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1 Introduction

The question of scale separation of AdS vacua in string theory [1–3] is the subject to a lot

of recent discussion. In many of the previous works, backgrounds of the form AdSd×M(p)

were considered, and special emphasis was given to the case with d = 4 and p = 6. Scale

separation is possible whenever the radius Ld of AdSd is parametrically larger than the

inverse Kaluza-Klein (KK) mass scale Lp ' 1
mKK

of M(p), i.e. Ld � Lp. In the case

where scale separation is possible, the theory possesses a limit in which the solution can

be regarded as d-dimensional AdSd space. On the other hand, if scale separation is not

possible, i.e. if Ld ' Lp, the solutions are not really d-dimensional, and the gravitational

background has to be considered as (d + p)-dimensional. Whether scale separation in su-

pergravity backgrounds of the above form is possible or not has also profound consequences

for the holographically dual CFT in (d− 1) dimensions.

We do not want to review all arguments which were given in favor or against scale

separation for AdSd × M(p) background spaces. Some general arguments against scale

separation were given in [2]. On the other hand, one of the early papers addressing this
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issue is the work of DGKT [4], where it was argued that in the presence of orientifold planes

scale separation is possible. This discussion was recently refined and extended in [5–10].

The question of scale separation was also recently addressed in the general context of

the quantum gravity swampland discussion [11], namely as the AdS Distance Conjecture

(ADC) [12]. This conjecture states that the limit of small AdS cosmological constant,

Λ ' 1
L2
d
→ 0, is at infinite distance in the space of AdS metrics, and that it is related to

an infinite tower of states with typical masses that scale as,

ADC : m ∼ Λα , (1.1)

with α = O(1). The strong version of the ADC proposes that for supersymmetric back-

grounds α = 1
2 , and that in this case scale separation is not possible, since Ld ∼ 1

m .

In this paper we will consider several AdS2 solutions in string theory, where the total

space is of the form AdS2 ×M(1) × · · · × M(n). Assuming that the scale, or radius, is

related to the scalar curvature, or cosmological constant, via Λ ' 1
L2 , we will see that

scale separation for these backgrounds will never be possible in the sense that for all the

considered cases the radius L2 of AdS2 can never be much larger than at least one of the

radii of the other factors. E.g. if M(1) is a two-sphere S2 of radius L′2, then L2 ≤ L′2.

However there are cases where the rest of the radii, e.g. the radius of a Ricci-flat space M(6),

can be much smaller than L2, L′2. In particular, L2 = L′2 � L6 is possible. This means

that there can be scale separation between AdS2 × S2 and M(6), even within a regime of

weak coupling and curvature where the supergravity approximation is valid. The reason

this is possible is that in the Ricci-flat case the radius is no longer related to the inverse of

the scalar curvature (which vanishes). Instead the radius becomes a free parameter of the

solution, only constrained by flux quantization.

The case of AdS2 × S2 is of special interest, since it corresponds to the near horizon

geometry of four-dimensional extremal, supersymmetric black holes. The radii L2 = L′2
are directly related to the entropy S of the corresponding black hole solutions:

S ∼ L2
2 . (1.2)

As it was recently discussed in [13], the limit of large entropy, S → ∞, is at infinite

distance in the space of 4D black hole metrics. Therefore, similarly to the ADC, a black

hole entropy conjecture (BHEC) was put forward in [13], stating that the large entropy

limit of black holes is also accompanied by a tower of light modes. However these modes

cannot be given in terms of the internal KK modes of M(6). This was already seen in [13]

from the so-called attractor equations, since, as a function of the electric and magnetic

black hole charges, S can be made large, while keeping the internal scale L6 small. Here

we will confirm this result by investigating the supergravity solutions of the corresponding

intersecting D-branes, and reading off from the supergravity solutions the corresponding

length scales. However, as we will discuss, there are other classes of AdS2 supergravity

solutions, where scale separation is only possible in the other direction: namely there are

solutions where the AdS2 space and some of the internal factors are more highly curved

than the rest of the internal factors. We call this the “wrong” kind of scale separation.
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The paper is organized as follows. In the next section we will briefly review the

background spaces of supergravity p-branes in ten spacetime dimensions. In section 3

we will then discuss the construction of supergravity solutions of intersecting D-branes,

which lead to supersymmetric 4D black holes with AdS2 × S2 near-horizon geometry. We

will see that scale separation L2 = L′2 � L6 is possible within the validity regime of the

supergravity approximation. We also compare these results with those of [13]. In section 4,

we discuss various generalizations of spaces M6 and show that scale separation works in

a different way than before. The case of M6 Ricci-flat, discussed in section 4.4, includes

the brane set up of section 3.1 as a special case. In section 4.5 the case of backgrounds

of the form M10 = M
(1)
2 × · · · ×M (5)

2 is analyzed. In section 4.5.1 we discuss solutions

of the form AdS2×S2×S2×S2×T2, AdS2×S2×S2×T4, or AdS2×S2×S2×K3, obeying flux

quantization within the validity regime of the supergravity approximation. We conclude

with a discussion in section 5.

