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Tailoring the structure and chemistry of metal-organic frameworks (MOFs) enables the manipulation of their

adsorption properties to suit specific energy and environmental applications. As there are millions of possible

MOFs (with tens of thousands already synthesized), molecular simulation, such as grand canonical Monte

Carlo (GCMC), has frequently been used to rapidly evaluate the adsorption performance of a large set of

MOFs. This allows subsequent experiments to focus only on a small subset of the most promising MOFs. In

many instances, however, even molecular simulation becomes prohibitively time consuming, underscoring the

need for alternative screening methods, such as machine learning, to precede molecular simulation efforts. In

this study, as a proof of concept, we trained a neural network as the first example of a machine learning model

capable of predicting full adsorption isotherms of different molecules not included in the training of the model.

To achieve this, we trained our neural network only on alchemical species, represented only by their geometry

and force field parameters, and used this neural network to predict the loadings of real adsorbates. We

focused on predicting room temperature adsorption of small (one- and two-atom) molecules relevant to

chemical separations. Namely, argon, krypton, xenon, methane, ethane, and nitrogen. However, we also

observed surprisingly promising predictions for more complex molecules, whose properties are outside the

range spanned by the alchemical adsorbates. Prediction accuracies suitable for large-scale screening were

achieved using simple MOF (e.g. geometric properties and chemical moieties), and adsorbate (e.g. forcefield

parameters and geometry) descriptors. Our results illustrate a new philosophy of training that opens the path

towards development of machine learning models that can predict the adsorption loading of any new

adsorbate at any new operating conditions in any new MOF.
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ABSTRACT: Tailoring the structure and chemistry of metal-organic frameworks (MOFs) enables the manipulation of their 
adsorption properties to suit specific energy and environmental applications. As there are millions of possible MOFs (with tens of 
thousands already synthesized), molecular simulation, such as grand canonical Monte Carlo (GCMC), has frequently been used to 
rapidly evaluate the adsorption performance of a large set of MOFs. This allows subsequent experiments to focus only on a small 
subset of the most promising MOFs. In many instances, however, even molecular simulation becomes prohibitively time consuming, 
underscoring the need for alternative screening methods, such as machine learning, to precede molecular simulation efforts. In this 
study, as a proof of concept, we trained a neural network as the first example of a machine learning model capable of predicting full 
adsorption isotherms of different molecules not included in the training of the model. To achieve this, we trained our neural network 
only on alchemical species, represented only by their geometry and force field parameters, and used this neural network to predict 
the loadings of real adsorbates. We focused on predicting room temperature adsorption of small (one- and two-atom) molecules 
relevant to chemical separations. Namely, argon, krypton, xenon, methane, ethane, and nitrogen. However, we also observed 
surprisingly promising predictions for more complex molecules, whose properties are outside the range spanned by the alchemical 
adsorbates. Prediction accuracies suitable for large-scale screening were achieved using simple MOF (e.g. geometric properties and 
chemical moieties), and adsorbate (e.g. forcefield parameters and geometry) descriptors. Our results illustrate a new philosophy of 
training that opens the path towards development of machine learning models that can predict the adsorption loading of any new 
adsorbate at any new operating conditions in any new MOF.

1. INTRODUCTION 
Advanced porous crystals are promising materials in a number 
of technologies used to mitigate energy- and environment-
related problems. For instance, chemical separations requiring 
large inputs of energy (e.g. cryogenic distillation) could instead 
be performed using specially tailored porous materials to retain 
one component selectively (and abundantly),1–4 ultimately 
allowing for separation at relatively mild (i.e. non energy-
intensive) conditions.5 Porous crystals include well-known 
materials such as zeolites,6 as well as emerging materials such 
as porous organic cages (POCs),7 covalent-organic frameworks 
(COFs)8 and metal-organic frameworks (MOFs).9 While crystal 
tailoring for a specific application is perhaps most readily 
achieved in MOFs,10,11 all these materials exhibit an 
exceptionally large diversity of chemistries and architectures, 
stemming from the use of different synthetic precursors.11–14 
The number of possible synthetic precursor combinations 
implies an overwhelming number of possible materials, a 
number that would be impossible to exhaustively synthesize 
and experimentally test to find optimal candidates for a specific 
application. 
     Consequently, molecular simulation has been frequently 
used to aid the discovery of porous crystals by  performing 
“computational experiments.”15 For instance, grand canonical 
Monte Carlo (GCMC) simulations have been used to predict 
adsorption capabilities in large material databases.16,17 As the 
development of more accurate descriptions of relevant 
intermolecular interactions with new forcefields continues, the 
matching between GCMC and experiments will continue to 
improve.18–20 By using GCMC, one can “narrow down” a large 
database of materials to a smaller set of potentially 

high-performing materials on which to devote experimental 
efforts.21–24 Through this “hierarchical” approach, GCMC has 
led to the identification of, for instance, NOTT-101 and 
SBMOF-1 as high-performing MOFs for CO2/H2 and Xe/Kr 
separation, respectively.23,25  
    However, depending on the size of the database, the number 
and type of adsorbates involved, the operating conditions, and 
the number of compositions and operating conditions to be 
tested, even GCMC simulations can become prohibitively 
computationally intensive for comprehensive screening. This is 
a critical drawback if one must solely rely on GCMC for 
screening, especially considering that recent improvements in  
algorithms used to “computationally synthesize” porous 
crystals allow for the creation of databases of unprecedented 
sizes.11,26,27 Therefore, building on the hierarchical screening 
philosophy, a computational “pre-screening” method that 
allows GCMC to be devoted only to the most promising 
materials in a database is not only desirable, but potentially 
necessary to maintain the efficacy of high-throughput screening 
methods. 
     Several methods have been considered for pre-screening 
databases, including estimation of performance metrics using 
analytical equations with faster-to-calculate descriptors such as 
Henry’s constants28–30 and surface areas31,32 as inputs. However, 
perhaps the most intriguing prospect is the use of machine 
learning predictions for the pre-screening stage. Some of the 
first efforts using machine learning to predict adsorption were 
presented by Woo and coworkers, who used support vector 
machines (SVMs) to predict methane adsorption using crystal 
textural properties such as void fraction, surface area, and pore 
size as performance descriptors.33 The array of descriptor values  
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Figure 1. The building blocks used for  MOF database construction, dashed lines indicate connections to the rest of the framework; 
a) inorganic (metal-containing) nodes, which include Cu (4-connected), Zn (6-connected), Cr (6-connected), and Zr (8- and 12-
connected)  oxoclusters, b) organic nodes (the central part of multitopic organic linkers) c) connecting building blocks (the arms of 
multitopic organic linkers or the body of ditopic linkers). 
 
