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Abstract: In order to remove toxic graphene oxide (GO) from aqueous solution, attapulgite (ATP)
was used as adsorbent to recycle it by adsorption. In this paper, the effects of different pH, adsorbent
mass, GO concentration, time and temperature on the adsorption of GO by attapulgite were studied,
and the adsorption performance and mechanism were further explored by XRD, AFM, XPS, FTIR,
TEM and SEM tests. The results show that when T = 303 K, pH = 3, and the GO concentration is
100 mg/L in 50 mL of aqueous solution, the removal rate of GO by 40 mg of attapulgite reaches
92.83%, and the partition coefficient Kd reaches 16.31. The adsorption kinetics results showed that the
adsorption equilibrium was reached at 2160 min, and the adsorption process could be described by the
pseudo-second-order adsorption equation, indicating that the adsorption process was accompanied
by chemical adsorption and physical adsorption. The isotherm and thermodynamic parameters
show that the adsorption of GO by attapulgite is more consistent with the Langmuir isotherm
model, and the reaction is a spontaneous endothermic process. The analysis shows that attapulgite
is a good material for removing GO, which can provide a reference for the removal of GO in an
aqueous environment.

Keywords: graphene oxide; attapulgite; adsorption isotherm; adsorption thermodynamics;
adsorption kinetics

1. Introduction

Graphene oxide (GO) is an oxygen-containing graphene derivative. The oxygen-
containing groups on the surface of GO easily form composite materials with ions, polymers
and other materials, so it has been widely used in the fields of physics, chemistry, biology
and materials science [1]. The presence of polar oxygen-containing functional groups on
the surface of GO makes it hydrophilic, while the presence of various functional groups
such as carboxyl, hydroxyl, and epoxy groups makes its affinity for pollutants in water
continuously strengthened, thus it can be used for wastewater treatment [2]. For the
wastewater treatment by GO, many scholars have studied it. For example, GO can be used
to remove As(III) and cephalexin in aqueous solution. In addition, it can also adsorb metal
ions, such as Cr(VI), U(VI), Pb(II), Co(II), etc. [3–8].

GO has a strong capacity for wastewater treatment, and often coexists with one or
more toxic substances in the aqueous environment, which may lead to more complex forms
and toxic effects of composite pollutants, and increase the risk to ecosystems [9]. Adsorbed
GO with AS(III) is easily oxidized, which impairs important detoxification pathways in
algal cells, thereby exacerbating the toxicity of As(III) to algae [10]. In addition, GO is also
toxic to living organisms. Ultra-trace amounts of GO can cause the disappearance of more
than 90% of dopamine neurons in zebrafish larvae and the increase of Lewy bodies, which
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can further lead to Parkinson’s disease-like symptoms and metabolic disorders in zebrafish
larvae [11]. The presence of GO increases the accumulation of reactive oxygen species in
Drosophila, damages the gut, affects its absorption of nutrients, and ultimately leads to
weight loss, slower crawling, stunted growth, and shortened lifespan in Drosophila [12].
The six generations of nematodes were studied in the GO environment, and it was found
that due to GO, the development of nematode neurons was defective, the function was
easily damaged, and the apoptosis and antioxidant responses were increased [13]. For mam-
mals, GO enters various tissues and organs such as the blood, the gastrointestinal tract,
heart, kidney, lung, etc., causing damage to these tissues and organs, resulting in various in-
flammations, acute allergies and even death [14]. Due to the unique size and morphology of
GO, it easily passes through the cell membrane, leading to the destruction of biomolecules
such as nucleic acids, lipids and proteins, which in turn leads to DNA damage and induces
genotoxicity [15]. Therefore, in view of the popularity of GO and the possibility of leakage,
the research on GO adsorption is urgently needed.

