9

10

11 12 13

14

15 16

17

18

19

24 25

26

27

28

29

30

31

32

37

38 39

40 41

42

SEPARATION SCIENCE AND TECHNOLOGY Vol. 39, No. 7, pp. 1631–1643, 2004

Adsorption Efficiency of a New Adsorbent Towards Uranium and Vanadium Ions at Low Concentrations

Pınar Akkaş Kavaklı,¹ Noriaki Seko,² Masao Tamada,² and Olgun Güven^{1,*}

¹Department of Chemistry, Hacettepe University, Beytepe, Ankara, Turkey ²Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, Takasaki, Gunma, Japan

ABSTRACT

A new type of fibrous adsorbent with excess amidoxime groups was synthesized by radiation-induced graft polymerization. Glycidyl methacrylate (GMA) was first radiation-grafted on polyethylene-coated polypropylene nonwoven fabrics and chemically modified with 3,3'iminodipropionitrile [NH $(-CH_2-CH_2-CN)_2$] (IDPN), which was further reacted with hydroxylamine to obtain graft chains containing two amidoxime groups per graft repeating units. The adsorption properties of this new adsorbent for uranium (U), vanadium (V), lead (Pb), copper (Cu), and cobalt (Co) ions at low concentrations (3.3–1000 ppb)

1631

DOI: 10.1081/SS-120030785

Copyright © 2004 by Marcel Dekker, Inc.

0149-6395 (Print); 1520-5754 (Online) www.dekker.com

^{*}Correspondence: Olgun Güven, Department of Chemistry, Hacettepe University, Beytepe, 06532, Ankara, Turkey; E-mail: guven@hacettepe.edu.tr.

Kavaklı et al.

were investigated by a batch process. The adsorbent showed enhanced adsorption capacity for uranium and vanadium ions. In adsorption studies from a mixture of metal ions in aqueous solutions, the adsorbent showed selectivity for metal ions in the following order: $V > U \gg Cu > Pb \gg$ Co. The selectivity of the adsorbent was assessed by determining the distribution coefficient D, of the metal ions studied. The U and V ions were shown to be up to six times more selectively adsorbed onto the new adsorbent than the other metal ions.

Key Words: Radiation-induced grafting; Iminodipropionitrile modified GMA grafts; Uranium and vanadium ion selectivity; Adsorption efficiency.

INTRODUCTION

Uranium is one of the most valuable metals present in seawater. The concentration of uranium in seawater is remarkably constant at 3.3 mg U/m^3 . Uranium exists in seawater mainly in the form of a tricarbonate complex, 60 $UO_2(CO_3)_3^{4-[1,2]}$ Many types of adsorbents have been developed and tested for the recovery of uranium from seawater and aqueous media.^[3–8] Extensive 62 investigations on adsorbents capable of recovering uranium from seawater and aqueous solutions have been carried out during the last two decades especially in the Takasaki Radiation Chemistry Research Establishment and the results 65 were recently compiled in a nomogram by Saito and Sugo.^[9] In recent 66 years, a wide range of chelating resins containing amidoxime groups were developed and evaluated for their ability to recover uranium from seawater and aqueous media.^[10-12] The chelating polymers include important proper-68 ties such as high capacity, high selectivity, and fast kinetics. Egawa et al. 70 prepared a number of macroreticular chelating resins containing amidoxime groups by reacting acrylonitrile-divinyl benzene copolymer beads with hydroxylamine. It was reported that these resins have high adsorption capacity for uranium in seawater.^[3-5] Sekiguchi et al. and Kawai et al. investigated the separative elution of uranium ions from an amidoxime</sup> polymer that had been immersed in seawater.^[13,14] A number of papers 76 published by Güven et al. investigated the preparation and properties of new copolymers with balanced hydrophilic and amidoxime group contributions for the uptake of uranyl ions from aqueous solutions.^[15–18] Kise 79 et al.^[19] and Park et al.^[20] synthesized polystyrene-based chelating resins 80 with a pair of amidoxime groups per repeating styrene units on polystyrene, in a geminate position, which could effectively coordinate to uranyl ions, 82 by higher concentration of amidoxime groups. Accordingly, it was considered that the introduction of coordinating groups into a supporting polymer resin 84

1632

43

44

45

46

47

48

49

50 51

52

53 54 55

56 57

58 59

61

63

64

67

69

71

72

73

74 75

77

78

81

86

87

88

89

90

91

92

93 94 95

96 97

98 99 100

101

102

103

104

105 106

107

108

109

110

111

112

113

118 119

120 121

Adsorption Efficiency of New Adsorbent Towards Metal Ions

would enhance the adsorption rate and the selectivity for metal ion adsorption in aqueous media and, more specifically, uranyl ions in seawater. The synthesis of first acrylic bidentate amidoxime polymer was reported by amidoximation of a novel polymer, poly(N,N'-dipropionitrile acrylamide), as a new polymer with high affinity for uranyl ions.^[21] In an earlier work, we reported trying to prepare a novel adsorbent based on double amidoximation of iminodipropionitrile groups attached to glycidyl methacrylate (GMA) graft chains on a nonwoven fabric.^[22] In this work, the results of metal ion uptake studies from very dilute solutions using this novel adsorbent are reported.