2 p-branes in D = 10

For a review of brane solutions see e.g. [14–16]. In ten dimensions, in the string frame,

p-branes are solutions of the action S = Sbulk + Ssources where,

Sbulk =
1

2κ2
10

∫
d10x

√
|g10|

(
e−2φ(R+ 4|dφ|2)− 1

2
|Fp+2|2

)
, (2.1)

g10 is the determinant of the metric gMN , M,N = 0 . . . 9, Fp+2 = dCp+1 is the abelian

(p + 2)-form field strength, and φ is the dilaton. The square of a q-form Aq is defined by

|Aq|2 = AqM1...Mq g
M1N1 . . . gMqNqAq N1...Nq/q!. Moreover,

Ssources = −Tp
∫

Σp+1

dp+1ξ e−φ
√
|ı∗[gD]|+ µp

∫
Σp+1

ı∗[Cp+1] , (2.2)

where Σp+1 is the world-volume of the p-brane with coordinates ξi, i = 0 . . . p, and ı∗[·] the

pull-back to Σp+1. The gravitational constant and the tension are given by,

2κ2
10 = (2π)7(α′)4 , T 2

p =
π

κ2
10

(4π2α′)3−p , (2.3)

where α′ = l2s , with ls the string length. For BPS sources as here, one has µp = Tp. The

p-brane solutions in the string frame are then given by,

ds2 = H−
1
2 ηijdx

idxj +H
1
2 δmndymdyn

eφ = eφ0 H−
(p−3)

4 ; Cp+1 = (H−1 − 1) e−φ0 volp+1 ,

(2.4)

with xi=0...p the coordinates along the brane, volp+1 = dx0 ∧ . . . ∧ dxp, and ym=p+1...9

the coordinates of the space transverse to the brane. H(~y) is a harmonic function with

localized source in the (unwarped) R9−p space transverse to the p-brane,

δmn∂m∂nH(~y) = Qδ(~y − ~y0) , (2.5)
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where the brane is located at ~y0 in the transverse space. For Dp-branes we have,

QDp = −2κ2
10Tpgs = −(2πls)

7−pgs . (2.6)

The constant eφ0 = gs can be used to define the string coupling as the value of the dilaton

at asymptotic infinity, where the harmonic functions tend to unity. However, once the

near-horizon limit is taken (see section 3.1), the asymptotic region is no longer accessible.

More generally one should think of gs as a free parameter of the solution, related to the

string coupling via (2.4).

3 The brane configuration

One can form superpositions of brane solutions according to the harmonic superposition

rule [17, 18]. Consider the following system of intersecting D4/D0-branes:

t x1 x2 x3 y1 y2 y3 y4 y5 y6

D41
⊗ ⊗ ⊗ ⊗ ⊗

D42
⊗ ⊗ ⊗ ⊗ ⊗

D43
⊗ ⊗ ⊗ ⊗ ⊗

D0
⊗

where ym=1,...,6 are assumed to parameterize a T 6, and xi=1,2,3 are coordinates of R3. We

use the notation D4α, α = 1, 2, 3 to distinguish the three different types of D4-branes in

the configuration of the table above. We shall assume there are n0 D0-branes located at

~x0 ∈ R3, and nα D4α-branes located at ~xα, α = 1, 2, 3.

The explicit form of the metric reads,

ds2
10 =−

(
3∏

α=0

Hα

)− 1
2

dt2 +

(
3∏

α=0

Hα

) 1
2 3∑

i=1

(dxi)2 +

√
H0H2

H1H3

(
(dy1)2 + (dy2)2

)
+

√
H0H3

H1H2

(
(dy3)2 + (dy4)2

)
+

√
H0H1

H2H3

(
(dy5)2 + (dy6)2

)
, (3.1)

whereHα, α = 1, 2, 3, are the harmonic functions of the D4α-branes, andH0 is the harmonic

function of the D0-branes. We have,

Hα = 1 +
cα

|~x− ~xα|
; cα =

Nαgs
4π

(2πls)
7−p , (3.2)

for α = 0, . . . , 3, and we took into account that (2.5) implies c = − Q
4π , for the case where

the transverse space is R3. The Nα are proportional to the number of D-branes nα. The

precise relation will be derived below using flux quantization.1 More explicitly,

c0 =
N0gs
4π

(2πls)
7 ; cα =

Nαgs
4π

(2πls)
3 , α = 1, 2, 3 . (3.3)

1In the case of a single set of parallel D-branes, we would simply have Nα = nα. However the brane

solution (3.1) was obtained using harmonic superposition, which results in smearing the D-branes along the

directions of the T 6. As a consequence, Nα, nα are not equal to each other.
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3.1 Near-horizon limit

We shall now assume that all branes are located at the origin: ~xα = 0, α = 0, . . . , 3. Let

us define r :=
√
~x2. In the near-horizon limit r → 0, (3.1) reads,

1

C
ds2

10 =− r2dt2 +
dr2

r2
+ dΩ2 (3.4)

+
1

c1c3

(
(dy1)2 + (dy2)2

)
+

1

c1c2

(
(dy3)2 + (dy4)2

)
+

1

c2c3

(
(dy5)2 + (dy6)2

)
,

where dΩ2 is the line element of the unit two-sphere. Moreover we defined C :=(∏3
α=0 cα

) 1
2 , and rescaled the time coordinate: t→ t/C.