By choosing suitable adsorbents, the adsorption process can be a promising technique
for GO removal. For example, using goethite or kaolinite as adsorbents can effectively
remove graphene oxide from aqueous solutions [16]. As a good adsorbent, clay minerals
are widely used to remove heavy metals, antibiotics, dyes, etc. from the aqueous environ-
ment [17–19]. The adsorption properties of soil benefit from the large surface area, which
improves adsorption by promoting ion exchange [20]. Attapulgite is a natural magnesium-
aluminosilicate clay that is widely found in all parts of the world. Its main chemical
composition is SiO2 [21]. Attapulgite not only has good surface area and high surface
activity, but studies have shown that GO and attapulgite can be modified and reconstituted
by ultrasonic and magnetic stirring methods, and have good adsorption effects on aniline,
emulsified oil, propranolol, and Pb(II), U(VI), and plasma [22–26]. However, there are few
studies on attapulgite as an adsorbent for the removal of GO in aqueous environments.

In this paper, attapulgite was used as an adsorbent to remove GO in aqueous solution,
and the adsorption effect of different pH, temperature, GO concentration, adsorbent mass
and different time was studied. At the same time, X-ray diffractometer (XRD), Fourier
transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Atomic
Force Microscopy (AFM), High Resolution Transmission Electron Microscopy (TEM) and
X-ray photoelectron spectroscopy (XPS) were used to analyze the microstructure and
characterization on the adsorbed precipitates to study and discuss the possible adsorption
mechanism. The adsorption process is relatively simple, which is expected to promote the
application of attapulgite in GO removal.

2. Materials and Methods
2.1. Materials

The adsorbate GO used in this experiment was derived from graphene oxide aqueous
solution (2 mg/mL), purchased from Suzhou Suzhou Carbon Technology Co., Ltd., Suzhou,
China, which is shown in Table 1. Among them, oxidized graphene has a specific surface
area of 420 cm2/g, and the diameter of the sheet is 5 µm. Attapulgite from China, Jiangsu
Province, (Changzhou Dingbang Mine Co., Ltd., Changzhou, China) The specific surface
area of the uneven bar is 400 m2/g, the hole volume is 0.071 cm3/g, the average pore size is
0.51 nm, the glue quality is 55 mL/15 g, and the expandable is 4 mL/g. Its main chemical
composition is shown in Table 2.

Table 1. Main element composition of graphene oxide (mass fraction).

Element C O H S

Content/% 41.70 51.49 2.41 2.00



Int. J. Environ. Res. Public Health 2022, 19, 2793 3 of 16

Table 2. Main chemical composition of attapulgite (mass fraction).

Chemical
Composition SiO2 MgO CaO Al2O3

Content/% 58.05 11.03 1.18 9.55

2.2. Characterization

The crystal structure of attapulgite was investigated by X-ray diffraction with CuKα

radiation by XRD(Empyrean, Malvern, UK). The functional groups were identified by
FTIR(IR Prestigae-21, Shimadzu , TKY, Japan) with a scanning range of 400~4000 cm−1.
SEM(JSM-6360 LV, JEOL, YKY, Japan), AFM(Dimension Icon, BRUKER, Billerica, MA, USA),
TEM(JEM-2100F, JEOL, TKY, Japan) and XPS(Thermo ESCALAB 250XI, Thermo Fisher
Scientific, Waltham, MA, USA) were used to measure the morphology and structure before
and after adsorption.

2.3. Adsorption Test

50 mL of graphene oxide aqueous solution prepared by an appropriate amount of GO
and deionized water was poured into a glass bottle. A negligible volume of NaOH was
added to adjust the pH of the aqueous solution, and then a pH meter (FE28, METTLER
TOLEDO, Columbus, OH, USA) was used to measure and adjust the pH value to between
3 and 10.

On the basis of referring to previous studies, the amount of adsorbent (10 mg, 20 mg,
30 mg, 40 mg, 50 mg, 60 mg), the initial concentration of GO (40 mg/L, 60 mg/L, 80 mg/L,
100 mg/L, 120 mg/L), and the adsorption effect was studied under pH value (pH3-pH10),
temperature (293 K, 303 K, 313 K) and time (0–2880 min) [27]. According to the experi-
mental design, the corresponding mass of attapulgite was added to the graphene oxide
aqueous solution.

