Witten relation

gives the one-point function as
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〈T xy〉s =
δS

δh
(0)
xy

=
δS

δφ (0)
. (12.90)

Note that h
(0)
xy = φ (0). But by taking into account the Lorentzian prescription in

Sect. 10.4, one obtains

〈T xy
k 〉s =

r4
0

16πG5L5

(

−1+4φ
(1)
k

)

φ
(0)
k . (12.91)

This is the desired result. The second term coincides with Eq. (12.9).

Then, how about the first term of Eq. (12.91)? This comes from the action (12.86)

which is absent in the scalar field action. Because the on-shell action has an addi-

tional term, the field/operator correspondence (10.18) is modified from the scalar

case as Eq. (12.91). Namely, the rule “the fast falloff as the response” is modified,

and φ
(1)
k does not represent the full response.

The existence of the additional term has a natural hydrodynamic interpretation.

We discussed the constitutive equation in the curved spacetime in Sect. 9.3.6. In

order to derive the Kubo formula, it is enough to consider only the dissipative part,

τµν . But note that the complete constitutive equation is given by

T µν = (ε +P)uµ uν +Pg(0)µν + τµν (12.92)

in the curved spacetime. Then, when one adds gravitational perturbations, δ 〈T µν〉
has an extra term to δ 〈τµν〉: the second term of Eq. (12.92) gives a term which is

proportional to pressure. If we expand11 g
(0)
µν = η

(0)
µν +h

(0)
µν ,

δ 〈T xy〉= Pg(0)xy −2ηΓ 0
xy (12.93a)

=−Ph
(0)
xy −η∂0h

(0)
xy (12.93b)

FT−−→ (−P+ iωη)h
(0)
xy . (12.93c)

The first term of Eq. (12.91) represents this pressure term. Comparing Eqs. (12.91)

and (12.93c), one gets

P =
1

16πG5L

( r0

L

)4

=
π2

8
N2

c T 4 . (12.94)

This agrees with Eq. (7.52b) which is obtained from the free energy.

11 Note g(0)µν = η(0)µν −h(0)µν .
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12.6 Appendix: Some other background materials �

12.6.1 Tensor decomposition

Maxwell perturbations Maxwell field has the gauge invariance

AM → AM +∂MΛ , (12.95)

so we fix the gauge. We choose the gauge

gauge-fixing condition: Au = 0 . (12.96)

The rest of components can be classified by their transformation properties under

the little group SO(2) just as the tensor decomposition of Jµ in Sect. 9.3.7. We

make the Fourier transformation in the boundary spacetime directions xµ = (t,xxx) =
(t,x,y,z)

Aµ(t,xxx,u) =
∫

(dk)e−iωt+iqqq·xxxAµ(ω,qqq,u) , (dk) :=
d4k

(2π)4
, (12.97)

and take kµ = (ω,0,0,q). Then,

vector: Aa , (12.98)

scalar: A0,Az , (12.99)

where xa = (x,y). The scalar mode components do not transform under SO(2), and

the vector mode components transform as vectors.

Gravitational perturbations Similarly, one can make the tensor decomposition

for gravitational perturbations. The gravitational perturbations have the gauge in-

variance, and they transform as Eq. (2.68) under the coordinate transformation:

hMN → hMN +∇MξN +∇NξM , (12.100)

so we fix the gauge. In the five-dimensional spacetime, the coordinate transforma-

tion has five degrees of freedom ξ M , so one needs five gauge-fixing conditions. We

choose the gauge

gauge-fixing condition: huM = 0 . (12.101)

Again, the other components can be classified by the little group SO(2):

tensor: hxy,hxx =−hyy , (12.102a)

vector: h0a,hza , (12.102b)

scalar: h00,h0z,hzz,hxx = hyy . (12.102c)

Figure 12.9 summarizes transport coefficients one can derive from each mode.
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Gravitational field Maxwell field

tensor η (Kubo, Sect. 12.1.4) −
vector η (pole, Sect. 12.7) σ (Kubo, Sect. 12.8)

scalar η ,ζ ,cs (pole) D (pole, Sect. 12.8)

Fig. 12.9 Tensor decomposition of bulk fields and transport coefficients one can derive from each

mode. “Kubo” and “pole” indicate the methods used to derive transport coefficients. This book

does not cover the gravitational scalar mode computation.

12.6.2 How to locate a pole

In the text, we solved the tensor mode to derive η/s, and η/s is the O(ω)-coefficient

of the tensor mode δ 〈T xy〉 or h
(1)
xy . One can derive transport coefficients from other

modes. One could compute the responses such as δ 〈T µν〉 and δ 〈Jµ〉 just like

δ 〈T xy〉, but it is often the case that our primary interest is hydrodynamic poles. For

example, from the discussion in Sect. 9.3.7, the gravitational vector mode should

have a pole at

ω =−i
η

T s
q2 . (12.103)

One can determine η/s by obtaining this dispersion relation. In such a case, we can

simplify the problem slightly.

As an example, consider the massless scalar field in Sect. 10.2. The bulk field

has the asymptotic behavior

φ ∼ φ (0)
(

1+φ (1)u4
)

= A+Bu4 , (u → 0) . (12.104)

Then, the retarded Green’s function is given by

GR ∝ φ (1) =
B

A
. (12.105)

Our purpose here is to find a pole which corresponds to A = 0. Thus, it is enough

to solve the perturbation equation under the boundary condition A = 0 at the AdS

boundary. As we will see below, this is possible if ω and q satisfies a relation which

is the dispersion relation. Namely, a vanishing slow falloff problem determines the

location of poles.

In general relativity, such a computation is called quasinormal mode computa-

tion12. The prefix “quasi” indicates that the poles are located on the complex ω-

plane unlike normal modes. From the black hole point of view, the complex fre-

quency represents the absorption by the black hole and comes from the “incoming-

12 Quasinormal mode computations are traditionally carried out for asymptotically flat black holes,

and one imposes the “outgoing-wave” boundary condition at r → ∞. But it is natural to impose the

Dirichlet condition for an asymptotically AdS spacetime [44] since the spacetime has a potential

barrier by the cosmological constant (Sect. 6.2).
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wave” boundary condition on the horizon. From the hydrodynamic point of view,

this represents the dissipation, e.g., by the viscosity.

12.7 Appendix: Gravitational vector mode computation �

In the text, we have seen the tensor mode computation, but we can determine trans-

port coefficients from the vector mode and the scalar mode as well. For example,

the vector mode has a pole at

ω =−i
η

T s
q2 . (12.106)

Here, we compute η/s from the vector mode and check that the result agrees with

the tensor mode computation. Since we are interested in a pole, we solve the vector

mode under the vanishing slow falloff condition (Sect. 12.6.2).

Perturbation equation We would like to find the pole of the vector mode of T µν ,

so we consider the vector mode perturbation. The vector mode perturbations are h0a

and hza. The a = x and a = y cases are the same from symmetry, so we consider the

a = x case. We first write down the perturbation equation for the vector mode. One

can of course derive it from the Einstein equation, but it is easier to derive it if one

utilizes its symmetry.

The vector mode satisfies a (modified) Maxwell equation. This is because there is

a translational invariance along x. The translational invariance allows us to consider

a “fictitious” S1-compactification. Let the index α run through only noncompact

directions (directions except x). By the S1-compactification, the five-dimensional

metric gMN is decomposed as

gMN → gxx ,gαx ,and gαβ . (12.107)

From the “four-dimensional” point of view13, one cannot “see” the x-direction, so

these components behave as a scalar, a vector, and a tensor, respectively. In particu-

lar, gαx = hαx behaves as a Maxwell field which is known as a Kaluza-Klein gauge

field. Let us write the metric as

ds2
5 = gMNdxMdxN = e2σ (dx+Aα dxα)2 +gαβ dxα dxβ , (12.108)

where e2σ := gxx. In our case, only nonzero vector components are h0x = gxxA0 and

hzx = gxxAz. Upon the compactification, the five-dimensional action becomes14

13 Note that four-dimensions here refer to noncompact directions (t,y,z,u) not to the four-

dimensional boundary directions (t,x,y,z).
14 �See the other textbooks for the derivation of this action, but the form of the action is determined

by symmetry. The metric (12.108) is invariant under

x → cx , Aα → cAα , eσ → c−1eσ , gαβ → gαβ . (12.109)
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S5 =
1

16πG5

∫

d5x
√−g5R5 (12.112)

=
1

16πG5

∫

dx

∫

d4x
√−g4eσ

(

R4 −
1

4
e2σ F2

αβ

)

. (12.113)

Note that the Kaluza-Klein gauge field action has the extra factor e3σ = g
3/2
xx . Thus,

the Aα field equation is given by

∂β (e
3σ√−g4Fαβ ) = 0 . (12.114)

The α = u, 0, and z components of the field equation are

g00ωA′
0 −qgzzA′

z = 0 , (12.115a)

∂u

(

√

−g̃g00guuA′
0

)

−
√

−g̃g00gzz
(

ωqAz +q2A0

)

= 0 , (12.115b)

∂u

(

√

−g̃gzzguuA′
z

)

−
√

−g̃g00gzz
(

ωqA0 +ω2Az

)

= 0 , (12.115c)

where ′ := ∂u and
√−g̃ := e3σ√−g4 = e2σ√−g5. From Eqs. (12.115a) and

(12.115b), one gets a decoupled equation for A′
0 only:

d

du

[

∂u(
√−g̃g00guuA′

0)√−g̃g00gzz

]

+

(

−g00

gzz
ω2 −q2

)

A′
0 = 0 . (12.116)

This is the perturbation equation for the vector mode. For the SAdS5 black hole,

Eq. (12.116) reduces to

1

hu3

(

hu3F ′)′+
w2 −q2h

π2h2
F = 0 , (12.117)

F(u) := u−3A′
0 = u−3

(

h0x

gxx

)′
. (12.118)

Unlike the tensor mode, the vector mode equation does not take the form of the

massless scalar one (12.22). Solving the equation asymptotically, one obtains the

asymptotic behavior of F :

F ∼ A

u2
+B , (u → 0) . (12.119)

The action (12.113) should keep the invariance, which determines the σ -dependence. Symmetry

also requires that the components Aα behave as the Maxwell field. The five-dimensional coordinate

transformation contains the transformation

x → x−Λ(xα ) . (12.110)

From the four-dimensional point of view, the coordinate transformation is nothing but the gauge

transformation:

Aα → Aα +∂αΛ . (12.111)
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The near-horizon solution We again solve the perturbation equation (12.117) as in

Sect. 12.1.4. First, solve the equation near the horizon. Near the horizon, Eq. (12.25)

becomes

F ′′− 1

1−u
F ′+

(

w

4π

)2 1

(1−u)2
F ≃ 0 , (12.120)

which is the same as Eq. (12.25). Then, the solution with the “incoming-wave”

boundary condition is given by

F ∝ (1−u)−iw/(4π) , (u → 1) (12.121)

≃ 1− iw

4π
ln(1−u)+O(w2) . (12.122)

The (w,q)-expansion Second, solve Eq. (12.117) as a double-series expansion in

(w,q):
F = F0(u)+wF10(u)+q

2F01(u)+ · · · . (12.123)

From Eq. (12.117), each variables obey the following equations:

L̂ F0 = 0 , (12.124a)

L̂ F10 = 0 , (12.124b)

L̂ F01 = j01 , (12.124c)

where

L̂ ϕ :=
(

p(u)ϕ ′)′ , p(u) := hu3 , j01(u) :=
F0

π2
u3 . (12.125)

We solve Eqs. (12.124a)-(12.124c) by imposing the boundary conditions at the hori-

zon u → 1 and at the AdS boundary u → 0. The boundary condition at the horizon

reduces to Eq. (12.122), so the boundary conditions for each variables are

F0(u → 1) =C , (12.126a)

F10(u → 1) =− iC

4π
ln(1−u) , (12.126b)

F01(u → 1) = 0 . (12.126c)

In order to solve Eqs. (12.124a)-(12.124c),

• First, solve the homogeneous equation L̂ ϕ = 0. Denote two independent solu-

tions of the homogeneous equation as ϕ1 and ϕ2.

• Then, the solution of the inhomogeneous equation L̂ ϕ = j is also written in

terms of ϕ1 and ϕ2. The solution is given by

ϕ(u) = ϕ1(u)
∫ 1

u
du′

j(u′)ϕ2(u
′)

p(u′)W (u′)
−ϕ2(u)

∫ 1

u
du′

j(u′)ϕ1(u
′)

p(u′)W (u′)
(12.127)



218 12 Applications to quark-gluon plasma

under the boundary condition (12.126c), where W is the Wronskian: W (u) :=
ϕ1ϕ ′

2 −ϕ ′
1ϕ2.