used to represent a material or molecule for training a predictive 
algorithm is commonly referred to as a “fingerprint”. Woo and 
coworkers also presented machine learning-based predictions 
of CO2 adsorption, made with more complex fingerprints (e.g. 
atomic property-weighted radial distribution functions) as 
inputs.34 In other prominent examples, Smit and coworkers used 
random forests (RFs) and artificial neural networks (ANNs) to 
predict Xe/Kr35 and hydrogen adsorption,17 respectively, but 
requiring the fingerprint to include some simulation-calculated, 
energy descriptors. Using simple descriptors instead, Fernandez 
and coworkers used decision trees (DTs) and SVMs to broadly 
classify materials for CO2/N2 separation (e.g. as “potentially 
good”).36 Also using new, but still easily-interpretable 
descriptors, (e.g. metallic percentage, topology, and the 
chemical identities of building blocks) Srivastava and 
coworkers predicted methane adsorption using RFs,37 while 
Froudakis and coworkers predicted hydrogen and CO2 
adsorption using RFs and SVMs, respectively.38 Previously, we 
also predicted loading, selectivity, and working capacity for 
CO2 capture from  gas mixtures with several different 
algorithms, finding that the highest accuracy was achieved with 
gradient boosted machines (GBMs).39  
     The above machine learning efforts have been constrained 
to generally the same approach: i) GCMC is used to simulate 
the adsorption of a given adsorbate or adsorbate mixture for 
materials (e.g. MOFs) in a database at a specific operating 
condition, ii) an algorithm is trained to predict the simulated 
adsorption data using material properties—i.e. a material 
fingerprint—as inputs. It is often noted that the final algorithm 
could be used to screen new adsorbents, which is an endeavor 
that may be worthwhile if a new database emerges or the 
original database grows drastically. However, algorithms 
trained under this approach can only evaluate new materials for 
the combination of adsorbates and operating conditions that 
they were originally trained on. Clearly, this approach severely 
limits the scope of the predictive algorithms, especially 
considering that a need to explore the same database for other 
adsorbates (or adsorbate mixtures) and/or other operating 
conditions is more likely to arise than a need to explore another 
database.  

     Recently, Sholl and coworkers40 underscored the low 
diversity of adsorbates so far considered in computational 
screening by noting that most adsorption studies on material 
databases focused on CO2, CH4 and H2. This focus is mainly 
driven by interest in energy storage and carbon capture. 
However, the potential of advanced porous crystals extends to 
applications involving a much larger diversity of adsorbates. 
For instance, current commercial applications of MOFs involve 
unusual adsorbates such as 1-methylcyclopropene and boron 
trifluoride.41 Other potential applications in refrigeration,42 
medicine,43 protection against chemical warfare agents,44 and a 
myriad of chemical separations,45–47 involve many other 
adsorbates (e.g. CH3OH, O2, H2O, H2S). Separations relevant to 
the oil and gas industry can involve complex mixtures of 
CnHmOxNySz adsorbates.48 Recognizing the need for faster 
ways to predict adsorption for a diversity of adsorbates, Sholl 
and coworkers40 tried predicting isotherms for 24 adsorbates 
using the Langmuir model and simulation-calculated Henry’s 
constants and saturation loadings. Two caveats to this approach 
are its lack of extensibility to non-Langmuir-shaped isotherms, 
and the need to calculate new Henry’s constants and saturation 
loadings for new temperatures. However, these caveats could 
be potentially overcome using machine learning.  
    In recent work,49 we found that a single multi-layer 
perceptron (MLP), a class of ANN, was able to  predict full 
hydrogen isotherms and isobars, which requires predicting 
adsorption at temperatures and pressures not included in the 
training data. That is, the algorithm is required to learn the 
behavior of loading with changes in temperature and pressure, 
for a diverse range of materials (and thus isotherm/isobar 
shapes). In the cited work, we used inherent material properties 
(similar to those discussed previously), temperature (T) and 
pressure (P), and the relevant force field parameter describing 
the “chemistry” of adsorbate/adsorbent interactions as our 
descriptors. The success of including operational (T and P) and 
adsorbate-dependent descriptors (force field parameters) 
motivated us to investigate the suitability of machine learning 
as a tool toward universal prediction of adsorption isotherms. 
Here “universal” should be understood as the ability of such 
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Figure 2. Descriptors constituting the MOF fingerprint. a) Five textural properties: void fraction, gravimetric surface area, largest 
pore diameter (LPD: dark blue sphere), pore limiting diameter (PLD: light blue sphere), and pore size standard deviation (PSSD), 
and density.  b) 17 chemical motifs (boxed), for which their respective number density in each MOF was calculated. The percentage 
of MOFs in the database that contain each motif is listed at the top. 
 
tools to predict adsorption for molecules for which it was not 
originally trained. 
     Given that there is ongoing debate on the scope of machine 
learning and the best strategies to train machine learning models 
even when focused on a specific adsorbate or mixture, a first 
step toward the development of a universal model is to study 
whether the same machine learning model that is used to predict 
the adsorption of a given adsorbate can actually be used to 
predict the adsorption of a different adsorbate. Accordingly, the 
work herein focuses on demonstrating such capability, 
considering the substantial increase in the complexity of the 
data that arises when including different adsorbates (even 
simple ones) along with different operating conditions. An 
underlying theme in our work is to make the machine learning 
algorithm as accurate as possible while keeping model inputs 
brief, easily interpretable, and obtainable with minimal 
computational effort. To generate training data, we focused on 
the adsorption of 200 alchemical species at room temperature 
in a relatively small, topologically and chemically diverse 
database of 2,400 MOFs created using our Topologically-Based 
Crystal Constructor (ToBaCCo) code.10,11 We tested the model 
on real adsorbates (Ar, Kr, Xe, methane, ethane, and N2) partly 
chosen due to their relevance to several gas storage 31,43,50 
chemical separation1,51–55 applications. We limited the number 
of MOFs in our database to keep the number of simulations 
needed to generate the requisite data reasonable.  
2. DATA GENERATION 
2.1 Database construction. The ToBaCCo-3.0 code10,11 was 
used to “computationally synthesize” 2,400 MOFs of 50 
topologies using the building blocks illustrated in Fig. 1. The 
building blocks were chosen to create a database that provides 
enough chemical diversity to ensure we explore a variety of 
interactions with the adsorbates studied in this work, but also 

with potential adsorbates for future work that could expand on 
the type of molecules and operating conditions considered for 
investigation. Atomic charges were assigned to each MOF 
according to our MBBB approach,56 which will allow these 
MOFs to be used in the future for adsorption predictions of 
more complex adsorbates (for which the consideration of 
adsorbate-framework electrostatic interactions is required). 
Each MOF prototype constructed by ToBaCCo was structurally 
optimized in LAMMPS57 using the Dreiding58 force field to 
describe framework intramolecular forces. For the 
optimization, we used an iterative approach where in each 
iteration the atom coordinates were first optimized using the fast 
inertial relaxation engine (FIRE) algorithm developed by 
Bitzek et al59 with a timestep of 10.0 fs with the unit cell 
parameters fixed. Then, the atom positions and unit cell 
parameters were optimized together using a conjugate gradient 
algorithm. For each iteration, the first and second step 
optimizations were stopped when the change in energy between 
consecutive geometries divided by the energy of the last 
geometry was less than 1.0 × 10-6 and no atom experienced a 
force larger than 1.0 × 10-6 kcal/mol Å-1. The iterations were 
stopped when the energy change from the previous iteration to 
the current iteration was less than 1.0 × 10-6 kcal/mol. 