The glass bottle was then put into a constant temperature shaker and vibrated for 3 h
at 240 rpm. After vibration, according to the previous test experience, the glass bottle was
put into a thermostat at the set temperature for 24 h curing [28].

After curing, 1 mL of the middle layer supernatant was taken with a pipette gun and
diluted to 25 mL with deionized water. After that, the residual GO concentration was
measured with an ultraviolet-visible spectrophotometer (UV75N, Shanghai Yoke, Shanghai,
China) at a wavelength of 210 nm. According to the initial GO concentration C0 (mg/L) and
the equilibrium concentration Ce (mg/L), the adsorbed amount Qe (mg/g), the adsorption
rate R, and the partition coefficient Kd (g/L) were calculated. The calculation formulas are
as follows [29]:

Qe =
(C0 − Ce)× V

m
(1)

R =
C0 − Ce

C0
× 100% (2)

Kd =
Qe

Ce
(3)

where m (mg) represents the mass of attapulgite, and V (mL) represents the volume of the
solution. To ensure the accuracy and repeatability of the collected data, all experiments
were repeated three times, and the average value of the three experiments was used for
subsequent data analysis; error bars were added to the graph to visually understand the
degree of dispersion of the experimental data [30].

In order to further study the adsorption behavior, a pseudo-first-order kinetic model
and a pseudo-second-order kinetic model are used to fit the adsorption kinetic data. The ex-
pression formulas are as follows [31]:

Pseudo-first-order kinetic model:

Qt = Qe[1 − exp(−k1t)] (4)
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Pseudo-second-order kinetic model:

Qt =
Qe

2k2t
1 + Qek2t

(5)

where, Qe represents the adsorption amount at equilibrium, mg/g; Qt represents the
adsorption amount at time t, mg/g; k1 and k2 are constants, g/(mg·min); t represents the
adsorption time, min.

In order to further understand the adsorption mode of attapulgite to GO, the ad-
sorption data were fitted by the Langmuir adsorption isotherm model and the Freundlich
adsorption isotherm model, as shown below [32]:

Langmuir adsorption isotherm model:

Qe =
KLQmaxCe

1 + KLCe
(6)

Freundlich adsorption isotherm model:

Qe = KFCe
1
n (7)

where, Qe represents the equilibrium adsorption capacity, mg/g; Ce represents the equi-
librium concentration, mg/L; Qmax represents the maximum adsorption capacity, mg/g;
and KL , KF and n are constants.

According to the adsorption isotherms at different temperatures, thermodynamic
parameters such as standard free energy (∆G0), enthalpy change (∆H0) and entropy change
(∆S0) can be calculated by formulas (8)–(10), which are helpful to understand the relation-
ship between the change of temperature and the adsorption process [33].

InKd =
∆S0

R
− ∆H0

RT
(8)

∆G0 = −RTInKd (9)

Kd =
Qe

Ce
(10)

3. Results and Discussion
3.1. Morphology Analysis
3.1.1. SEM and TEM Analysis

The morphology of the samples before and after adsorption can be observed by SEM
and TEM [34], and the results are shown in Figure 1. It can be observed from Figure 1a
that attapulgite exhibits agglomeration, which is mainly due to the van der Waals force
and hydrogen bonding between attapulgite rod-like crystals [35]. From Figure 1b, it can be
seen that attapulgite presents a needle-rod shape, and each rod crystal is closely arranged.
From Figure 1c,d, it can be observed that the surface of GO is relatively smooth, showing a
gossamer shape and obvious lamellae folding, which is consistent with the research results
of Hoor et al. [36]. Figure 1e,f are the images of attapulgite after adsorption of GO. It can be
seen from the figures that the needle-shaped attapulgite surface is attached with tulle-like
GO, which indicates that GO is adsorbed on the surface of attapulgite. In addition to the
study of the microscopic morphology, it is also necessary to further explore the internal
structural changes of the samples.
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3.1.2. XRD and FTIR Analysis

In order to further reveal the crystal structure of the sample, XRD can be used to
study the substances before and after adsorption n [37], and the results are shown in
Figure 2a. It can be clearly observed that GO has a strong diffraction peak near 2θ = 10◦ [38].
For ATP/GO, the characteristic peak of GO is significantly weakened. By referring to the
ICSD standard on the PDF card, 26.62◦ is marked as SiO2 (046), and 30.94◦ and 41.12◦

are marked as CaMg(CO3)2 (036). Comparing ATP with ATP/GO, it was found that
the intensity of the strong diffraction peak CaMg(CO3)2 (036) became weaker, and the
change of the diffraction peak indicated that GO was not simply deposited on the surface
of attapulgite.