Boundary conditions So, first solve L̂ ϕ = 0, and one obtains ϕ1 and ϕ2 as

ϕ =C1ϕ1 +C2ϕ2 =C1 +C2

{

1

2
ln

1+u2

1−u2
− 1

u2

}

, (12.128)

where C1 and C2 are integration constants. Near the horizon, ϕ behaves as

ϕ ∼C1 +C2

{

−1

2
ln(1−u)−1

}

, (u → 1) . (12.129)

The integration constants for F0 and F10 are determined by comparing this near-

horizon behavior with the boundary conditions at the horizon (12.126). Then, use

Eq. (12.127) to obtain F01. The results are

F0 =C , (12.130a)

F10 =
iC

2π

{

1

2
ln

1+u2

1−u2
− 1

u2
+1

}

, (12.130b)

F01 =
C

8π2

(

1

u2
−1

)

. (12.130c)

Results To summarize, the solution is given by

F

C
= 1+

i

2π
w

{

1

2
ln

1+u2

1−u2
− 1

u2
+1

}

+
1

8π2
q

2

(

1

u2
−1

)

+ · · · . (12.131)

The solution asymptotically behaves as Eq. (12.119):

F

C

u→0−−→ q2 −4πiw

8π2u2
+O(u0) . (12.132)

We impose the vanishing slow falloff condition, so the O(u−2) term must vanish.

This is possible if w and q satisfy

w=− i

4π
q

2 → ω =− i

4πT
q2 . (12.133)

Comparing this with the dispersion relation (12.106), one obtains

η

s
=

1

4π
. (12.134)

This agrees with the tensor mode result (12.12).
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We consider

S=−1

4
α

∫

d5x
√−gF2

MN (12.135)

in the SAdS5 background, where α is an appropriate normalization factor. We

choose the gauge Au = 0. We again consider the perturbation of the form Aµ =
Aµ(u)e

−iωt+iqz. The Maxwell field has the vector mode and the scalar mode (Sect. 12.6.1),

and both determine the diffusion constant D or the conductivity σ (Sect. 9.3.2).

12.8.1 Conductivity from Maxwell vector mode

Recall how to derive the conductivity. Following Sect. 10.3.1, the vector mode Ax

behaves as

Ax ∼ A
(0)
x

(

1+A
(1)
x u2

)

, (u → 0) (12.136)

and the fast falloff is the current Jx:

〈Jx〉s = cAA
(1)
x A

(0)
x , (12.137)

where cA is an appropriate factor. On the other hand, from Ohm’s law,

〈Jx〉s = σE
(0)
x = iωσA

(0)
x . (12.138)

Thus,

iωσ = cAA
(1)
x . (12.139)

The conductivity σ is proportional to the O(ω)-coefficient of the vector mode A
(1)
x .

Then, the computation is similar to the tensor mode one in Sect. 12.1.4.

From the Maxwell equation, the Ax equation (with q = 0) becomes

u

h

(

h

u
A′

x

)′
+

w2

π2h2
Ax = 0 . (12.140)

The near-horizon solution Fist, solve Eq. (12.140) near the horizon. Near the hori-

zon, Eq. (12.140) reduces to the same form as Eq. (12.25). Then, the solution with

the “incoming-wave” boundary condition is given by

Ax ∝ (1−u)−iw/(4π) , (u → 1) (12.141)

≃ 1− iw

4π
ln(1−u)+O(w2) , (u → 1) . (12.142)

The w-expansion Second, solve Eq. (12.140) in the w-expansion:
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Ax = F0(u)+wF1(u)+ · · · . (12.143)

Then, Eq. (12.140) becomes

(

h

u
F ′

i

)′
= 0 , (i = 0,1) , (12.144)

which is solved as

Ax = (A0 +wA1)+(B0 +wB1) ln

(

1+u2

1−u2

)

+O(w2) , (12.145)

where Ai and Bi are integration constant.

Boundary conditions Finally, impose boundary conditions. The boundary condi-

tion at the AdS boundary fixes A0 +wA1 = A
(0)
x . Imposing the boundary condition

at the horizon (12.142), the solution is given by

Ax = A
(0)
x

{

1+
iw

4π
ln

(

1+u2

1−u2

)

+O(w2)

}

, (0 ≤ u ≤ 1) . (12.146)

∼ A
(0)
x

{

1+
iw

2π
u2 + · · ·

}

, (u → 0) . (12.147)

Results The solution (12.147) determines A
(1)
x = iω/(2πT ), so

σ =
cA

2πT
(12.148)

from Eq. (12.139). The factor cA can be obtained by actually evaluating the on-shell

Maxwell action. The computation gives cA = 2α r2
0/L3 and α = L2/(32πG5) for the

N = 4 SYM15. Thus,

cA =
L3

32πG5

2π2T 2 =
1

8
N2

c T 2 , (12.149)

σ =
L3

32πG5

πT =
1

16π
N2

c T . (12.150)

12.8.2 Diffusion constant from Maxwell vector mode

In Sect. 9.3.2, we saw that σ and D are related by σ = DχT , where χT is the ther-

modynamic susceptibility. Thus, once one gets σ , one can get D by computing χT .

Following Sect. 10.3.1, A0 behaves as

15 We change the normalization of the Maxwell field in Sect. 11.2.5 as AM → AM/
√

2, which is

rather conventional. See, e.g., Ref. [9].
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A0 ∼ A
(0)
0

(

1+A
(1)
0 u2

)

, (u → 0) . (12.151)

The slow falloff is the chemical potential µ , and the fast falloff is the charge density

ρ:

〈ρ〉s =−cAA
(1)
0 µ , (12.152)

where the factor cA is common to Eq. (12.137). Then, the thermodynamic suscepti-

bility is given by

χT =
∂ 〈ρ〉s

∂ µ
=−cAA

(1)
0 . (12.153)

The static solution for A0 is given by16 A0(u) = µ(1−u2) or A
(1)
0 =−1. Then,

χT = cA =
L3

32πG5

2π2T 2 =
1

8
N2

c T 2 . (12.154)

Using the formula σ = DχT and the conductivity (12.148), one gets

D =
1

2πT
. (12.155)

Equation (12.139) can be rewritten as

A
(1)
x = iω

σ

cA

= iω
σ

χT

= iωD . (12.156)

In this coordinate system, the O(iω) coefficient of A
(1)
x directly gives the diffusion

constant.

12.8.3 Diffusion constant from Maxwell scalar mode

From the diffusion equation, δ 〈ρ〉 has a pole at

ω =−iDq2 . (12.157)

Here, we compute D from the Maxwell scalar mode and check that the result agrees

with the Maxwell vector mode. Since we are interested in a pole, we solve the scalar

mode under the vanishing slow falloff condition (Sect. 12.6.2). The computation is

similar to the gravitational vector mode one in Sect. 12.7.

The scalar mode components are A0 and Az. The decoupled equation is al-

ready given in Eq. (12.116) (replace
√−g̃ by

√−g). For the SAdS5 black hole,

Eq. (12.116) becomes

16 The Au = 0 condition does not completely fix the gauge. The gauge transformation Aµ (x,u)→
Aµ (x,u)+∂µΛ(x) is still allowed. As discussed in Sect. 10.3.1, we partly fix the gauge by requiring

A0|u=1 = 0.
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1

hu

(

huF ′)′+
w2 −q2h

π2h2
F = 0 , F(u) := u−1A′

0 . (12.158)

The asymptotic behavior of F is given by

F ∼ A lnu+B , (u → 0) . (12.159)

The near-horizon solution First, solve the equation near the horizon. The solution

with the “incoming-wave” boundary condition is given by

F ∝ 1− iw

4π
ln(1−u)+O(w2) . (12.160)

The (w,q)-expansion Second, solve Eq. (12.158) as a doble-series expansion in

(w,q):
F = F0(u)+wF10(u)+q

2F01(u)+ · · · . (12.161)

Each variables obey the equations

L̂ F0 = 0 , (12.162a)

L̂ F10 = 0 , (12.162b)

L̂ F01 = j01 , (12.162c)

where

L̂ ϕ :=
(

p(u)ϕ ′)′ , p(u) := hu , j01(u) :=
F0

π2
u . (12.163)

From Eq. (12.160), the boundary conditions at the horizon for each variables are

F0(u → 1) =C , (12.164a)

F10(u → 1) =− iC

4π
ln(1−u) , (12.164b)

F01(u → 1) = 0 . (12.164c)

Boundary conditions The solution of the homogeneous equation L̂ ϕ = 0 is given

by

ϕ =C1ϕ1 +C2ϕ2 =C1 +C2 ln
4u4

1−u4
, (12.165)

where C1 and C2 are integration constants. The integration constants for F0 and

F10 are determined by comparing Eq. (12.165) with the boundary conditions at the

horizon (12.164). Use Eq. (12.127) to obtain F01. The results are

F0 =C , F10 =
iC

4π
ln

4u4

1−u4
, F01 =− C

4π2
ln

2u2

1+u2
. (12.166)

Results To summarize, the solution is given by
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F

C
= 1+

i

π
w ln

4u4

1−u4
− q2

4π2
ln

2u2

1+u2
+ · · · . (12.167)

The solution asymptotically behaves as Eq. (12.159):

F

C

u→0−−→ lnu

π

(

iw− q2

2π

)

+O(u0) . (12.168)

We impose the vanishing slow falloff condition, so the O(lnu) term must vanish,

which determines the dispersion relation:

w=− i

2π
q

2 → ω =− i

2πT
q2 . (12.169)

Comparing this with the dispersion relation ω = −iDq2, we obtain D = 1/(2πT ),
which agrees with the Maxwell vector mode result (12.155).
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Chapter 13

Basics of phase transition

In this chapter, we explain the basics of phase transitions and related phenomena (critical

phenomena and superconductivity) mainly using mean-field theories.

13.1 Phase transition

When one changes control parameters such as temperature in a thermodynamic sys-

tem, the system may undergo a transition to a macroscopically different state which

is more stable. This is a phase transition. In a phase transition, a thermodynamic po-

tential such as free energy becomes non-analytic1. In the nth order phase transition,

analyticity is broken in the nth derivative of a thermodynamic potential. Namely,

• first-order phase transition: F is continuous but F ′ is discontinuous2.

• second-order phase transition: F and F ′ are continuous, but F ′′ is discontinuous

(or diverges).

A second-order phase transition often appears as the end point of a first-order phase

transition.

As an example, a ferromagnet has a spontaneous magnetization M below the

transition temperature Tc and the magnetization vanishes at T = Tc [Fig. 13.1(a)]. A

macroscopic variable such as M which characterizes two phases is called the order

parameter.

As in the other thermodynamic systems, one can consider the free energy F =
F(T,M) for a magnetic system. However, in real experiments, one usually uses the

1 In Sect. 9.2, we require that the thermodynamic fundamental relation is analytic. However, in

a representation where some of independent variables are intensive variables, a thermodynamic

potential can lose analyticity at the transition point. One normally draws phase diagrams using

intensive variables such as (T,P) and (T,µ), so analyticity is broken when the system crosses

phase boundaries.
2 Here, F ′ means a derivative with respect to any independent variables of the thermodynamic

potential.
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M

T 

Tc

(a)

T 

Tc

χT

(b)

Fig. 13.1 (a) Temperature-dependence of the order parameter. (b) The divergence of the magnetic

susceptibility.

magnetic field H as the control parameter, so we use the Gibbs free energy3 which

is the Legendre transformation of the free energy:

G(T,H) = F −MH . (13.1)

Then,

M =−
(

∂G

∂H

)

T

. (13.2)

Below we use the mean-field theory to determine F itself. For a ferromagnet, M is

continuous at the transition point (when H=0), which implies a second-order phase

transition.

In the second-order phase transition, the spin correlation length ξ diverges

ξ → ∞ at the transition point, and the system has a macroscopic correlation length.

As the consequence, various physical quantities diverge. For example, the magnetic

susceptibility behaves as χT = ∂m/∂H → ∞ [Fig. 13.1(b)]. To parametrize such a

divergence, one introduces the critical exponent γ and writes χT ∝ |T −Tc|−γ . Crit-

ical exponents depend on the symmetry, the spatial dimensionality, and so on but

do not depend on the details of microscopic physics. This is called the universality.

If two systems have the same set of critical exponents, they are said to belong to

the same universality class. Different physical systems may belong to the same uni-

versality class. For example, the 3d Ising model and the liquid-gas phase transition

belong to the same universality class4.