2.2. Training, validation, and test set data generation. 
Before any GCMC simulations were run we randomly split our 
2,400 MOFs into 1,800 training MOFs, 200 validation MOFs, 
and 400 test MOFs. To generate our training data we ran GCMC 
simulations for 200 one-, two-, and three-site alchemical 
adsorbates at fugacities of 1, 5, 10, 50, 75, and 100 bar in the 
1,800 training MOFs (fugacity was used as opposed to pressure, 
so we did not have to calculate critical constants for each  
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Figure 3. Histograms of the textural properties used as descriptors in MOF fingerprint. 

alchemical species). To generate our validation data, we ran 
GCMC simulations for 200 one-, two-, and three-site adsorbates 
(all were entirely different than any adsorbate used for 
computing the training data) at fugacities of 2.5, 30, 60, 80, and 
90 bar in the 200 validation MOFs. The LJ parameters, charges 
and bond-lengths used to generate all of the alchemical species 
considered are given in Tables S1-S4. To generate our test data, 
we ran GCMC simulations for 12 real adsorbates (argon, 
krypton, methane, xenon, nitrogen, ethane, helium, hydrogen, 
propane, butane, isobutane, and benzene) at fugacities of 1, 2.5, 
5, 10, 25, 50, 60, 75, 80, and 100 bar in the 400 test MOFs. Note 
that the real adsorbates considered here were distinct from the 
alchemical species used to generate the training/validation data, 
i.e. no real adsorbate had the same LJ, charge, or bond-length 
parameters as the alchemical ones. 

LJ parameters for helium correspond to those used by Smit and 
coworkers,68 LJ parameters for argon were taken from Perez 
and coworkers,69 and LJ parameters for krypton, and xenon  
correspond to those used by Sikora and coworkers.70 The 
parameters for these adsorbates is summarized in Table S5. 
Methane, ethane, propane, butane, isobutane, benzene, and 
nitrogen, were modeled according to the TraPPE force-field 
developed by Siepmann and coworkers.71,72 Accordingly, 
methane, ethane, propane, butane/isobutane, and benzene are  
modeled as a one, two, three, four, and six uncharged sites, 
respectively, while nitrogen is modeled with three charged sites 
in order reproduce electric quadrupoles. For nitrogen, the two 
atoms are each assigned LJ parameters and charges, while a 
“dummy” site at the center of mass is only  assigned a 
charge.71,72 LJ parameters and charges for hydrogen were taken 
from the Darkim-Levesque model,73,74 which is also a three-site 
model, however,  the two atoms are each assigned only a charge 
while a dummy site at the center of mass is assigned LJ 
parameters and a charge.  

2.3 Adsorbate fingerprinting. Toward generalized adsorbate 
predictions, we set out to demonstrate that the loading of real 
adsorbates can be predicted using training data consisting 
entirely of alchemical adsorbates. Additionally, we wanted to 
show that an adsorbate (real or alchemical) can be represented 

by a fingerprint, allowing adsorbate properties to become part 
of the training data. As a first step, here we focused on both one-
site and two/three-site alchemical and real adsorbates, where 
three site adsorbates had a dummy atom with only a point 
charge at the bond center (typical of forcefield representations 
of diatomic gases). As simulated adsorption loadings depend 
both on adsorbate-adsorbate and adsorbate-framework 
interactions, we hypothesized that an operational adsorbate 
fingerprint should include descriptors related to the adsorbate 
parameters that control dispersion and electrostatic interactions. 
Ultimately, we used the effective LJ parameters (𝜖effective and 𝜎 ffective) for each adsorbate along with the maximum charge 
magnitude (zero for one atom adsorbates) and the bond length 
(also zero for single-site adsorbates), which allowed us to keep 
the number of descriptors in the fingerprint identical regardless 
of the adsorbate (a requisite for generality). For single-site 
adsorbates,  𝜖 ffective and 𝜎 ffective are exactly the 𝜖  and 𝜎 . For 
two/three site adsorbates,  𝜖 ffective was the sum of the 𝜖  of the 
different sites, and 𝜎 ffective was:   𝜎 ffective =  𝜎 − 𝑟bond +  12 𝜎              (1) 
 
which is the average of 𝜎  and the end to end length of the 
molecule if we consider the diameter of each atom to be 𝜎 . For 
the more complex adsorbates considered in the test set, 𝜖 ffective 
was taken to be the sum of all 𝜖  values, and   𝜎 ffective was taken 
to be the average of the shortest dimension and longest 
dimension (essentially an extension of equation 1 to adsorbates 
with more than one bond). Similarly, bond length was taken to 
be the longest distance between atom coordinates in the lowest 
energy geometry (as calculated according to the relevant force 
field, see below). Four other adsorbate fingerprints were 
considered, these are discussed in detail in Section S2. 
 