Int. J. Environ. Res. Public Health 2022, 19, 2793 6 of 16

Int. J. Environ. Res. Public Health 2022, 19, 2793 6 of 17 
 

 

3.1.2. XRD and FTIR Analysis 
In order to further reveal the crystal structure of the sample, XRD can be used to 

study the substances before and after adsorption n [37], and the results are shown in Fig-
ure 2a. It can be clearly observed that GO has a strong diffraction peak near 2𝜃 = 10° [38]. 
For ATP/GO, the characteristic peak of GO is significantly weakened. By referring to the 
ICSD standard on the PDF card, 26.62° is marked as SiO2 (046), and 30.94° and 41.12° are 
marked as CaMg(CO3)2 (036). Comparing ATP with ATP/GO, it was found that the inten-
sity of the strong diffraction peak CaMg(CO3)2 (036) became weaker, and the change of 
the diffraction peak indicated that GO was not simply deposited on the surface of atta-
pulgite.  

In addition to XRD, the changes of functional groups before and after the adsorption 
of GO were analyzed by FTIR [39]. Figure 2b shows the FTIR spectra of GO, ATP and 
ATP/GO before and after adsorption. Observing GO, the corresponding broad peaks at 
3635 cm−1 and 3414 cm−1 indicate the stretching vibration of O-H and adsorbed H2O, 1732 
cm−1 is the stretching vibration of C=O, 1620 cm−1 is the stretching vibration of C=C, 1047 
cm−1 is the stretching vibration absorption peak of C-O [40–43]. The functional groups of 
attapulgite are different from those of GO. There are -OH stretching vibration peaks at 
3635 cm−1 and 3414 cm−1, the bending vibration peaks of adsorbed water in the attapulgite 
structure at 1664 cm−1 and 1460 cm−1, and Si-O bonds at 881 cm−1 and 728 cm−1 [44,45]. 
Comparing the spectra of GO, ATP and ATP/GO, the image of ATP/GO is similar to that 
of ATP, and the characteristic peak of oxygen-containing peak of GO gradually weakens 
or disappears. For example, the peak at 1732 cm−1 disappears, and the peak at 1620 cm−1 
moves to the direction of long wave, indicating that the functional groups of attapulgite 
are involved in the adsorption of GO [46]. 

  
Figure 2. XRD (a) and FTIR (b) image of GO, ATP, ATP/GO. 

3.1.3. XPS and AFM Analysis 
In order to further explore the adsorption mechanism of GO by attapulgite, XPS can 

be used to analyze the chemical structure of the material surface to understand the bind-
ing energy involved in the interaction between attapulgite and GO [47]. The XPS results 
of GO and ATP/GO are shown in Figure 3a. It can be observed that there are O1s and C1s 
in the XPS spectra of GO and ATP/GO. Compared with GO, energy peaks such as Mg1s, 
Ca2p and Si2p also appears in the energy spectrum of ATP/GO, and the C1s energy peak 
shows a significant decrease. 

Therefore, XPS analysis of GO and ATP/GO can focus on the changes of C1s peaks 
before and after adsorption. The deconvolution of GO on C1s spectra is mainly divided 
into three components, approximately 284.8 eV, 286.8 eV and 289.7 eV, corresponding to 
C-C, C-O and O-C=O, respectively [48]. However, after adsorption, the intensity and po-
sition of C1s peak changes, as shown in Figure 3b,c. The peak surface area ratio of C-O 

20 40 60 80

In
te

ns
ity

2θ/(°)

（036）

（036）
（046）

（036）
（046）

（036）

GO

ATP

ATP/GO

（a）

4000 3500 3000 2500 2000 1500 1000 500
Wavenumber(cm−1)

Tr
an

sm
itt

an
ce

(%
)

3414

3635
1732

1664
1620

1442

1047

881728

GO

ATP

ATP/GO

（b）

Figure 2. XRD (a) and FTIR (b) image of GO, ATP, ATP/GO.

