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Adsorption of transition-metal atoms on boron nitride nanotube:
A density-functional study

Xiaojun Wu and X. C. Zenga�

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and Nebraska Center
for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588

�Received 3 April 2006; accepted 5 June 2006; published online 27 July 2006�

Adsorption of transition atoms on a �8,0� zigzag single-walled boron nitride �BN� nanotube has been
investigated using density-functional theory methods. Main focuses have been placed on
configurations corresponding to the located minima of the adsorbates, the corresponding binding
energies, and the modified electronic properties of the BN nanotubes due to the adsorbates. We have
systemically studied a series of metal adsorbates including all 3d transition-metal elements �Sc, Ti,
V, Cr, Mn, Fe, Co, Ni, Cu, and Zn� and two group-VIIIA transition-metal elements �Pd and Pt�. We
found that many transition-metal atoms can be chemically adsorbed on the outer surface of the BN
nanotubes and that the adsorption process is typically exothermic. Upon adsorption, the binding
energies of the Sc, Ti, Ni, Pd, and Pt atoms are relatively high ��1.0 eV�, while those of V, Fe, and
Co atoms are modest, ranging from 0.62 to 0.92 eV. Mn atom forms a weak bond with the BN
nanotube, while Zn atom cannot be chemically adsorbed on the BN nanotube. In most cases, the
adsorption of transition-metal atoms can induce certain impurity states within the band gap of the
pristine BN nanotube, thereby reducing the band gap. Most metal-adsorbed BN nanotubes exhibit
nonzero magnetic moments, contributed largely by the transition-metal atoms. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2218841�

INTRODUCTION

Since the discovery of carbon nanotubes,1 tubular nano-
materials have attracted considerable attention due to their
unique physical, chemical, and mechanical properties as well
as their great potential for applications. A fundamental ex-
ample relevant to the physical and chemical properties of
nanotubes is the interaction between nanotubes and metal
atoms. A better understanding of the metal/nanotube interac-
tion will have potential impacts on applications such as ca-
talysis, sensors, fabrication of core/sheath nanostructures,
and nanoelectronics. Furthermore, a better understanding of
the interaction between magnetic atoms and nanotubes can
be of importance to the field of low-dimensional magnetic
systems. Thus far, most previous experimental and theoreti-
cal studies of metal/nanotube interactions have been mainly
devoted to the carbon nanotube/transition-metal systems.
The metal component can be a single atom, a metal cluster,
or a planar metal surface.2–4 Many previous studies have
provided fundamental insights into potential applications of
metal-adsorbed carbon nanotubes in various fields. The fact
that the electronic properties of carbon nanotubes can be ei-
ther metallic or semiconducting, depending on the tube di-
ameter and helicity,5 also renders metal-adsorbed carbon
nanotubes a versatile tubular nanomaterials. On the other
hand, because of the dependence of the electronic properties
on the helicity and diameter, a separation process must be
incurred to collect carbon nanotubes with uniform electronic

properties. This separation process poses a hindrance to fu-
ture massive application of carbon nanotubes in nanoelec-
tronics.

Boron nitride �BN� nanotubes, another prevailing tubular
nanomaterial which was successfully synthesized shortly af-
ter the discovery of the carbon nanotubes, are known to be
wide-gap semiconductors whose band gaps ��5.5 eV� are
almost independent of the tube diameter, helicity, and the
number of walls. During the growth process, BN nanotubes
tend to select a nonhelical or zigzag orientation. Like carbon
nanotubes, BN nanotubes also possess many unique physical
and mechanical properties such as strong hardness, high ther-
mal stability, and chemical inertness,6–9 which have pro-
moted increasing number of studies of this tubular nanoma-
terial. To date, fewer research work have been reported on
the BN nanotube/metal systems, compared to the amount of
work reported on the carbon nanotube/metal systems. One
known feature about the interaction between a BN nano-
structure and metal is that the graphitelike BN surface is
much more difficult to wet by metals than the carbon graph-
ite surface. Recently, several experimental efforts have been
made to fill the BN nanotubes with 3d transition metals, such
as Fe–Ni Invar alloy, Co, Mo, Ni, and NiSi2.10–14 On the
theoretical side, several studies on the filling the BN nano-
tubes with transition metals have been reported, wherein
half-metallic behavior has been seen in some of these
systems.15,16