2.4. MOF fingerprinting. We tested seven different MOF 
fingerprints (see results in Table S6), and found that a 
fingerprint combining six MOF textural properties—helium 
void fraction (VF), gravimetric surface area (GSA), largest pore 
diameter (LPD), pore limiting diameter (PLD), framework 
density (𝜌F), and the pore size standard deviation (PSSD) —
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together with the number density of 17 distinct MOF chemical 
moieties resulted in sufficiently accurate predictions. The 
descriptors for the fingerprint are illustrated in Fig. 2. While we 
did identify another feature set—which we nominally refer to 
as the bag-of-atoms—that provided slightly more accurate 
predictions, we determined that the slight increase in model 
accuracy was not worth the significant increase in model 
complexity required to use this descriptor set (further details are 
provided in Section S2). The chemical diversity of the studied 
MOFs is apparent from the frequency that each moiety appears 
in the database (the percentages shown in Fig. 2) and the 
structural diversity of the studied MOF is apparent from the 
histograms of the textural properties observed in our database 
(shown in Fig. 3). Our optimal fingerprint can be considered 
simple because it is limited to 23 easily-calculated 
descriptors—instead of the hundreds needed when using 
atomic-property weighted radial distribution functions34 or 
other high dimensional descriptors (e.g. bag-of-atoms). VF was 
calculated using the Widom insertion method with helium as 
the probe molecule,60 while GSA was calculated by rolling a 
nitrogen-sized spherical probe along the framework surface.61 
Both of these calculations were done in RASPA-2.0.62 LPD and 
PLD were calculated using zeo++.63  PSSD, as a measure of 
pore polydispersity, was calculated by taking the weighted 
standard deviation of the pore size distribution (also calculated 
using RASPA-2.0), where each pore diameter was weighted by 
the distribution value. The number density of the various 
chemical moieties was calculated using an in-house pattern 
recognition code. 

2.5. Adsorption Simulations. RASPA-2.062 was used to 
perform all GCMC simulations, in which chemical potential, 
volume, and temperature are kept constant. Chemical potentials 
were calculated directly from fugacity. Simulations consisted of 
2,000 initialization cycles (no data recording) and 2,000 
production cycles (data recording). Each cycle consists of N 
Monte Carlo moves (translation, rotation, or insertion/deletion), 
where N is the highest value between 20 and the number of 
adsorbates in the simulation cell. Adsorbate-adsorbate 
interactions were modeled using Lennard-Jones (LJ) potentials 
to describe dispersion interactions and Coulomb’s law to 
describe charge-charge interactions. To be consistent with 
previous work considering adsorption of charged two-atom 
species61,64–66 we do not consider adsorbate-framework 
electrostatic interactions. Available Dreiding forcefield58 
parameters were assigned to framework atoms. Otherwise 
UFF67 parameters were used. Lorentz-Berthelot mixing rules 
were used to calculate parameters for interactions between 
atoms not explicitly parametrized. Adsorbate force-field 
parameters were assigned as discussed on Section 2.2. 

 
3. NEURAL NETWORK TRAINING 
3.1. Model training. Here we trained a multilayer perceptron 
(MLP, see Fig. S1) to predict the adsorption data obtained from 
GCMC simulations. All MLPs were trained using Keras75 
through the SciKit-learn76 Python module. First, before training 
the final MLP model, we investigated different network 

hyperparameter configurations in order to determine which 
configuration(s) were likely to give an accurate final model. 
During this procedure (called tuning) we assessed model 
performance using both mean absolute error (MAE) and mean 
percentage error (MAPE) on the validation set. These errors 
were selected as they both have useful and relevant physical 
interpretations (and are what we are most concerned with 
minimizing when predicting loading).  

    Tuning was performed using a two-step procedure. First, we 
exhaustively investigated diverse network topologies from one 
to eight hidden layers with between 10 and 50 nodes (in 
increments of 10 nodes) in each layer, keeping all other 
hyperparameters fixed, to find a class of network topologies 
which generally gave the most accurate results. We found that 
one, two, and three hidden layer networks, while making 
reasonably accurate and reproducible predictions, had higher 
error than deeper MLPs. On the other hand, we found that many 
deep networks (more than five layers) had low minimum error 
on the validation set, but were sensitive, i.e. we observed large 
oscillations in the validation set error across epochs and with 
slight changes in network topology for these networks. 
Therefore, we selected a four-hidden-layer topology for our 
final model, as it was both highly accurate, and robust in its 
predictions. Second, and after settling upon this network 
topology, we varied other important net parameters on a grid, 
keeping topology constant. The parameters considered and their 
final values (Table S7) are presented in Section S2.  

    The final model resulting from the above tuning procedure 
was then tested on the real adsorbates in the test set (see below). 
Additional data, demonstrating the reproducibility of our 
model, is presented in Figure S2. The architecture of this final 
model is shown in Fig. 4. We reiterate that there were no shared 
MOFs or adsorbates between the training, validation, and test 
sets, during any model training. In addition, there were no 
shared fugacities between the training and validation set. We 
considered both shared and unshared fugacities between the 
training and test set. Every network considered was trained for 
a maximum of 500 epochs. Early termination with a patience of 
20 epochs was employed to prevent over-fitting (i.e. if 
validation error did not improve for 20 epochs in a row, training 
was terminated and the lowest error model from the previous 
epochs was taken to be the model error).  

 
Figure 4.  The configuration of our final model. The number of 
nodes in each hidden layer are shown above the corresponding 
layer.  
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Figure 5. Isotherms for alchemical adsorbates considered in a. a representative small pore MOF (LPD=6.5 Å), b. a representative 
intermediate pore MOF (LPD=13.7 Å), and c. a representative large pore MOF (LPD=19.5 Å). All the MOFs shown are of the mcn 
topology. The large pore is illustrated by the yellow sphere. 

 

4. RESULTS AND DISCUSSION 

4.1. Model predictive ability for simple adsorbates. Before 
discussing the overall prediction performance of our final MLP, 
we discuss briefly, from an intuitive perspective, what the 
model must learn. Fig. 5 shows adsorption isotherms for a 
subset of the training set alchemical adsorbates. These MOFs 
are representative of structures with small (LPD ~ 7 Å), 
intermediate (LPD ~ 14 Å, or near the first peak in the LPD 
histogram shown in Fig. 3) and large (LPD ~ 20 Å, or near the 
second peak in the LPD histogram shown in Fig. 3) pores, 
respectively. From the isotherms in Fig. 5 one can see that the 
model must learn that intrinsic adsorbate-adsorbent interactions 
play a dominant role in controlling adsorbate loadings at low 
fugacity, but that surface area and void fraction start to play a 
dominant role at moderate and high fugacities, respectively. For 
instance, consider how the loading of the alchemical adsorbate 
with the largest 𝜖  and 𝜎 is restricted in the small pore MOF, 
resulting in lower loadings than adsorbates with significantly 
smaller 𝜖  values. In the large pore MOF, this effect is reversed, 
with this adsorbate achieving nearly the highest loading out of 
all the adsorbates. 

    Next, we consider our final model predictive performance on 
a set of real adsorbates by comparing our model predictions to 
GCMC calculated loading of argon, methane, krypton, xenon, 
ethane, and nitrogen at 10 fugacities from 1 to 100 bar 
(methane, ethane, and nitrogen are modeled with one, two, and 
three sites, respectively) in the 400 test set MOFs. We computed 
several measures of model performance for each adsorbate, 
which are presented in Table 1. Specifically, we consider mean 
absolute percentage error (MAPE), mean absolute error (MAE), 
Pearson correlation (R), and Spearman correlation (S). Perfect 
predictions would have zero MAPE and MAE. Values of R  

Table 1. Model performance metrics of our final model for 
loading predictions made on the test set. 