In addition to XRD, the changes of functional groups before and after the adsorption
of GO were analyzed by FTIR [39]. Figure 2b shows the FTIR spectra of GO, ATP and
ATP/GO before and after adsorption. Observing GO, the corresponding broad peaks at
3635 cm−1 and 3414 cm−1 indicate the stretching vibration of O-H and adsorbed H2O,
1732 cm−1 is the stretching vibration of C=O, 1620 cm−1 is the stretching vibration of C=C,
1047 cm−1 is the stretching vibration absorption peak of C-O [40–43]. The functional groups
of attapulgite are different from those of GO. There are -OH stretching vibration peaks at
3635 cm−1 and 3414 cm−1, the bending vibration peaks of adsorbed water in the attapulgite
structure at 1664 cm−1 and 1460 cm−1, and Si-O bonds at 881 cm−1 and 728 cm−1 [44,45].
Comparing the spectra of GO, ATP and ATP/GO, the image of ATP/GO is similar to that
of ATP, and the characteristic peak of oxygen-containing peak of GO gradually weakens
or disappears. For example, the peak at 1732 cm−1 disappears, and the peak at 1620 cm−1

moves to the direction of long wave, indicating that the functional groups of attapulgite
are involved in the adsorption of GO [46].

3.1.3. XPS and AFM Analysis

In order to further explore the adsorption mechanism of GO by attapulgite, XPS can
be used to analyze the chemical structure of the material surface to understand the binding
energy involved in the interaction between attapulgite and GO [47]. The XPS results of GO
and ATP/GO are shown in Figure 3a. It can be observed that there are O1s and C1s in the
XPS spectra of GO and ATP/GO. Compared with GO, energy peaks such as Mg1s, Ca2p
and Si2p also appears in the energy spectrum of ATP/GO, and the C1s energy peak shows
a significant decrease.

Therefore, XPS analysis of GO and ATP/GO can focus on the changes of C1s peaks
before and after adsorption. The deconvolution of GO on C1s spectra is mainly divided into
three components, approximately 284.8 eV, 286.8 eV and 289.7 eV, corresponding to C-C,
C-O and O-C=O, respectively [48]. However, after adsorption, the intensity and position of
C1s peak changes, as shown in Figure 3b,c. The peak surface area ratio of C-O decreases
from 40.7% to 23.3%, that of O-C=O increases from 15.7% to 33.1%, and the peak position
of O-C=O changes from 289.7 eV to 287.9 eV, which shows that the interaction between
attapulgite and GO is completed by C-O and O-C=O.

AFM has atomic-level resolution, which can clearly characterize the changes in mor-
phology and size of samples before and after adsorption [49]. The AFM test results of
GO and ATP/GO are shown in Figure 4b,d. Further analysis of the lamellar thickness are
shown in Figure 4a,c, and the maximum thicknesses of GO and ATP/GO are 2.78 nm and
4.05 nm, respectively. The thickness of ATP/GO is significantly higher than that of GO,
indicating that GO is adsorbed on the surface of attapulgite, which is consistent with the
TEM results. Based on the above analysis, it shows that attapulgite can effectively remove
GO through the aggregation of GO on the surface of attapulgite.
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Figure 4. AFM image and the corresponding height profiles of GO (a,b)and ATP/GO (c,d).
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3.2. Effect of PH