The fluxes read,

gsF2 =
C

c0
dr ∧ dt

gsF6 = Cdr ∧ dt ∧
(

1

c1
dy1 ∧ dy2 ∧ dy3 ∧ dy4

+
1

c2
dy3 ∧ dy4 ∧ dy5 ∧ dy6 +

1

c3
dy1 ∧ dy2 ∧ dy5 ∧ dy6

)
gs ? F2 = c0dΩ2 ∧ dy1 ∧ · · · ∧ dy6

gs ? F6 = dΩ2 ∧
(
c1dy5 ∧ dy6 + c2dy1 ∧ dy2 + c3dy3 ∧ dy4

)
,

(3.5)

where dΩ2 is the volume form of the unit 2-sphere, and we have taken into account that

the time coordinate has been rescaled as indicated below (3.4). All fluxes, as well as their

Hodge-duals, can readily be seen to be everywhere well-defined and closed, dF = d?F = 0,

indicating the absence of sources. In other words, the near-horizon limit is a pure gravity

background, all branes having dissolved into fluxes in the limit.

We shall assume that the areas, in units of string length, of the three 2-tori Σi spanned

by the internal coordinates are given by three moduli vi,

v1 =
1

l2s

∫
Σ1

dy1dy2 ; v2 =
1

l2s

∫
Σ2

dy3dy4 ; v3 =
1

l2s

∫
Σ3

dy5dy6 . (3.6)

The flux quantization conditions,

n0 =
1

(2πls)7

∫
S2×T 6

?F2 ;

n1 =
1

(2πls)3

∫
S2×Σ3

?F6 ; n2 =
1

(2πls)3

∫
S2×Σ1

?F6 ; n3 =
1

(2πls)3

∫
S2×Σ2

?F6 ,

(3.7)

then relate Nα to the number of D-branes nα ∈ N, which have dissolved into flux quanta

in the near-horizon geometry,

N0 =
n0

l6sv1v2v3
; N1 =

n1

l2sv3
; N2 =

n2

l2sv1
; N3 =

n3

l2sv2
, (3.8)

where we have substituted (3.5) into (3.7), taking (3.3), (3.6) into account.
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The geometry of (3.4) is AdS2×S2×T6. The radii L2, L′2 of AdS2, S2 respectively,

can be seen to be equal to each other. The 4D part of the geometry, AdS2×S2, is thus

characterized by a radius L4 := L2 = L′2. The latter and the radius L6 of T6 can be read

off of (3.4),

L4 = C
1
2 = 4π3lsgs(n0n1n2n3)

1
4 (v1v2v3)−

1
2 ;

L6 =
C

1
2

(c1c2c3)
1
3

ls(v1v2v3)
1
6 = 2πls

(
n3

0

n1n2n3

) 1
12

.
(3.9)

Unlike the individual values of the radii L4, L6, their ratio is frame-independent,

L4

L6
= 2π2 gs(n1n2n3)

1
3 (v1v2v3)−

1
2 . (3.10)

The dilaton is constant,

eφ = gs(2π)3

(
n3

0

n1n2n3

) 1
4

(v1v2v3)−
1
2 . (3.11)

3.2 Validity

The metric, fluxes and dilaton (3.4), (3.5), (3.11) give an exact bulk supergravity solution

without sources. The solution is parameterized by the parameters gs, na, vi, which can be

tuned independently.

Let us denote by Ti the effective areas (in string frame and in string units) of the three

2-tori in the near-horizon limit,

T2 :=
C

c1c3
v1 ; T3 :=

C

c1c2
v2 ; T1 :=

C

c2c3
v3 . (3.12)

Taking (3.3), (3.8) into account, this is equivalent to,

Ti = 4π2ni

√
n0

n1n2n3
. (3.13)

For the validity of the supergravity regime we must require,

Ti � 1 . (3.14)

In addition we must require that the radius of curvature of the background is much larger

than the string scale,

L4, L6 � ls , (3.15)

and that the string coupling obeys

eφ < 1 ; eφ|Fp| < 1 , (3.16)

in order for the higher-order flux corrections to be under control. In the second inequality

above, the norm of the p-form flux is given by |Fp|2 := 1
p! |FM1···MpFN1···Npg

M1N1 . . . gMpNp |.
Conditions (3.14), (3.15), (3.16) are necessary and sufficient for the supergravity solu-

tion given in (3.4), (3.5), (3.11) to be within its regime of validity.
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3.3 Scale separation

Let us first note that any rescaling of the vi’s can be cancelled by a corresponding rescaling

in gs. So in the following we can keep vi fixed without loss of generality.

Suppose there is a solution parameterized by {gs, na, vi}. Let us moreover rescale,

n0 → p n0 ; n1,2,3 → q n1,2,3 ; gs → t · q−1 gs , (3.17)

for some non-vanishing p, q ∈ N∗, t ∈ R+. Under this rescaling we have,

L4 → t
(p
q

) 1
4
L4 ; L6 →

(p
q

) 1
4
L6 ,

L4

L6
→ t

L4

L6
; Ti →

(p
q

) 1
2
Ti

eφ → t q−1
(p
q

) 3
4
eφ ; eφ|F2| → t−1

(p
q

)− 1
4
eφ|F2| , eφ|F6| → t−1

(p
q

)− 1
4
eφ|F6| ,

(3.18)

where i = 1, 2, 3. Scale separation (L4 � L6) is thus equivalent to taking t� 1.

If in addition we want to respect conditions (3.14), (3.15), we also must take p � q.

Then the second of the two inequalities in (3.16) is automatically satisfied. To satisfy the

first inequality in (3.16), it suffices to take p = q2 � 1, and t = qr, with 0 < r < 1
4 . We

are then guaranteed to be within the validity regime of the supergravity approximation.