EXPERIMENTAL

Materials

The adsorbent used in this work has recently been synthesized by radiation-induced graft polymerization technique. A nonwoven fabric made of polypropylene coated by polyethylene was used as the trunk polymer. The base polymer was irradiated by electron beams with a dose of 200 kGy under N₂ atmosphere and GMA was later grafted onto irradiated nonwoven fabric. Grafting conditions were optimized, and poly(glycidyl methacrylate) graft chains were modified with 3,3'-iminodipropionitrile (IDPN) in ethanol at 80°C. Pendant nitrile groups introduced into the epoxy ring were then amidoximated by using hydroxylamine in methanol–water mixture. The relevant experimental details have already been reported elsewhere.^[22] The advantages of this new polymeric adsorbent containing two amidoxime groups per repeating unit of GMA side chains are the presence of excess amidoxime groups and an additional diethylene spacer unit between the neighboring amidoxime groups in each monomeric unit.

Standard solutions of 1000 ppm for chemical analyses from Cica-reagent
 Kanto Chemical-Co Inc. were used for the adsorption studies of V, Pb, Cu, and
 Co metal ions. In uranyl ion uptake studies, standard solution containing 10 ppm
 of these metal ions were used by diluting them to required concentrations.

Adsorption Experiments

122 Amidoximated nonwoven fabric adsorbent was subjected to a pretreat-123 ment that involved contact for 2 hr with a 2.5% KOH solution at 80°C. 124 A known amount (around 0.025 g dry weight, $1 \times 1 \text{ cm}^2$) of wet nonwoven 125 fabric sample was then placed into metal ion solutions (40 mL). To obtain 126 information on the relative performance of the amidoximated nonwoven

Kavaklı et al.

127 adsorbent in kinetic terms, the adsorption of uranium, vanadium, lead, copper, 128 and cobalt ions from 100 ppb standard solutions at pH 5 (acetate buffer solution) and 25°C were followed as a function of time, samples being taken for 129 evaluation at 15, 30, 60, and 120 min intervals. Once the adsorption equili-130 brium time was determined, the known weights of adsorbent samples were 131 132 contacted with solutions containing different concentrations (3.3, 10, 100, 500, and 1000 ppb) of metal ions at pH 5 with continuous stirring at 25°C 133 for those predetermined time periods. 134

Selective metal ion adsorption tests were performed by using a mixture of aqueous solution of 100 and 500 ppb of each five metal ions by following the procedure given above. Metal ion concentrations after adsorption were determined by using a Hewlett Packard 4500 series Inductively Coupled Plasma (ICP) analyzer.

RESULTS AND DISCUSSION

Environmentally stable PE coated PP nonwoven fabric was used as the base material for the synthesis of a new adsorbent for metal ions. In order to introduce specific functional groups to the trunk polymer, GMA was first grafted onto preirradiated fabric. The resultant epoxy groups were opened and reacted with IDPN groups. The IDPN groups were introduced onto the graft chains of PE/PP nonwoven fabric at a conversion of 70%, while maintaining the necessary physical strength of the fabrics. The nitrile groups were later converted to amidoxime groups, which are known to exhibit good affinity towards several metal ions, uranyl being the most selected. The reaction scheme is outlined in Sch. 1 and details related to the synthesis and character-ization of this novel adsorbent have been given elsewhere.^[22]

In order to investigate the adsorption kinetics of five different metal ions (U, V, Pb, Cu, and Co) onto new adsorbent, approximately 0.025 g of adsorbent was contacted with 100 ppb metal ion solutions at pH 5 buffer solution at 25°C. Figure 1 shows the adsorption kinetics of U, V, Cu, Pb, and Co ions onto amidoximated nonwoven fabric. The ordinate values were given as the percentage of metal ions adsorbed from initial amounts.

162 High adsorption rates were observed within the first 20 min and the plateau 163 values (i.e., adsorption equilibrium) were quickly reached at around 30 min for 164 all metal ions investigated. Figure 1 shows that the new fabric adsorbent 165 achieved almost 80% uranium and 92.5% vanadium loading in the first 166 30 min and almost complete removal of these two ions 99% U (153.9 μ g/g) 167 and V (150.1 μ g/g) within 2 hr. The adsorption equilibria for Cu, Co, and Pb 168 ions were attained in about 30 min, resulting with the adsorption of 72.7%,

1634

135

136 137

138

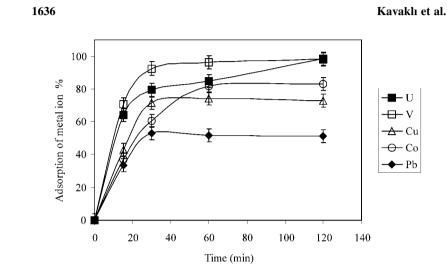
143 144

145

146 147

148 149

150


151

152 153

154

Polyethylene/ Polypropylene HO N CH2CH2C=NOH CH2CH2C=NOH CH2CH2C=NOH	Amidoxime group containing nonwoven fabric eating unit of grafted chains.
CH2CH2CN HO N2CH2CH2CN HO N CH2CH2CN CH2CH2CN	Amidoxime group containing nonwoven fabric <i>Scheme 1.</i> Preparation of polymeric fabric adsorbent containing two amidoxime groups per repeating unit of grafted chains.
Polyethylene Polypropylene OgMa grafted nonwoven fabric	olymeric fabric adsorbent contair
Polyethylene/ Polypropylene nonwoven fabric electron beam	Scheme 1. Preparation of p

Adsorption Efficiency of New Adsorbent Towards Metal Ions

Figure 1. Adsorption kinetics of various metal ions from the same initial concentrations.