The change of pH will affect the charge on the surface of the adsorbent, which in turn
affects the adsorption effect [50]. In order to study the adsorption ability of attapulgite to
GO at different pH, quantitative analysis of GO adsorption amount Qe, adsorption rate R,
and partition coefficient Kd was carried out when T = 303 K, the adsorbent mass was 40 mg,
and GO concentration was 80 mg/L in 50 mL of the aqueous solution. The calculation
results are shown in Figure 5. It can be seen that 92% of GO was adsorbed by attapulgite
at pH = 3. The reasons for the better adsorption effect can be mainly divided into the
following aspects: on the one hand, GO has a strong self-aggregation force under acidic
conditions, and large-scale visible aggregation usually occurs [51]; on the other hand, MgO
and CaO in attapulgite will partially dissolve at lower pH to form Mg2+ and Ca2+ [52].
The existence of Mg2+ and Ca2+ cations contributes to the compression of the double
electric layer and can also penetrate the double electric layer, so as to be directly adsorbed
by oxygen-containing functional groups. At the same time, the cations can also interact with
large π bonds which ultimately promotes the coagulation of GO [53]. When 3 < pH < 7 and
7 < pH < 10, the adsorption rate decreases continuously, mainly due to the increase of pH,
which promotes the deprotonation of the carboxyl group on the GO group, increases the
hydrophilicity, and inhibits the binding and accumulation between cations and GO [54].
In addition, due to the large amount of negative charges on the surface of attapulgite and
GO, the electrostatic interaction between them is weakened, resulting in a low adsorption
capacity of attapulgite to GO [55]. Therefore, lower pH is helpful for the adsorption of GO
by attapulgite, and the best adsorption effect occurs when pH = 3.
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Figure 5. Removal of GO on ATP as a function of pH value.

3.3. Effect of Adsorbent Mass

The adsorbent mass also affects the adsorption. Under the conditions of T = 303 K,
pH = 3, GO concentration was 80 mg/L, and attapulgite mass was 10 mg, 20 mg, 30 mg,
40 mg, 50 mg and 60 mg, the effects on adsorption capacity, removal rate and partition
coefficient were investigated, and the results are shown in Figure 6. With the increase of
the attapulgite mass, the removal rate generally shows an upward trend, which is because
the number of effective adsorption sites of the adsorbent increases with the increase of
the adsorbent mass, thereby improving the adsorption rate and the partition coefficient.
However, with the increase of the attapulgite mass, the number of particles per unit
volume increases, which is prone to collision and agglomeration, resulting in a decrease in
the number of effective active adsorption sites of adsorbent per unit mass, a decrease in
the specific surface area of the adsorbent, finally leading to a decrease in the adsorption
effect [56]. It can be observed from the figure that attapulgite has the best adsorption effect
and relatively low cost when the mass is controlled at 40 mg. Therefore, the attapulgite
mass was selected as 40 mg in subsequent studies.
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3.4. Effect of GO Concentration

In order to explore the effect of GO concentration on the adsorption, under the condi-
tions of T = 303 K, pH = 3, and an attapulgite mass of 40 mg, adsorption tests were carried
out on GO solutions with concentration of 40 mg/L, 60 mg/L, 80 mg/L, 100 mg/L and
120 mg/L, respectively, and the test results are shown in Figure 7. It can be seen that with
the increase of GO concentration, the adsorption effect increases first and then decreases,
which may be because when the GO concentration is low, there are a large number of
active adsorption sites on the surface of attapulgite that do not fully function, resulting in a
relatively low adsorption rate. When the GO concentration is 100 mg/L, the adsorption
rate R and the partition coefficient Kd reaches the maximum, which is 92.83% and 16.31,
respectively. While the GO concentration continues to increase, although the adsorption
amount increases, the adsorption rate decreases, which may be because the increase in GO
concentration inhibits the electrostatic interaction between attapulgite and GO.
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3.5. Adsorption Kinetics

The adsorption time also affects the adsorption. The adsorption capacity and adsorp-
tion time were studied under the conditions when T = 303 K, pH = 3, GO concentration
was 100 mg/L, and the attapulgite mass was 40 mg. The results are shown in Figure 8.
It can be seen that the adsorption capacity of attapulgite to GO increases with time and
reaches the adsorption equilibrium at 2160 min. In the initial stage of adsorption, the ad-
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sorption amount of GO shows a sharp upward trend with the increase of time, and when
the time is 480 min, the adsorption amount increases gradually, which is mainly due to the
adsorption amount of GO by attapulgite gradually reaching saturation with the passage of
adsorption time.
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Figure 8. Graph of adsorption capacity over time and Fitting curve of Pseudo-first-order model and
Pseudo-second-order model.