In this paper, we report a systematic study of the inter-
action between the BN nanotube and all 3d transition metals
and two group-VIIIA metals using spin-polarized density-
functional theory �DFT�. For all DFT calculations, the indi-a�Electronic mail: xczeng@phase2.unl.edu
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vidual metal atom is placed on the outer surface of a �8,0�
zigzag single-walled BN nanotube. Configurations corre-
sponding to the local minima �including the most stable con-
figuration� of the metal atoms on the BN nanotubes, the cor-
responding binding energies, and the modified electronic
structures of BN nanotubes due to metal adsorption are cal-
culated. We found that the binding energies can vary signifi-
cantly with different metal atoms, but change little at differ-
ent adsorption sites for a given metal. The adsorption of one
metal atom per supercell can induce impurity states within
the band gap of the pristine BN nanotube, thereby causing
the band gap reduction. With different transition metals, the
BN nanotube can exhibit a magnetic moment ranging from 0
�for Ni� to 5.0�B �for Mn�. Our calculations show that some
metal atoms can strongly bind to the BN nanotube. Thus, the
BN nanotube may be covered �or wet� by metal atoms,
which may lead to potential applications in future molecular
electronics.

MODELS AND METHODS

The DFT calculations were carried out using linear com-
bination of atomic orbitals density-functional method imple-
mented in the DMOL3 package.17 All-electron calculations
were performed with the double numerical basis sets plus
polarization functional �DNP� and the generalized-gradient
approximation �GGA� with the Perdew-Burke-Ernzerhof
�PBE� functional.18 The DNP basis sets are comparable to
6-31G** Gaussian basis sets.19 Delley et al. showed that the
DNP basis sets are more accurate than the Gaussian basis
sets of the same size.17 For the 5d transition metals Pd and
Pt, scalar relativistic effect is taken into account when deal-
ing with their core electrons. The real-space global cutoff
radius was set to be 5.5 Å. Spin-unrestricted DFT was used
to obtain all the results presented in this work. Without los-
ing generality, we chose the �8,0� zigzag single-walled BN
nanotube as a prototype model system since the electronic
properties of BN nanotubes are weakly dependent on the
tube diameter and helicity. A tetragonal supercell is used,
whose size is 20�20�8.64 Å3, with the length of c �in the
axial or z direction� being twice of the periodicity of the �8,
0� BN nanotube. The supercell contains 32 B and 32 N atoms
as well as a single metal atom. With the periodic conditions,

FIG. 1. �Color online� The optimized structure of a pristine �8,0� zigzag
single-walled BN nanotube.

FIG. 2. �Color online� Local minima configurations of the 3d transition-
metal atom ��a�–�j�� adsorbed on the outer surface of the �8,0� BN nanotube.
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the nearest distance between two BN nanotubes is no less
than 14.0 Å. The Brillouin zone is sampled by 1�1�3 spe-
cial k point using the Monkhorst-Pack scheme.20 Test calcu-
lation showed that results are not changed upon increasing
the k points.

RESULTS AND DISCUSSION

Ten 3d transition metals �Sc, Ti, V, Cr, Mn, Fe, Co, Ni,
Cu, and Zn� and two group-VIIIA transition metals �Pd and
Pt� have been considered to be the adsorbate on the outer
surface of the �8,0� BN nanotube. For each type of the ad-
sorbate, five different initial adsorption sites were selected to
examine the nanotube/metal interaction. The five sites are �1�
the top site of the boron atom �B�, �2� the top site of the
nitrogen atom �N�, �3� the hollow site of the B3N3 hexagon
ring �H�, �4� the bridge site over an axial BN bond �BA�, and
�5� the bridge site over a zigzag BN bond �BZ�, all shown in
Fig. 1. To ensure that the most stable adsorption configura-
tion can be achieved, the initial distance between the metal
atom and the sidewall surface was adjusted several times
from 1.5 to 3.0 Å. Full structural relaxation was then per-
formed with each initial metal-tube distance.

