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Abstract

Insistence on sameness and intolerance of change are part of the diagnostic criteria for Autism 

Spectrum Disorder (ASD) but there is little research addressing how people with ASD represent 

and respond to environmental change. Here, we find that behavioural and pupillometric 

measurements show adults with ASD are less surprised than neurotypical adults when 

expectations are violated, with reduced surprise predicting greater symptom severity. A 

hierarchical Bayesian model of learning suggests that in ASD a tendency to over-learn about 

volatility in the face of environmental change drives a corresponding reduction in learning about 

probabilistically aberrant events – putatively rendering them less surprising. Participant-specific 

modelled estimates of surprise about environmental conditions are linked to pupil size in the ASD 

group, suggesting heightened phasic noradrenergic responsivity in line with neural gain 

impairments. This study offers novel insight into the behavioural, algorithmic and physiological 

mechanisms that underlie responses to environmental volatility in ASD.
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Introduction

When negotiating changeable real-world environments, humans face a set of learning 

problems involving different forms of uncertainty in which the weighting of new evidence 

and prior expectations need to be dynamically adjusted. Imagine opening your sock drawer 

and finding a pineapple inside. How surprised should you be? Under normal circumstances, 

you would expect to see socks - but if your four-year-old niece is visiting, you might adjust 

your expectations to suit a more volatile environment, lessening any surprise. However, 

over-estimating how volatile your bedroom is may result in compromised learning of the 

association between the cue (sock drawer) and outcome (socks) in the first place. In other 

words, aberrant representation of volatility may impair the dynamic formation of appropriate 

prior expectations, rendering both the pineapple and the socks mildly surprising. Bayesian 

theories of perception in ASD1 propose that reduced weighting of prior expectations, 

relative to sensory inputs, leads to the perceptual atypicalities associated with the 

condition2–7, but no studies to date have actually quantified the learning dynamics by which 

sensory expectations are formed in ASD. Here we sought to empirically address whether 

volatility learning is compromised in ASD6,7.

Computationally, the amount of weight given to a surprising event is determined by its 

precision (inverse variance, proportional to learning rate:α) with α determining the rate of 

integration over past events to predict future outcomes. While computational studies of 

decision-making about rewards and punishments show that participants adapt their rate of 

learning about action-outcome contingencies in response to changes in environmental 

volatility 8–10, these models did not fit individual differences in volatility learning. 

However, knowing whether to disregard an unexpected outcome or take it seriously (i.e. 

whether to adopt a high or low learning rate about cue-outcome probabilities) depends on 

the precision of your beliefs about environmental change (i.e. whether you adopt a high or 

low learning rate about volatility). The recent application of hierarchical learning models has 

allowed the quantification of individual learning about both probabilistic relationships and 

how these relationships change over time (volatility)11–14, but no studies have applied these 

models to understand learning about uncertainty in ASD.

In a state where uncertainty about one’s beliefs is high (e.g. in volatile conditions), top-down 

prior expectations should be suppressed, relative to new bottom-up sensory evidence, in 

order to promote new learning about the current environmental context15. With their broad 

distribution and extensive connectivity, neuromodulatory systems are ideally placed to 

facilitate the widespread changes in neural gain necessary to support such a function16. 

Noradrenaline (NA), in particular, is thought to signal contextual change, leading to 

1Although we abide by the terminology of the diagnostic and statistical manual (DSM-5) we wish to acknowledge that the term 
autistic person is preferred by many people on the spectrum 1.
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enhanced bottom-up, thalamocortical transmission of sensory information17–19. Recent 

neurocomputational accounts of autism have proposed that aberrant signalling of volatility 

could result in pathological neural gain, consistent with the cognitive and perceptual profile 

of autism such as enhanced perceptual functioning, sensory overload and context 

insensitivity4–6,20.

Here, we tested these computational and neurobiological hypotheses by examining how 

adults with ASD respond to experimentally manipulated changes in their sensory 

expectations that independently assessed changes in the category of a stimulus, the 

informativeness of a cue predicting its appearance and changes in these associations over 

time. To do so we employed a hierarchical Bayesian model that allows us to characterise 

each individual participants learning “fingerprint”; specifically simultaneous learning about 

multiple different sources of environmental uncertainty 11. We hypothesised that adults with 

ASD will show reduced behavioural and neurophysiological responses in contrasts of 

‘unexpected’ (UE) and ‘expected’ (E) trials based on the experimental ‘ground truth’ (e.g. 

reduced surprise when they ought to have been surprised). This is in line with previous 

studies showing reduced distinction between repeated and novel stimuli in ASD 21–23. 

However, we hypothesise that computational modelling of the actual learning process for 

each individual will demonstrate an increased tendency to represent and respond to 

environmental volatility in ASD, compromising learning about probabilistic relationships in 

the environment. Accordingly, we hypothesise that computational metrics of prediction 

error, which estimate when each individual was actually surprised, will be reflected in pupil 

responses, indicating aberrant neuromodulatory function in ASD.

Results

We used a modified version of a common probabilistic associative learning task 24 to test 

the impact of learned expectations and sensory noise on behaviour (reaction times (RT), 

error rates) and indices of phasic NA function (pupillometry) 25 in adults with ASD (n=24) 

and age and IQ matched neurotypical adults (NT’s; n=25) (Online Methods).