3.4 Comparison with [13]

In order to compare with [13] let us first redefine the constant gs → gs(v1v2v3)−
1
2 , and also

set ls = 1, so that the formulae of section 3.1 become,

L4

L6
= 2π2 gs(n1n2n3)

1
3 ; eφ = gs(2π)3

(
n3

0

n1n2n3

) 1
4

, (3.19)

and the 4d dilaton reads,

eφ4 =
eφ√
V

= gs , (3.20)

where V := L6
6.

We see that the dependence on the 2-tori areas vi disappears, having been absorbed in

the independent constant gs. This is consistent with the attractor mechanism according to

which the near-horizon geometry is fixed by the charges, and in particular is independent

of the values of the Kähler moduli at asymptotic infinity. The latter correspond to the

areas of the 2-tori, vi. On the other hand, the values of the Kähler moduli at the horizon

are given in (3.13), and correspond to the effective values of the areas of the 2-tori at the

horizon. Indeed the Ti’s here are essentially the same as defined in eq. (73) of [13].

The ratio L4/L6 here, cf. (3.19), corresponds to mKK(SN=2)1/2 of [13], up to a nu-

merical factor of order one. We find agreement with [13], cf. eq. (79) therein, provided we

include the string coupling constant gs there.
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4 Generalizations

We will look for solutions of (massive) IIA supergravity the form M2 ×M ′2 ×M6, where

M2 is a two-dimensional maximally-symmetric Lorentzian manifold (i.e. R1,1, dS2, AdS2),

M ′2 is a two-dimensional maximally-symmetric Riemannian manifold (i.e. R2, S2, H2) or

discrete quotients thereof, and M6 is a six-dimensional nearly-Kähler (NK), Calabi-Yau

(CY), or Einstein-Kähler manifold. In section 4.5 we will also consider the case where M6

is a product of two-dimensional Riemannian manifolds.

4.1 M6 nearly-Kähler with m 6= 0

The ansatz of the present section can be obtained from the consistent truncation of [19] §5
therein, by setting the scalars to constants and taking the one-forms therein to obey γ = χα.

We are following the conventions of that reference. The ten-dimensional metric reads,

ds2
(10) = gµνdxµdxν + gijdx

idxj + gmndymdyn , (4.1)

where {xµ, µ = 0, 1} are coordinates on M2, {xi, i = 2, 3} are coordinates on M ′2 and {ym,

m = 1, . . . , 6} are coordinates on M6. The respective Ricci tensors are given by,

Rµν = Λ1gµν ; Rij = Λ2gij ; Rmn = Λgmn , (4.2)

where the signs of Λ1,2 are unconstrained at this point. The NK manifold M6 possesses a

real two form J and a complex three-form ω obeying,

dJ = −6ωReΩ

dImΩ = 4ωJ ∧ J .
(4.3)

With these conventions, the constant ω ∈ R above is related to Λ in (4.2) via,

Λ = 20ω2 . (4.4)

We will assume that the dilaton is constant. Moreover, our ansatz for the forms reads,

F = β +mχJ ; H = −6ωχReΩ

G = ϕvol2∧vol′2 +
1

2
ξJ∧J + χJ∧β ,

(4.5)

where χ, ϕ, ξ are real constants, and vol2, vol′2 are the volume forms of M2, M ′2 respec-

tively.2 The two-form β is given by,

β = −
(
fvol2 + f ′vol′2

)
, (4.6)

where f , f ′ are real constants. It can then be seen that (4.5) automatically obeys the

Bianchi identities (A.6).

2Our conventions for the volume form in D dimensions are: volD = 1
D!
εM1...MDdxM1 . . . dxMD . In the

case of Lorentzian signature we assume ε0...D−1 = +1.
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Plugging the above ansatz into the ten-dimensional equations of motion we obtain the

following: the internal (m,n)-components of the Einstein equations read,

Λ =
1

16
(1 + 5χ2)m2 +

1

16
(1 + χ2)(f2 − f ′2) + 18ω2χ2 +

3

16
ϕ2 +

7

16
ξ2 . (4.7)

The (µ, ν)-components read,

Λ1 = −1

2
(1 + 3χ2) f2 +

1

16

[
(1 + 9χ2)(f2 − f ′2) + (1− 3χ2)m2 − 5ϕ2 − 288ω2χ2 − 9ξ2

]
.

(4.8)

The (i, j)-components read,

Λ2 = Λ1 +
1

2
(1 + 3χ2)(f2 + f ′2) , (4.9)

where we have taken (4.8) into account. All the mixed (µ,m), (i,m), (µ, i) components

are automatically satisfied.

The dilaton equation reads,

0 = 3(1 + χ2)(f2 − f ′2)− (5 + 9χ2)m2 + 288ω2χ2 + ϕ2 − 3ξ2 . (4.10)

The F -form equation of motion is automatically satisfied. The H-form equation reduces

to the following three equations,

0 = ξϕ− 48ω2χ− 2mξχ−m2χ+ 2ff ′χ2 + (f2 − f ′2)χ , (4.11)

and,

0 = −3fξχ− fϕ+mf ′ + 3mχ2f ′

0 = 3f ′ξχ+ f ′ϕ+mf + 3mχ2f .
(4.12)

The G-form equation of motion reduces to,

ω(ξ − χϕ) = 0 . (4.13)

For ω, m 6= 0 this system of equations implies ξ = χϕ and f = f ′ = 0, from which we see

in particular that Λ1 = Λ2, so that no scale separation is possible. There are three classes

of solutions, as given in [20] §11.4 therein.3 Explicitly we have:

• First class :