Adsorbate MAPE [%] MAE 
[mol//kg] 

R S 

Argon 4.8 0.17 0.999 0.999 

Methane 5.1 0.28 0.999 0.999 

Krypton 5.4 0.39 0.999 0.999 

Xenon 5.1 0.44 0.999 0.999 

Ethane 4.2 0.37 0.999 0.999 

Nitrogen 4.8 0.16 0.999 0.999 

 

close to one indicate a very strong linear correlation between 
GCMC loadings and those predicted by the MLP. Values of S 
close to one indicate that the MLP predictions increase nearly 
monotonically with the GCMC simulated values. As a point of 
comparison, our final model predicted the validation set 
loadings (200 alchemical adsorbates in 200 MOFs at 5 
fugacities) with a MAPE of 3.2 % and a MAE of 0.19 mol/kg. 
We note that MAPE is biased towards adsorbates with higher 
loadings, since a larger absolute error may still be a relatively 
low absolute percentage error. For example, while nitrogen and 
argon predictions are visibly accurate (and have the lowest 
MAE values), their MAPE values are relatively high. On the 
other hand, MAE is biased towards adsorbates with lower 
loadings, since the relatively small absolute errors may be large 
in comparison to the actual loading value. This is why we 
present multiple and diverse model performance metrics, as no 
single metric can be used to fully assess model performance. 
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Figure 6. Parity plots comparing the predictions of the final MLP model for the six indicated adsorbates versus GCMC-calculated 
values. The listed real adsorbates possess properties within the ranges covered by the alchemical adsorbates used during model 
training. Points color indicate the point density in the plot (the highest density is observed at low loadings). 

    Parity plots showing the MLP predicted loadings (at all 10 
fugacities considered in the test set) versus the corresponding 
GCMC simulated loadings for each adsorbate provide a more 
complete picture of the predictive capabilities of the final MLP 
(Fig. 6). Perfect predictions would result in all the points in 
these plots falling on the diagonal line. It is clear from Table 1 
and Fig. 6 that the final model performs extremely well on the 
six adsorbates considered here as expected, given that the same 
model predicted the loadings of 200 similar alchemical 
adsorbates with similar accuracy. Parity plots, however, do not 
give a complete picture of the performance of a model trained 
to predict adsorption loading. Not only should the model predict 
individual loading points correctly, but it should also predict 
related points in the correct order and all with a similar level of 
accuracy. That is, the model should be able to reproduce full 
isotherms, which means it is accurate at each point, and also 
predicts the shape of the isotherm. 

4.2. Predictive ability for full isotherms. Now we proceed to 
illustrate the ability of our model to predict full adsorption 
isotherms. This is a necessary ability if one aims to, for instance, 
couple machine learning predictions for pure components with 
IAST theory (when applicable) to rapidly obtain mixture 
adsorption data to screen MOFs for chemical separation 
applications. Fig. 7 compares isotherms predicted by the MLP 
(continuous line) and those obtained from GCMC simulations 
(points) for methane and ethane (plots for the other adsorbate 
cases are given in Fig. S3) in test set MOFs. The isotherms 
predicted by the MLP were constructed from loadings predicted 
at 100 different fugacities between 1 and 100 bar (notably, it 
took only minutes to obtain these 100-point isotherms for 400 
MOFs). To get a more accurate picture of the GCMC-simulated 
isotherms we ran simulations in the test set MOFs at fugacities 
not included in the training set (empty points in Fig. 7).  

   As it is unfeasible to present the isotherm comparison for all 
the test cases studied here (size adsorbates in 400 MOFs), we 
chose to present five isotherms per adsorbate. However, to 

provide a fair picture of prediction accuracy, we aimed to 
present a range of “best to worst” cases. To do so, we first 
ranked all the isotherms predicted by our MLP according to 
their isotherm median percentage error (IMPE). For each MLP-
calculated isotherm point for which we also had a GCMC-
simulated value (10 fugacities for each MOF), we estimated the 
absolute percentage error (APE). The median of this set of APE 
values was taken to be the IMPE. The IMPE values were then 
used to classify the MLP-predicted isotherms into five 
quantiles—the 0.00 (Q1), 0.25 (Q2), 0.50 (Q3), 0.75 (Q4), and 
1.00 (Q5) quantiles. Thus, Q1 isotherms are the best predicted 
isotherms according to our IMPE metric, Q5 isotherms are 
predicted the worst, and Q3 isotherms are average predictions. 
Fig. 7 and Fig. S3 present one isotherm from each quantile (the 
one nearest to the IMPE quantile value).  

   Q1 isotherms are essentially quantitively correct for all 
adsorbates, Q5 isotherms tend to be qualitatively correct but can 
deviate more significantly from GCMC-simulated values in 
some pressure ranges. However, as machine learning 
predictions are intended for use in high throughput screening of 
MOFs (or other porous crystals) some less than stellar 
predictions are acceptable as long as the vast majority of 
predictions are acceptable. This is the case even for isotherms 
in the Q3 and Q4 quantiles. For instance, Q3 isotherms (the 
“average” prediction accuracy) have IMPEs ranging from 1.74 
% (for ethane) to 3.18% (for krypton). As a  point of 
comparison, Dokur and Keskin 77 showed that  that a difference 
of well over 10% can be observed in GCMC predicted loadings 
of methane and nitrogen (albeit in CO2/N2 and CO2/CH4 
mixtures) when switching between using UFF and DREIDING 
LJ parameters for MOF atoms, and that these errors likely do 
not effect high throughput screening results significantly. 
Accordingly, the accuracy reached by the trained MLP is 
certainly, suitable to accelerate materials discovery by utilizing 
it as part of a hierarchical screening strategy. 
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Figure 7. Isotherms for a. methane and b. ethane, for the Q1 (0.00), Q2 (0.25), Q3 (0.50), Q4 (0.75), and Q5 (1.00) quantiles of 
isotherm median percentage error (IMPE, with corresponding values shown). Points are GCMC simulated values (filled correspond 
to fugacities included in training, empty points were not), and orange lines are obtained using the trained MLP. 

4.3. Material ranking accuracy based on performance 
metrics. For machine learning to effectively be used in 
hierarchical screening, it needs to correctly rank MOFs (or 
whichever type of porous crystal is being studied) according to 
some performance metric. This way, it guarantees that the most 
promising MOFs are studied with more accurate methods in 
subsequent screening stages. Thus, as the final endeavor of this 
work, we assessed the ability of our model to identify top-
performing materials.  