3 Originally, the Gibbs free energy chooses pressure P as an independent variable, but one often

calls such a potential the Gibbs free energy as well.
4 See, e.g., Refs. [1, 2] for textbooks on critical phenomena.
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13.1.1 Second-order phase transition

Below we mainly use the mean-field theory to discuss phase transitions. In statistical

mechanics, the partition function Z may be written using the order parameter m as

Z =
∫

Dme−βS[m;T,H] . (13.3)

We call S[m;T,H] the “pseudo free energy”5. The order parameter m does not have

to be an elementary field of the microscopic theory. In the mean-field theory, one

ignores thermal fluctuations of the order parameter m and evaluates Z in the saddle-

point approximation:

Z ≃ e−βS(T,H) , (13.4)

where S represents the “on-shell action” which is obtained by substituting the solu-

tion of m. Then, the Gibbs free energy is given by G(T,H) = S(T,H). The mean-

field theory is the same technique as the one we used to evaluate the partition func-

tion of a gravitational theory.

As an example, let us consider the mean-field theory of the Ising model. For

simplicity, we first consider the spatially homogeneous case. Instead of G and S,

it is convenient to use the free energy density g where G =: gV and the pseudo

free energy density L where S=: LV . The magnetization density m is defined by

m := ∑i〈Si〉/V . For the Ising model, the pseudo free energy is determined from the

following properties:

1. The order parameter m is small near T = Tc, so one can expand L as a power

series in m.

2. When the external field is absent, it is natural to impose the spin-reversal sym-

metry6 Si →−Si for spin variables Si, so L is an even function of m.

Then, the pseudo free energy density L can be written as

L [m;T,H] = L0 +
1

2
am2 +

1

4
bm4 + · · ·−mH . (13.6)

Such a theory is called the Ginzburg-Landau theory (GL theory hereafter). The GL

theory has a Higgs-like potential in particle physics (Fig. 13.2). When a > 0, the

potential takes the minimum at the origin m = 0, which is the behavior at high

temperature. On the other hand, when a < 0, the spontaneous symmetry breaking

5 We call pseudo free energy because S is not the free energy itself. (The functional integral over

m is not carried out.) The free energy is the on-shell action S below from the mean-field point of

view.
6 In fact, the Ising model Hamiltonian is given by

H =−J ∑
〈i, j〉

SiS j , (13.5)

where the sum is taken over the nearest-neighbor pairs, so it is invariant under Si →−Si.
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L

m

T = Tc

T < Tc

T > Tc

Fig. 13.2 The pseudo free energy for a second-order phase transition.

occurs, and the system has a nonzero magnetization m 6= 0, which is the behavior at

low temperature. So, we take the form

a = a0(T −Tc)+ · · · (a0 > 0) , b = b0 + · · · (b0 > 0) . (13.7)

The saddle point is given by ∂mL |H=0 = am+ bm3 = 0, which determines the

spontaneous magnetization:

m =

√

−a

b
∝ (Tc −T )1/2 . (13.8)

Then, the free energy density g = L for T < Tc is given by

g(T,H) = L0 +m2

(

a

2
+

b

4
m2

)

= L0 −
a2

4b
, (13.9)

so the specific heat is given by

CH =−T
∂ 2g

∂T 2
=

a2
0

2b0
T , (H = 0,T < Tc) . (13.10)

When one adds the magnetic field, the saddle point is given by

∂mL = am+bm3 −H = 0 , (13.11)

so at the critical point a = 0,

m3 ∝ H , (T = Tc) . (13.12)
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Differentiating Eq. (13.11) with respect to H gives (a + 3bm2)∂m/∂H − 1 = 0.

Then, the magnetic susceptibility7 χT is

χT :=
∂m

∂H
=

1

a+3bm2
=

1

−2a
∝

1

|T −Tc|
, (T < Tc) . (13.13)

If we define four critical exponents (α,β ,γ,δ ) as

specific heat: CH ∝ |T −Tc|−α , (13.14a)

spontaneous magnetization: m ∝ |T −Tc|β , (T < Tc), (13.14b)

magnetic susceptibility: χT ∝ |T −Tc|−γ , (13.14c)

critical isotherm: m ∝ |H|1/δ , (T = Tc), (13.14d)

our results are summarized as

(α,β ,γ,δ ) =

(

0,
1

2
,1,3

)

. (13.15)

Here, we obtained the exponents (α,γ) in the low-temperature phase T < Tc,

but they take the same values in the high-temperature phase T > Tc. When T > Tc,

m = 0, so L = L0 and α = 0. Also, χT = 1/a from Eq. (13.13), so γ = 1.

13.1.2 First-order phase transition

If a system does not have the symmetry m →−m, the O(m3) term can exist, which

leads to a first-oder phase transition:

L [m;T,H] =
1

2
am2 − 1

3
cm3 +

1

4
bm4 + · · ·−mH , (13.16)

a = a0(T −T0)+ · · · . (13.17)

Below we set H = 0. In this case, T = T0 will differ from the transition temperature

Tc.

At high enough temperature a ≫ 0, m = 0 as in the last subsection. When a < a1

or T < T1, the pseudo free energy develops a saddle point at m 6= 0 (Fig. 13.3).

But the saddle point m 6= 0 has a higher free energy than the state m = 0, so the

saddle point is a metastable local minimum. The saddle points are determined by

∂mL = m(a− cm+bm2) = 0, so

m = 0, m =
c±

√
c2 −4ab

2b
. (13.18)

7 It is also known as the thermodynamic susceptibility.
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L

m

T = T1

T = T2

T > T1

T < T2

Fig. 13.3 The pseudo free energy for a first-order phase transition.

The temperature T1 is determined from the condition that the m 6= 0 solution is real:

a1 =
c2

4b
. (13.19)

Decrease temperature further. When a< a2 or T < T2, the m 6= 0 state has a lower

free energy than the m = 0 state. Then, m changes from m = 0 to m 6= 0 discontinu-

ously. So, this is a first-order phase transition (in the second-order phase transition,

m changes continuously at T = Tc), and this temperature T2 is the transition tem-

perature. At T = T2, we have degenerate minima with L = 0. The solutions of

L = m2(a/2− cm/3+bm2/4) = 0 are given by

m = 0, m =
2c±

√

2(2c2 −9ab)

3b
. (13.20)

The temperature T2 is determined from the condition that the m 6= 0 solution is real:

a2 =
2c2

9b
. (13.21)

In the second-order phase transition, m can be as small as one wises if one ap-

proaches the critical point, which justifies the power series expansion (13.6). But in

the first-order phase transition, m does not need to be small, so one should be careful

if the power series expansion (13.16) is really valid.

13.1.3 Inhomogeneous case

Go back to the second-order phase transition and consider the spatially inhomoge-

neous case. We add the (∂im)2 term to guarantee the homogeneity of the equilibrium



13.1 Phase transition 233

state:

S[m;T,H] =
∫

ddsx

[

1

2
(∂im)2+

a

2
m2+

b

4
m4+· · ·−mH

]

, (13.22)

where ds denotes the number of spatial dimensions. The am2 term plays the role of

the “mass term” for the order parameter field m, and m becomes “massless” at the

critical point. Then, the characteristic length or the correlation length ξ diverge, and

m has a long-range correlation:

ξ =
1

(mass)
= a−1/2 ∝ (T −Tc)

−1/2 . (13.23)

For simplicity, we focus on the high-temperature phase. Recall the homogeneous

case. To obtain the critical exponents (α,γ) in the high-temperature phase, the quar-

tic term m4 was not essential and can be ignored. Similarly, we consider only up to

quadratic terms here. Then, the saddle point is determined by

0 =
δS

δm
=−∂ 2

i m+am−H = 0 . (13.24)

As in the homogeneous case, we define the “susceptibility” as8

χ(xxx− xxx′) =
δm(xxx)

δH(xxx′)
. (13.28)

Then,

(−∂ 2
xxx +a)χ(xxx− xxx′) = δ (xxx− xxx′) . (13.29)

After the Fourier transformation, one gets

(qqq2 +a)χqqq = 1 . (13.30)

Since χT = 1/a, χT = χqqq→0. When T 6= Tc, χ(rrr) takes the Yukawa form:

8 It is also known as the static susceptibility or the static response function. Incidentally, the corre-

lation function G(xxx− xxx′) is defined by

G(xxx− xxx′) := 〈m(xxx)m(xxx′)〉−〈m(xxx)〉〈m(xxx′)〉= 1

β 2

δ 2 lnZ

δH(xxx)δH(xxx′)
, (13.25)

and the magnetization is defined by

m(xxx) =
1

β

δ lnZ

δH(xxx)
, (13.26)

so the correlation function and the susceptibility are related by

G(xxx− xxx′) =
1

β

δm(xxx)

δH(xxx′)
:= T χ(xxx− xxx′) . (13.27)
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χ(rrr) ∝ r−(ds−1)/2e−r/ξ , (13.31)

so the correlation is lost beyond the distance r ≃ ξ . When T = Tc, χ(rrr) takes the

Coulomb form:

χ(rrr) ∝ r−ds+2 , (13.32)

so the correlation is long-ranged.

If we define critical exponents (ν ,η) which appear in the inhomogeneous case

as

static susceptibility: χ(rrr ) ∝ e−r/ξ , (T 6= Tc), (13.33a)

∝ r−ds+2−η , (T = Tc), (13.33b)

correlation length: ξ ∝ |T −Tc|−ν , (13.33c)

we obtained

(ν ,η) =

(

1

2
,0

)

. (13.34)

13.1.4 Critical phenomena

Critical exponents and scaling relations In critical phenomena, there appear six

critical exponents traditionally. For the GL theory,

(α,β ,γ,δ ,ν ,η) =

(

0,
1

2
,1,3,

1

2
,0

)

(13.35)

from the results in Sects. 13.1.1 and 13.1.3. There are six critical exponents, but not

all are independent, and they satisfy scaling relations:

α +2β + γ = 2 , (13.36a)

γ = β (δ −1) , (13.36b)

γ = ν(2−η) , (13.36c)

2−α = νds . (13.36d)

A relation such as Eq. (13.36d) which depends on the spatial dimensionality ds

is known as a hyperscaling relation. One can check that the GL theory satisfies

the scaling relations except the hyperscaling relation. We will come back to the

breakdown of the hyperscaling relation.

The scaling relations themselves are valid independent of the details of our theory

(e.g., GL theory). Then, when one studies critical phenomena in AdS/CFT, one had

better pay attention to the issue whether these relations hold or not (although we

will encounter only simple GL exponents in this book).

There are four scaling relations, so only two exponents are independent among

six exponents, which suggests that there is some structure behind these relations. In
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fact, these relations can be derived from the scaling law for the free energy g(t,H):

g(t,H) = b−ds g(byt t,byh H) , (13.37)

where t := (T −Tc)/Tc. If one chooses byt t = 1, Eq. (13.37) becomes

g(t,H) = tds/yt g(1, t−yh/yt H) =: tds/yt g̃(t−yh/yt H) . (13.38)

The scaling law determines six critical exponents in terms of two parameters

(yt ,yh):

CH(t,0) ∝
∂ 2g(t,0)

∂ t2
∝ tds/yt−2 , (13.39a)

m(t,0) ∝
∂g(t,H)

∂H

∣

∣

∣

∣

H=0

∝ t(ds−yh)/yt , (13.39b)

χT (t,0) ∝
∂ 2g(t,H)

∂H2

∣

∣

∣

∣

H=0

∝ t(ds−2yh)/yt , (13.39c)

m(0,H) ∝
∂g(0,H)

∂H
∝ b−ds+yhg2(0,b

yh H) = H(ds−yh)/yh . (13.39d)

Here, g2 is the partial derivative of g with respect to the second argument (magnetic

field), and we chooses byhH = 1. Similarly, there is a scaling law for the response

function which determines (ν ,η). In this way, one obtains

α = 2−ds/yt , (13.40a)

β =
ds − yh

yt

, (13.40b)

γ =
2yh −ds

yt

, (13.40c)

δ =
yh

ds − yh

, (13.40d)

ν = 1/yt , (13.40e)

η = ds −2yh +2 . (13.40f)

Equations (13.40a)-(13.40f) satisfy the scaling relations (13.36a)-(13.36d).

The scaling law is justified from the renormalization group, but one can easily

check that the GL theory (13.22) satisfies the scaling law (13.37). The GL theory is

rewritten as

L ≃ a0t m2 +b0m4 −mH (13.41)

≃ t2{a0m̃2 +b0m̃4 − m̃H̃} , (13.42)

where we rescaled m = m̃t1/2 and H = H̃t3/2 to isolate the t-dependence. The solu-

tion of the equation of motion takes the form m̃ = f (H̃), so the free energy density
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Fig. 13.4 Critical exponents and spatial dimensionality.

becomes

L ≃ t2{a0 f (H̃)2 +b0 f (H̃)4 − H̃ f (H̃)} . (13.43)

This takes the form of the scaling law with ds/yt = 2 and yh/yt = 3/2.