Participants performed binary classification of images as either faces or houses, and images 

had either high (H), medium (M) or no (N) noise added. A tone preceding each image was 

either highly, weakly or not predictive of a given outcome, and these image-tone 

associations changed across time (Figure 1) such that trials can be categorised as expected 

(E), unexpected (UE) or neutral (N). This created a ground truth structure to the environment 

that participants had to implicitly learn. In contrast to reinforcement learning26,27, implicit 

motor learning 28 and serial reaction time 29 tasks that have examined sensitivity to 

probability manipulations in ASD, this task addresses perceptual associative learning and 

explicitly manipulates three different forms of uncertainty (categorical sensory uncertainty, 

probabilistic uncertainty and environmental uncertainty). When a participant receives an 

unexpected outcome, this may reflect a probabilistically aberrant event or it may signal that 

the environmental context has changed. To quantify individual learning about these different 

forms of uncertainty, RTs were modelled using a Bayesian belief update scheme 11 (Online 

Methods). The model inferred on participant’s beliefs about these quantities as reflected in 
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the sequence of cue-outcome associations each participant received and their trial-by-trial 

responses and response times.

Behaviour

First, we examined behavioural responses where expected (E) and unexpected (UE) trials 

were categorised according to the ground truth.

Reaction times—Reaction Times (RTs) were submitted to a 3x3 mixed ANOVA with 

within-subjects factors of expectedness (expected, neutral, unexpected), noise (high, 

medium, no) and a between participants factor of group (ASD, NT). There was a significant 

main effect of expectedness (F(2,94)=25.48, P<0.001) and noise (F(2,94)=13.60, P<0.001) 

indicating that RTs were slower for unexpected and high noise stimuli relative to expected 

and low noise stimuli. A significant main effect of group (F(1,47)=4.83, P=0.03) indicates 

that in general the ASD participants were slower to respond than the NT participants. 

Crucially, only the expectedness*group interaction was significant in this analysis 

(F(2,94)=4.47, P=0.014; Figure 2a). The noise*group (F(2,94)=0.06, P=0.94), 

noise*expectedness (F(4,188)=0.47, P=0.76) and expectedness*noise*group interactions 

were not significant (F(4,188)=1.31, P=0.28). This suggests that for both groups increasing 

sensory noise results in slower RT (Figure S1) but adults with ASD only show reduced 

modulation of RT as a function of learned expectations. This is consistent with reduced 

influence of prior information on perception and action in ASD2, although future studies 

should explore how learned expectations affect perceiving structure in true noise or 50/50 

composite images where reliance on prior beliefs should be greater.

Results were unchanged when the identical analysis was carried out on log reaction times 

(Table S1).

Subtracting RTs to UE from those to E outcomes provides a low-level index of “surprise” 

which is significantly greater than zero in both groups (ASD, t(23)=4.66, P<0.001; NT, 

t(24)=7.25, P<0.001) but attenuated in the ASD group relative to the NT group (t(47)=3.51, 

P=0.001; Figure 2b). This suggests less distinction between UE and E outcomes in ASD, 

though this is conditioned upon adequate learning of the ground truth.

To ensure that the group difference in UE-E RT persists over and above participants mean 

‘baseline’ RT and error rates we conducted a linear regression to predict UE-E RT with 

group (ASD, NT), mean RT and mean errors as predictors. This model was significant 

overall (F(3,48)=5.58, P=0.002) and the only significant predictor of UE-E RT difference 

was group (t=-2.87, P=0.008). Mean RT (t=-1.08. P=0.28) and mean errors (t=1.06, P=0.29) 

were not significant predictors. Importantly, this analysis demonstrates that the diminished 

effects of behavioural ‘surprise’ in ASD participants, persist even when the variance 

associated with general response speeds and accuracy are included in the model.

Additional analyses confirmed that this key finding of group differences in UE-E RTs 

remains present when control analyses account for the effects of speed-accuracy trade-off 

(Figure S2) and general group differences in caution of responding (Figure S3). We do, 

however, recognise that slower overall responses (and higher accuracy) in the ASD group 
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may indicate a tendency to manage uncertainty with increased response thresholds, which 

could be tested using drift diffusion models30,31 in future studies where error rates are 

higher by design.

Error rates—The same analysis as above was conducted for error rates. There was a 

significant main effect of expectedness (F(1.5,70.5)=11.71, P<0.001) and a significant 

group*expectedness interaction (F(2,94)=6.34, P=0.003) indicating that NT group made 

more errors on unexpected, relative to expected trials, whereas the ASD group did not 

(Figure 2c). The main effect of noise was not significant in this analysis (F(1.7,78.8)=0.08, 

P=0.92) and neither was the noise*group (F(2,94)=0.29, P=0.75), noise*expectedness 

(F(4,188)=0.76, P=0.55) and expectedness*noise*group interactions (F(4,188)=1.28, 

P=0.28).

Results were very similar when the identical analysis was carried out on log error rates 

(Table S1).

Subtracting % errors to UE from those to E outcomes provides a low-level index of surprise 

which is only significantly greater than zero in the NT group (ASD, t(23)=1.11, P=0.28; NT, 

t(24)=3.65, P=0.001) and attenuated in the ASD group relative to the NT group 

(t(33.4)=2.83, P=0.007; Figure 2d).

Relation to symptoms—To explore the relationship between behavioural surprise and 

ASD symptom severity we conducted a multiple linear regression predicting the UE-E RT 

measure with Autism Diagnostic Observation Scale (ADOS-2) communication, social 

reciprocal interaction scores, and also IQ as predictors. This model was significant 

(F(3,23)=3.28, P=0.04) and communication score was the only significant predictor 

(t=-2.57, P=0.018; Figure 3). IQ (t=1.45, P=0.16) and social reciprocal interaction scores 

(t=0.95, P=0.35) were not significant predictors.