Λ1 = Λ2 = −3

2
m2 ; Λ = m2 ; ϕ2 = 5m2 ; χ = 0 . (4.14)

3The solutions of [20] are of the form AdS4 ×M6. However, this gives rise to the exact same equations

of motion as in the present case: a space of the form AdS2×H2 subject to Λ1 = Λ2. Moreover we may

replace H2 by a discrete quotient thereof, i.e. a Riemann surface Σg of genus g > 1. For a given curvature,

the minimum volume is attained for g = 2, cf. (4.43) below.
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• Second class :

Λ1 = Λ2 = −2m2 ; Λ =
5

3
m2 ; ϕ2 = 3m2 ; χ2 =

1

3
. (4.15)

• Third class :

Λ1 = Λ2 = −48

25
m2 ; Λ =

4

3
m2 ; ϕ2 =

27

5
m2 ; χ2 =

1

15
. (4.16)

We only expect the third class, given in (4.16) above, to be supersymmetric: it can be

obtained from the solutions of [21], which are special cases of [22], by replacing AdS4 by an

AdS2×H2 (or AdS2 × Σg) space subject to Λ1 = Λ2, cf. footnote 3. A similar substitution

of AdS4 by an AdS2×H2 (or AdS2 × Σg) space can also be performed for all known AdS4

solutions. The converse is not true, however, as the AdS2×H2 space allows for more general

fluxes, which would otherwise break the symmetries of AdS4. As already mentioned, scale

separation is not possible in any of the three classes of solutions above, since all curvatures

are of the same order.

4.2 M6 nearly-Kähler with m = 0

The ansatz for the forms reads,

F = β ; H = −6ωχReΩ

G = ϕvol2∧vol′2 +
1

2
ξJ∧J + χJ∧β ,

(4.17)

with χ, ϕ, ξ, β as in section 4.1, and satisfies the Bianchi identities (A.6) for m = 0. The

equations of motion are obtained from (4.7)–(4.13) by setting m = 0 therein.

In this case the equations of motion can be solved to give a one-parameter solution of

the form AdS2×S2, without scale separation,

−Λ1 = Λ2 =
3

2
(f2 + f ′2) ; Λ =

1

3
(f ′2 − f2)

ϕ = ξ = 0 ; χ = ±
√

5

3
; f = ± 1

27
(4
√

69− 5
√

15)f ′ ,

(4.18)

where the sign of χ is correlated with the sign of f/f ′. Note that |f ′/f | < 1 as it should,

since Λ > 0 for a nearly-Kähler manifold, cf. (4.4). Scale separation is again not possible.

4.3 M6 Kähler Einstein

The manifold M6 is now assumed to be Kähler-Einstein with Kähler form J , dJ = 0. The

form ansatz reads,

F = β + χJ ; H = 0

G = ϕvol2∧vol′2 +
1

2
ξJ∧J + J∧γ ,

(4.19)

with χ, ϕ, ξ, β as before, while the two-form γ is given by,

γ = −
(
gvol2 + g′vol′2

)
, (4.20)
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where g, g′ are real constants. It can then be seen that (4.19) automatically obeys the

Bianchi identities (A.6).

Plugging the above ansatz into the ten-dimensional equations of motion we obtain the

following: the internal (m,n)-components of the Einstein equations read,

Λ =
1

16
m2 +

5

16
χ2 +

1

16
(f2 − f ′2) +

1

16
(g2 − g′2) +

3

16
ϕ2 +

7

16
ξ2 . (4.21)

The (µ, ν)-components read,

Λ1 = − 7

16
f2 − 3

2
g2 +

1

16

[
− f ′2 + 9(g2 − g′2) +m2 − 3χ2 − 5ϕ2 − 9ξ2

]
. (4.22)

The (i, j)-components read,

Λ2 = Λ1 +
1

2
(f2 + f ′2) +

3

2
(g2 + g′2) , (4.23)

where we have taken (4.22) into account. All the mixed (µ,m), (i,m), (µ, i) components

are automatically satisfied.

The dilaton equation reads,

0 = 3(f2 − f ′2) + 3(g2 − g′2)− 5m2 − 9χ2 + ϕ2 − 3ξ2 . (4.24)

Both the F -form and G-form equation of motion is automatically satisfied. The H-form

equation reduces to the following three equations,

0 = ξϕ− 2ξχ−mχ+ 2gg′ + (fg − f ′g′) , (4.25)

and,

0 = mf + f ′ϕ+ 3χg + 3g′ξ

0 = mf ′ − fϕ+ 3χg′ − 3gξ .
(4.26)

One way to solve this system of equations would be to view (4.25), (4.26) as a linear

system of three equations for three unknowns f , f ′, χ.4 The solution can then be sub-

stituted into (4.24) to obtain one constraint on the remaining unknowns: g, g′, m, ϕ, ξ.

Equations (4.21)–(4.23) then simply determine the curvatures Λ1, Λ2, Λ.

Let us now examine whether we can obtain a hierarchy between the curvature scales.

From (4.21)–(4.24) we obtain,

Λ = −1

3
(Λ1 + Λ2)

=
1

6
(ϕ2 +m2) +

1

2
(χ2 + ξ2) .

(4.27)

Moreover from (4.23), (4.27) it follows that Λ1 ± Λ2 ≤ 0, so that,

Λ1 ≤ 0 ; |Λ1| ≥ |Λ2| . (4.28)

If Λ1, Λ2 6= 0, this then implies that the external space M2 is at least as highly curved as

the internal space M ′2.