In Figs. 2�a�–�j�, configurations corresponding to the lo-
cal minima are displayed for each of the ten 3d transition
metals adsorbed on the BN nanotube �BNNT�. The binding
energies for all stable configurations are summarized in
Table I. Here, the binding energies are given by the equation

Eb = ET�BNNT� + ET�A� − ET�BNNT + A� , �1�

where ET�BNNT� denotes the spin-polarized total energy
�per supercell� for the pristine BN nanotube, ET�A� is the
energy of a single atom A, and ET�BNNT+A� is the total
energy of the BN nanotube with the adsorbed A atom �per
supercell�.

Using the Sc case as an example �Fig. 2�a��, for which
three stable configurations at the BA, BZ, and H sites are
obtained, whereas the adsorption at the B and N sites is
unstable. Upon structural relaxation at the B and N sites, the

Sc atom will spontaneously relocate to take one of the three
stable configurations. At the BA site, the B–Sc and N–Sc
bond lengths are 2.31 and 2.15 Å, respectively. At the BZ
site, the two bond lengths are 2.24 and 2.16 Å, close to those
at the BA site. At the H site, the Sc atom locates right above
the center of the B3N3 hexagonal ring at the height of
�1.8 Å. The three B–Sc bonds lengths are 2.30, 2.72, and
2.73 Å, and three N–Sc bonds lengths are 2.27, 2.69, and
2.67 Å, respectively. The results show that the Sc atom tends
to locate closer to the three N atoms than B atoms. The
calculated binding energies range from 1.06 to 1.18 eV for
the three stable configurations. The positive binding-energy
value indicates that the chemical adsorption process is exo-
thermic. Note also that the binding energies as well as the
B–Sc and N–Sc bond lengths change little at the three ad-
sorption sites.

Among other nine transition-metal elements considered,
the Ti, V, Cr, Mn, Fe, Co, and Ni atoms can be chemically
adsorbed on the BA, BZ, and H sites as well, whereas the
adsorption on the B or N site is unstable. The B–M �M
=Ti, V, Cr, Mn, Fe, Co, and Ni� bond lengths range from
2.05 to 2.52 Å while the N–M bond lengths range from
1.85 to 2.40 Å. In contrast, at the H site, six of the seven
metal atoms can no longer locate above the center of the
B3N3 hexagonal ring but either near the B–N bond that is
parallel to the tube axis �for Ti, Cr, and Fe�, or near the B
atom �for Mn and Co� or the N atom �for V�; only the Ni
atom can locate right above the center of the B3N3 hexagonal
ring at the height of 1.6 Å. More different from the Sc case,
Cu atom can only be chemically adsorbed at the BA and BZ
sites, while Zn atom can only be physically adsorbed above
the B site at a height of �3.7 Å. Again, as in the case Sc
adsorption, the calculated binding energies as well as the
B–M and N–M bond lengths change little at different ad-
sorption sites for nearly all the 3d transition metals.