Table 2. The number of MOFs in the top 100 from GCMC data 
that were encountered in the top 100 predicted using data 
predicted by machine learning. 

 

Adsorbate 

# Correctly Placed 

Loading@100 bar 

[mol/kg] 

Working Capacity  

[mol/kg] 

Argon 99 100 

Methane 99 98 

Krypton 98 97 

Xenon 100 99 

Ethane 98 100 

Nitrogen 99 99 

One important consideration at this point is that material 
performance in chemical separations and gas storage often 
depends on adsorption properties at more than one 
pressure/fugacity. For instance, the working capacity, which is 
the difference between adsorption loadings at a high and a low 
pressure is a common performance metric. Thus, to evaluate the 
ability of our model to rank MOFs, we decided to include the 
ranking based on working capacities. Specifically, we focused 

on the ability of our model to identify MOFs in the “top 100” 
of the 400 MOF test set according to their loadings at 100 bar 
and their working capacity for a 100 bar ↔ 5 bar fugacity swing.  

   Table 2 summarizes the ability of the MLP to rank MOFs 
according to their loading and working capacity. For loadings 
at 100 bar, the top 100 MOFs predicted using machine learning 
contains between 98 (Kr case) and 100 (Xe case) of the MOF 
found in the top 100 constructed using GCMC data. In the case 
of working capacities case, the top 100 constructed from 
machine learning predictions contains between 97 (Kr case) and 
100 (Ar and ethane cases) of the MOFs found in the top 100 
constructed with GCMC data. Given that ranking materials in 
this manner is one of the most important uses of a machine 
learning algorithm used to predict adsorption loading, our 
model could be useful even for relatively complex adsorbates 
(see below and Table S10) as a first step for screening MOF 
databases for adsorption performance of diverse chemicals.  

4.4. Testing the limits of the current MLP model 
(extrapolation). It is well-known that machine learning models 
are meant to work within the confines of property values 
delimited by the training data. To assess to what extent the 
trained MLP “breaks” for adsorbates whose properties are 
outside the ranges considered in the training, we decided to 
compare MLP predictions to GCMC data for adsorbates with 
properties outside those considered during training (including 
more complex adsorbates). Note that this endeavor was partly 
done as a preliminary test to inform future studies on more 
complex adsorption scenarios. He, (𝜖  and 𝜎  smaller than for 
any alchemical species) H2 (a three-site model, that contrary to 
any three-site alchemical adsorbate only has LJ parameters at 
the central site), propane, n-butane, isobutane, and benzene (all 
of which have i) higher 𝜖 ffective and 𝜎 ffective, ii) more sites, and 
iii) significantly different shapes than any alchemical species 
included in training) were chosen for this test.

a.

b.

Fugacity [bar]
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Figure 8. Parity plots comparing the predictions of the final MLP model for the six indicated adsorbates versus GCMC-calculated 
values. The listed real adsorbates possess properties outside the ranges covered by the alchemical adsorbates used during model 
training. Points color indicate the point density in the plot (the highest density is observed at low loadings). 

   The parity plots in Fig. 8 provide a visual comparison 
between MLP predictions to GCMC data for the above species, 
with the accuracy metrics provided in Table S8 (isotherm 
comparisons analogous to Fig. 7 are presented in Fig. S4). The 
MLP predictions for all these species presented a high 
correlation with the corresponding GCMC data (the lowest R 
was 0.877 for n-butane). The best predictions (MAE < 0.6 
kg/mol) were for helium and hydrogen loading, for which the 
MLP slightly, but systematically, under- and overestimated, 
respectively, the GCMC-calculated loading. The next best MLP 
predictions (MAE < 2.1 kg/mol) were for isobutane and 
benzene, for which the bulk of the points fall near the parity 
line, but for which the presence of outliers is apparent. The least 
accurate MLP predictions (MAE < 4.1 kg/mol) were for 
propane and n-butane), for which the bulk of the points follow 
a linear, but systematically underestimated relationship with 
GCMC data, and also present outliers. Note, however, that the 
number of outliers for the last four adsorbates is not that high 
when considering the point density (indicated by point color in 
Fig. 8).  

   The majority of outliers for adsorption predictions for 
propane and n-butane occur at the lowest fugacities (1.0 and 2.5 
bar) in MOFs with higher than average void fraction (> 0.77) 
and LPD (> 17.7). Specifically, the average VF (LPD) of MOFs 
in the top-50 outlying points, assessed using MAPE for propane 
and butane loading predictions are 0.87 (19.4) and 0.90 (23.7), 
respectively. In contrast, most of the outliers for adsorption 
predictions for isobutane and benzene are at intermediate 
fugacities (between 2.5 and 10 bar) in MOFs with relatively 
small void fraction (LPD). The averages of this property in 
outliers for isobutane and benzene are 0.68 (16.2) and 0.64 
(16.6), respectively.  

   In light of the statistics above, one can speculate on the 
reasons for prediction inaccuracies in these “extrapolated” 

adsorbates. The systematic underpredictions for the bulk of the 
propane and n-butane may be related to their flexible character 
compared to the rigid alchemical adsorbates used in the training 
data, as well as a higher aspect ratio. This is consistent with the 
absence of systematic overestimation for isobutane and benzene 
adsorption predictions, which present a low aspect ratio and 
little flexibility.  

The outliers for isobutane and benzene occur because the MLP 
model has trouble capturing the isotherm shape for these 
molecules around the fugacities near the saturation fugacity 
(which is rather low for these large molecules). Thus, the 
inaccuracy could be due to the model being blind to packing 
effects in small pores. The outliers for propane and n-butane 
occur because the MLP model overestimates adsorption of 
these molecules in large pore MOFs (where the lower 
adsorption enthalpies have a harder time compensating the loss 
of entropy during adsorption). Thus, the inaccuracy could be 
due to the model being blind to entropic losses that are 
important in flexible molecules. We reiterate, however, that 
since extrapolation behavior is difficult to predict, the above 
analysis is solely based on chemical intuition, and, while 
plausible, cannot be taken as absolutely certain. This analysis 
can, on the other hand, guide the selection of descriptors in 
future, more generalizable deep learning models. 