83%, and 51.4% of Cu, Co, and Pb ions, respectively, which correspond to equilibrium removal amounts of 134.9, 112.3, $56.2 \mu g/g$, respectively.

The effect of initial concentration of metal ions on the adsorption behavior of amidoximated nonwoven fabric was determined for five different metal ion concentrations (3.3, 50, 100, 500, and 1000 ppb), and the results are given

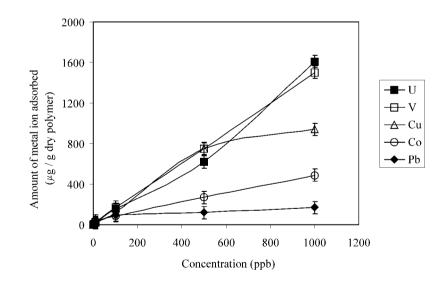


Figure 2. Dependence of metal ion uptake on the initial concentrations of metal ions.

Adsorption Efficiency of New Adsorbent Towards Metal Ions

253 collectively in Fig. 2. Figure 2 shows that the adsorption of metal ions increased 254 almost linearly with an increase in the initial metal ion concentration. The new adsorbent exhibited a higher affinity for U and V ions, the highest values were 255 found to be 1610 and 1501 μ g/g from 1000 ppb metal ion solution, respectively. 256 One hundred percent adsorption of uranium and vanadium ions was reached 257 258 easily for all concentrations studied. The quantitative removal of other ions were found to be 940, 489, and 168 μ g/g for Cu, Co, and Pb ions, respectively, 259 from solutions containing 1000 ppb metal ions. The percentage amount of Co, 260 Pb, and Cu ions adsorbed by the fabric initially increased with the increasing 261 concentration of Cu ion up to 500 ppb (93.5%) and Pb ion up to 100 ppb 262 263 (83.9%). At higher initial concentrations of these metal ions, their adsorptivities 264 were not affected and even at the highest concentration of 1000 ppb, the values corresponding to 100 and 500 ppb concentrations were not appreciably 265 exceeded. This can be explained by the initial saturation of active sites available 266 for Cu and Pb ions on the amidoximated nonwoven fabric. Adsorption of Co 267 268 ions presents an interesting case where maximum adsorption of 65.2% was observed at the lowest concentration of 3.3 ppb. Lesser adsorption was obtained 269 upon further increase in initial concentration. 270

The adsorption capacity for uranyl ions by the adsorbent prepared in this 271 work was found to be better than that of the chelating resins prepared by the 272 method of Park et al. and Kise et al.^[19,20] The advantages of this new poly-273 274 meric adsorbent containing two amidoxime groups per repeating unit of GMA side chains are the presence of excess amidoxime groups and an 275 additional diethylene spacer unit between the neighboring amidoxime groups 276 in each monomeric unit. It can be said that this adsorbent is the first grafted 277 nonwoven fabric reported in the literature possessing bidentate amidoxime 278 279 groups. These properties make this new adsorbent more accessible and efficient for the adsorption of metal ions in aqueous systems compared to con-280 ventional adsorbents having only one amidoxime group as the pendant group 281 of the repeating units. It also shows good stability along with faster rate of 282 equilibrium for all the metal ions studied here. 283

The selectivity of this new adsorbent against certain metal ions was also checked. Figure 3 shows selective behavior of the adsorbent for U and V ions. The selectivity is expressed in terms of the distribution coefficient (D), which has been frequently used as a measure of capacity of an adsorbent.^[23]

291 292

284

285

286

$$D = \frac{\text{mg } M^{n+}/\text{g of dry polymer adsorbent}}{\text{mg } M^{n+} \text{ mL of solution}}$$
(1)

The distribution coefficients of each metal ion were determined under competitive conditions by using the equation given above.

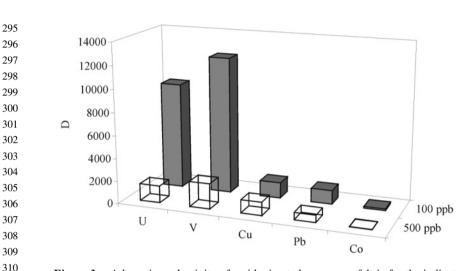


Figure 3. Adsorption selectivity of amidoximated nonwoven fabric for the indicated metal ions at two different initial concentrations.

For the concentration range studied here, adsorption of U and V ions have 314 been found to be higher than those of Cu, Pb, and Co. The order of decreasing 315 316 selectivity is $V > U \gg Cu \ge Pb \gg$ Co for 100 and 500 ppb solutions of metal ion mixtures. This selectivity order is in good accordance with the 317 decreasing order of ionic radii of these metal ions in aqueous solution.^[24] 318 The distribution coefficients calculated for U and V ions showed that their 319 adsorption from 100 ppb mixture solution is up to six times higher than 320 321 adsorption from a 500 ppb mixture solution. The lower the concentration of metal ions remaining in solution the higher become the D values. This general 322 behavior is associated with the definition of D values. The lower the initial 323 metal ion concentration of a solution, the smaller the concentration of ions 324 remaining in the solution gets. This makes the denominator smaller and D325 326 values, in turn, higher. In both concentrations studied here 100 and 500 ppb, however, the selectivity of adsorbent towards U and V ions was found to be 327 significantly higher than for the other ions. These results show that the new 328 329 adsorbent is quite efficient for the uptake of trace amounts of U and V ions from seawater or other aqueous media. This selectivity follows the same 330 order as that found for another amidoxime-containing adsorbent.^[20] 331

There have been numerous attempts in developing speciality adsorbents 332 for the uptake of uranyl ions from aqueous solutions and seawater. A compara-333 tive evaluation was made to see the uranyl ion adsorption capacity of various 334 adsorbents developed by different groups and the new adsorbent developed by 335 336 our group. Adsorbent systems listed in Table 1 include only those based on

1638

297

301

311

Kavaklı et al.