In Fig. 3, we plot the binding energies corresponding to
the most stable configurations Eb versus the number of d
electrons Nd of the ten 3d transition-metal elements. Interest-
ingly, the trend in the variation of Eb vs Nd is mostly similar
to that in the cases of adsorption of the 3d transition-metal
atoms on the carbon nanotubes, while the values of the bind-
ing energies are slightly smaller than those of 3d transition-
metal atoms adsorbed carbon nanotubes.2 Here, there are two
maxima in the Eb vs Nd curve, one at Nd=2 and the other at
Nd=8, and the curve shows a minimum at Nd=5 �Cr�. The
binding energy of Ni �Nd=8� is the highest among the ten 3d
transition-metal elements. As shown in Fig. 3, some atoms
such as Sc, Ti, and Ni can bind strongly with the BN nano-
tube �with the binding energies �1.0 eV�, and some others
such as V, Fe, and Co can still be chemically adsorbed on the
sidewall but with modest binding energies �ranging from
0.62 to 0.92 eV�. The binding between Mn or Cu atom and
the BN nanotube is only marginal with the binding energy
�0.50 eV. Two unusual cases are Zn and Cr. The former
metal atom cannot be chemically adsorbed on the BN nano-
tube, for which the binding mainly stems from the van de
Waals interaction. For Cr, although a stable adsorption con-
figuration on the BN nanotube can be achieved, the calcu-
lated binding energy suggests that the adsorption process is

FIG. 3. The binding energies Eb �at the most stable configuration of metal
atoms� vs the number of d electrons Nd of the first-row transition metals.
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endothermic. In summary, based on the calculated binding
energies, we speculate that those metals that can bind
strongly with the BN nanotube might form a uniform cover-
age on the tube sidewall, while those cannot are more likely
to form clusters on the sidewall as the number of the metal
atoms grows.

In addition to the binding energies and local-minimum
configurations, we have also examined possible modification

of the electronic structures of the BN nanotube by the chemi-
cal adsorption of 3d transition-metal atoms. Based on the
spin unrestricted calculation, the band structures of the pris-
tine �8,0� BN nanotube as well as those of the nine BNNT/
metal systems �except BNNT/Zn� with the metal atom at the
BA, BZ, and H sites are calculated. Both the plus and minus
spins �labeled with “�” and “�” in Fig. 4� were considered.
For the pristine BN nanotube, the band structures for the plus

TABLE I. Calculated binding energies �Eb� of a single metal atom �per supercell� adsorbed on the �8,0� BN
nanotube at three stable binding sites, the corresponding boron-metal, nitrogen-metal bond distances, and
boron-metal-nitrogen angle, the net magnetic moment of the metal atom/total system, and the charge transferred
�C� from the metal atom to BN nanotube. �M denotes the metal atom and B and N atoms are labeled in Fig. 1.�

Atom Site BondB–M �Å� BondN–M �Å� �B–M–N �°� Eb �eV� �M/�total ��B� C �e�

Sc BA 2.31 2.15 40.3 1.08 0.88/1.0 0.35
BZ 2.24 2.16 43.9 1.06 0.90/1.0 0.35
H 2.30,a,2.72,b2.73c 2.27,d2.69,e2.67f 77.4g 1.18 0.94/1.0 0.32

Ti BA 2.50 2.35 42.6 1.18 3.39/4.0 0.12
BZ 2.22 2.15 35.2 1.19 1.96/2.0 0.28
H 2.25,2.44,2.98 2.34,2.34,2.93 76.0 1.19 1.87/2.0 0.30

V BA 2.52 2.19 35.7 0.85 4.39/5.0 0.08
BZ 2.51 2.19 36.5 0.92 4.34/5.0 0.08
H 2.90,2.74,2.74 2.22,2.98,2.98 66.5 0.79 4.29/5.0 0.05

Cr BA 2.19 2.04 42.1 −0.22 4.08/4.0 0.32
BZ 2.18 2.03 44.5 −0.23 4.05/4.0 0.32
H 2.20,2.95,2.08 2.20,2.95,2.07 79.8 −1.17 2.12/2.0 0.39

Mn BA 2.19 2.31 38.8 0.47 4.99/5.0 0.20
BZ 2.19 2.34 39.7 0.46 4.99/5.0 0.19
H 2.21,2.98,2.98 2.74,2.72,2.72 69.4 0.42 4.98/5.0 0.21