4The cases for which the system (4.25), (4.26) does not admit solutions for f , f ′, χ are special and must

be considered separately.
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• If Λ1 = 0 then, as we can see immediately from (4.23), (4.27), also Λ2, Λ vanish as

well as all flux, and the solution reduces to empty R1,3×M6 space, with M6 Ricci-flat.

• If Λ2 = 0 then from (4.27) it follows that |Λ1| = 3Λ. Hence the curvatures of the

external space M2 and the internal space M6 are of the same order.

• The equations of motion can easily be solved (e.g. numerically) for |Λ1| ≈ 3Λ� |Λ2|,
so that the spaces M2, M6 are much more highly curved than M ′2. Of course this is

the “wrong” kind of scale separation.

4.4 M6 Ricci-flat

As a special case of section 4.3 we can impose that M6 is Ricci-flat, Λ = 0, so that (4.27)

implies,

m = ϕ = χ = ξ = 0 . (4.29)

The remaining equations of motion can then be solved to give a two-parameter solution

without scale separation,

− Λ1 = Λ2 =
1

4
(f2 + f ′2) +

3

4
(g2 + g′2) , (4.30)

where the constants f , f ′, g, g′ are constrained to obey,

f2 − f ′2 + g2 − g′2 = 0 ; fg − f ′g′ + 2gg′ = 0 . (4.31)

The solution corresponding to the brane configuration of section 3 is a special (super-

symmetric) case of the above solution: as we can see by comparing (3.5) with (4.19),

taking (4.6), (4.20), (4.29) into account, it corresponds to setting f ′ = g = 0. Indeed this

is a solution of (4.31) above, provided f = ±g′.
In this case, to make contact with section 3, we can associate to the curvatures Λ1,

Λ2, radii L2, L′2 via: |Λ1| = 1
L2
2
, Λ2 = 1

L′22
, and L4 := L2 = L′2. Moreover, in the case where

M6 is Ricci-flat, the radius L6 is a free parameter (only subject to flux quantization) and

does not enter the equations of motion (4.29)–(4.31).

4.5 M10 = M
(1)
2 × · · · ×M

(5)
2

Let us now consider ten-dimensional spacetimes of the form M
(1)
2 ×· · ·×M

(5)
2 , where M

(1)
2

is a two-dimensional maximally-symmetric space of Lorentzian signature whereas M
(i)
2 , for

i = 2, . . . , 5, are two-dimensional maximally-symmetric spaces of Euclidean signature, or

discrete quotients thereof. The solutions we present here generalize those in [23, 24], in

which the choice of flux is not the most general.

Let us set,

Rµν = Λ1gµν ; Rmn(i) = Λigmn(i) , (4.32)
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where we have denoted by Rmn(i), gmn(i) the Ricci tensor, resp. the metric components

along M
(i)
2 , i = 2, . . . , 5. The form ansatz will be taken to be,

F = −
5∑
i=1

f(i)vol(i) ; H = 0

G =
1

2

5∑
i,j=1

g(ij)vol(i)∧vol(j) ,

(4.33)

where we have denoted by vol(i) the volume element of M
(i)
2 , and f(i), g(ij) are constants

obeying: g(ij) = g(ji), g(ii) = 0. This gives,

F 2
mn(i) = f2

(i)gmn(i) ; F 2
µν = −f2

(1)gµν ; F 2 = 2

(
− f2

(1) +
∑
i 6=1

f2
(i)

)

G2
mn(i) = 6

(
− g2

(i1) +
∑
j 6=1

g2
(ij)

)
gmn(i) ; G2

µν = −6gµν
∑
i

g2
(i1)

G2 = 24

(
−
∑
i

g2
(1i) +

∑
1 6=i<j

g2
(ij)

)
,

(4.34)

It is also useful to list the Hodge duals,

?F = f(1)v̂ol(1) −
∑
i 6=1

f(i)v̂ol(i)

?G = −
∑
i

g(1i)v̂ol(1i) +
∑

1 6=i<j
g(ij)v̂ol(ij) ,

(4.35)

where we have denoted v̂ol(i) := vol10
vol(i)

, v̂ol(ij) := vol10
vol(i)∧vol(j)

, vol10 := vol(1)
∧ . . . ∧vol(5).

The equations of motion are as follows: the Einstein equations reduce to,

Λ1 =
1

16
m2 − 7

16
f2

(1) −
1

16

∑
i 6=1

f2
(i) −

1

2

∑
i

g2
(1i) −

3

16

( ∑
1 6=i<j

g2
(ij) −

∑
i

g2
(1i)

)

Λi = Λ(1) +
1

2

(
f2

(1) + f2
(i) +

∑
j 6=1

g2
(ij) +

∑
j 6=i

g2
(1j)

)
; i = 2, . . . , 5 .

(4.36)

The dilaton equation reads,

0 = 3

(
− f2

(1) +
∑
i 6=1

f2
(i)

)
−
∑
i

g2
(1i) +

∑
1 6=i<j

g2
(ij) + 5m2 . (4.37)

Equivalently, the modified dilaton equation reads,∑
i

Λi = 0 . (4.38)
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The equations of motion for the RR forms F , G are automatically satisfied. The H-form

equation of motion reads,

0 = mf(1) +
∑
i 6=1

g(1i)f(i) −
(
g(23)g(45) + g(24)g(35) + g(25)g(34)

)
0 = mf(i) +

∑
p 6=1

g(ip)f(p) − g(1i)f(1) +
(
g(1j)g(kl) + g(1k)g(lj) + g(1l)g(jk)

)
; i = 2, . . . , 5 ,

(4.39)

where in the second equation above it is assumed that j < k < l and j, k, l 6= 1, i.

