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An area of research that today generates great optimism is
the use of stem cells for therapy of human diseases. Much of
the excitement centres on embryonic stem cells, but this
approach remains controversial for ethical reasons; more-
over, routine clinical application of this strategy is many
years away. By contrast, haematopoietic stem cells from
adult bone marrow are well characterized and have long
been used therapeutically.1 An adult weighing 70 kg has a
functional haematopoietic marrow volume of about 1.75 L
and upon increased demands such as infection or
haemorrhage it can increase sixfold.1,2 No moral contro-
versy surrounds the use of these cells since they are either
autologous or collected from a consenting donor. The
potential applications of adult bone marrow cells have
gained momentum with discoveries relating to the
mesenchymal stem cell.

MESENCHYMAL STEM CELLS

Adult bone-marrow-derived mesenchymal stem cells (MSC)
are capable of differentiation along several lineages
(Box 1).3–15 They are positive for CD29, CD44, CD105
and CD166, have a doubling time of about two days,
expand in culture up to sixfold and their biological
functions are not altered by ageing.3,15 Box 2 lists some
of the cytokine receptors expressed by these cells and the
cytokines produced. Their features and properties are
closely similar to those of counterpart cells isolated from
fetal blood, liver and bone in the first and second
trimesters, from amniotic fluid and umbilical cord blood,
and from adult peripheral blood, compact bone and adipose
tissue.21–27 Moreover, a CD133-positive subpopulation of
these cells, which can be expanded under defined conditions
for more than one hundred population doublings without
telomere shortening or karyotypic abnormality, has proved
capable of differentiation not only into mesenchymal cell
types (osteoblasts, chondrocytes, adipocytes, myocytes) but
also into endothelium and cells with neuroectodermal
phenotype and function.28–30 Previously, adult marrow-
derived stem cells were believed to yield a limited number

of cell types whereas embryonic cells were totipotent. The
discovery of these multipotent adult stem cells has clearly
narrowed the gap: they offer a very promising and much
more abundant potential resource for therapy of inherited
or degenerative diseases and for repair of tissues such as
cartilage, bone and myocardium.

ADULT STEM CELL PLASTICITY

What is the mechanism of stem cell differentiation? When
the phenomenon was first explored, the possibility of cell
fusion was mooted—that is, hybridization with other cells
rather than true plasticity. Indeed, embryonic stem cells
were seen to hybridize with brain cells to form tetraploid
cells with pluripotent character.31 However, in-vitro and
in-vivo studies of adult bone marrow stem cells suggest a
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Adipocyte Myofibroblast

Osteoblast Endothelial cell

Chondrocyte Neural cell

Cardiac myocyte Hepatic cell

Skeletal myocyte Renal tubular cell

Tenocyte

Box 1 Differentiation potential of adult bone marrow mesenchymal

stem cells (from refs 3–15)

Box 2 Cytokine expression and production of human adult bone

marrow mesenchymal stem cells (Refs 3, 15–20)

Cytokine receptor expression Cytokine production

c-kit (stem cell factor) Stem cell factor

gp130 Interleukin-1, -6, -7, -8, -11,

-12, -14, -15

Interleukin-1, -3, -4, -7 FLT-3 ligand

Leukaemia inhibitory factor Leukaemia inhibitory factor

G-CSF G-CSF, GM-CSF and M-CSF

TNF-alpha

TGF-beta

Basic fibroblast growth factor

Platelet derived growth factor

Epidermal growth factor

Nerve growth factor (p75)

G-CSF=granulocyte colony stimulating factor; TNF=tumour necrosis factor;

TGF=transforming growth factor; GM-CSF=granulocyte macrophage CSF;

FLT=tyrosine kinase receptor



rate of cell fusion too low to account for the
transdifferentiation.32 Moreover, single euploid bone
marrow MSC, never co-cultured with tissue-specific cells
or embryonic cells, have been seen to differentiate into
cells of the three germ layers;33 in vivo, the use of bone
marrow cells selectively expressing the enhanced green
fluorescent protein ruled out fusion as a mechanism for the
generation of functional pancreatic islet beta cells;34 and
hepatocytes, cardiomyocytes, and pancreatic and endothe-
lial cells have been described as physiologically either
diploid or polyploid.35–37 Certain cytokines, including
interleukins (IL) 1, 4, and 13, tumour necrosis factor alpha
and interferon gamma, are involved in the generation of
normal multinucleated cells such as osteoclasts and
Langhans giant cells;38–40 thus, observations suggesting
fusion of bone marrow cells with, for example, Purkinje
neurons, cardiomyocytes and hepatocytes41 may instead
simply reflect physiological polyploidy.