Fe BA 2.17 2.37 37.8 0.62 3.87/4.0 0.10
BZ 2.23 2.29 39.2 0.62 3.86/4.0 0.10
H 2.12,2.01,2.88 2.15,1.97,2.87 82.1 −0.27 2.20/2.0 0.22

Co BA 2.15 2.30 38.7 0.64 2.90/3.0 0.08
BZ 2.16 2.40 38.3 0.62 2.81/3.0 0.09
H 2.14,3.19,3.02 3.03,2.78,2.57 64.7 0.65 2.79/3.0 0.10

Ni BA 2.05 1.85 44.9 1.30 0.00/0.0 0.11
BZ 2.10 1.85 45.2 1.27 0.00/0.0 0.11
H 2.21,2.40,2.41 1.98,2.50,2.51 83.8 0.81 0.00/0.0 0.09

Cu BA 2.33 2.27 36.8 0.46 0.78/1.0 0.06
BZ 2.27 2.36 37.7 0.44 0.76/1.0 0.10
H → BA

Zn �3.7 �4.0 0.16 0.00/0.0

Pd BA 2.21 2.14 39.9 1.33 0.00/0.0 0.22
BZ 2.28 2.13 40.4 1.32 0.00/0.0 0.22
H → BA

Pt BA 2.19 1.98 42.4 1.80 0.00/0.0 0.12
BZ 2.43 1.96 38.7 1.71 0.00/0.0 0.11
H → BA

aB1–M.
bB3–M.
cB5–M.
dN2–M.
eN4–M.
fN6–M.
g
�B3–M –N6.
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and minus spins are the same, showing a direct band gap of
3.65 eV that is nearly the same as previous results.5,6 As
shown in Fig. 4, it can be seen that in all nine systems the
chemical adsorption of the 3d transition-metal atoms induces
certain impurity states within the band gap of the pristine BN
nanotube, thereby causing the band gap reduction. In most
cases, the band gap is no greater than 1.0 eV. The results of
projected density of states �PDOS� show that these impurity
states are mainly due to the d and s electrons of the transition
metals. To some extent, the p electrons also contribute to the
density of states near the Fermi level, but the contribution is
much less than that from the d and s electrons. The BN
nanotube contributes little to the density of states near the
Fermi level. It is worthy to note that when Fe atoms are
adsorbed at the BA site, the calculated band structures sug-
gest that this particular BNNT/Fe configuration is possibly a
half-metal. A band crossing at the Fermi level occurs with
little dispersion in the plus-spin band structures, due mainly
to the s electrons of the Fe atoms. In the minus-spin band

structures, however, there is a band gap of �1.0 eV. Again,
the band structures of BNNT/M �M =Sc, Cr, Co, and Ni�
change little with different adsorption sites.

The electron-charge analysis using the Hirshfeld method
is summarized in Table I. Note that the Hirshfeld charge
analysis is based on the deformation electron density, which
seems less sensitive to the selected basis sets than the Mul-
liken charge analysis, although the Hirshfeld charge analysis
generally underestimates the atomic charges.21 With the 3d
transition-metal atoms adsorbed on the sidewall of BN nano-
tube, the Hirshfeld analysis indicates that certain amount of
charge is transferred from the metal atoms to the BN nano-
tubes. As a result, a net magnetic moment may emerge, rang-
ing from 5.0�B �for Mn� to 0 �for Ni�. The net spin mainly
locates on the metal atoms. Understandably, because the
ground state of the pristine BN nanotube is nonmagnetic, the
net spin should origin from the magnetism of the adsorbed
metal atoms. Note also that in the case of transition-metal
atoms adsorbed on the graphite or carbon nanotubes, previ-