Critical exponents and spatial dimensionality As is clear from the discussion

so far, mean-field results do not depend on the spatial dimensionality ds. This is

because the mean-field theory ignores the statistical fluctuations of the order param-

eter. In general, the effect of fluctuations becomes more important in low spatial

dimensions, so mean-field exponents, which do not depend on the dimensionality,

may be modified in low dimensions. On the other hand, the effect is less important

in high spatial dimensions. There are two important dimensionalities (Fig. 13.4):

• The upper critical dimension dUC: For high enough dimensions ds ≥ dUC, the

fluctuations are not important, and mean-field exponents are reliable. The value

of dUC can be estimated using the so-called Ginzburg criterion:

dUC =
2β + γ

ν
=

2−α

ν
. (13.44)

For the GL theory, dUC = 4. Thus, mean-field exponents are reliable for ds ≥ 4

but are modified for the real ds = 3.

• The lower critical dimension dLC: For low enough dimensions ds ≤ dLC, the

fluctuations are too large so that there is no phase transition and no symmetry

breaking at finite temperature (Coleman-Mermin-Wagner theorem [3, 4]). For a

system with a discrete symmetry such as the Ising model, dLC = 1. For a system

with a continuous symmetry, dLC = 2.

The hyperscaling relation (13.36d) depends on the dimensionality, but mean-

field results do not. Thus, the hyperscaling relation is not always valid in the mean-

field theory. However, mean-field results are reliable for ds ≥ dUC. This implies that

the hyperscaling relation is not reliable above the upper critical dimension. This is

because the so-called dangerously irrelevant operators may exist in free energy and

break the scaling law of the free energy. For the mean-field theory, the hyperscaling

relation can be satisfied only for ds = dUC. The GL theory actually satisfies the

hyperscaling relation when ds = 4.

Static and dynamic critical phenomena Roughly speaking, there are two kinds

of critical phenomena:
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• Static critical phenomena: This is the critical phenomena discussed so far. The

critical phenomena normally implies this static critical phenomena. In the static

critical phenomena, various thermodynamic quantities have singular behaviors

and one parametrizes singularities by critical exponents.

• Dynamic critical phenomena [5]: Near the critical point, dynamic quantities also

have singular behaviors. In the dynamic case, one interesting quantity is the re-

laxation time τ . The relaxation time measures how some disturbance decays in

time. In the dynamic critical phenomena, the relaxation time also diverges 9:

τ ≃ ξ z → ∞ . (13.45)

The exponent z is called a dynamic critical exponent. The diverging relaxation time

means that the relaxation of the system slows down. So, such a phenomenon is also

known as the critical slowing down.

The details of the dynamic exponent depend on dynamic universality classes. The

dynamic universality class depends on additional properties of the system which do

not affect the static universality class. In particular, conservation laws play an im-

portant role to determine dynamic universality class. A conservation law forces the

relaxation to proceed more slowly. As a consequence, even if two systems belong to

the same static universality class, they may not belong to the same dynamic univer-

sality class. To study the dynamic critical phenomena, one uses the time-dependent

extension of the GL theory, the time-dependent GL equation or the TDGL equation.

Both static and dynamic critical phenomena have been discussed in the context of

AdS/CFT [6].

13.2 Superconductivity

13.2.1 Ginzburg-Landau theory of superconductivity

We now consider superconductivity/superfluidity as a phenomenon associated with

a phase transition. Phenomenologically, superconductivity is described by a simple

extension of the GL theory:

L [ψ;T,Ai] =
h̄2

2m∗
|Diψ|2 +a|ψ|2 + b

2
|ψ|4 + 1

4
F2

i j , (13.46)

Di := ∂i − i
e∗
h̄

Ai , (13.47)

9 There are various modes in a system, and their relaxation times all differ in general, so we had

better specify which mode has the singular relaxation time. In a phase transition, singular behaviors

occur in the quantities related to the order parameter. Thus, τ here is the relaxation time of the

order parameter. However, the order parameter may couple to the other modes in the system, and

the other modes may have singular behaviors as well (mode-mode coupling). As a consequence,

there appear multiple number of dynamic critical exponents in general.
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where we take the gauge A0 = 0. New ingredients compared with previous cases are

two-folds:

1. The order parameter ψ is a complex field.

2. The system is coupled with the gauge field Ai. When the gauge field is not cou-

pled, the GL theory describes superfluids10.

The complex order parameter comes from the fact that superconductivity/superfluidity

are macroscopic quantum phenomena. Microscopically, superconductivity is de-

scribed by the BCS theory. According to the BCS theory, the motion of an electron

causes a distortion of the lattice whose effect is mediated to another electron. As a

result, there is an attractive interaction between electrons (with opposite spin and

momenta) mediated by phonons (lattice vibrations), and the electron pair forms the

Cooper pair. The condensation of the Cooper pair causes superconductivity. The

order parameter ψ corresponds to the wave function of the Cooper pair and is called

the macroscopic wave function11.

Superconductors are coupled with the gauge field. Characteristic features from

the coupling are

• Zero resistivity or the diverging DC conductivity.

• The Meissner effect which expels a magnetic field (perfect diamagnetism).

Among these effects, what is unique to superconductivity is the Meissner effect as

discussed below.

We discuss superconductivity using the pseudo free energy L . First, consider the

spatially homogeneous case. When the gauge field is not coupled, the discussion is

the same as the magnetic system, and

|ψ|2 =−a

b
∝ (Tc −T ) (13.48)

in the low-temperature phase. Also, the order parameter has an effective mass term

a|ψ|2.

In the inhomogeneous case, decompose ψ as ψ(x) = |ψ(x)|eie∗φ(x)/h̄. Then,

Eq. (13.46) becomes

L =
h̄2

2m∗
(∂i|ψ|)2 +

e2
∗

2m∗
|ψ|2(∂iφ −Ai)

2 +a|ψ|2 + · · · . (13.49)

Thus,

1. When the gauge field is not coupled, the phase φ is massless unlike the amplitude

|ψ|. The phase φ is the Nambu-Goldstone boson associated with the spontaneous

symmetry breaking of the global U(1) symmetry.

2. When the gauge field is coupled, one can absorb φ into the gauge field by a gauge

transformation:

10 The corresponding theory for superfluids is known as the Gross-Pitaevskii theory.
11 The order parameter is the Cooper pair which consists of two electrons, so m∗ = 2m and e∗ = 2e.
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ψ(x)→ eie∗α(x)/h̄ψ(x) , (13.50)

Ai(x)→ Ai(x)+∂iα(x) , (13.51)

and the Nambu-Goldstone boson does not appear. But the gauge field becomes

massive because of the term e2
∗|ψ|2A2

i /(2m∗), which is the Higgs mechanism.

Characteristic length scales of superconductors To summarize our discussion

so far, both the order parameter and the gauge field have effective masses. So, a

superconductor has two characteristic length scales:

1. The correlation length12 ξ from the order parameter mass:

ξ 2 =
h̄2

2m∗|a|
. (13.52)

This represents the characteristic length scale of the spatial variation for the order

parameter. The order parameter |ψ| is approximately constant inside the super-

conductor beyond the distance ξ (when there is no magnetic field). In particle

physics, the mass is analogous to the Higgs mass.

2. The magnetic penetration length λ from the gauge field mass:

λ 2 =
m∗

e2∗|ψ|2 =
m∗
e2∗

b

|a| . (13.53)

Since the gauge field becomes massive, the gauge field can enter into the super-

conductor only up to the length λ . In particle physics, the mass is analogous to

the W-boson mass.

Then, the GL theory is characterized by a dimensionless parameter κ , the GL pa-

rameter, using λ and ξ :

κ :=
λ

ξ
=

m∗
e∗h̄

√
2b . (13.54)

The superconductors are classified by the value of κ as

• Type I superconductors: κ < 1/
√

2 or ξ >
√

2λ .

• Type II superconductors: κ > 1/
√

2 or ξ <
√

2λ .

High-Tc superconductors are type II superconductors.

In type II superconductors, the penetration length is larger than the correlation

length. So, the magnetic field can enter the superconductor keeping the supercon-

ducting state on the whole. The magnetic field penetration arises by forming vor-

tices.

The vortex solution takes the form

ψ = |ψ(r)|eiθ , (13.55)

12 In the superconductor literature, it is often called the GL coherence length.
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r

|ψ|

Fig. 13.5 An isolated vortex solution.

where we take the cylindrical coordinates ds2 = dz2 +dr2 + r2dθ 2. At the center of

the vortex, ψ = 0, so the superconducting state is broken there (Fig. 13.5). The phase

changes by 2π (winding number one) as we go around the vortex. This implies that

the vortex has a quantized magnetic flux Φ = h/e∗.

As one increases the magnetic field, the magnetic field begins to penetrate into

the superconductor and vortices appear at Bc1 = Bc known as the lower critical

magnetic field. As one increases the magnetic field further, more and more vortices

are created and vortices overlap. Eventually, the superconducting state is completely

broken at the upper critical magnetic field Bc2. The vortices form a lattice. In the

GL theory, the triangular lattice is the most favorable configuration.

London equation and its consequences From the pseudo free energy L , the field

equation for Ai is given by

∂ jF
i j = Ji , (13.56)

where

Ji :=−∂L

∂Ai
=− ih̄

2m∗
e∗{ψ∗Diψ −ψ(Diψ)∗} (13.57a)

=− ih̄

2m∗
e∗(ψ

∗∂iψ −ψ∂iψ
∗)− e2

∗
m∗

|ψ|2Ai (13.57b)

=
e2
∗

m∗
|ψ|2(∂iφ −Ai) . (13.57c)

In the gauge where the Nambu-Goldstone boson φ is eliminated, Eq. (13.57c) be-

comes

Ji =− e2
∗

m∗
|ψ|2Ai =− 1

λ 2
Ai . (13.58)

This is known as the London equation. The London equation is another example of

a linear response relation. The generic linear response relation is a nonlocal expres-

sion (Sect. 9.1.2) whereas the London equation is a local expression. This is because

the London equation is a phenomenological equation, so the long-wavelength limit

is implicitly assumed. The nonlocal extension of the London equation is known as

the Pippard equation.
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Fig. 13.6 Superconductor under a magnetic field.

From the London equation, one gets the Meissner effect and the diverging DC

conductivity.

1. The Meissner effect: If we choose Ai = (0,Ay(x),0) for simplicity, Fxy = ∂xAy =
Bz(x) (Fig. 13.6). Combining the London equation and the Maxwell equation

(13.56), one gets

∂xFyx = Jy → −∂ 2
x Ay =− 1

λ 2
Ay . (13.59)

Thus,

Bz(x) = B0e−x/λ . (13.60)

Namely, the magnetic field decays exponentially inside a superconductor.

2. The diverging DC conductivity: The time-derivative of the London equation

gives

∂tJi =
1

λ 2
Ei , (13.61)

since Ei =−∂tAi, or in Fourier components,

Ji =
i

ω

1

λ 2
Ei(ω,qqq = 0) . (13.62)

The electric field grows the current in Eq. (13.61), or Im[σ(ω)] has a 1/ω pole

in Eq. (13.62). This implies a diverging DC conductivity as discussed below.

13.2.2 Normal, perfect, and superconductors

Characteristic features of superconductors are the diverging DC conductivity and

the Meissner effect. But its essence is in the Meissner effect. A diverging conduc-

tivity also appears in a perfect conductor, but the Meissner effect B = 0 is unique

to a superconductor. A perfect conductor can only explain ∂B/∂ t = 0 as discussed

below.
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Here, we consider a simple model of conductivity, the Drude model, and study its

electromagnetic responses. The model is helpful to distinguish a normal conductor,

perfect conductor, and superconductor. It is also helpful to get a rough idea of the

AC conductivity for a superconductor.

The Drude model uses the classical mechanics for the electron motion:

m
dv

dt
= eE −m

v

τ
, (13.63)

where v is the mean-velocity of the electron and τ is the relaxation time due to the

scattering of the electron.

Normal conductor In a normal conductor, the stationary solution of Eq. (13.63) is

given by v = eEτ/m. Then, the current is

J = nev =
ne2τ

m
E = σE (13.64)

(n: number density of electrons). This is Ohm’s law with σ = ne2τ/m. The dissipa-

tion is necessary for a finite conductivity, and the electric field is necessary to keep

v and J constant.