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	1039					ai US	UW	ιΙ	Del	120	v At	100	UI I	cy (icien	orption Ell	Aŭ	
000 66 8 100 1	days. days.		ol/g.		24 hr.)	D			pent) bent) L of lume		
096 68 24 95 57 10 006 68 24 95 57 10 10 0000 0000 0000 00000 00000 00000 00000 10000 10000 00000 00000 00000 00000 00000 10000 00000 00000 000000 000000 00000000 $000000000000000000000000000000000000$: 50 e: 5	ays.	mm		me: 2	g/g	8/8) a/b	6/6 2/8	<u>60</u>	a <u>a</u>	ο Δ Δ	0/0 10/0	ر م رو م	U g/	dsorl dsorl co 20 g vol		339
0906585L59551509166871010101010091668710101010100916787101010101009100510101010101010091101110 <td< td=""><td>ime tim</td><td>0 da</td><td>: 6.3</td><td></td><td>ict ti</td><td>8 mg</td><td>4 mg</td><td>2 m Z</td><td>S m S</td><td>8 mg</td><td>ng/</td><td>a m</td><td>76 m</td><td>5 mg/</td><td>mg/</td><td>ltry a zed t rkin</td><td></td><td></td></td<>	ime tim	0 da	: 6.3		ict ti	8 mg	4 mg	2 m Z	S m S	8 mg	ng/	a m	76 m	5 mg/	mg/	ltry a zed t rkin		
090 090 090 090 100 </td <td>act t ntact</td> <td>le: 1</td> <td>VOD</td> <td>6</td> <td>onta</td> <td>0.0</td> <td>0.3</td> <td>0.9</td> <td>0.0</td> <td>0.0</td> <td>0.2</td> <td>1.8</td> <td>0.5</td> <td>0.0</td> <td>2.5</td> <td>ryu k/g d nali; nali;</td> <td></td> <td></td>	act t ntact	le: 1	VOD	6	onta	0.0	0.3	0.9	0.0	0.0	0.2	1.8	0.5	0.0	2.5	ryu k/g d nali; nali;		
096 096 096 095 096 096 095 096 095 <th< td=""><td>cont, coi</td><td>t tin</td><td>ys. ⊦</td><td>,</td><td>/g, c</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(mg norr tota</td><td>ents.</td><td></td></th<>	cont, coi	t tin	ys. ⊦	,	/g, c											(mg norr tota	ents.	
090 050 <th< td=""><td>10L,</td><td>ntac</td><td>0 da</td><td></td><td>mol</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>orbe</td><td>344</td></th<>	10L,	ntac	0 da		mol												orbe	344
090 090 090 090 090 090 090 090 090 090 090 090 090 090 090 0900 0900 0900 0900 0000 00000 00000 00000 00000 0000 00000 00000 00000 00000 00000 00000 000000 000000 000000 000000 000000000 000000000000000 $000000000000000000000000000000000000$	e: 5(me:	, 00	for 3	•	2 m	<u> </u>	_	-	11	D)	כמ	> =	U T	s (/g	ads	
990 090 090 650 650 650 651 650 650 652 650 650 652 650 650 655 650 650 655 650 0.005 655 650 0.005 756 0.005 0.005 757 0.005 0.005 756 0.005 0.005 757 0.005 0.005 756 0.005 0.005 757 0.005 0.005 757 0.000 0.000 760 0.000 0.000 757 0.000 0.000 757 0.000 0.000 760 0.000 0.000 770 0.000 0.000 770 0.015 0.000 770 0.010 0.000 770 0.010 0.000 770 0.010 0.000 770 0.010 0.000 770 0.010 0.0	olum /olun	50L	ater		:(QC	/g C	/g C	ີ (ບັ	غ دo	00 00	n Sono	σά	io a	o/o a∕o	g/g	ions (mg rben	neric	
990 990 990 450 rption using various amidoximated poly 65 65 85 85 85 85 85 85 85 85 85 85 85 85 85	al vc otal v	me:	eaw		(A(- mg	i mg	gm /	mg/	4 m	mg/	mg/	20 H	125(m03)5 m	anyl rbed adsc	olyn	
990 990 63000 63000000000000000000000000000000000000	, tota r), tc	, olur	ë.		luor	0.04	0.85	0.97	12.0	0.0	0.2	8	0.57	0.0	0.00	Ur idsoi dry	pd po	349
300 300 300 450 450 4	ater. vatei	, tal v	rrsed nol/		ne g												nate	350
990 990 645000000000000000000000000000000000000	eaw seav), to	nme 3 mn		loxir						de						loxiı	
990 990 990 650 950 652 952 952 952 952 952 952 952 952 952 952 952 952 952 952 952 952 953 952 954 952 955 952 955 952 955 952 955 952 955 952 955 952 955 952 955 952 955 952 955 952 955 952 955 952 955 952 955 952 955 952 955 952 955 952 955 953 955 953 955 953 955 953 955 953 955 9	esh s esh	/ater	en in D:	-	amic						llori				ìed		amic	
300 300 300 450 300 650 301 825 302 925 303 940 304 940 305 925 306 940 307 940 308 925 308 941 309 940 301 941 302 941 303 941 304 941 305 941 305 941 305 941 306 941 307 941 308 941 309 941 300 941 301 941 302 941 303 941 304 941 305 941 304 941 305 941 306 941 307 941 308 941 309 941 300 941 301 941 302 941 303 941 304 941 305 941	th fre	seaw	nd be AC	.s.	y of :				mer		oylcł		_		libou		suc	354
300 300 301 480 302 322 322 322 322 322 323 321 324 321 325 321 326 322 327 325 328 321 329 322 320 321 321 322 322 321 323 322 324 323 325 321 326 322 327 323 328 321 329 325 329 325 329 325 320 325 321 325 322 321 323 325 324 325 325 325 326 325 327 325 328 325 329 325 329 325 320 325 321 325 322 325 323 325 324 325 325 325 325 325	ł wit d wi	s use	sh ha 4 hr.) day	insity	e	er	er	poly		crylc		, and	_	srs n		vario	355
300 300 301 1 302 302 303 302 304 302 305 302 </td <td>ngec</td> <td>h fre</td> <td>whic ie: 2</td> <td>; <u>;</u></td> <td>ab at</td> <td>nitril</td> <td>v fib</td> <td>v fib</td> <td>e co</td> <td></td> <td>nd a</td> <td></td> <td>itrile</td> <td>,ene</td> <td>fibe</td> <td></td> <td>ing</td> <td>356</td>	ngec	h fre	whic ie: 2	; <u>;</u>	ab at	nitril	v fib	v fib	e co		nd a		itrile	,ene	fibe		ing	356