    Despite the presence of outliers, one would expect that the 
ability of the MLP to rank MOFs according to their loading 
and/or working capacity for these “extrapolated” adsorbates is 
still quite good due to highly linear relationships between MLP 
predictions and GCMC data. This is confirmed according to the 
data in Table S9 (which is analogous to Table 2), most notably 
for loadings at 100 bar. Indeed, for this property, at least 98 out 
of the 100 top MOFs are correctly identified by the MLP model. 
For working capacity on the other hand, discounting benzene, 
at least 89 out of the top 100 MOFs are identified. The least 
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accurate ranking ability is for benzene, but even in that case the 
MLP model captures about half (46) of the MOFs in the top-
100. The anomalous MLP performance in ranking benzene is 
due to inaccuracy in the isotherm region around the saturation 
fugacity (see above and Fig. S4f). Nonetheless, the MLP 
accuracy to both predict adsorption of He, H2, propane, n-
butane, isobutane and benzene in MOFs and rank the MOFs 
based on adsorption of these species is higher than we were 
expecting considering that their properties are (in some cases 
far) outside the ranges covered by the training data.  

5. CONCLUSIONS 

In this paper, we demonstrated that the same multilayer 
perceptron (MLP) model can be used to predict full room 
temperature adsorption isotherms of different adsorbates at 
different pressures. Key to accomplishing these prediction 
capabilities was the inclusion of thermodynamic conditions 
(here fugacity), adsorbate force field parameters as model 
inputs, but above all the inclusion alchemical adsorbates as part 
of the training data. Our MLP model, made, on average, 
quantitatively accurate predictions of full isotherms in MOFs 
and for adsorbates not included in the training set. In addition, 
our model shows excellent performance in ranking MOFs 
according to maximal loading and working capacity, the latter 
requiring predictions at two pressures. Our results are a first step 
towards the ambitious goal of universal prediction of adsorption 
in porous crystals, which will greatly speed up high-throughput 
screening of materials for adsorption applications. The next step 
toward universal prediction of adsorption should focus on 
expanding training sets to include multiple temperatures and a 
larger diversity of adsorbates, including large, flexible 
adsorbates, similar to the C3 and above alkanes, with the goal of 
correcting predictions made on highly non-spherical and 
flexible adsorbates. Such extension to more diverse molecules 
will require further development of methods for fingerprinting 
porous crystals and adsorbates. 
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Section S1. Adsorbate Force Field Parameters 
 
■ One-site Adsorbates 
 
Table S1. Parameters for single-site alchemical adsorbates used for training; all possible 
combinations were considered. 
 𝝐𝒊𝒊 [K] 𝝈𝒊𝒊 [Å] 
50 3.0 
100 3.5 
150 4.0 
200 4.5 
250  

 
Table S2. Parameters for single-site alchemical adsorbates used for validation; all possible 
combinations were considered. 
 𝝐𝒊𝒊 [K] 𝝈𝒊𝒊 [Å] 
60 3.10 
75 3.25 
125 3.75 
175 4.25 
225  

 
Table S3. Parameters for two- and three-site alchemical adsorbates  (two-site adsorbates 
correspond to a maximum magnitude charge of zero) used for training; all possible combinations 
were considered. 
 𝝐𝒊𝒊 [K] 𝝈𝒊𝒊 [Å] Charge [e] Bond Length [Å] 
15 3.00 0.0 1.0 
30 3.70 0.2 1.3 
45 4.50 0.5 1.6 
60  0.9  
95    

 
Table S4. Parameters for two- and three-site alchemical adsorbates  (two-site adsorbates 
correspond to a maximum magnitude charge of zero) used for validation; all possible 
combinations were considered. 
 𝝐𝒊𝒊 [K] 𝝈𝒊𝒊 [Å] Charge [e] Bond Length [Å] 
25 3.25 0.0 1.1 
35 3.50 0.3 1.3 
50 4.00 0.6 1.5 
70  0.9  
80    
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Table S5. Lennard-Jones parameters for real single site real adsorbates. 
 

Adsorbate Epsilon [K] Sigma [Å] 
Helium 10.9 2.64 
Argon 124.1 3.42 

Methane 148.0 3.73 
Krypton 166.4 3.64 
Xenon 221.0 4.10 
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Section S2. Details of Model Training 
 
■ Overview of the Multilayer Perceptron Algorithm 
 
A multilayer perceptron (MLP) is a type of feedforward artificial neural network, which consists 
of at least one hidden layer (for a least three layers including the input and output layer). The goal 
of the MLP, as any other machine learning algorithm, is to predict a response Y given a set X of 
variables. For instance, when the set Xi for observation i is fed into the input layer (one node for 
each variable in the set Xi), the network (once trained) will provide the corresponding response Yi 
as output. The output is typically a real number (when doing regression) or an integer (when doing 
classification). 
  
Each hidden layer consists on N nodes, which are assigned an activation function (a non-linear 
function) and a weight. Each node in a hidden layer receives a weighted summation of the outputs 
of the preceding layer, and then applies the activation function to it. The output of each node is 
applied different weights into the summations that are received by the nodes in the next layer. The 
process is done until the output layer is reached, which consists of one node with a linear (for 
regression) or step (for classification) activation function.  
 
The training of an MLP consists of finding the weights assigned to the output of each node, which 
result in matching as closely as possible an array of known responses i given the corresponding 
variable sets Xi (these known responses and variables sets are referred to as the training set). Thus, 
during training, an MLP learns (unveils) the relationship between variable sets and their 
corresponding response from a (hopefully) broad and diverse dataset. The trained MLP can then 
be applied to new variable sets Xj for which the response is unknown. 
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Figure S1. Schematic of a simple MLP, with two hidden layers (white nodes). The magnification 
shows an individual node, in which the input weights are combined (in this case as a sum), fed into 
the activation function (a sigmoid is shown), then output with the node weight. 
 
The optimal weights are found using a supervised learning algorithm known as backpropagation.1 
The weights of each node are initialized, usually randomly or according to some probability 
distribution, and the prediction tested for a single input or a set of inputs. The error of this 
prediction is then calculated (i.e. the loss function) and used to calculate the partial derivate of 
model error with respect to each weight in the network.1 The calculation of these derivatives is 
backpropagation. The calculated derivatives (i.e. the gradient of error) can then be used in an 
optimization function which minimizes the loss function.  