The results are shown in Figure 8 and Table 3. The equilibrium adsorption capacity
fitted by the pseudo-first-order kinetic model is 113.664 mg/g, R2 is 0.980, and that fitted
by the pseudo-second-order kinetic model is 130.634 mg/g, R2 is 0.983. The fitting results
of the pseudo-second-order kinetic model are closer to the experimental data, and the
correlation coefficient R2 is relatively higher than that of the pseudo-first-order kinetic
model. Therefore, the pseudo-second-order kinetic model is more in line with the kinetic
process of GO adsorption by attapulgite, and the adsorption of GO by attapulgite is
accompanied by physical adsorption at the same time as the chemical adsorption [57].

Table 3. Pseudo-first- and second-order dynamic model fitting parameters.

pH Temperature(K)
Pseudo-First-Order Model Pseudo-Second-Order Model

Qe
(mg/g)

k1
g/(mg·min) R2 Qe

(mg/g)
k2

g/(mg·min) R2

3 303 k 113.664 0.004 0.980 130.634 3.758 × 10−5 0.983

3.6. Adsorption Isotherm and Thermodynamic Analysis

The study of adsorption isotherms helps to understand the relationship between
adsorbate and adsorbent [58]. In order to further explore the relationship between them,
at three different temperatures of 293 K, 303 K and 313 K, adsorption tests were con-
ducted on GO solutions with concentrations of 40 mg/L, 60 mg/L, 80 mg/L, 100 mg/L,
and 120 mg/L, when pH = 3, the attapulgite mass was 40 mg. The test results are shown in
Figure 9. It can be seen that with the increase of GO concentration, the adsorption capacity
of GO by attapulgite is also increasing and increases with the increase of temperature,
indicating that the increase of temperature helps to improve the adsorption effect.
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Figure 9. Isotherms of GO adsorption on attapulgite.

In order to further explore the adsorption morphology of GO on the surface of at-
tapulgite, Langmuir and Freundlich adsorption isotherm equations were used to fit the
adsorption process of GO on attapulgite. The fitting results are shown in Figure 10 and
Table 4. It can be seen from Table 4 that the correlation coefficient R2 of the fitting results of
the Langmuir equation is higher than that of Freundlich equation, indicating that Langmuir
equation can more accurately describe the adsorption process of GO by attapulgite, and the
adsorption process is based on a uniform monolayer adsorption [59]. In the fitting results of
the Langmuir equation, the maximum adsorption capacity Qmax increases with the increase
in temperature, indicating that the increase of temperature promotes the progress of the
adsorption reaction.
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Table 4. Adsorption isotherm equation fitting parameters.

C0
(mg/L)

pH Temperature(K)
Langmuir Freundlich

Qmax
(mg/g) KL (L/mg) R2 KF (mg/g) n R2

100 3
313 311.944 0.063 0.993 23.999 1.138 0.987
303 302.852 0.042 0.984 18.415 1.156 0.978
293 258.396 0.037 0.996 14.938 1.161 0.986

In order to analyze the effect of temperature change during the adsorption of GO by
attapulgite, the fitting calculation of thermodynamic parameters was performed on the
test results. Table 5 and Figure 11 show the thermodynamic fitting curves and calculating
parameters. Under the conditions of temperature at 293 K, 303 K, and 313 K, the standard
free energy (∆G0) of GO adsorption by attapulgite at different GO concentrations are all
negative, indicating that the adsorption process is spontaneous. With the same concen-
tration, the absolute value of standard free energy (∆G0) increases with the increase of
temperature, indicating that the increase of temperature is conductive to adsorption. The en-
thalpy change ∆H0 is positive at different GO concentrations, indicating that the adsorption
process is an endothermic reaction, which is consistent with the isotherm fitting results.

Table 5. Thermodynamic Fitting Parameters.