900 900 900 650 900 960 900 960 900 960 900 960 900 960 900 960 900 960 900 960 900 960 900 960 900 970	cchar xch	wit	ber, t tim	time	L,tł	ryloı	ollo	ollov	ylen		cid a		vlon	hens	oven		sn u	357
960 000 000 000 000 000 000 000 000 000	ly ex tly e	nged	ne fi ntaci	itact	ed. 40 m	d ac	ne h	ne h	eth		lic ac		u acr	vinvl	onw		ptio	
	tten	char	oxin , coi	con	imat ne:∠	d an	hyle	hyle	/lene		acryl		with	vib-o	ne n	ťa	dsor	360
990 990 991 100 190 991 100 190 992 100 100 993 100 100 994 100 100 995 100 100 996 100 100 997 100 100 998 100 100 999 100 100 990 100 100 990 100 100 900 100 100 900 100 100 900 100 100 900 100 100 900 100 100 900 100 100 900 100 100 900 100 100 900 100 100 900 100 100 900 100 100 900 100 100 900 100 100 900 100 100 900 100 100	ermi	y ex 4 hr.	amid 20 L	0L,	doxi volur	c aci	lyetl	, Ivetl	oethy addar		neth:		fted	ile-c	hyle	rben	on a	
300 Adsori 301 Adsori 302 Solyeth 303 Matsori 304 Ionitril 305 Solyeth 306 Matsori 301 Ionitril 302 Solyeth 303 Matsori 304 Matsori 305 Solyeth 307 Matsori 308 Solyeth 309 Solyeth 301 Matsori 302 Solyeth 303 Solyeth 304 Matsori 305 Solyeth 306 Matsori 301 Solyeth 302 Solyeth 303 Solyeth 304 Matsori 305 Solyeth 306 Matsori 307 Matsori 308 Solyeth 309 Matsori 301 Solyeth 302 Solyeth 303 Solyeth 304 Matsori 305 Solyeth 306 Matsori 307 Matsori 308 Matsori 309 <t< td=""><td>inte s into</td><td>6 hr. entl e: 2</td><td>for a ne: 2 br</td><td>Э.</td><td>ami on, v</td><td>rylic</td><td>IS pc</td><td>IS DC</td><td>luor</td><td></td><td>ith r</td><td>à</td><td>gra</td><td>nitri</td><td>lyet</td><td>Adso</td><td>yl id</td><td></td></t<>	inte s into	6 hr. entl e: 2	for a ne: 2 br	Э.	ami on, v	rylic	IS pc	IS DC	luor		ith r	à	gra	nitri	lyet	Adso	yl id	
$\begin{array}{c c} & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	was . wae	e: 9 tim	out olur a. 0	alum	are oluti	lg ac	orot	orot	etrat	ne	w ba		abric	arvlo	e/pc	Ą	uran	
962 2012 and the second state of the second st	ater /ater	tim inter itact	rried er v tim	Sr VC	ners re so	ainin	ito p	to p	ftod	tyre	grafte		en fa	lv(ad	ylen		l of	
990 990 990 990 990 990 990 990 990 990	eaw: seaw	vas j cor	is car awat	wate	olyn iixtu	cont	io pa	, o b	io pi	olys	r cog	; 	n ha	ր որ	prop		isor	
292 201 201 201 201 201 201 201 201 201 20	of se	, cor ter v 5 L,	s wa ; se:	sea	cop on n	ent	rafte	rafte	ratte 642	ted p	fibe	acid	non	inke	poly		npaı	
 22 12 0.2 09 09 09 00 00 00 00 00 00 00 00 00 00	11 (21	1L awa me:	alysi 1/hr	/hr.	s or etal i	lsorb	ile g	ile p	lle g	hyla	lene	vlic	lene	NN -sso	ited		cor	
321 321 321 4 322 4 323 32 324 32 325 33 326 32 327 34 328 34 329 34 321 34 321 34 321 34 321 34 322 34 323 34 324 34 325 34 326 34 327 34 328 34 329 34 329 34 329 34 321 34 321 34 321 34 323 34 324 34 325 34 326 34 327 34 328 34 329 34 329 34 329 34 329 34 329 34 329 34 329 34 329 34 329 34 329 <	ane,	ume: of se volu	e ani 7 ml	JmL	mer b me	us ad	onitr	onitr	onttr	noet	ropy	thac	ropy	u lu a	graf			
21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mbr 1 pro	volu 5 L c tter	r, th 0.4	. 00	poly 3 pp]	ibrou	cryle	cr/	cryte	icya	lyp	met	ungi olyp	wıt i ohtl	MA		le 1.	371
	e me	ater ss (5 3awe	fib€ rate:	rate:	ing m 3.	Ľ,	A	A	Υď	Ω	P				IJ		Tab.	
3.23 2.23 3.24 1 2.22 3.24 1 3.24 1 3.24 1 3.24 1 <th1< td="" th<=""><td>xime smib</td><td>eaws roce</td><td>ow </td><td>MO</td><td>tain s froi</td><td>30]</td><td></td><td>28]</td><td></td><td>5</td><td>4</td><td></td><td>[26]</td><td>5]</td><td></td><td>sd</td><td></td><td>373 374</td></th1<>	xime smib	eaws roce	ow	MO	tain s froi	30]		28]		5	4		[26]	5]		sd		373 374
324 al. [25] al. [25] al. [25] 119 [119] [119] al. [27] 11 [129] [119] al. [27] 11 [129] [129] al. [27] 11 [129] [119] al. [27] 11 [129] [129] [120] 11 [129] [120] [120] 11 [120] [120] [120] 11 [120] [120] [120] 11 [120] [120] [120] 11 [120] [120] [120] 11 [120] [120] [120] 11 [120] [120] [120] 11 [120] [120] [120] 11 [120] [120] [120] 11 [120] [120] [120] 11 [120] [120] [120] 11 [120] [120] [120] 12 [120] [120]	uido) n, se	n, st ch pi oces	n, fl n, fl	n, fl	con	t al. [[]	l. ^[29]	al.E	t al.' ., [7	61.	al. ^[1]	ļ	t al. ^l	al [2	P.	luoug		375
2122 2000 $\frac{1}{10}$	g am resi	resi ibatc h pro	g an resi	resi	AN An	ni ^k e	et a	a ⁱ et	л°е	et al	i ^e et	,	i de l	set.	vork	rch §		376
22.2 $2.2.2$.07 9.1 g).1 g Semi 3atcl).5 g 1 g).5 g	All F 3atcl	mich	aito ^j	aked	micl	ise	awai		ga wr	3 M B D	his v	esea		377
378 22 E E E Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	.c 2		2 ° °	$^{\circ}$	$^{\rm a}_{\rm f}$	0	Š	Ĥ	2 2	Х	К	1	ı v	цŤ	F	R	I	378