Microscopically, a conductor is described as a Fermi liquid13. In a conductor,

many electrons are interacting with each other via Coulomb interactions. In princi-

ple, a conductor is a highly-complicated interacting problem. Yet, according to the

Fermi liquid theory, one can treat a conductor as a collection of weakly-interacting

“electrons” (more precisely, quasiparticles which are “dressed electrons.”) The BCS

theory is also based on the weakly-coupled Fermi liquid description.

Perfect conductor A perfect conductor is the limit τ → ∞ in Eq. (13.63):

∂J

∂ t
=

ne2

m
E . (13.65)

Ohm’s law is replaced by Eq. (13.65): the electric field accelerates the electron or

one can have a steady current with no electric field. Note that the electric response

of a superconductor (13.61) takes the same form as Eq. (13.65).

In order to see the diverging DC conductivity, consider the AC conductivity for

the normal conductor. Using E(t) = Ee−iωt and J(t) = Je−iωt , Eq. (13.63) becomes

J(t) =
ne2τ

m

1

1− iωτ
E(t) . (13.66)

Then, the complex conductivity σ(ω) and its τ → ∞ limit are

13 See Ref. [7] for a review.
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Re[σ(ω)] =
ne2τ

m

1

1+ω2τ2

τ→∞−−−→ ne2

m
πδ (ω) , (13.67)

Im[σ(ω)] =
ne2τ

m

ωτ

1+ω2τ2

τ→∞−−−→ ne2

m

1

ω
. (13.68)

Thus, Re[σ ] has the diverging DC conductivity, and at the same time Im[σ ] has the

1/ω pole.

More generally, the real part and the imaginary part of σ(ω) are related by the

Kramers-Kronig relation:

Im[σ(ω)] =− 1

π
P

∫ ∞

−∞

Re[σ(ω ′)]dω ′

ω ′−ω
, (13.69)

where P denotes the principal value. From the formula, a delta function in Re[σ ]
is reflected into the 1/ω pole in Im[σ ].

Perfect conductors versus superconductors The conductivity takes the same

form both in the superconductor (13.61) and in the Drude model (13.65), so clearly

the diverging DC conductivity is inadequate to distinguish them. Then, how does

one distinguish them? Equation (13.65) may be written as

∂tJi =− 1

λ 2
D

∂tAi , λ 2
D =

m

ne2
. (13.70)

Compared with Eq. (13.58), this is the time derivative of the London equation. Thus,

the Drude form follows from the London equation, but the converse is not true. Or

the London equation makes a stronger claim than the Drude model, which distin-

guishes superconductors from perfect conductors.

This difference arises in magnetic responses. Because BBB = ∇∇∇×AAA, the London

equation implies

∇∇∇× JJJ+
1

λ 2
BBB = 0 , (13.71)

whereas the Drude form only implies

∂

∂ t

(

∇∇∇× JJJ+
1

λ 2
BBB

)

= 0 . (13.72)

In a perfect conductor, Eq. (13.72) tends to ∂B/∂ t = 0 instead of B = 0. Namely, the

exclusion of a magnetic field from entering a sample can be explained by a perfect

conductivity. On the other hand, a magnetic field in an originally normal state is also

expelled as it is cooled below Tc. This cannot be explained by perfect conductivity

since it tends to trap flux in.

AC conductivity of superconductors Let us go back to the conductivity and

briefly remark the other aspects of the AC conductivity for a superconductor. At

low-ω , the AC conductivity Re[σ(ω)] vanishes at zero temperature (Fig. 13.7), but

there is a small AC conductivity at finite temperature.
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Fig. 13.7 Complex conductivity for a typical superconductor at zero temperature [8]. Here, σ1 and

σ2 represent the real and imaginary parts, respectively.

According to the two-fluid model, a superfluid consists of the superfluid com-

ponent and the normal component. The superfluid component has no dissipation,

but the normal part has a dissipation. The normal components are thermally excited

electrons. If one increases temperature, more and more electrons are excited, which

blocks the Cooper pair formation. Eventually, this process destroys superconductiv-

ity at Tc.

One would describe the AC conductivity of the two-fluid model using the Drude

model as

σ(ω)≃ nse
2
∗

m∗
πδ (ω)+

nne2
∗τn

m∗
+ i

nse
2
∗

m∗

1

ω
, (13.73)

where ns is the number density of the superfluid component with τs → ∞, and nn

is the number density of the normal component with a finite τn. Comparing the last

term of Eq. (13.73) with Eq. (13.62), one gets ns = |ψ|2.

Equation (13.73) is valid for low-ω . For h̄ω > 2∆ , where ∆ is called the energy

gap, a photon can break up a Cooper pair and create thermally excited electrons.

These additional electrons increase the AC conductivity for h̄ω > 2∆ (Fig. 13.7).

13.2.3 High-Tc superconductors

After the discovery of superconductivity in 1911 (Hg, 4K), the highest Tc had been

23K in Nb3Ge. In 1986, high-Tc superconductors were found. These are copper

oxide compounds or cuprates. Among cuprates, some well-known systems are

• Y-Ba-Cu-O system (“YBCO”)

• Bi-Sr-Ca-Cu-O system (“BSCCO”)

Currently, HgBa2Ca2Cu3O8 has the highest Tc (∼ 135K). Under high pressures, Tc

of the material rises to about 165K.
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Fig. 13.8 Typical phase diagram of high-Tc superconductors with the resistivity parallel to Cu-O

planes [9]. The dome-shaped region is the d-wave superconducting phase. The other regions are

(from left to right) antiferromagnetic phase (AFM), pseudo gap region, non-Fermi liquid phase,

and the Fermi liquid phase.

The subject of high-Tc superconductors is diverse, and it is not our purpose here

to give a detailed overview of high-Tc superconductivity. Here, we explain some of

basic terms and properties.

The most important property of high-Tc materials is that Tc seems too high from

the traditional BCS picture. In the traditional theory, highest Tc is expected to be 30-

40K. The BCS theory is based on the weakly-coupled Fermi liquid description, so

the description seems insufficient to describe high-Tc materials. This suggests that

one needs a strong coupling description. We see several other indications of this

below.

From the crystal point of view, another important property is that their crystal

structures share the two-dimensional Cu-O planes. The electrons or holes on the

planes are responsible for the superconductor.

Figure 13.8 shows a typical phase diagram of high-Tc materials. The solid lines

are phase boundaries while the dashed lines indicate crossovers. The horizontal axis

represents the doping. For example, consider the originally discovered high-Tc ma-

terial, La2−xSrxCuO4. For the material, one replaces La3+ by Sr2+. The material

must be charge neutral under the replacement, which results in adding positively

charged holes. This is called the hole doping. These mobile holes are responsible

for conduction.

When x = 0, the system is an anti-ferromagnetic insulator. This suggests a strong

electron-electron interaction. As one increases x, the material becomes conducting.

It becomes superconducting at some point, and Tc keeps increasing. However, if one

further increases x, Tc starts to decrease, and the superconducting phase is eventu-

ally gone. The transition temperature Tc becomes highest at the optimal doping. A

smaller x is called underdoping, and a larger x is called overdoping.
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In the superconducting phase, the electrons form the Cooper pair, but the pairing

mechanism is not well-understood. The Cooper pair wave function has a different

symmetry. The wave function of an electron in an atom is classified by the orbital

angular momentum, e.g., s (l = 0), p (l = 1), and d (l = 2). Similarly, the Cooper

pair wave function may be the s-wave, p-wave, and d-wave. The conventional su-

perconductors are s-wave superconductors, but high-Tc superconductors are d-wave

superconductors.

A high-Tc material has a very rich phase structure, and what is interesting is not

only the superconducting phase, but the whole phase diagram is interesting.

• First, the overdoped region shows the Fermi liquid behavior. For a Fermi liquid,

the resistivity is proportional to T 2.

• But the normal state immediately above the superconducting dome shows linear

resistivity. The region is called the non-Fermi liquid or the strange metal. Thus,

the weakly-coupled description of the Fermi liquid is certainly insufficient to

describe high-Tc materials.

• Region left to T ∗ is called the pseudo gap region which is also mysterious. It is

not a phase since there seems no long-range order, but there seem indications of

an energy gap.

13.3 Summary

• The mean-field theory or the GL theory describe phase transitions. In second-

order phase transitions, one encounters the critical phenomena where various

quantities have power-law behaviors and these powers (critical exponents) obey

the universality.

• A simple extension of the GL theory describes superconductivity/superfluidity.

• High-Tc superconductivity is not completely understood, but it is likely to involve

strong-coupling physics.
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Chapter 14

AdS/CFT - phase transition

There are systems with phase transitions in AdS/CFT. We discuss typical examples of the

first-order phase transition and of the second-order phase transition.

14.1 Why study phase transitions in AdS/CFT?

The N = 4 SYM has only the plasma phase, but in this chapter, we consider theo-

ries and black holes which undergo phase transitions. The reasons are two-folds:

1. First, it is interesting as gauge theories. QCD has a rich phase structure. The

phase structure and its related phenomena have been widely investigated both

theoretically and experimentally. Condensed-matter tools such as Chap. 13 may

be enough to understand QCD phase transitions theoretically. But AdS/CFT may

bring new insights into the problem.

2. Second, one often encounters strongly-coupled systems in condensed-matter

physics as well. Of particular interest is high-Tc superconductivity. It would be

nice if one could have a dual gravity description. Understanding its rich phase

structure is likely to be the key to solve the mysteries of the system.

But there is an immediate problem in order to apply AdS/CFT to condensed-

matter systems. The simplest AdS/CFT uses the AdS5 spacetime, which is dual to

the N = 4 SYM. It is different from QCD but is not very “far” in the sense that they

are both Yang-Mills theories. However, it is not clear if any large-Nc gauge theory

is behind in condensed-matter systems. So, one approach one takes is to

• Put aside the correspondence with real condensed-matter systems for the time

being.

• Simply realize interesting condensed-matter behaviors in the context of large-Nc

theory.

Our hope is that the AdS/CFT duality will give some insights even to real condensed-

matter systems.

249
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Now, what kind of phenomena should we focus on? AdS/CFT may predict a

variety of exotic phenomena, but they may not be very relevant unless one can see

them in laboratories. Also, we cannot cover all possible phenomena, so in this book,

we focus on robust phenomena in low-energy physics such as superconductivity and

critical phenomena.

14.2 First-order phase transition

14.2.1 Simple example

We now study the holographic phase transition. We have been evaluating black hole

partition function by a saddle-point approximation:

Zgauge ≃ e−SE , (14.1)

where S represents the on-shell action which is obtained by substituting the classical

solution g to the action. However, the classical solution may not be unique. For

example, if we have two saddle points, we must sum over the saddle points:

Zgauge ≃ e−SE + e−SE
′
. (14.2)

Here, SE and SE
′ are the on-shell actions obtained by the classical solutions g and

g′, respectively. The dominant contribution comes from the solution with lower free

energy.

As a simple example, let us consider the S1-compactified N = 4 SYM with

periodicity l. The N = 4 SYM on R
3 is scale invariant and has no dimensionful

parameter except the temperature. One can always change the temperature by a

scaling, and all temperatures are equivalent. Introducing a scale l in the gauge theory

changes physics drastically. One can no longer change the temperature by a scaling,

and the theory is parametrized by a dimensionless parameter T l. As we will see, the

theory has a first-order phase transition at T l = 1.

As discussed in Sect. 8.6, there are two possible dual geometries which approach

R
1,2 × S1 asymptotically. The first one is the Schwarzschild-SAdS5 (SAdS5) black

hole:

ds2
5 =

( r

L

)2

(−hdt2 +dx2 +dy2 +dz2)+L2 dr2

hr2
, (14.3)

h = 1−
( r0

r

)4

, 0 < z ≤ l , (14.4)

and the second one is the AdS soliton:
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ds2
5 =

( r

L

)2

(−dt ′2 +dx2 +dy2 +hdz′2)+L2 dr2

hr2
, (14.5)

l =
πL2

r0
, (14.6)

which is obtained from the black hole by the “double Wick rotation” z′ = it ,z = it ′.
The SAdS black hole describes the plasma phase whereas the AdS soliton de-

scribes the confining phase. For the AdS soliton, the Wilson loop shows the linear

potential (Sect. 8.6). Also, the AdS soliton does not have entropy since it is not a

black hole (more precisely, its entropy is suppressed by 1/N2
c compared to the black

hole), which is appropriate as the confining phase.

At high temperature, the AdS soliton undergoes a first-order phase transition to

the SAdS black hole. Then, the phase transition describes a confinement/deconfinement

transition in the dual gauge theory1.