A second regression model that also contained baseline RT as a predictor narrowly missed 

overall significance (F(6,23)=2.41, P=0.07), and communication scores were once again the 

only significant predictor (t=-2.81, P=0.012). A third regression model, in a reduced sample 

size (see Online Methods), additionally included sensory sensitivity scores (ASQ) as a 

predictor of UE-E RT. This model was not significant (F(4,21)=1.28, P=0.32) and the only 

predictor approaching significance was, again, communication scores (t=-1.89, P=0.076).

Communication, as measured by the ADOS-2, weights predominantly on stereotyped and 

repetitive speech and conversational reciprocity which arguably necessitate reflexive 

behavioural responses to change. Future studies should examine the specificity of this link 

between general behavioural adaptations to learned expectations and communication 

abilities; especially as measured by different instruments.

Non-clinical replication—Finally, beyond the range of clinical phenotypes seen in people 

diagnosed with ASD, a wider continuum of social-communicative ability is expressed as 

autistic traits in the general population 32. Encouragingly, the relationship between our 

behavioural measure of surprise (UE-E RT) and autistic tendency replicates in an 
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independent non-clinical sample (N=57) of participants characterised according to 

expression of autistic traits (Figure S4). Not only does this bolster confidence in our clinical 

finding but additionally supports generalisation of this result to the broader autism spectrum 

in the wider population.

Responses to different stimulus types—Control analyses indicated that there were no 

group differences in response time or accuracy across the face and house stimuli (Figure S5).

Computational Modelling

To investigate learning about distinct kinds of uncertainty in ASD we adopted a participant-

specific Bayesian model to track the role of uncertainty on behaviour (log RTs). In the 

Hierarchical Gaussian Filter (HGF) 11 beliefs are updated via prediction errors, with 

dynamic learning rates (α) at each level (i) influenced by uncertainty about the accuracy of 

current beliefs and environmental volatility (Figure 4a). In the version of the HGF used here 

(introduced in 33) learning occurs simultaneously on three coupled levels of an uncertainty 

hierarchy (x1, x2, and x3). Level 1 (x1) addresses uncertainty about outcomes (face or 

house), level 2 (x2) addresses uncertainty about probabilities (cue-outcome contingencies) 

and level 3 (x3) addresses uncertainty about environmental change (volatility). See Online 

Methods and Table S2 for more model details.

Model validation—First, to ensure that the HGF performs well as a model to describe the 

behaviour of our participants, we fit three alternative learning models to the data and 

compared them to the HGF with random-effects Bayesian model selection (BMS). Relative 

to simple Reinforcement Learning (RL) models with fixed (RW) and dynamic (SK1) 

learning rates and a 2-level HGF in which volatility updates are eliminated, the three-level 

HGF was the best model for explaining the data by a considerable margin (see Online 

Methods, Figure S6). Importantly, BMS evaluates the relative plausibility of competing 

models in terms of their log-evidences which quantifies the trade-off between accuracy (fit) 

and complexity of a model and accounts for the fact that the observed variability in log-

model evidences could be due to chance. Additionally, the 3-level HGF model simulations 

captured the principal group differences in the behavioural effect of expectation on RT (see 

Online Methods and Figure S7).

Predicting diagnostic status—A summary of group differences in each of the estimated 

model parameters is presented in Figure S8.

A binary logistic regression model predicting group status (ASD=1, NT=0), with all eight 

model parameters as predictors was significant (X2= 26.83, P=.001) and prediction success 

overall was 81.6% (76% ASD, 88% NT), with cross-validated prediction success of 68%. 

The Wald statistic demonstrated that outcome uncertainty (β2, P=0.043), phasic volatility 

(β4, P=0.006) tonic volatility at the 3rd level (ω3, P=0.024) and baseline log RT (β0, 

P=0.007) made a significant contribution to prediction (Figure 4b).

Interestingly these significant predictors predominantly pertain to the third level of the HGF, 

i.e. learning about environmental volatility. ω3 can be understood as capturing 

‘metavolatility’ (i.e., the tonic volatility of the phasic volatility, with higher values in the 
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ASD group implying a belief in a world where instability itself is instable (Figure S8). β4 

captures the modulation of log RT in response to phasic volatility, here smaller (negative) 

values in the NT group (Figure S8) implies that when beliefs about volatility increase, 

participants become more attentive and respond faster. In contrast, the larger (positive) 

values in the ASD group (Figure S8) indicate that increased beliefs about volatility leads to 

slower reaction time. In general, these findings point towards problems representing and 

responding to environmental change in ASD, specifically, an increased tendency to expect 

the unexpected.

Learning rate update in response to volatility—From the HGF we can infer the trial-

wise rate of learning about two different sources of information: probabilistic outcomes (α2) 

and also the rate of learning about environmental change (α3). When the environment is 

volatile people should give more weight to recent sensory outcomes in building expectations 

about what they will see next (e.g. adopt a high α), in contrast they should give information 

from the distant past more weight when the environment is stable (e.g. adopt a low α) 8,9. 