This system of equations can be solved in a similar fashion as that of section 4.3:5

in general we can solve the linear system of five equations (4.39) for the five unknowns

f(i). The solution can then be substituted into (4.37) to obtain one constraint on the

remaining unknowns g(ij), m. Equations (4.36) then simply determine the curvatures Λ(i),

while (4.38) is automatically satisfied.

It can easily be seen that the system of equations (4.36)–(4.39) admits solutions such

that the curvatures Λi are not necessarily equal. However, similarly to the case of sec-

tion 4.3, it is impossible to achieve |Λ1| < |Λi|, for i = 2, . . . , 5. This can be seen as follows:

equations (4.36) can be solved for Λ1, Λi, in terms of the fluxes. Then using the dilaton

equation (4.37) we find that −Λ1 and −Λ1 ±Λi, i = 2, . . . , 5, can all be expressed as sums

of squares, so that,

Λ1 ≤ 0 ; |Λ1| ≥ |Λi| , (4.40)

for all i = 2, . . . , 5. Therefore, assuming the Λi are not all vanishing, we conclude that the

AdS2 radius is bounded above by at least one of the radii of the internal factors. If we set

Λi = 0 for i = 2, . . . , 5, so that the internal space is flat and the radii of the internal factors

become free parameters, then (4.38) would also imply Λ1 = 0, so that all the fluxes vanish

and we obtain a solution with flat ten-dimensional spacetime.

4.5.1 Flux quantization

For the supergravity solutions to be promoted to full-fledged solutions of the quantum

theory, flux quantization must be imposed. For simplicity, let us set the 2πls = 1 in the

following. For i, j = 2, . . . , 5, flux quantization constrains the constants f(i), g(ij) in (4.33)

to obey,

f(i) =
ni
Vi

; g(ij) =
nij
ViVj

, (4.41)

where ni, nij ∈ Z and Vi :=
∫
M

(i)
2

vol(i) is the volume of M
(i)
2 . The constants f(1), g(1i) are

constrained to obey,

f(1) =
n1

V2 . . . V5
; g(1i) =

n1iVi
V2 . . . V5

, (4.42)

where n1, n1i ∈ Z. Moreover, the Romans mass is constrained to be an integer, m ∈ Z.

5Note that the equations of motion of section 4.3 can be recovered from (4.36)–(4.39) by setting,

Λ3 = Λ4 = Λ5 = Λ ; f(1) = −f ; f(2) = −f ′ ; f(3) = f(4) = f(5) = −χ ; g(12) = ϕ

g(13) = g(14) = g(15) = g ; g(23) = g(24) = g(25) = g′ ; g(34) = g(35) = g(45) = ξ .
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Let us also note that for the two-sphere S2, or a discrete quotient of the hyperbolic

space H2, the volume is related to the scalar curvature by the Gauss-Bonnet theorem.

Indeed, a (compact) Riemann surface Σg of genus g > 1 can be obtained as a discrete

quotient of the two-dimensional (non-compact) hyperbolic space H2, Σg =H2/Γ, where Γ

is a discrete subgroup of SO(1, 2). Let the Ricci tensor of Σg be given by Rmn = Λgmn.

The Gauss-Bonnet theorem then implies,

|Λ| = 4π(g − 1)V −1 , (4.43)

where V =
∫

Σg
vol is the volume of Σg. For the two-sphere S2 the corresponding relation

reads,

Λ = 4πV −1 . (4.44)

We have not been able to find a solution with general flux to the system of equations of

motion subject to (4.41), (4.42). However, as we now show, special solutions are possible

for m = 0, g(ij) = 0, i.e. for vanishing Romans mass and four-form flux. In this case the

dilaton equation, (4.37) reads,

f2
(1) =

∑
i 6=1

f2
(i) . (4.45)

Taking this into account, the Einstein equations (4.36) read,

Λ1 = −1

2
f2

(1) ; Λi =
1

2
f2

(i) , (4.46)

for i = 2, . . . , 5, while the remaining equations of motion are automatically satisfied.

We have already discussed solutions, obeying flux quantization, of the form

AdS2×S2×T6. Let us instead suppose that the curvatures of the internal manifolds are all

strictly positive, Λi > 0, for i = 2, . . . , 5. Flux quantization, (4.41), (4.42), taking (4.44)

into account, implies,

f(1) =
n1

(4π)4
Λ2 . . .Λ5 ; f(i) =

ni
4π

Λi , (4.47)

for i = 2, . . . , 5. Then (4.46) solves for the curvatures in terms of the quanta,

Λ1 = − (8π)8n2
1

2n4
2 . . . n

4
5

; Λi =
2(4π)2

n2
i

, (4.48)

while the dilaton equation imposes,

(8π)6n2
1 = n4

2 . . . n
4
5

5∑
i=2

1

n2
i

. (4.49)

This equation clearly does not admit any solutions for integer ni. Therefore solu-

tions of the form AdS2×S2 · · · ×S2, while admissible in supergravity, are excluded in the

quantum theory.