Kavaklı et al.

amidoximated polyacrylonitrile polymers and copolymers. The volumes of uranyl ion containing solutions in these batch, semi-batch, and continuous systems ranged from 40 mL to 50 L, the most frequently used volume is 20 L to which all other volumes are normalized. This approach, although not comprising all factors affecting the efficiency of an adsorbent (surface area, shape, contact mode, etc.) seemed to be an easy and simple way of comparing adsorption capacities of systems investigated. When the efficiencies corresponding to adsorption values are normalized to 20 L, and working solutions are compared as given in the far right column of Table 1, one can see that they can be grouped under three categories: low efficiency (0.08-0.20 mg/g), medium efficiency (0.34-0.65 mg/g), and high efficiency (0.97-2.50 mg/g) adsorbents. Although this list is not exhaustive, the highest uranyl ion adsorption efficiency was obtained with the new adsorbent developed in this work. In some of the studies cited in Table 1, together with uranyl ions, the uptake of vanadyl ions was also determined. High efficiency of the new adsorbent is also seen for vanadyl ions. Further details related to adsorbent properties and adsorption conditions are given in Table 1.

CONCLUSION

A new fibrous adsorbent containing two adjacent amidoxime groups in graft chain repeating units has been shown to provide a rapid uptake within 30 min for the metal ions, U, V, Cu, Pb, Co, studied here with high capacity for U and V ions. Adsorption of 100% of uranium and vanadium ions for all concentrations studied (3.3–1000 ppb) were achieved. When adsorption was studied from a mixture of ions mentioned above, quite high selectivity was observed for U and V ions adsorption in the presence of other ions. The order of selectivity determined by calculating the distribution coefficient, *D*, of metal ions was found to be in the order of V > U \gg Cu \geq Pb \gg Co. Uptake of 2.5 mg metal ion/g of adsorbent has been achieved both for uranium and vanadium ions from aqueous solutions with concentrations similar to seawater concentrations, 3.3 ppb. Further work is in progress in using actual seawater in adsorption experiments as well as cyclic use of the fabric, and its efficiency on repeated use.