 
There are many so-called “hyperparameters” which influence the final weights, and therefore the 
output of an MLP model. Here, we will focus our discussion on hyperparameters tuned during the 
training of our models. These are i) the architecture or topology of the net, which is the number of 
hidden layers and the number of nodes in each layer, ii) the activation function applied to the 
incoming weights for each node (e.g. sigmoid, ReLU, or linear), iii) how the initial weights are 
assigned, i.e. the initialization procedure, iv) the optimizer used to minimize the loss function, v) 
the number of times (epochs) all of the training data is passed through the backpropagation 
algorithm, and vi) batch size which is the number of observations passed through the net before 
updating the weights (between one and the total number of observations). Table S6 shows the final 
hyperparameter set for each of our MLPs (the four base models and the top model).  
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■ Additional Training Results 

Before training any neural networks, we tested 28 different descriptor sets using an XGBoost 
model.2 These included four adsorbate descriptors together with nine MOF descriptors.To reduce 
training time, these errors were calculated on models trained using only 10% (randomly selected) 
of the total training data and validated on 10% of the validation data. Adsorbate descriptors 
considered were (i)  𝜖 ffective, 𝜎 ffective, and the maximum charge magnitude, (ii) 𝜖 ffective, 𝜎 ffective, 
and the maximum charge magnitude multiplied by the bond length, (iii) 𝜖 ffective, 𝜎 ffective, 
maximum charge, and bond length, (iv) 𝜖 ffective, 𝜎 ffective, maximum charge, bond length, and the 
aspect ratio (shortest dimension divided by the longest dimension). We found XGBoost models 
trained on (i) and (ii) (together with MOF descriptors) were generally less accurate that (iii) and 
(iv). We, therefore, chose adsorbate descriptor set (iii) as it yeilded increased accuracy over (i) and 
(ii) and (iv) was not more accurate than (iii) despite the extra variable.  
 
The error of the XGBoost models trained on the seven MOF descriptors considered, together with 
adsorbate descriptor set (iii) are shown in Table S6. The chemical motifs descriptor set includes 
the chemical motifs described in the main text (Figure 2). Two atomic property-weight radial 
distribution functions (AP-RDFs) were used in the AP-RDF descriptor, with framework epsilon 
and sigma (LJ parameters) as the two atomic properties (see ref 3 for details). The bag-of-atoms 
descriptor was calculated by dividing each MOF unit cell into 6 × 6 × 6 cuboids and calculating 
the sum of the framework atom epsilon and sigma in each cuboid (each cuboid had two variables, 
the sum of epsilons and the sum of sigma), then normalizing by the total number of framework 
atoms to make the descriptor intensive. While the bag-of-atoms descriptor, together with textural 
properties proved the most accurate model, we found that the massively increased complexity of 
the data (438 total MOF descriptors verses 23 for the next most accurate), and, thus, the models 
that would be required to learn that data, was not worth the marginal decrease in error.  
 
Table S6. XGBoost model error when trained on the indicated MOF descriptor set, together with 
adsorbate descriptor set (iii), see above. The selected set is in bold. 

MOF Descriptor Set MAPE [%] MAE [mol/kg] 
Textural 31.7 2.91 
AP-RDFs 31.8 2.97 
Chemical Motifs 32.7 3.15 
Bag-of-atoms 36.5 3.93 
AP-RDFs + Textural 30.7 2.96 
Chemical Motifs + Textural 30.6 2.92 
Bag-of-atoms + Textural 28.5 2.85 

 
After selecting the descriptors to use we proceeded to tune our final model. First we tuned network 
topology on a grid, where between one and eight hidden layers were considered, where each hidden 
layer could have between 10 and 50 nodes (in increments of 10), the only restriction being that 
each layer could not have more nodes than the previous layer (with the exception of the first layer). 
After settling upon the final topology, we tuned other important hyperparameters on a grid. 
Namely, the activation function (we considered sigmoid, and ReLU), the optimizer used in the 
backpropagation algorithm (we considered, stochastic gradient descent, Adam,4 and NAdam4), the 
method used to initialize the network weights (we considered Glorot normal,5 Glorot uniform,5 
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LeCun normal,6 and LeCun uniform6), the learning rate used in the optimizer (we considered 
values of 0.1, 0.05, 0.01, 0.005, 0.0001, and 0.00005), the batch size (we considered values of 10 
to 100 in increments of 10), and the loss function (we considered mean absolute error, mean 
squared error, mean absolute percentage error, and mean squared logarithmic error). The fina 
values for these hyperparemters are presented in Table S7. Note that we used early termination 
with a patience of 20 for every network in this procedure; a maximum of 500 epochs was allowed, 
and no networks hit that maximum. 
 
Table S7. The optimal hyperparameter values for our final MLP found using a grid search. 
Topology is denoted by N1-…-NM, where Ni is the number of nodes in each hidden layer. 
 

Hyperparameter Values 
Topology 50-20-20-20 
Activation sigmoid 
Optimizer Adam4 
Initializer Glorot normal5 
Learning rate 0.0001 
Batch Size 50 
Loss MAE 

 

 
Figure S2. a. Shows the learning curve of our final model, demonstrating that our training set is 
representative of the validation set (and vice-versa) and that the model was not overfit by fitting 
over too many epochs at the learning rate used. b. shows the error variability in 500 replications 
of our final model trained with different random seeds, MAE varies between 0.18 and 0.20 
mol/kg and MAPE varies between 3.0 and 3.35 %. 
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Section S3. Additional Model Prediction Data 
 
Table S8. Model performance metrics of our final model for loading predictions made on 
adsorbates with properties outside of range spanned by the training set (extrapolative predictions). 
 
Adsorbate MAPE [%] MAE [mol//kg] R S 
Helium 20.3 0.16 0.998 0.999 
Hydrogen 19.4 0.55 0.998 0.999 
Propane 34.3 4.42 0.943 0.899 
Butane 70.0 4.54 0.877 0.771 
Isobutane 14.2 2.09 0.933 0.934 
Benzene 9.4 1.37 0.971 0.990 

 

 
Fugacity [mol/kg] 

 
Figure S3. Plots analogous to Fig. 7 in the main text for predictions on the remaining simple 
adsorbates, with adsorbates: a. argon, b. krypton, c. xenon, and d. nitrogen. Fugacities 
corresponding to filled, blue points were included in training, empty points correspond to 
pressures not included in training, orange lines correspond to model predictions. 

a.

b.

c.

d.
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Fugacity [mol/kg] 

 
Figure S4. Plots analogous to Fig. 7 in the main text for extrapolated predictions, with 
adsorbates: a. helium, b. hydrogen, c. propane, d. butane, e. isobutane, f. benzene. Fugacities 
corresponding to filled, blue points were included in training, empty points correspond to 
pressures not included in training, orange lines correspond to model predictions. 

a.

b.

c.

d.

e.

f.
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Table S9. The number of MOFs in the top 100 from GCMC data that were encountered in the 
top 100 predicted using data predicted by machine learning for the six “extrapolated” adsorbates. 
  

 
Adsorbate 

# Correctly Placed 

Loading@100 
bar 
[mol/kg] 

Working 
Capacity  
[mol/kg] 

Helium 99 99 
Hydrogen 98 98 
Propane 99 94 
Butane 98 95 
Isobutane 99 89 
Benzene 99 46 
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