C0 (mg/L)
∆G0/(kJ·mol−1)

∆H0/(kJ·mol−1) ∆S0/(J·mol−1·K−1)
293 K 303 K 313 K

40 −6.159 −6.892 −8.014 19.248 86.499
60 −6.192 −6.586 −8.048 15.883 75.100
80 −6.079 −6.875 −7.864 19.598 87.571
100 −6.064 −7.024 −7.955 21.681 94.696
120 −5.736 −6.559 −7.644 22.056 94.746
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In conclusion, the adsorption of GO on attapulgite may be caused by the combined
action of multiple factors. From the point of view of electrical properties, both attapulgite
and GO are charged, and the electrostatic interaction between them can cause the coagula-
tion of GO [60]. Attapulgite contains Mg2+ and Ca2+, and the presence of these metal ions
also plays a role in the coagulation of GO [61]. Meanwhile, in the coexistence environment
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of attapulgite and GO, the -OH on the surface of ATP can be complexed with -COOH on
the surface of GO [62].

4. Conclusions

In this paper, the adsorption effect of GO by attapulgite was tested under different
conditions, and various characterization methods were used to systematically study its
adsorption performance and mechanism.

1. By studying the relationship between pH, adsorbent mass, GO concentration, time
and temperature on the adsorption effect, it was found that when T = 303 K, pH = 3,
the attapulgite mass is 40 mg, and the GO concentration is 100 mg/L, the adsorption
effect is the best, and the removal rate can reach 92.83%. The adsorption effect will
increase with the increase of adsorption time. When the adsorption time is 480 min,
the increase of adsorption amount tends to be gentle, and the adsorption equilibrium
is reached at 2160 min. At the same time, the adsorption capacity of GO by attapulgite
increases with the increase of temperature. The higher the concentration is, the more
obvious the effect of temperature on the adsorption of GO is.

2. By means of SEM, TEM, XRD, AFM, FTIR and XPS, the materials characterization of
GO and ATP/GO was conducted. It was found that GO aggregates on the surface of
attapulgite, which is not simple accumulation, but is accompanied by the vibration
deformation and interaction of functional groups. Further study of XPS spectra
shows that the interaction between GO and attapulgite is mainly completed by C-O
and O-C=O.

3. The results of adsorption kinetic studies show that the adsorption of GO by attapulgite
is more in line with a pseudo-second-order kinetic equation, and the adsorption pro-
cess is accompanied by physical adsorption along with chemical adsorption. The re-
sults of the isotherm study show that the adsorption of GO by attapulgite is more
consistent with the Langmuir isotherm model. Based on the calculation of thermody-
namic parameters, the adsorption of GO by attapulgite is an endothermic process.

In summary, attapulgite has a strong adsorption capacity to GO in an aqueous solution,
which is helpful for understanding the adsorption behavior of minerals to GO in an aqueous
solution by providing a reference for reducing the risk of GO in the aqueous environment.
Comparing the adsorption of attapulgite in GO with other materials will help to deepen
the understanding of the adsorption of GO by materials.

The results of other studies are summarized in Table 6 [63–65]. Due to factors such as
insufficient theoretical knowledge and the limitations of experimental conditions, the study
can also explore the adsorption properties of GO on different types of clay minerals.

Table 6. Adsorbate Adsorption of GO Comparison.

Adsorbent Layered
Double Hydroxide Calcareous Sand Iron Tailings Attapulgite

Adsorbent dosage (mg) 5, 10, 15, 20, 25 30, 40, 50, 60, 70 30, 40, 50, 60, 70 10, 20, 30, 40, 50, 60
GO initial
concentration (mg/L)

20, 40, 60, 80, 100, 120,
140, 160 80, 100, 120, 140, 160 40, 60, 80, 100 40, 60, 80, 100, 120

pH effect Alkaline environment
inhibits adsorption

Alkaline environment
inhibits adsorption pH = 7 is the best pH = 3 is the best

Optimal removal rate 92% 91.5% 85.92% 92.83%
Equilibrium time (min) 360 min 300 min 1680 min 2160 min
References [63] [64] [65] This study
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