Let us now consider the case where the curvatures of the internal manifolds are strictly

positive, Λi > 0, for i = 2, . . . , 4, while Λ5 = 0. Unlike the previous case, now the volume
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V5 of M
(5)
2 =T2 is not related to its curvature, and thus does not enter the equations of

motion. Flux quantization now implies,

f(1) =
n1

(4π)3

Λ2Λ3Λ4

V5
; f(i) =

ni
4π

Λi ; f(5) =
n5

V5
, (4.50)

where i = 2, 3, 4. Then (4.46) solves for the curvatures in terms of the quanta,

Λ1 = − (8π)6n2
1

2V 2
5 n

4
2n

4
3n

4
4

; Λi =
2(4π)2

n2
i

; Λ5 = n5 = 0 , (4.51)

for i = 2, 3, 4, leaving V5 a free parameter. The dilaton equation imposes,

(8π)4n2
1 = V 2

5 n
4
2n

4
3n

4
4

4∑
i=2

1

n2
i

. (4.52)

This equation simply determines V5 in terms of the flux quanta, and always admits a so-

lution. Therefore solutions of the form AdS2×S2×S2×S2×T2, are possible in the quantum

theory. Note also that by taking large enough quanta we can make sure we are in the

regime of small curvature and large volume (in string units). Moreover the dilaton is a free

parameter of the solution, and can be tuned to weak coupling so as to ensure we remain

within the validity regime of the supergravity approximation.

Similarly one can show that solutions of the form AdS2×S2×S2×T4, obey flux quan-

tization. In the latter case we may also replace T4 by a K3 surface.

5 Discussion

We have investigated superstring and supergravity backgrounds of the form M(1) × · · · ×
M(n) with special emphasis on the question of whether or not scale separation between

the different factors is possible. We have seen that in all our solutions the scalar curvature

of AdS2 (in absolute value) must be of the same order or larger than the curvatures of all

the other factors. Moreover, the other factors cannot all be (Ricci-)flat: in the solutions

presented here this would also force the curvature of AdS2 and all the flux to vanish. One

might therefore invoke the relation between the radius, L, and the curvature: Λ ' 1
L2 , to

conclude that the radius of AdS2 will be of the same order or smaller than the radius of at

least one of the other factors.

Aside from the fact that the relation between scalar curvature and radius is more

involved than what the previous paragraph suggests (many different definitions of the “ra-

dius” of a space are possible), there is a caveat to the argument of the previous paragraph:

taking (possibly singular) discrete quotients of the internal spaces considered here, would

leave invariant their local properties such as their curvature, while changing their global

properties such as the radius. I.e. curvature hierarchies only concern the local properties

of the spaces and do not immediately translate to corresponding hierarchies of radii. One

way to directly address the question of the radius of the internal space is to study the

spectrum of the (scalar) Laplacian on that space, whose first non-vanishing eigenvalue in
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particular can serve to read off the radius. Indeed this was the approach used in [1, 25] to

establish the absence of scale separation in the vacua of [26].

For the supergravity solutions of section 4 to be promoted to full-fledged superstring

solutions, flux quantization must be imposed. As we saw in section section 4.5.1, this is

indeed possible to carry out in special cases, notably when the internal space includes a T2,

K3 or CY factor. However the general problem seems rather involved and we have been

unable to find a solution obeying flux quantization in the case of the most general flux

ansatz. It would be interesting to examine whether this can be addressed algorithmically

with the help of a computer.

A possible issue with the supergravity solutions of section 4 is their potential instabili-

ties, given the fact that we expect them to be non-supersymmetric in general. For example

the solutions of section 4.1, for which a supersymmetry analysis has been performed, come

in three distinct classes only one of which is supersymmetric. On general grounds we would

expect the non-supersymmetric solutions to be unstable [27, 28]. It would also be inter-

esting to establish the supersymmetry (or absence thereof) of the remaining solutions of

section 4.
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A IIA supergravity

Setting the fermions to zero, the IIA action reads,

S =
1

2κ2
10

∫
d10x
√
g

(
−R+

1

2
(∂φ)2 +

1

2 · 2!
e3φ/2F 2

+
1

2 · 3!
e−φH2 +

1

2 · 4!
eφ/2G2 +

1

2
m2e5φ/2

)
+ SCS ,

(A.1)

and SCS is the Chern-Simons term. The equations of motion (EOM) following from the

action (A.1) read:

Einstein EOM,

RMN =
1

2
∂Mφ∂Nφ+

1

16
m2e5φ/2gMN +

1

4
e3φ/2

(
2F 2

MN −
1

8
gMNF

2
)

+
1

12
e−φ
(

3H2
MN −

1

4
gMNH

2
)

+
1

48
eφ/2

(
4G2

MN −
3

8
gMNG

2
)
,

(A.2)

where we have set: Φ2
MN := ΦMM2...MpΦN

M2...Mp , for any p-form Φ.

Dilaton EOM,

0 = −∇2φ+
3

8
e3φ/2F 2 − 1

12
e−φH2 +

1

96
eφ/2G2 +

5

4
m2e5φ/2 . (A.3)
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Combining the trace of (A.2) with (A.3), we obtain the modified dilaton equation,

0 = 2R−∇2φ− (∂φ)2 − 1

6
e−φH2 . (A.4)

Form EOM’s,

0 = d?
(
e3φ/2F ) + eφ/2H∧?G

0 = d?
(
e−φH

)
+ eφF ∧?G− 1

2
G∧G+ e3φ/2m?F

0 = d?
(
eφ/2G

)
−H∧G .

(A.5)

The forms obey in addition the Bianchi identities,

dF = mH ; dH = 0 ; dG = H ∧ F . (A.6)
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