Thus, evaluate the free energy difference between the SAdS black hole and the

AdS soliton. In Sect. 7.5, we computed the free energy for the SAdS black hole:

FBH =− V3

16πG5

r4
0

L5
=− V3L3

16πG5

π4T 4 . (14.7)

The AdS soliton has the same Euclidean geometry, so the free energy for the AdS

soliton takes the same form (if expressed in terms of r0). But for the AdS soliton, r0

is not related to the temperature T but is related to the S1 periodicity l:

Fsoliton =− V3

16πG5

r4
0

L5
=− V3L3

16πG5

π4

l4
. (14.8)

Then, the free energy difference is given by

∆F = FBH −Fsoliton =− V3L3

16πG5

π4

(

T 4 − 1

l4

)

. (14.9)

Thus,

• At low temperature T < 1/l, the stable solution is the AdS soliton which de-

scribes the confining phase.

• At high temperature T > 1/l, the stable solution is the black hole which describes

the unconfining phase.

Because one forms a black hole which has entropy, the entropy is discontinuous at

T l = 1. Since the first derivative of free energy, S = −∂T F , is discontinuous there,

this is a first-order phase transition.

1 This is an example of a confinement/deconfinement transition, but this does not explain the QCD

confinement/deconfinement transition. First, the theory here is the N = 4 SYM and is not QCD.

Second, this is a phenomenon which happens in large-Nc gauge theories on compact spaces.
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14.2.2 Hawking-Page transition

The phase transition we saw above is generally called the Hawking-Page transition

[1]. We now discuss the original Hawking-Page transition which uses a SAdS black

hole with spherical horizon. The SAdS5 black hole with S3 horizon (Sect. 7.3) is

given by

ds2
5 =−

(

r2

L2
+1− r4

0

L2r2

)

dt2 +
dr2

r2

L2 +1− r4
0

L2r2

+ r2dΩ 2
3 . (14.10)

As r → ∞, the metric along the AdS boundary approaches

ds2
4 ∼

( r

L

)2

(−dt2 +L2dΩ 2
3 ) , (r → ∞) , (14.11)

so the dual gauge theory is the N = 4 SYM on S3 with radius L.

As in the previous example, we introduce the scale L in the gauge theory, so

the theory is parametrized by a dimensionless parameter T L, and it has a first-order

phase transition at an appropriate T L, but the details are slightly more complicated2.

The horizon is located at r = r+, where

r2
+

L2
+1− r4

0

L2r2
+

= 0 → r4
0 = r4

++L2r2
+ . (14.12)

The temperature is given by

T =
2r2

++L2

2πr+L2
. (14.13)

Figure 14.1 shows the horizon radius r+ versus the temperature. For a given temper-

ature, there are two values of r+. The temperature has the minimum T1 :=
√

2/(πL)
when r+ = L/

√
2. The solution with r+ < L/

√
2 is called the “small black hole.”

The small black hole is small enough compared with the AdS scale L, and the effect

of the cosmological constant is negligible. Then, the behavior of the small black

hole is similar to the asymptotically flat Schwarzschild black hole. In fact, when

r+ ≪ L,

T ≃ 1

2πr+
, (14.14)

which is the behavior of the five-dimensional Schwarzschild solution (3.37).

On the other hand, the solution with r+ > L/
√

2 is called the “large black hole.”

The behavior of the large black hole is similar to the SAdS5 solution with planar

horizon. In fact, when r+ ≫ L,

T ≃ r+

πL2
. (14.15)

2 In the large-Nc limit, a phase transition can occur even in finite volume.
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Fig. 14.1 The horizon radius r+ versus the temperature for the SAdS5 black hole with spheri-

cal horizon. For a given temperature, there are two values of r+. The black hole has the lowest

temperature at T = T1, and the Hawking-Page transition occurs at T = T2.

The black hole solution does not exist when T < T1. In this case, the solution is

the “thermal AdS spacetime,” which is the AdS spacetime with Euclidean time peri-

odicity β0. As we increase temperature, there is a phase transition from the thermal

AdS spacetime to the SAdS5 black hole. Again, this is a confinement/deconfinement

transition [2].

We again evaluate the free energy difference between the SAdS5 black hole and

the thermal AdS5 spacetime. The free energy is obtained by repeating a computation

similar to Sect. 7.5. In general, in order to obtain the free energy, one needs to

evaluate not only the bulk action, but also the Gibbons-Hawking action, and the

counterterm action. But, in this case, it is enough to evaluate only the bulk action if

one is interested in the free energy difference.

Namely, one obtains the finite free energy using the spacetime without black hole

which is called the reference spacetime. This prescription is often used in general

relativity, and one uses the reference spacetime method for asymptotically flat black

holes such as the Schwarzschild black hole.

In Sect. 7.5, we saw that the on-shell bulk action becomes the spacetime volume

(7.37). Evaluating the volume both for the SAdS5 black hole and for the thermal

AdS5 spacetime, one obtains

SSAdS =
1

2πG5L2

∫ β

0
dt

∫

dΩ3

∫ r

r+

dr r3 =
βΩ3

8πG5L2
(r4 − r4

+)

∣

∣

∣

∣

r=∞

, (14.16)

SAdS =
1

2πG5L2

∫ β0

0
dt

∫

dΩ3

∫ r

0
dr r3 =

β0Ω3

8πG5L2
r4

∣

∣

∣

∣

r=∞

. (14.17)

Care is necessary for the thermal AdS5 temperature. The temperature of a black

hole is determined by requiring that the Euclidean geometry does not have a conical

singularity. The periodicity β0 for the thermal AdS5 spacetime is arbitrary, but we
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are interested in the free energy difference, so we must match the thermal AdS5

temperature with the SAdS5 one. The Hawking temperature of the SAdS5 black

hole is T , but this differs from the proper temperature T (r) at radius r [Eq. (6.77)]:

T (r) =
1

√

|g00(r)|
T . (14.18)

The correct procedure is to match this proper temperature in the reference spacetime

method3. Thus,

β f 1/2 = β0(r) f
1/2

0 , (14.19)

where f and f0 are the g00 components for the SAdS5 black hole and the thermal

AdS5 spacetime. Then, the free energy difference is given by

∆F :=
1

β
(SSAdS −SAdS) (14.20a)

=
Ω3

8πG5L2











r4 − r4
+− r4

√

√

√

√

(

r
L

)2
+1− r4

0

L2r2

(

r
L

)2
+1











∣

∣

∣

∣

∣

∣

∣

r=∞

(14.20b)

r→∞−−−→ Ω3

8πG5L2

{

r4 − r4
+− r4

(

1− r4
0

2r4

)}

(14.20c)

=− πr2
+

8G5L2
(r2

+−L2) . (14.20d)

Therefore, ∆F < 0 when r+ > L or T > T2 := 3/(2πL). The small black hole never

satisfies the condition and is not allowed as a stable equilibrium.

We plot ∆F(T ) in Fig. 14.2. As one increases the temperature, the plot shows

the following behavior:

• T < T1: A black hole cannot exist, and the thermal AdS spacetime is the stable

state.

• T1 ≤ T < T2: A black hole can exist but has ∆F > 0, so again the thermal AdS

spacetime is the stable state. A black hole decays to the thermal AdS spacetime

via the Hawking radiation.

• T ≥ T2: A large black hole has ∆F < 0, so there is a discontinuous change from

the thermal AdS spacetime to the large black hole. The transition temperature is

T = T2.

Because we form a black hole at T = T2, this is again a first-order phase transition

as in Sect. 14.2.1. One would compare with the mean-field theory in Sect. 13.1.2.

When T1 ≤ T < T2, the pseudo free energy develops a saddle point of a metastable

state which corresponds to a black hole. But the state is not globally stable, so it

decays to the globally stable state, the thermal AdS spacetime.

3 The difference between β0(r) and β is subleading in r, so this prescription matters when the on-

shell action diverges such as the reference spacetime regularization. If one employs the counterterm

regularization, the free energy remains finite for both spacetimes, so the difference does not matter.
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Fig. 14.2 The free energy ∆F(T ) for the SAdS5 black hole with spherical horizon. The region

with ∆F > 0 is plotted with a dashed line because the black hole not stable in the region and the

thermal AdS5 spacetime is stable.

One can obtain thermodynamic quantities from ∆F :

S =−∂T ∆F =
π2r3

+

2G5

=
Ω3r3

+

4G5

, (14.21a)

E = ∆F +T S =
3πr2

+(r
2
++L2)

8G5L2
=

3πr4
0

8G5L2
, (14.21b)

C =
π2

2G5

3r3
+(2r2

++L2)

2r2
+−L2

. (14.21c)

If one repeats the computation in Sect. 7.5, one can obtain the free energy itself:

FSAdS =− π

8G5L2

(

r4
+−L2r2

+− 3

4
L4

)

, (14.22)

which gives

S =
π2r3

+

2G5

, E =
3πr4

0

8G5L2
+

3πL2

32G5

. (14.23)

Note that the energy has a constant term. From the AdS/CFT dictionary, L3/G5 =
2N2

c /π , so the constant is rewritten as

E0 =
3N2

c

16L
. (14.24)

This E0 can be interpreted as the Casimir energy from the boundary point of view4

[3]. For free fields on S3 ×R with radius L, the Casimir energy is given by

4 The Casimir energy is the zero-point energy of a field theory with a boundary condition.
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ECasmir =
1

960L
(4n0 +17n1/2 +88n1) , (14.25)

where ni represents the number of field species [4]. For the N = 4 SYM,

real scalars: n0 = 6(N2
c −1) , (14.26a)

Weyl fermions: n1/2 = 4(N2
c −1) , (14.26b)

vector fields: n1 = N2
c −1 . (14.26c)

Substituting these into Eq. (14.25), one obtains

ECasmir =
3(N2

c −1)

16L
, (14.27)

which agrees with Eq. (14.24) in the large-Nc limit.

14.3 Second-order phase transition: Holographic

superconductors

14.3.1 Overview

We now turn to second-order phase transitions. First-order phase transitions were

relatively easy in the sense that introducing another scale was enough to achieve.

But these examples are transitions from a non-black hole geometry to a black hole

geometry, and they are necessarily first-order transitions. In a second-order transi-

tion, the entropy must be continuous, so we need a transition from a black hole to

another black hole.

However, recall the no-hair theorem. According to the theorem, a black hole often

has a few parameters, mass, angular momentum, and charge. Given these quantities,

the black hole solution is unique. But in order to have a phase transition, we need a

multiple number of saddle points.

Thus, one would expect that a second-order transition is more subtle to achieve.

Is there any? Let us consider gravity systems starting from the simplest one to more

complicated ones. We focus on black holes with planar horizon which has an infinite

extension and not black holes with compact horizon:

• The simplest gravity system is pure gravity, and the solution is the SAdS black

hole. The dual gauge theory is the N = 4 SYM. The N = 4 SYM has no di-

mensionful quantity other than temperature, so all temperatures are equivalent.

Thus, there is no phase transition, and we need a more complicated system.

• The next simple system is the Einstein-Maxwell system, and the solution is

the charged black hole or the Reissner-Nordström-AdS (RN-AdS) black hole

(Sect. 11.1). The black hole has an additional dimensionful quantity set by the

chemical potential µ or has an additional dimensionless parameter µ/T . Thus,
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not all temperatures are equivalent in this case. But the system still has no phase

transition. Adding a charge is not enough. It is likely that this is related to the

no-hair theorem.

• What we can do is to add a scalar. Usually (for asymptotically flat solutions),

the existence of a scalar does not affect a black hole solution from the no-hair

theorem. But the theorem is not entirely true for higher-dimensional spacetime

or for the AdS spacetime. So, adding a scalar can give a black hole with nonzero

scalar.

Thus, we arrive at an Einstein-Maxwell-scalar system. Below we consider such a

system to discuss superconductivity and critical phenomena.

We asked what system is necessary from the gravity side, but let us ask a slightly

different question from the field theory side. If one is interested in superconductivity

as a second-order transition system, what kind of ingredients are necessary to realize

a superconductor in AdS/CFT?

• First, we will use a field theory, so the theory has a conserved energy-momentum

tensor.

• One unique characteristic of a superconductor is the zero resistivity or the diverg-

ing conductivity. In order to see this, we need a U(1) current.

• In addition, a superconductor is a phenomenon associated with a phase transition.

For a superconductor, the order parameter is the charged scalar operator 〈O〉. The

operator 〈O〉 corresponds to the “macroscopic wave function” in the Ginzburg-

Landau (GL) theory.