To test the hypothesis that individuals with ASD have problems flexibly updating their rate 

of learning (c.f. precision weighting) in response to environmental change we examined the 

change (Δ) in α2 (probability) and α3 (environment) when switching from stable 

(highlighted in violet on Figure 1) to volatile (highlighted in green on Figure 1) periods of 

the task. We compared the change in α2 and α3 between these two periods, across the 

groups. This analysis revealed a trend towards a main effect of group (F(1,47)=0.26, 

P=0.061), a significant main effect of α type (F(1,47)=6.07, P=0.017) and crucially an α 
type* group interaction (F(1,47)=9.80), P=0.003). Follow up independent-samples t-tests 

revealed that the ASD group did not update α2 as much as NT adults (t(47)=-2.37, P=0.02) 

whereas they updated α3 more than NT adults(t(47)=3.16, P=0.03; Figure 4c).

Average learning rates—To examine learning overall, we calculated average values for 

α2 and α3 for each participant. This analysis revealed no main effect of α type 

(F(1,47)=2.61, P=0.11), no main effect of group (F(1,47)=2.01, P=0.16, and no group* α 
type interaction (F(1,47)=2.54, P=0.12), suggesting that, in general, both groups were able 

to learn the this task equally well.

Predicting learning rate update from tonic volatility—Finally, since the HGF 

estimation does not fit α2 and α3 directly, we ran two linear regression models predicting 

Δα2 and Δα3 respectively to determine which of the two ω parameters drive these learning 

rate differences. In each case the model was significant (Δα2 : F(2,48)=68.94, P<0.001, R2 

=0.75; Δα3 : F(2,48)=102.53, P<0.001, R2 =0.82). The results indicate that Δα2 is positively 

predicted by ω2 (t=2.72, P=0.009), suggesting that a tendency to believe cue-outcome 

associations are unstable is associated with a larger update in α2 when switching from stable 

to volatile phases of the task. Interestingly, ω3 negatively predicts Δα2 (t=-8.89, P>0.001), 

indicating that a tendency to believe instability is unstable drives a smaller update in α2 in 

response to volatility. This fits with our finding that the ASD participants, who tend towards 

a smaller Δα2 (Figure 4c), show reduced behavioural ‘surprise’ (Figure 2b) and also larger 

‘metavolitility’ estimates (Figure 4b). For the model predicting Δα3 both of the ω 
parameters were significant positive predictors (ω2, t=7.88, P<0.001; ω3, t=14.24, P<0.001). 
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For the ASD participants, who show larger Δα3, this is consistent with a tendency towards 

beliefs in the instability of both cue-outcome associations and instability itself.

Pupillometry

Predictive coding descriptions of ASD depart from normative Bayesian theories in that they 

make explicit predictions about the neurobiological basis of precision; namely, the action of 

neuromodulators such as noradrenaline (NA) which control the gain on cortical responses 

(prediction errors) 3,4,6. Raised NA signalling in ASD is suggested by elevated blood 

plasma levels 34 and increased arousal; i.e. heart rate variability 35, but no studies have 

examined phasic NA function in the context of learning about uncertainty in ASD. To do so 

we acquired concurrent pupillometry in a reduced subset of the sample (Online Methods). 

Phasic pupil response to surprising outcomes (ground truth contrast of UE-E trials) revealed 

a significant increase in pupil size in NT’s (Figure 5a), consistent with many previous 

studies 25. Convergent with the behavioural data (Figure 2b & d), the ASD group did not 

show this distinction between UE and E trials (Figure 5a). This pattern mirrors previous 

findings in the domains of electrophysiology (reduced mismatch negativity in ASD/smaller 

P300 36,37 and BOLD imaging (reduced fMRI repetition suppression in ASD 21,23) but 

now in the novel domain of pupillometry. However, this notion of surprise is conditioned 

upon adequate learning of the ground truth, and our computational analysis indicates that 

ASD and NT participants show a dissociation in how they estimate volatility and adapt their 

learning rates in response to the changeability of the environment (Figure 4b & c).

Computational pupillometry analysis—The HGF provides a nuanced and 

individualised trial-by-trial “learning fingerprint” and better characterises when participants 

were actually surprised as a function their personal learning process, namely ‘high-level’ 

precision-weighted prediction errors (PE’s) about changes in cue-outcome contingency (ε3). 

Here the learning rate α3 depends on the precision weight on the PE; that is proportional to 

the update of environmental volatility (See Online Methods). As such ε3 is a model-based 

measure of high-level surprise that is formally related to the dynamic learning about 

environmental change where we see group differences (Figure 4c). Applying multiple 

regression across every trial and every time point in the pupil time trace, we found a 

sustained positive relationship between pupil size and precision-weighted PE’s (ε3) in the 

ASD participants (Figure 5b), which significantly differed from the NT group and zero. 

Furthermore, these strong effects persisted when controlling for the UE-E ground truth 

contrast, trial-wise differences in fixation compliance, mean RT and outcome image type 

(face/house) all of which were included in the model as covariates (Online Methods). 

Additional analyses revealed that the volatility learning rate (α3), and the probability 

learning rate (α2) are not encoded in the pupil response in either group (Figure S9). See 

Figure S10 for analysis examining the relationship between precision-weighted PEs in 

specific (volatile/stable) phases of the experiment.

Pupillometry control analyses—Given the possibility that people with ASD might look 

at face stimuli differently to people without ASD 38, stimulus duration was purposefully 

short (150ms) to prevent saccades. Nonetheless, to ensure that there was no difference 

between the groups in fixation compliance across the stimulus types (faces, houses) we 
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conducted a repeated measures ANOVA on the mean absolute deviation (MAD) from 

fixation (in degrees of visual angle) across outcome image type (face, house) with a between 

subjects factor of group. All main effects and interactions in this analysis were non-

significant (Table S1).