ACKNOWLEDGMENTS

418 One of the authors (P.A.K.) thanks IAEA (Grant No: TUR8016) for the 419 fellowship provided to carry out part of this work at the Takasaki Radiation 420 Chemistry Research Establishment of JAERI. The authors are also grateful

Adsorption Efficiency of New Adsorbent Towards Metal Ions

421 to Haruyo Amada and Fatmuanis Basuki for their help with some of the 422 experiments. Continuous interest and support by Takanobu SUGO are greatly 423 appreciated. 424 425 426 427 REFERENCES 428 429 1. Saito, K.; Miyauchi, T. Diffusivities of uranium in artificial seawater. 430 431 Kagaku Kogagu Ronbun 1981, 7, 545-548. 432 2. Saito, K.; Miyauchi, T. Chemical forms of uranium in artificial seawater. J. Nucl. Sci. Technol. 1982, 19, 145-150. 433 3. Egawa, H.; Harada, H. Recovery of uranium from seawater by using 434 chelating resins containing amidoxime groups. Nippon Kagaku Kaishi 435 436 1979, 958-959. 437 4. Egawa, H.; Harada, H.; Nonaka, T. Preparation of adsorption resins for uranium in seawater. Nippon Kagaku Kaishi 1980, 1767-1772. 438 5. Egawa, H.; Harada, H.; Shuto, T. Recovery of uranium from seawater by 439 the use of chelating resins containing amidoxime groups. Nippon Kagaku 440 441 Kaishi 1980, 1773-1776. 442 6. Astheimer, L.; Schenk, H.J.; Witte, E.G.; Schwachau, K. Development of 443 sorbers for the recovery of uranium from seawater. Part 2. The accumulation of uranium from seawater by resins containing amidoxime, imidoxime 444 functional groups. Sep. Sci. Technol. 1983, 18, 307-339. 445 7. Kabay, N.; Katakai, A.; Sugo, T.; Egawa, H. Preparation of fibrous 446 447 adsorbents containing amidoxime groups by radiation-induced grafting and application to uranium recovery from seawater. J. Apply. Polym. 448 Sci. 1993, 49, 599-607. 449 8. Akkaş, P.; Güven, O. Enhancement of uranyl ion uptake by prestructuring 450 451 of acrylamide-maleic acid hydrogels. J. Appl. Polym. Sci. 2000, 78, 452 284 - 289.9. Saito, K.; Sugo, T. Mission: possible radiation-induced graft polymeriz-453 ation [1983–2000], private communication. 2000. 454 10. Schenk, H.J.; Asthemier, L.; Witte, E.G.; Schwochau, K. Development of 455 456 sorbers for the recovery of uranium from seawater. 1. Assessment of key parameters and screening studies of sorber materials. Sep. Sci. Technol. 457 **1982**, 17, 1293-1308. 458 11. Rivas, B.L.; Seguei, G.V.; Geckeler, K.E. Synthesis, characterization, and 459 properties of polychelates of poly(styrene sulfonic acid-co-maleic acid) 460 with Co(II), Cu(II), Ni(II), and Zn(II). J. Appl. Polym. Sci. 2002, 85, 461 462 2546-2551.

1642

Kavaklı et al.

463	12.	Rivas, B.L.; Pooley, S.A.; Maturana, H.A.; Villegas, S. Metal ion uptake
464		properties of acrylamide derivative resins. Macromol. Chem. Phys. 2001,
465		202, 443–447.
466	13.	Sekiguchi, K.; Saito, K.; Konishi, S.; Furusaki, S.; Sugo, T.; Nabukawa, H.
467		Effect of seawater temperature on uranium recovery from seawater using
468		amidoxime adsorbents. Ind. Eng. Chem. Res. 1994, 33, 662-666.
469	14.	Kawai, T.; Saito, K.; Sugita, K.; Kawakami, T.; Kanno, J.; Katakai, A.;
470		Seko, N.; Sugo, T. Preparation of hydrophilic amidoxime fibers by
471		cografting acryonitrile and methacrylic acid from an optimized monomer
472		composition. Rad. Phys. Chem. 2000, 59, 405-411.
473	15.	Şahiner, N.; Pekel, N.; Güven, O. Radiation synthesis of N-vinyl 2-pyrro-
474		lidone/acrylonitrile interpenetrating polymer networks and their use in
475		uranium recovery from aqueous systems. Rad. Phys. Chem. 1998, 52,
476		271–276.
477	16.	Şahiner, N.; Pekel, N.; Güven, O. Radiation synthesis, characterization and
478		amidoximation of N-vinyl-2-pyrrolidone/acrylonitrile interpenetrating
479		polymer networks. React. Funct. Polym. 1999 , <i>39</i> , 139–146.
480	17.	Şahiner, N.; Pekel, N.; Akkaş, P.; Güven, O. Amidoximation and characteri-
481		zation of new complexing hydrogels prepared from <i>N</i> -vinyl 2-pyrrolidone/
482		acrylonitrile systems. J.M.SPure Appl. Chem. 2000, A37, 1159-1172.
483	18.	Pekel, N.; Şahiner, N.; Akkaş, P.; Güven, O. Uranyl ion adsorptivity of
484		N-vinyl 2-pyrrolidone/acrylonitrile copolymeric hydrogels containing
485		amidoxime group. Polym. Bull. 2000, 44, 593-600.
486 487	19.	Kise, H.; Sato, H. Synthesis of a new chelate resin for uranium adsorption
487		from seawater. Polystyrene resin containing two amidoxime functions in
488 489		the repeating unit. Makromol. Chem. 1985, 186, 2449-2454.
490	20.	Park, I.H.; Suh, J.M. Preparation and uranyl ion adsorptivity of macro-
491		reticular chelating resins containing a pair of neighboring amidoxime
492		groups in a monomeric styrene unit. Angew. Makromol. Chem. 1996,
493		239, 121–132.
494	21.	Kavaklı Akkaş, P.; Uzun, C.; Güven, O. Synthesis, characterization and
495		amidoximation of a novel polymer: $poly(N,N'-dipropionitrile acrylamide)$.
496		React. Funct. Polym. 2004, in press.
497	22.	Kavaklı Akkaş, P.; Seko, N.; Tamada, M.; Güven, O. to be published.
498	23.	Rodrigues, A.E. Ion Exchange Sci. Technol., NATO ASI series/E; 1986;
499		Vol. 107, 35.
500	24.	Huheey, J.M. Inorganic Chemistry: Principles of Structure and Reactivity,
501		3rd Ed.; Harper Collins Publishers, Inc.: New York, 1983; 73.
502	25.	Egawa, H.; Kabay, N.; Saigo, S.; Nonaka, T.; Shuto, T. Low-crosslinked
503		porous chelating resins containing amidoxime groups. Bull. Soc. Sea
504		Water Sci. Jpn. 1991, 45, 324-332.