Given these field theory ingredients, the AdS/CFT dictionary (Sect. 10.2) tells nec-

essary bulk fields. The boundary operators T µν , Jµ , and 〈O〉 correspond to the bulk

metric gMN , Maxwell field AM , and complex scalarΨ , respectively. So, we again end

up with an Einstein-Maxwell-complex scalar system. Thus, there are many kinds

of holographic superconductors, but one typically considers an Einstein-Maxwell-

complex scalar system [5, 6]:

S=
∫

dp+2x
√−g

[

R−2Λ − 1

4
F2

MN −|DMΨ |2 −V (|Ψ |)
]

, (14.28a)

DM := ∇M − ieAM , (14.28b)

V (|Ψ |) = m2|Ψ |2 . (14.28c)

This system looks similar to the GL theory (13.22) with two differences. First, in

this model, gravity is coupled. Second, the order parameter has only the mass term

and has no O(|Ψ |4) term. One could include nonlinear terms, but nonlinear terms

are not necessary to achieve a symmetry breaking.

This system has the RN-AdS black hole with Ψ = 0 as a solution (Sect. 11.1).

This corresponds to the normal state. But at low enough temperature T < Tc, the

solution becomes unstable and undergoes a second-order phase transition. As a re-

sult, the solution is replaced by a black hole with Ψ 6= 0. Thus, Ψ characterizes the

phase transition, and the corresponding operator 〈O〉 indeed can be interpreted as

the order parameter in the field theory side.
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The detail of the dual field theory is unclear though because we do not go through

the brane argument such as Sect. 5.6 unlike the N = 4 SYM. Rather, we just collect

the minimum ingredients which realize superconductivity. But the low-temperature

phase corresponds to a certain kind of superconductivity or superfluid. The justifica-

tions come from the diverging conductivity, the London equation, and the existence

of an energy gap as we see below.

14.3.2 Probe limit

In this system, gravity is coupled with a multiple number of matter fields. Analyzing

such a system is difficult in the low-temperature phase (superconducting phase).

So, one often carries out numerical computations or employs approximations. We

mainly consider the “probe limit,” where we add matter fields as probes. In the probe

limit, one redefines matter fields as Ψ →Ψ/e and AM → AM/e and takes the scalar

charge e → ∞:

S=
∫

dp+2x
√−g

[

R−2Λ +
1

e2

{

−1

4
F2

MN −|DMΨ |2 −V (|Ψ |)
}]

. (14.29)

As one can see from the action, the Maxwell field and the scalar field decouple

from gravity in this limit. One can ignore the backreaction of matter fields onto the

geometry, so the black hole solution is simply a pure gravity one, the SAdS black

hole, and it is enough to solve matter equations on the black hole geometry. For

p = 2, the metric is given by

ds2
4 =

( r0

L

)2 1

u2
(−hdt2 +dx2 +dy2)+L2 du2

hu2
, h = 1−u3 . (14.30)

Of course, the SAdS black hole itself has no dimensionful quantity other than

temperature, so one has to introduce another scale to have a phase transition. We

introduce a chemical potential. Then, the system is parametrized by µ/T .

When Ψ = 0, the solution A0 takes the same form as Eq. (10.29):

A0 = µ(1−u) , Ai = Au = 0, Ψ = 0 , (14.31)

where we take the gauge Au = 0 and A0|u=1 = 0 (Sect. 10.3.1). This is the solution

in the high-temperature phase.

Like the GL theory, the system becomes unstable at Tc becauseΨ becomes tachy-

onic. However, unlike the GL theory, the holographic superconductor does not have

the Higgs-like potential, so the instability comes from a different origin. The in-

stability comes from the coupling of the scalar field with the Maxwell field. The

complex scalar has the effective mass given by

m2
eff = m2 − (−g00)A2

0 , (14.32)
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from the action (14.29). Thus, Ψ becomes sufficiently tachyonic for a large enough

µ/T or for low enough temperature.

Critical phenomena of holographic superconductor Typically, one chooses the

spatial dimensionality p of the boundary theory and the scalar mass squared as p= 2

and m2 =−2/L2. The choice p = 2 would remind readers that in high-Tc materials

the two-dimensional Cu-O plane plays an important role. This is certainly part of

the reason, but the reason here is mainly technical: the equations of motion are often

easiest to solve (with the choice of scalar mass).

The choice m2 =−2/L2 means that Ψ is actually tachyonic from the beginning,

but a certain range of tachyonic mass is allowed in the AdS spacetime if the mass

satisfies the Breitenlohner-Freedman (BF) bound (10.41):

m2 ≥− (p+1)2

4L2
=− 9

4L2
, (14.33)

so the choice satisfies the BF bound.

We consider the solution of the form Ψ =Ψ(u) and A0 = A0(u). Then, matter

equations are

A′′
0 −

2|Ψ |2
u2h

A0 = 0 , (14.34a)

u2

h

(

h

u2
Ψ ′
)′

+

(

A2
0

T2h2
− L2m2

u2h

)

Ψ = 0 , (14.34b)

where ′ := ∂u and T := 4πT/3 = r0/L2.

First, determine the critical temperature Tc. Near Tc, the scalar field remains

small, and one can ignore the backreaction of Ψ onto the Maxwell field. In this

region, one can use Eq. (14.31) for A0, and it is enough to solve the Ψ equation

only.

Following the discussion of scalar fields (Sect. 10.3.2), Ψ behaves as

Ψ ∼Ψ (0)u∆− + cψ〈O〉s u∆+ (u → 0) , (14.35)

∆± =
p+1

2
±
√

(p+1)2

4
+L2m2 , (14.36)

where 〈O〉s is the order parameter in the presence of the external source Ψ (0), and

cψ is an appropriate factor. For our choice, (∆−,∆+) = (1,2).
At Tc, the system has the spontaneous condensation without an external source,

so solve the Ψ(u) equation by imposing the boundary condition Ψ (0) = 0. A regular

solution with a nonvanishing 〈O〉 can exist only for T ≤ Tc, which determines Tc

(Sect. 14.5).

Then, solve the matter equations in the low-temperature phase. Figure 14.3(a)

shows a numerical result5. Near the critical point Tc,

5 A Mathematica code is available from Chris Herzog’s website [7].
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Fig. 14.3 Numerical results of (a) the order parameter 〈O〉, (b) Re[σ(ω)], and (c) Im[σ(ω)] (for

the choice p = 2 and m2 =−2/L2) [6].

〈O〉 ∝ (Tc −T )1/2 , (14.37)

which agrees with the GL theory of the second-order transition, β = 1/2.

If the holographic superconductor indeed shows the critical phenomena in Chap. 13,

and if it is indeed represented by the GL theory, the other critical exponents should

agree as well. First, in the probe limit, the spacetime geometry is just the SAdS5

black hole, so the singular behavior is not reflected into the geometry. Thus, the

heat capacity remains constant, which implies α = 0. Also, one can solve the Ψ
equation in (ω,q)-expansion, and Eq. (14.35) gives the “order parameter response

function”

χk =
∂ 〈Ok〉s

∂Ψ
(0)

k

, (14.38)

from which one can extract the exponents (γ,ν ,η ,z). The results agree with the

GL theory (13.35) [8]. Because the values of these exponents are the GL ones, they

obviously satisfy scaling relations (13.36) except the hyperscaling relation.

The GL theory is a mean-field theory. The holographic superconductor agrees

with the mean-field theory because we consider the large-Nc limit. In this limit, fluc-

tuations are suppressed so that mean-field results are exact. The critical exponents

of the holographic superconductor are independent of the spatial dimensionality,

which is another indication of mean-field results6.

As a condensed-matter system, it is natural that critical exponents agree with the

GL theory, but this is not entirely obvious as a gravitational theory. First, we are talk-

ing of critical phenomena in a black hole background, not a usual statistical system.

In the presence of gravity, the usual notion of statistical mechanics does not hold in

general. For example, the Schwarzschild black hole has a negative heat capacity, so

there is no stable equilibrium. Thus, it is not clear either if the standard theory of

critical phenomena is valid for black holes. (Of course, AdS/CFT claims that AdS

black holes are equivalent to usual statistical systems such as gauge theories, so the

standard theory had better hold in AdS/CFT.)

6 In particular, a phase transition occurs even when the boundary theory is (2+ 1)-dimensional,

but this does not contradict with the Coleman-Mermin-Wagner’s theorem [9, 10].
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Second, in this case, we have critical exponents of the standard GL theory, but it

is not always the case. If one changes the system, one still gets mean-field exponents

but nonstandard exponents. Such a system should have nonstandard mean-field free

energy, i.e., not like Eq. (13.22). In this sense, second-order phase transitions in

AdS/CFT seem to have rich phenomena even in the framework of mean-field theory.

Conductivity of holographic superconductor We now consider the conductivity,

the AC conductivity σ(ω). The diverging DC conductivity Re[σ(ω → 0)] ∝ δ (ω)
cannot be seen in a numerical computation but can be seen from the 1/ω pole in

Im[σ ] (Sect. 13.2.2).

Following Sect. 10.3.1, we add Ax = Ax(u)e
−iωt . The vector potential Ax behaves

as

Ax ∼ A
(0)
x

(

1+A
(1)
x u
)

, (u → 0) (14.39)

and the fast falloff is the current Jx:

〈Jx〉s = cAA
(1)
x A

(0)
x , (14.40)

where cA is an appropriate factor. On the other hand, from Ohm’s law,

〈Jx〉s = σE
(0)
x = iωσA

(0)
x , (14.41)

so

iωσ(ω) = cAA
(1)
x . (14.42)

The Ax equation is written as

1

h
(hA′

x)
′+

(

ω2

T2h2
− 2Ψ 2

u2h

)

Ax = 0 . (14.43)

The important term is the last term proportional to Ψ 2. This term is essential to

the diverging DC conductivity. In the high-temperature phase, Ψ = 0, so the term

vanishes. Then, the problem is similar to the SAdS5 conductivity computed in

Sect. 12.8. (Of course, we considered the p = 3 case there, but the structure is the

same.) We solved the conductivity in the ω-expansion, and the result (12.147) was

A
(1)
x =

iω

2πT
+ · · · . (for SAdS5 with Ψ = 0) . (14.44)

Namely, the solution starts with the O(iω) term and there is no ω-independent term.

From Eq. (14.42), the DC conductivity Re[σ(ω → 0)] is then finite, and Im[σ(ω)]
has no 1/ω pole.

On the other hand, in the low-temperature phase, Ψ 6= 0, and the Ψ 2 term in

the Ax equation is nonvanishing. In this case, an ω-independent term can exist in

A
(1)
x . Figures 14.3(b) and (c) show numerical results of the conductivity in the low-

temperature phase. The conductivity has the following two properties just as usual

superconductors (Fig. 13.7):
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1. The diverging DC conductivity Re[σ(ω → 0)]. Im[σ(ω)] indeed has a 1/ω pole.

2. The AC conductivity Re[σ(ω)] almost vanishes for ω < ωg, which indicates the

existence of the energy gap ωg.

In addition, the AC conductivity approaches constant for large-ω . This simply re-

flects the (2+ 1)-dimensional nature of the problem. In (2+ 1)-dimensions, J(x)
has mass dimension 2, and E(x) has mass dimension 2, so the conductivity is di-

mensionless.

Magnetic response For superconductors, magnetic responses are interesting and

important as well (Sect. 13.2). In particular, the magnetic field is expelled because

of the Meissner effect. For the holographic superconductor, the boundary theory has

the U(1) gauge field A
(0)
µ , but the gauge field is added as an external source. The

gauge field is not dynamical in the boundary theory. Thus, the Meissner effect does

not arise, and a magnetic field can penetrate the holographic superconductor. When

we discussed the Meissner effect, we showed that the gauge field becomes massive

by combining two equations:

• The London equation (13.58),

• The Maxwell equation.

But for the holographic superconductor, there is no Maxwell equation for the bound-

ary U(1) gauge field. This is the reason why there is no Meissner effect.

Even though the Meissner effect does not arise, the London equation must hold.

The London equation is just the response of the current under the external source.

Whether photon is dynamical or not should be irrelevant to the response itself. One

can show that the London equation holds for the holographic superconductor7.

Near Tc, the scalar field remains small, and the bulk Maxwell equation ∂x(
√−gFyx)=

∂y(
√−gFxy) = 0 reduces to ∂xFyx = ∂yFxy = 0. Then, one can apply a constant mag-

netic field into the holographic superconductor:

B = Fxy = ∂xAy , Ay = Bx . (14.45)

The magnetic field is perpendicular to the boundary spatial direction.