To examine group differences in tonic pupil size (thought to be a measure of general 

noradrenergic tone39) we compared the average of the z-scored pupil measurement across 

all trials with an independent samples t-test. This demonstrated no group differences in tonic 

pupil size in this sample (t(23)=.36, P=0.72).

Finally, control analyses revealed that there were no group differences in fixation 

compliance across conditions (Figure S11) or the relationship between pupil size and simple 

behaviour such as trial-wise RT (Figure S12). Raw pupil traces for each group can be seen in 

the Supplementary Results (Figure S13).

Discussion

In this study, behavioural (RT/error rates) and pupillometric results based on the 

experimental ground truth converge on the finding of reduced distinction between 

unexpected and expected outcomes in ASD (Figure 2, Figure 5a) which is consistent with 

many previous studies across a range of methods reporting reduced ‘surprise’ in ASD 

21,23,36,37. Crucially, however, this low-level notion of ‘expected’ and ‘unexpected’ trials 

assumes optimal or at least adequate learning of the ground truth. However, the statistical 

regularities that underlie our sensory world and shape our expectations are changeable and 

humans have to learn about different kinds of uncertainty in order to adaptively adjust the 

weighting of prior expectations and sensory inputs. Knowing whether to disregard an 

unexpected outcome or take it seriously (i.e. whether to adopt a high or low learning rate 

about cue-outcome probabilities (α2)) depends on the precision of your beliefs about 

environmental change (i.e. whether you adopt a high or low learning rate about volatility 

(α3)). The present data go beyond previous work by specifically demonstrating that over-

estimating volatility in the face of environmental change – at the expense of learning about 

probabilistically aberrant events - characterises the behaviour of adults with ASD during 

perceptual inference (Figure 4c).

Furthermore, computational-pupillometry analyses indicate heightened encoding of trial-

wise surprise in phasic noradrenergic responses in ASD (Figure 5b). Thus, under the 

assumption that pupil size is an index of NA release from the locus coruleus (LC) 40 these 

results are suggestive of raised phasic neuromodulatory signalling in ASD. NA is believed to 

change cortical gain in response to surprise, specifically; salient events indicating that global 

context has changed cf. “unexpected uncertainty” 15,25. Here our computational-

pupillometric analysis indicates a strong relationship between noradrenergic responsivity 

and precision-weighted prediction errors in ASD participants. Consistent with our other 

model-based results (Figure 4b & c), these findings again support over-reactivity to 

environmental change in ASD, but now in the context of physiological measures that index 

phasic neuromodulatory function. If the NA system is signalling more high-level surprise in 

ASD then this may imply atypical cortical gain during sensory processing, resulting in a 
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state where one is disproportionately receptive to sensory inputs. Aberrant phasic NA (c.f 

precision on prediction errors4,6) may alter the signal-to-noise ratio of cortical responses 

41,42, broaden the tuning functions of sensory responses and, subsequently improve 

discrimination behaviour43. Thus aberrant NA function may offer a neurobiological 

perspective on the profile of sensory processing strengths and weakness experienced by 

people on the spectrum.

Importantly, these findings provide preliminary empirical evidence for neurobiologically 

informed Bayesian accounts of autism that emphasise aberrant representation of volatility 

and, consequently, inappropriate setting of gain (precision) on cortical responses (prediction 

errors) 4,6 under conditions of uncertainty. A recent pharmacological study employing the 

HGF, indicates that noradrenaline antagonism selectively impairs volatility learning13, 

which accords with the raised pupillometric response to surprise about volatility reported in 

the adults with ASD here (Figure 5b). We hypothesise that the noradrenergic LC and its 

coupling with the anterior cingulate cortex (ACC)8,10 ratifies estimated volatility, and that 

the downstream gain modulations act on the precision of cortical responses that are 

behaviourally relevant to the task at hand. Atypical social prediction error processing in the 

gyral surface of the ACC(g) has recently been shown in autism44, but whether differences in 

processing in the ACC region extend to non-social tasks with explicit computational models 

and manipulations of volatility remains to be seen. Carefully designed neuroimaging and 

neuropharmacology studies will be necessary to link these (presumed) noradrenergic effects, 

and the mathematical anatomy of uncertainty11, to hierarchical processing in the brain 12. 

Additionally, although we emphasise the role of noradrenaline here, we also acknowledge 

the likely importance of its direct precursor, dopamine, and the complementary relationship 

with acetylcholine and the signalling of expected uncertainty 15. All three of these 

neuromodulators are likely candidates in the neurobiological mechanisms underlying 

responses to environmental change in ASD.

From a Bayesian perspective, the simplest way in which persistent overweighting of all 

sensory inputs (relative to prior expectations) might occur would be a generally larger 

outcome α – reflecting chronic and inflexible overweighting of recent, relative to past, 

sensory history. Such an explanation is implied by conservative interpretations of non-

hierarchical Bayesian accounts of ASD 2 and predictive processing accounts that emphasise 

“uniform” inflexibly high precision in sensory processing 3. However, by logical extension, 

beyond a single ambiguous sensory event, all Bayesian accounts imply that dynamic 

learning about structural regularities (i.e. the formation of priors) is likely impaired in ASD 

2–7. Under the aberrant precision account of ASD it is problems with high-level learning 

about volatility, and the ratified neuromodulatory changes, that is hypothesised to underlie 

the difficulties faced by people on the spectrum 4–6. It is for this reason that we designed a 

task to capture behaviour under orthogonal manipulations of expectations and sensory noise 

and built a model equipped with the ability to infer on learning about volatility.