BIOLOGY OF ADULT MARROW MESENCHYMAL
STEM CELLS

The direction in which bone marrow MSC differentiate is
heavily influenced by cytokines (Table 1). For example,
bone morphogenetic protein 6 (BMP-6) not only influences
differentiation towards chondrogenesis or osteogenesis but
may also serve to regulate the bone marrow environment
via the effects of IL-6 on haematopoiesis and osteogenesis.50

Two possible mechanisms have been proposed for a
regulatory role of BMP-6 in the human bone marrow
microenvironment: (i) it might enhance the osteoblastic
differentiation of human MSC; or (ii) it might reduce the
osteoclastic differentiation of haematopoietic marrow cells
by decreasing interleukin-6 production in bone marrow
stroma. MSC coexpressing CD133 and fetal liver kinase 1
generated endothelial cells in the presence of vascular
endothelial growth factor, and functional hepatocytes in the
presence of fibroblast growth factor-4 and hepatocyte

growth factor.29,30 Also, MSC coexpressing CD133,
CD172 and nestin differentiated along a neural pathway
in the presence of fibroblast growth factor or retinoic acid
plus nerve growth factor.51,54 An MSC side-population with
high efflux of DNA binding dye and expressing CD90
(Thy1) differentiated into mesangial renal cells.55

MIGRATION/MOBILIZATION OF ADULT
MARROW STEM CELLS

In animal models, transplanted bone marrow cells
have been detected in skeletal and cardiac muscle,56–58

vascular endothelium,58,59 liver,60–62 lung, gut and skin
epithelia,62 pancreatic beta cell islets,34,63 renal
glomeruli,14,55 and neural tissue.33,64–69 When bone-
marrow-derived MSC were injected intracerebrally in
acid-sphingomyelinase-deficient mice, the onset of neuro-
logical abnormalities was delayed and the animals lifespan
was extended.70 Local transplantation of such cells is also
reported to have regenerated bone71–73 and myo-
cardium.74,75 It is noteworthy that no donor-derived
tumours have been seen in these animal models—whereas
with transplantation of undifferentiated embryonic stem
cells teratoma development has been reported.76 The
results also differ from those of undifferentiated embryonic
stem cell transplantation in that engraftment and tissue-
specific differentiation are achieved without pretransplanta-
tion measures to induce differentiation down the lineage
desired. The ability of marrow-derived cells to populate
numerous body tissues—bone, liver, cardiac muscle, colon,
skin—is well shown in patients who have received cells
from gender-mismatched donors (Table 2).77–84 A post-
mortem study revealed donor-derived neurons in the
hippocampus and cerebral cortex of brain samples from
women who had received bone marrow transplants from
men.85 Deductions from such findings must be qualified
by the observation that women who have carried male
fetuses may show long-term mosaicism with male cells;
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Table 1 In-vitro differentiation conditions of human adult bone marrow mesenchymal stem cell

Tissue-type generated Cytokines, reagents and conditions Ref.

Chondrogenic cells TGF-beta and dexamethasone 42

Bone morphogenetic protein-6 (BMP-6) 43

Prolactin 44

Osteogenic cells Ascorbate, b-glycerophosphate and dexamethasone 45,46

Parathyroid hormone vitamin D3+BMP-6 3

Endothelial cells Vascular endothelial growth factor 29

Functional hepatocytes FGF-4 and hepatocyte growth factor on Matrigel 30

Neuronal cells FGF and retinoic acid+NGF on fibronectin 51–54

Mesangial renal cells Side population cell CD90+subset of MSC 13,55

FGF=fibroblast growth factor; NGF=nerve growth factor; TGF=transforming growth factor; MSC=mesenchymal stem cell



nevertheless, the weight of the evidence is that donor bone-
marrow-derived cells can migrate and give rise to tissues
belonging to all three germ-cell layers.77–85 It is noteworthy
that, in the transdifferentiation of these adult marrow stem
cells, there was no evidence of cell fusion.77–85 Lately, work
in mice indicated that such cells participate in skin
regeneration and reconstitution and promote wound
healing;86–88 and one research group reports a pilot study
in three patients indicating that locally applied autologous
bone marrow cells enhanced dermal building and closure of
long-term non-healing wounds.89

CLINICAL STUDIES

In animal models of myocardial infarction, stem cells were
reported to participate in repair whether injected locally or
stimulated in bone marrow by use of stem cell factor (SCF)
and G-CSF.90 In man, a randomized placebo-controlled
study revealed increased coronary collateral flow in patients
treated with intracoronary GM-CSF (molgramostim)
followed by two weeks of subcutaneous administration.91

In the past decade the use of G-CSF (filgrastim) has
transformed the treatment of cancer by facilitating marrow
reconstitution after myeloablative therapy. We must hope
for a similar breakthrough in the management of coronary
heart disease.