A large enough magnetic field destroys the superconducting state. This is true for

the holographic superconductor as well [12, 13, 14]. Let us go back to the effective

mass argument. The effective mass argument is useful to understand the instability

of the system, but this time consider with a vector potential Ai(xxx):

m2
eff = m2 +

{

−(−g00)A2
0 +giiAi(xxx)

2
}

. (14.46)

As we saw earlier, A0 contributes with minus sign, so it tends to destabilize the nor-

mal state, which leads to the superconductivity. On the other hand, Ai(xxx) contributes

with plus sign, so it tends to stabilize the normal state. Thus, the superconducting

state becomes unstable under a large enough magnetic field.

7 From the field theory point of view, the London equation is a consequence of the spontaneous

symmetry breaking of the gauge symmetry [11]. The argument holds even when the gauge field is

nondynamical.



14.3 Second-order phase transition: Holographic superconductors 263

Superconductors are classified as type I and type II superconductors depending

on the magnetic response. For the holographic superconductor, a magnetic field can

can penetrate superconductors. In this sense, the holographic superconductor is the

“extreme type II” superconductor. (The superfluid is often called so as well.) In type

II superconductors, the penetration of the magnetic field arises by forming vortices.

The vortex solutions and the vortex lattice have been constructed for the holographic

superconductor [15, 16, 17]. For the vortex lattice, the triangular lattice is the most

favorable configuration just as the GL theory.

The holographic superconductor does not have a dynamical U(1) gauge field.

One would regard the system as a superfluid rather than a superconductor. The su-

perfluid property of the system has been investigated as well (see, e.g., Ref. [18]).

14.3.3 Other issues �

Beyond the probe limit One can actually solve the full Einstein-Maxwell-scalar

problem without the probe limit. We do not discuss the details, but two remarks are

worth to mention here.

First, in the full problem, the DC conductivity diverges even in the high-temperature

phase, i.e., for the RN-AdS4 black hole. This is not superconductivity but perfect

conductivity.

One can boost the whole system in the x-direction. In a charged system, this pro-

duces a steady current without an electric field, which signals perfect conductivity.

Since we have a nontrivial A0(u), the boost produces Ax(u). Then, the current Jx is

nonvanishing even though there is no electric field (A
(0)
x =constant). In the probe

limit, the boost is not possible since we fixed the black hole background.

Second, in the full problem, even the neutral scalar (e = 0) becomes unstable.

The stability analysis is particularly simple at T = 0, so consider the extreme RN-

AdS4 black hole. There are actually two mechanisms for the instability of the scalar

[14, 19, 20]:

• First, as we saw above, the effective mass becomes more tachyonic because of

the Maxwell field.

• Second, the extreme black hole effectively becomes AdS2 near the horizon, but

the BF bound becomes stringent for a smaller p:

m2 ≥− (p+1)2

4L2
. (14.47)

Namely, even if the scalar mass is above the BF bound for AdS4 asymptotically,

the scalar may be below the BF bound for AdS2, so the scalar becomes unstable

near the horizon.

See Sect. 11.2.4 for the explicit form of the RN-AdS4 black hole. The extreme

limit is given by r+ = r− = r0 or α = 1. In the extreme limit, the near-horizon
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geometry becomes8

ds2
4 →− f dt2 +

dr̃2

f
+
( r0

L

)2

dxxx2
2 , (14.48a)

f → 6

(

r̃

L

)2

, (14.48b)

A0 →
2
√

3

L
r̃ , (14.48c)

where r̃ := r − r0. The geometry reduces to AdS2 ×R
2 with the effective AdS2

radius L2
2 := L2/6. Thus, even if the scalar mass m2 =−2/L2 is above the BF bound

asymptotically, i.e.,

m2 ≥− 9

4L2
, (BF bound for p = 2) (14.49)

it is below the BF bound for AdS2:

m2 ≥− 1

4L2
2

=− 3

2L2
, (effective BF bound for p = 0) (14.50)

The effective AdS2 radius is actually smaller than the AdS4 radius, L2
2 = L2/6, but

the scalar can be unstable even taking this into account. See also Fig. 14.4.

Now, consider the charged scalar case. In the near-horizon limit, the effective

mass becomes

m2
eff = m2 − (−g00)e2A2

0 → m2 −2e2 , (14.51)

so the BF bound (14.50) is rewritten as

L2
2m2

eff =
L2

6
(m2 −2e2)≥−1

4
. (14.52)

The instability occurs if the scalar does not satisfy the condition.

Other models Previously, we arrive at an Einstein-Maxwell-scalar system to evade

the no-hair theorem, but this is not the only possibility. A Yang-Mills hair is possible

even in asymptotically flat spacetimes, so an Einstein-Yang-Mills system is another

option. In such a system, the order parameter is a vector (Yang-Mills field), so it

is a p-wave holographic superconductor [21, 22]. In the Einstein-Maxwell-scalar

system, the order parameter is a scalar, so it is a s-wave holographic superconductor.

The d-wave holographic superconductors are potentially interesting since high-

Tc materials are d-wave superconductors. The order parameter should be a massive

spin-2 field, but finding an action for a charged spin-2 field in curved spacetime is

an unsolved issue [23].

8 We change the normalization of the Maxwell field in Sect. 11.2.4 as AM → LAM to take into

account the standard normalization convention for the holographic superconductor (14.28a).
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Fig. 14.4 Various masses appeared in the text. Even if the scalar mass is above the BF bound for

AdS4 asymptotically, the scalar may be below the BF bound for the effective AdS2.

Limitations of the current model We have used a particular model (14.28a) to

discuss holographic superconductivity, but this phenomenon does not depend on

the details of the system. We saw the phase transition even in the probe limit, so

the key property of this phenomenon is the instability of matter fields. Holographic

superconductivity should arise in a broad range of theories which satisfy the stability

argument (14.32). Namely, holographic superconductivity is a robust phenomenon.

This is naturally expected since superconductivity is a robust phenomenon at low

temperature.

Unfortunately, the holographic superconductor lacks the microscopic picture of

the order parameter O. One starts with the gravitational theory, so the details of the

dual field theory, in particular the nature of O, is unclear. The model does not tell

if O is a composite operator like the Cooper pair and does not tell about the paring

mechanism at strong coupling. Of course, such a problem is also common to the GL

theory. So, the holographic superconductor is the holographic GL theory rather than

the holographic BCS theory.

A quarter of a century has passed after the discovery of high-Tc superconductiv-

ity, but its theoretical understanding is still insufficient. One feature of high-Tc su-

perconductivity is its rich phase structure: these materials typically have non-Fermi

liquid phase, pseudogap region, anti-ferromagnetic insulator phase in addition to the

superconducting phase and the Fermi liquid phase. These phases are likely to be tied

very closely so that it is probably mandatory to have their unified understanding in

order to solve high-Tc superconductivity.

Thus, in order to understand high-Tc materials, it is clearly insufficient just to

realize the superconducting phase in AdS/CFT. It does not seem an easy task to

understand all these phases at once by AdS/CFT. Rather, first we had better try to

understand each phases separately in the AdS/CFT framework.

Although holographic superconductors correspond to the GL theory, one can

discuss the Cooper pair instability if one considers bulk fermions instead of bulk

scalars [24]. Also, using the bulk fermions, one can realize Fermi liquid phase and

non-Fermi liquid phase (see, e.g., Ref. [25] for a review). If one can construct a
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gravity dual which covers all these phases, it would be useful to understand high-Tc

superconductivity.

14.4 Summary

• Large-Nc gauge theories have rich phase structures like condensed-matter sys-

tems. Studying such phase structures may be useful even in condensed-matter

physics.

• As examples, we discuss first-order and second-order phase transitions and su-

perconductivity in AdS/CFT.

• A black hole with compact horizon can undergo a first-order phase transition. A

hairy black hole can undergo a second-order phase transition.

• An ultimate goal is to understand high-Tc superconductivity in AdS/CFT.

New keywords

Hawking-Page transition

reference spacetime

Casimir energy

holographic superconductors

probe limit

14.5 Appendix: Critical temperature of holographic

superconductor �

The matter field equations are given by

D2Ψ −m2Ψ = 0 , (14.53a)

∇NFMN = jM , (14.53b)

jM :=−i
{

Ψ †(DMΨ)−Ψ(DMΨ)†
}

. (14.53c)

They are similar to the GL equations of motion for superconductors, but the above

equations are bulk equations. For example, jM is the bulk matter current, not the

boundary current Jµ . The boundary current Jµ is extracted from the slow falloff of

AM .

We take the gauge Au = 0. We consider the solution of the form Ψ =Ψ(u) and

A0 = A0(u). The u-component of the Maxwell equation gives 0 = ju ∝ Ψ †Ψ ′ −
ΨΨ †′, so the phase of Ψ must be constant. We take Ψ to be real without loss of

generality. The rest of bulk equations reduce to Eqs. (14.34).
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Near Tc, the scalar field remains small, so the A0 solution is approximately given

by A0 = µ(1−u). Then, the Ψ equation becomes

u2

h

(

h

u2
Ψ ′
)′

+

{

(

µ

T

1−u

h

)2

+
2

u2h

}

Ψ = 0 , (14.54)

where T := 4πT/3 and we set L2m2 = −2. We impose the following boundary

conditions:

• The horizon u → 1: regularity.

• The AdS boundary u → 0: Ψ asymptotically behaves as

Ψ ∼Ψ (0)u+ cψ〈O〉s u2 , (u → 0) , (14.55)

and we impose Ψ (0)=0 (spontaneous condensate).

The problem has a nontrivial solution only for particular values of T/µ , which de-

termines Tc.

This problem is essentially the same as the quasinormal mode problem in

Sect. 12.6.2. In both cases, we impose the vanishing slow falloff condition at the

AdS boundary. The differences are

• Quasinormal mode: a nontrivial solution exists only for a particular ω/q.

• This problem: a nontrivial solution exists only for a particular T/µ .

The vanishing slow falloff problem determines the location of poles, and here we

interpret the pole as the diverging susceptibility. This is because

χ =
∂ 〈O〉s

∂Ψ (0)
∝

〈O〉s

Ψ (0)
→ ∞ (14.56)

when a spontaneous condensate develops. In both cases, we are interested in poles

in the Green’s function (or the response function), and they signal the presence of

light degrees of freedom (hydrodynamic modes or a massless order parameter).

We solve Eq. (14.54) by a power series expansion around the horizon. Suppose

that our differential equation takes the form

Ψ ′′+
p(u)

u−1
Ψ ′+

q(u)

(u−1)2
Ψ = 0 . (14.57)

We expand the solution by a power series expansion around the horizon:

Ψ(u) =
∞

∑
n=0

an(u−1)n+λ , (14.58)

and expand the functions p(u) and q(u), e.g.,

p(u) =
∞

∑
n=0

pn(u−1)n . (14.59)
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Substitute Eqs. (14.58) and (14.59) into Eq. (14.57). At the lowest order, one gets

{λ (λ −1)+λ p0 +q0}a0 = 0 . (14.60)

This is the indicial equation to determine λ . Since we have a linear differential

equation, the coefficient a0 is undetermined, and we set a0 = 1. [The computation

here determines only Tc. In order to obtain the magnitude of the condensate, one has

to solve coupled matter equations (14.34).] For our problem (14.54), the indicial

equation gives λ (λ −1)+λ = λ 2 = 0, and we henceforth set λ = 0.

Proceeding further, one obtains an recursively:

an =− 1

n(n−1)+np0 +q0

n−1

∑
k=0

{k(k−1)+ kpn−k +qn−k}ak . (14.61)

For our problem, the first few series from Eq. (14.61) are

Ψ(u) = 1+
2

3
(u−1)−

{

2

9
+

1

36

(µ

T

)2
}

(u−1)2 + · · · , (u → 1) . (14.62)

One truncates the series after a large number of terms n = N. One can check the

accuracy as one goes to higher sums. One typically needs to compute the sum up to

N ≈ 100.

In order to impose the u → 0 boundary condition, expand the solution around

u → 0:

Ψ(u) =

{

N

∑
n

(−)nan

}

+

{

N

∑
n

(−)n−1nan

}

u+O(u2) . (14.63)

We impose the vanishing slow falloff condition Ψ (0) = 0, so the O(u) term must

vanish:

Ψ (0) =
N

∑
n=0

(−)n−1nan = 0 . (14.64)

[The O(1) term converges to zero after a large number of partial sums.] This is a

polynomial equation for T/µ which is satisfied only for particular values of T/µ .

As one approaches from high temperature, the first solution one encounters gives Tc.

On the other hand, the condensate which comes from the O(u2) term is nonvanishing

at Tc.

One can solve Eq. (14.64) numerically and obtains

Tc

µ
≈ 0.24608 or

Tc

µ
≈ 0.058747 . (14.65)
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