The recent proposal that non-hierarchical, reinforcement learning (RL) models can speak 

directly to predictive coding theories of ASD3 is perhaps too simplistic, not least because 

predictive coding is largely regarded as a neural process theory and therefore behavioural or 

modelling results in the absence of a proxy for brain function can only speak to such an 
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account but are not truly able to test it. Motivated by these claims, a relatively recent study 

found no differences in learning rate malleability in autistic children during a reward 

learning task modelled with a delta learning rule 45. Notably, however, there were no group 

differences in simple behaviour reported on this task. Here we made a specific behavioural 

prediction based on previous research (reduced ‘surprise’ in ASD) and a specific 

computational prediction to explain this behaviour (aberrant learning about volatility). We 

therefore designed a model complex enough to address simultaneous hierarchical learning. 

Using Bayesian model comparison we have shown (Figure S6) that the simplest learning 

model (similar to the one employed previously45) performs poorest in explaining participant 

behaviour. Nonetheless, if it is the case that learning in the face of volatility is compromised 

in adults with autism (as reported here), but not children (as indicated previously45), this 

would be a significant discovery. It will be important for future studies to employ the same 

computational models and behavioural paradigms in adults and children to inform our 

understanding of how autism affects cognition across the lifespan, especially as some 

features of the disorder can become more severe with age 46

Conclusion

The surprise experienced on finding a pineapple in your sock drawer depends on the strength 

of your prior expectation to see socks. The results of this study imply that adults with autism 

show a tendency to over-estimate the volatility of the sensory environment, at the expense of 

learning to build stable expectations that lead to adaptive surprise. In other words, adults 

with autism may be mildly surprised by the pineapple and the socks. Heightened encoding 

of prediction errors in pupil size measures is consistent with neurobiologically focused 

Bayesian accounts of autism, that emphasise neural gain impairments due to aberrant 

neuromodulatory funcion4–6. The distinct but complementary results provided by the 

ground truth and computational levels of analysis in our study underwrite the utility of 

computational approaches in better understanding neuro-developmental and psychiatric 

conditions with the aim of influencing clinical practice 47–49. This study offers novel 

insight into the behavioural, algorithmic and physiological mechanisms that underlie 

learning about, and responses to, environmental change in ASD. Novel patterns of learning 

may emerge when the environment is more or less changeable, when expectations are 

formed explicitly or, or when outcomes are not incidental but instead tied to reward and/or 

social evaluation 10,50. It will be important for future research to address these domains and 

test volatility learning in larger cohorts and people of different intellectual abilities across 

the autistic spectrum.

Online Methods

Participants

29 adults with autism spectrum disorder (ASD) and 26 healthy volunteers (NTs) came to the 

UCL Institute of Cognitive Neuroscience as part of a testing day involving different 

researchers. Two adults with ASD did not complete this test owing to time constraints or an 

inability to tolerate the sounds and/or focus adequately on the test. Following data 

examination, participants with more than 20% overall errors or mean reaction times (RT’s) > 
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2 standard deviations from their respective group mean RT were excluded from subsequent 

analysis to ensure the validity of the Bayesian modelling. This left 24 participants in the 

ASD group (18 males; mean age: 35.5, age range: 20-61) and 25 in the NT group (16 males; 

mean age: 36, age range: 19-62). The ASD and NT groups were matched on age 

(t(47)=0.54, P=0.87).

ASD participants had previously been diagnosed by an independent clinician, according to 

the DSM-IV51 or ICD-10 criteria52 [19 Asperger Syndrome, 3 Autistic Disorder, 1 High 

Functioning Autism, 1 Atypical Autism]. The Wechsler Adult Intelligence Scale (WAIS 3rd 

edition UK) had previously been administered to assess IQ 53 and participants were 

matched on full-scale scores (ASD mean: 117; range: 80-142; NT mean: 120, range: 99-145; 

t(47)=-0.93, P=0.36) The Autism Diagnostic Observation Schedule (2nd edition) 54 

assessment was completed by a qualified administrator to assess symptom severity in the 

ASD participants. Mean ADOS total score was 9.9 (range 4-19). The mean scores for the 

communication and reciprocal social interaction sub scores were 3.3 (range: 0-7) and 6.6 

(range 4-12), respectively.

An additional 57 NTs were studied as part of a replication of our key behavioural result (25 

male, 32 female; mean age: 27.1, age range: 19–50) and additionally completed the Autism 

Spectrum Quotient (AQ) questionnaire; a 50-item self-report measure of autistic traits 32,55. 

Mean AQ score was 18.43 (median: 17, range: 5-45). All participants had normal or 

corrected to normal vision and gave written informed consent. We performed a median split 

on the data such that participants were divided into high AQ (n=26) and low AQ (n=31) 

groups. AQ score was significantly higher in the in the high AQ group (mean=27, SD=6.4, 

range=18-45), relative to the low AQ group (mean=11.5, SD=3.4, range=5-17; t (55) = 

11.28, P<0.001). The distribution of scores the low AQ group falls almost exclusively below 

the mean range of neurotypical scores reported in a recent meta-analysis of 73 studies 

administering the AQ 56. Importantly there is considerable overlap between the scores in the 

high AQ group and the range reported, on average, in those with a diagnosis of ASD 56 – 

even though these participants do not present with any clinical need.