FIG. 4. The band structures of metal-adsorbed BN nanotube. The plus and minus spin electronic structures are distinguished with “�” and “�.” The Fermi
level is plotted with the dotted line. The � and X represents two highly symmetric points in the Brillouin zone of the supercell, that is, �0, 0, 0� and �0, 0, 0.5�,
respectively.
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ous studies have shown distinct deduction of the local mag-
netic moment on the transition-metal atoms due to the pro-
motion of the 4s electrons into 3d orbitals.2,3,22 However, in
the case of transition-metal atoms adsorbed on the BN nano-
tubes, the deduction of the magnetic moment is not as much.
Consequently, the local magnetic moments of many
transition-metal atoms are close to those of freestanding
transition-metal atoms. Moreover, the net spin depends only
weakly on the location of the adsorption site for many tran-
sition metals, a unique feature that could be exploited for
making molecular magnets with the metal-covered BN nano-
tubes. Three exceptions are Ti, Cr, and Fe, for which the
magnetic moment can vary with the location of the adsorp-
tion site. One possible reason for the exceptions is that the
obtained adsorption configuration is only a local minimum
with different magnetic moments. Interestingly, this variation
of the magnetic moment seems also correlate with the charge
transfer from the metal atoms to the BN nanotube �see the
last two columns of Table I�.

Lastly, the interaction between two group-VIIIA
transition-metal element, Pd and Pt, and the BN nanotube is
studied because these two metals are popular catalysts.
Local-minimum configurations of the Pt and Pd atom on the
BN nanotube are shown in Figs. 5�a� and 5�b�. Both metal

atoms can be chemically adsorbed at the BA and BZ sites,
but the adsorption at the H, B, and N sites is unstable. The
B–M and N–M �M =Pd and Pt� bond lengths range from
1.96 to 2.43 Å, nearly independent of the adsorption site.
The calculated binding energies are 1.33 and 1.23 eV for Pd
at the BA and BZ sites, and 1.80 and 1.71 eV for Pt at the
BA and BZ sites, respectively. Like in the case of first-row
transition-metal adsorption, the adsorption of Pd or Pt atoms
can induce six impurity states within the band gap of the BN
tube �Fig. 6�. One of the six impurity states is unoccupied,
while the other five are occupied. As such, the band gap of
the BNNT/M systems �M =Pd and Pt� is about 2.10 eV. The
PDOS analysis indicates that the unoccupied state origins
mainly from the s electrons of the metal atoms and the oc-
cupied states mainly origin from the d electrons of the metal
atoms. Moreover, both the BNNT/Pd and BNNT/Pt systems
exhibit zero magnetism moment.

CONCLUSION

Using the density-functional theory, the adsorption of
transition-metal atoms on the �8,0� zigzag single-walled BN
nanotube has been systemically studied. Ten 3d transition
metals �from Sc to Zn� and two group-VIIIA elements, Pd
and Pt, were considered. We found that most transition met-
als can be chemically adsorbed on the sidewall of BN nano-
tube and the adsorption process is typically exothermic. Sev-
eral metal atoms such as Sc, Ti, Ni, Pd, and Pt can be
chemically adsorbed with relatively high binding energy
�greater than 1.0 eV�. The Mn atom can only form a weak
chemical bond with the BN nanotube while Zn atoms cannot
be chemically adsorbed on the BN nanotube at all. In most
cases, the binding energies are less sensitive to the adsorp-
tion sites. On the electronic structures, the adsorption of
metal atoms generally induces some impurity states within
the band gap of the pristine BN tube. These impurity states
are mainly due to the s and d electrons of the metal atoms.
The transition-metal adsorbed BN nanotubes are all semicon-
ductors with reduced band gaps except the Fe-adsorbed BN
nanotube �on the BA site� which may result in a half-metal.

FIG. 5. �Color online� Local minima configurations of a �a� Pd and �b� Pt
atom �in the supercell� adsorbed on the �8,0� BN nanotube.

FIG. 6. The band structures of the Pd-
and Pt-adsorbed �8,0� BN nanotubes.
The Fermi level is plotted with the dot-
ted line. The plus and minus spin band
structures are distinguished with � and
�.
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Finally, the adsorption of the transition-metal atoms can give
rise to a variety of net magnetic moments, ranging from
5.0�B to 0.
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