Adsorption Efficiency of New Adsorbent Towards Metal Ions

505	26. Suzuki, T.; Saito, K.; Sugo, T.; Ogura, H.; Oguma, K. Analy. Sci., fractional
506	elution and determination of uranium and vanadium adsorbed on amidoxime
507	fiber from seawater. The Jpn. Soc. Analy. Chem. 2000, 16, 429-432.
508	27. Omichi, H.; Katakai, A.; Sugo, T.; Okamoto, J. A new type of amidoxime-
509	group-containing adsorbent for recovery of uranium from seawater. III.
510	Recycle use of adsorbent. Sep. Sci. Technol. 1986, 21, 563-574.
511	28. Takeda, T.; Saito, K.; Uezu, K.; Furusaki, S.; Sugo, T.; Okamoto, J.
512	Adsorption and elution in hollow-fiber-packed bed for recovery of
513	uranium from seawater. Ind. Eng. Chem. Res. 1991, 30, 185-190.
514	29. Saito, K.; Yamaguchi, T.; Uezu, K.; Frusaki, S.; Sugo, T.; Okamoto, J.
515	Optimum preparation conditions of amidoxime hollow fiber synthesized
516	by radiation-induced grafting. J. Appl. Polym. Sci. 1990, 39, 2153–2163.
517	30. Omichi, H.; Katakai, A.; Sugo, T.; Okamoto, J. A new type of amidoxime-
518	group-containing adsorbent for the recovery of uranium from seawater.
519	Sep. Sci. Technol. 1985, 20, 163–178.
520	
521	
522	Received May 2003
523	Accepted November 2003
524	
525	
526	
527	
528	
529	
530	
531	
532	
533	
534	
535	
536	
537	
538	
539	
540	
541	
542	
543	
544	
545	
546	

÷.	.,	۰.		4	1	
~	1		Γ.		ı	
					r	١

ARTICLE INFORMATION SHEET: Contact or Corresponding Author

	CMS ID number (DOI):	120030785
		Adsorption Efficiency of a New Adsorbent Towards Uranium and Vanadium lons at Low
	Article title:	Concentrations
	Article type:	Research
	Classification: Category:	
	Primary subcategory:	
	Subcategpry(ies):	
	Topic(s):	
	Key words:	Radiation-induced grafting; Iminodipropionitrile modified GMA grafts; Uranium and vanadium ion selectivity; Adsorption efficiency
	Copyright holder:	
	Author Sequence Number	4
	Author first name or first initial:	Olgun
	Author middle initial:	
	Author last name:	Güven
	Suffix to last name:	
	Degrees:	
	Author Status	
	Author e-mail address:	guven@hacettepe.edu.tr
	Author fax:	
	Author phone:	
	Title or Position	
	Department(s)	Department of Chemistry
	Institution or Company	Hacettepe University
Defense	Domestic (U.S.A.) or International	International
Primary Affiliation(s) at	Suite, floor, room no.	
time of	Street address	
authorship:	City	Beytepe
-	State/Province	Ankara
	Postal code	06532
	Country	Turkey
	Title or Position	
	Department(s)	
	Institution or Company	
See an dam.	Domestic (U.S.A.) or International	
Secondary Affiliation(s) at	Suite, floor, room no.	
time of	Street address	
authorship:	City	
	State/Province	
	Postal code	
	Country	
	Title or Position	
	Department(s)	
	Institution or Company	
	Suite, floor, room no.	
Current	Street address	
affiliation(s):	City	
	State/Province	
	Postal code	
	Country	
	Department(s)	
	Institution or Company	
	Street address	
Mailing address:	Suite, floor, room no.	
	City	
	State/Province	
	Postal code	
	Country	
Recipient of R1	e-mail address to receive proofs:	guven@hacettepe.edu.tr
proofs:	Fax to receive proofs:	
	Mailing address to receive proofs:	
Article data:		
	Submission date:	
	Reviewed date:	May-03
		May-03 Nov-03