In allogeneic transplantation, mesenchymal stem cells in
bone marrow play a key part in immunomodulation and the
induction of tolerance. MSC suppress the proliferation of
T-lymphocytes induced by cellular or non-specific mito-
genic stimuli92 and negatively influence B-cell lymphopoi-
esis.93 Allogeneic/xenogeneic MSC transplants engraft in
immunocompetent sheep and non-human primates.94–97

When a patient was treated, after myeloablation, with
both haematopoietic stem cells and cultured MSC from a
mismatched donor, only grade I graft-versus-host disease
(GvHD) was observed.98 That MSC can not only reduce
GvHD but also facilitate haematopoietic engraftment is

evidenced by the rapid haematopoietic recovery of patients
with breast cancer who received autologous blood stem
cells together with culture-expanded MSC after high-dose
chemotherapy.99 In both clinical trials, MSC transplantation
was well tolerated.

Osteogenesis imperfecta has been the focus of two
studies in children. Allogeneic MSC transplantation, leading
to successful osteoblast engraftment in 3 of 5 children with
type III osteogenesis imperfecta, was associated with a
44–77% increase in bone mineral content, improved linear
growth and reduced fracture frequency.77,100 In another
cohort of 6 children with type III osteogenesis imperfecta
who had received earlier bone marrow transplantation,
MSC infusions from the original donor resulted in a 50%
improvement in their growth velocity.101 Similar improve-
ments were observed in children with metachromatic
leukodystrophy and Hurler’s syndrome after repeated
allogeneic marrow MSC infusions.102

Ten clinical studies have been reported on the effects of
autologous bone marrow stem cell transplantation in
patients with myocardial infarction or ischaemic heart
failure (Table 3).103–112 In three pilot studies, two of them
randomized controlled trials, bone marrow cells infused via
a coronary catheter a few days after acute myocardial
infarction led to significant improvement in coronary flow
reserve and left ventricular ejection fraction.104,105,111 In
the remaining seven, marrow cells injected directly into the
myocardium of patients with chronic ischaemic heart
disease yielded benefits in ejection fraction and also angina
score.103,106–110,112

Despite the impressive safety record of all these pilot
clinical trials, the possibility of undesired differentiation
into other tissues must be borne in mind in monitoring of
future studies.

THE FUTURE

In the next decade, the approaches discussed above will
clearly be developed and refined. Further avenues will open
up. For example, bone-marrow-derived cells expressing
stem cell factor have been shown to initiate endogenous
pancreatic tissue regeneration in mice.113 If such cells could
be used as pancreatic beta islet cell progenitors, there
would be scope for autologous transplantation in patients
with diabetes, avoiding the need for the immunosuppression
necessary after allotransplantation and circumventing the
scarcity of allogeneic material. Whereas the multipotent
adult dermal stem cells from human scalp skin have shown
mainly neural differentiation, suggesting a possible ther-
apeutic role in neurodegenerative diseases,114,115 the bone
marrow MSC show strong orientation towards bone,
cartilage, endothelium and cardiac muscle.

In conclusion, the existing medical uses of bone marrow
are likely to expand greatly with exploitation of the 467

J O U R N A L O F T H E R O Y A L S O C I E T Y O F M E D I C I N E V o l u m e 9 7 O c t o b e r 2 0 0 4

Table 2 Migration of human adult bone marrow stem cells in gender-

mismatched bone marrow transplantation patients

Donor male cells in female recipient Frequency Ref.

Osteoblasts 2% 77

Hepatocytes 2% 78

Colon mucosal epithelial cells 13% 79

Hepatocytes, gut and skin epithelia 7% 80*

Buccal epithelial cells – 81

Purkinje cells – 82

Myocardial cells 10% 83,84

Cerebral (neural) cells – 85

*Stem cells mobilized with granulocyte colony stimulating factor



therapeutic potential of adult mesenchymal stem cells, with
their capacity for many lines of differentiation. The next
stage is to isolate the various subsets and investigate their
mechanisms of differentiation and homing to tissues. This
work has vast implications for human wellbeing, through
cell and gene therapies, through tissue engineering and
through immunotherapy.
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LVEF=left ventricular ejection fraction
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