No randomisation was used to assign subjects or conditions. All participants provided 

written informed consent and were compensated financially for their time and travel 

expenses. The study was approved by the UCL Graduate School Ethics Committee 

(4357/001)

Stimuli

Auditory cues were either 330 Hz or 660 Hz pure tones generated in MATLAB R2012b 

(Mathworks, Ltd) and presented using the Cogent toolbox (http://www.vislab.ucl.ac.uk/

cogent_graphics.php), via Sennheiser HD 201 headphones. Outcome images were either 

faces or houses. These stimuli were grayscale and comprised 6 different face identities (3 

male, 3 female) or 6 different images of houses, masked by an ellipse and luminance 

matched using the SHINE toolbox 57. Outcome images either had medium or high Gaussian 

noise added, with a mean of zero and a variance of 0.05 and 0.1 respectively, using the 

image processing toolbox (MATLAB R2012b). Examples of no, medium and high noise 

face stimuli can be seen in Figure 1.
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Procedure

Participants sat on a chair with their head in a chin rest at a viewing distance of 80 cm. An 

example trial can be seen in Figure 1. Each trial began with the 300 ms presentation of a 

pure tone that was either high or low in pitch. After 200 ms either a face or a house image 

was presented, that lasted for 150ms to prevent saccades. The participant’s task was simply 

to respond to the image, indicating whether it was a face or a house (via left/right button 

press) and to be ‘as fast and accurate as possible, trying to respond on every trial’. A variable 

response time of 1500-1800 ms followed the image; such that trials lasted 1950ms – 2250 

ms. Participants were instructed that the tone preceding each image was probabilistically 

associated with the likelihood of seeing a face or house and that these probabilities would 

change across time. The probabilistic associations between the tones and the outcomes were 

either highly (p=0.84), weakly (p=0.16) or non-predictive (p=0.5) and changed pseudo 

randomly across trials in blocks of either 12, 36 or 72 trials (Figure 1). All participants 

completed 456 trials over 8 mini-blocks with optional periods of rest between.

To ensure that participants’ responses were not biased by learned expectations about the 

relative frequencies of the visual stimuli, the task was designed such that the marginal 

probabilities of faces and houses were identical at any point in time (Figure 1) and each 

block contained equal numbers of randomly intermixed high and low tone trials. As 

employed in previous studies 12,24, this design ensured that the a priori probability of a face 

(or house) occurring was always 50% on any given trial, before the tone is presented. Thus, 

any expectations about the visual stimulus could depend only on the preceding tone. 

Additionally, and unique to this study, equal numbers of high, medium and no noise stimuli 

appeared in each of 12, 36 or 72 blocks of trials and across each cue type.

Data collection and analysis were not performed blind to the conditions of the experiment.

Pupillometry

To ensure fixation and measure neuromodulatory responses, gaze direction and pupil size 

were measured with an infrared eye tracker (Cambridge Research Systems) tracking the left 

eye at 200 Hz. Calibration of the eye tracker was unsuccessful in all participants wearing 

glasses and the eye tracker suffered a fatal technical failure before testing was completed, 

therefore eye tracking data are only available for 14 NT’s and 11 ASD’s.

Hierarchical Gaussian Filter

In the version of the HGF used here (introduced in 33) learning occurs simultaneously on 

three coupled levels of an uncertainty hierarchy. The first level of the HGF (x1) constitutes 

the outcome on any given trial (e.g. face or house), the second level (x2) represents the 

probabilistic associations between the tones and the outcomes (e.g. the probability of seeing 

a house given that you’ve just heard a high tone), and the third level (x3) quantifies the 

volatility of the probabilities (e.g. the changeability of the environment). On each trial, the 

model provides an estimate for each level, before the outcome is seen and the estimate 

updated accordingly. Predictions at each level are represented by a Gaussian distribution, 

described by its mean,  and variance, . The variance  represents the uncertainty of the 

estimate at each level. Updates of beliefs at each level occur via prediction errors that 
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propagate upwards and are precision-weighted by the ratio of the uncertainty of the level 

that generated them to the uncertainty of the level being updated. The manipulation of 

perceptual noise (e.g. no, med, high) is captured trial-by-trial as a fixed parameter 

representing the variance of the noise on the inputs.

For each participant the perceptual model parameters, ω2 and ω3, learning rates, α2 and α3, 

and response model parameters (β0,…,4) were estimated from the trial wise log RT measures 

using variational Bayes as implemented in the HGF toolbox (http://

www.translationalneuromodeling.org/tapas/). The ω’s are the tonic log-volatilities at their 

respective levels, according to the generative model

with  This means that they determine the basic step size of 

the random walks in x2 and x3, without taking into account phasic modulation by higher 

levels of the hierarchy. The learning rate α2 represents, trial-by-trial, the size of the update in 

μ2 (i.e., the mean of the belief on x2) relative to the size of the prediction error δ1, as 

expressed in terms of the update in predicted outcome probabilities 

where  The learning rate α3 is the equivalent quantity with respect to the 

size of the update in μ3:

This is proportional to the precision-weighted prediction error 

Where  is the posterior precision (inverse variance) at the third level and  is the 

precision (inverse variance) of the prediction at the second level. More details can be found 

in the supplementary material to [6].
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The βs are the coefficients of the response model, which describes how beliefs (i.e., the 

probability distributions on xi as represented by their sufficient statistics μi and σi) are 

translated into log-reaction times. This is a straightforward linear model:

with the independent variables defined as follows:

Here, u(t) is the outcome; u(t) = 1 when the high tone cue is followed by a face or the low 

tone cue is followed by a house while u(t) = 0 in the converse cases. Since  is the 

predicted probability of u(t) = 1 (and 1 −  of u(t) = 0) this means that the first independent 

variable is the Shannon surprise associated with the outcome. Uncertainty at the outcome 

level (i.e, the first) is the variance  of the Bernoulli distribution over 

predicted outcomes. This is the irreducible uncertainty associated with any kind of 

probabilistic prediction, referred to as risk in the economics literature. Uncertainty at the 

second level is the posterior variance σ2 of the belief on x2, expressed at the outcome level 

(hence the multiplication with the derivative of s taken at the current mean μ2 of the belief 

on x2; for details on this transformation to the first level, see the Supplementary Material to 

12. This is informational uncertainty, so called because it quantifies the lack of information 

about the quantity (here x2) governing outcome probabilities. Volatility is the exponential of 

the phasic log-volatility μ3, also expressed at the outcome level.

The choice of these models was hypothesis-driven. The reason for choosing the HGF as the 

learning model was twofold. First, because it reflects the hierarchical nature of changing 

environments in that it allows for volatility that is itself volatile, it allowed us to test the 

hypothesis that ASD participants differ from NT in the way they deal with a hierarchy of 

uncertainties and specifically address learning about volatility. The response model was 

chosen on the basis that log-RT’s were approximately Gaussian distributed and that a linear 

model allowed for the straightforward identification of the effects of all hypothesized 

modulating factors.

There were several reasons that we chose to fit reaction time over trial-wise errors. First, 

reaction times are a sensitive behavioural response measure which can take a range of values 

across trials, from fast to slow, and empirically have been shown to vary with the uncertainty 

of participant responses in both detection and discrimination experiments 58. Second, 

reaction times were used previously where Bayesian learning models were applied to 
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behavioural tasks very similar to ours, so modelling RT here increases comparability across 

studies24,59. Third, error rates are very low in this study (~3% overall), and any logistic 

model attempting to explain such a small incidence of states coded as 1 (relative to 0) would 

require more trials than we have in this study (increasing as a function of the explanatory 

variables in the model 60). Fourth, (and most pragmatically) some participants didn’t make 

any errors at all so modelling RT maximises the number of participants included in the 

analysis. Finally, the group*probability interaction for percent errors is not significant in our 

high and low AQ replication (supplemental results), and so in modelling RT we are 

modelling the most the effect most comparable across both experiments in this manuscript.

Sample Size

In our NT participants we sought a conceptual replication of Den Ouden et al. 24, albeit with 

a modified design. We calculated a minimum sample size a priori on the basis of the low 

probability minus high probability RT difference that they report (32 ms) and an assumed 

variance (actual SD not reported) of the same. This analysis indicated that we would need a 

minimum of 14 participants to achieve 95% power to detect a similar (α = 0.05; 2-tailed) 

effect in the NT group. Given that initial effect sizes are often inflated 61 and that we sought 

power to detect a difference between two groups, we doubled this estimate and aimed to test 

~28 participants in each group with some attrition expected.

As there is no prior precedent for detecting between-groups differences using this specific 

task, we additionally assessed the required sample size to detect a medium effect size for a 

between-subjects ANOVA with three levels and a between-subjects factor of group. This 

indicated that a total sample size of 48 participants would be necessary to have at least 90% 

power to detect an F-test effect size of 0.25.

For the pupil size regression, where it was not possible to calculate power a priori, the 

sample sizes and effect sizes (β’s) reported for this particular analysis are in line with 

previous studies employing the same methods9. Post-hoc power calculations indicate that 

with 11 ASD participants included in the actual analysis, we had 86% power to detect the 

mean positive β (slope=0.72) that we observed in these participants (α = 0.05; 2-tailed).

Statistics

Behavioural data—All statistical analysis of behavioral data were performed in 

MATLAB (Mathworks, Ltd.) and PASW Statistics 22 (SPSS inc./IBM). For the analysis of 

RT’s, too fast and too slow (<100 or >1000ms) responses were excluded and, including 

missing responses, there was no significant difference between the groups in the overall 

percentage of missing data (1.9% ASD, 2.3% NT, t(47)=0.45, p=0.65). To maximize trial 

numbers per condition we collapsed across face/house trials and, for correct trials only, 

submitted RTs to a mixed ANOVA with within subject factors of expectedness 

(unexpected(UE), neutral(N) and expected(E)) and stimulus noise (high(H), medium(M) and 

no (N)), and a between-subjects factor of group. We also quantified a behavioral measure of 

surprise, defined as the difference in RT between UE and E outcomes based on the ground 

truth, and compared this measure between the groups using independent-samples t-tests. An 

equivalent analysis was conducted for error rates and log transforms of both these measures. 
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% errors were calculated for each condition separately. Data distributions were assumed to 

be normal but this was not formally tested. Where assumptions of heterogeneity of 

covariance were violated, degrees of freedom were corrected using the Greenhouse–Geisser 

approach.

Eye tracking data—All statistical analyses of eye tracking data were performed in 

MATLAB (Mathworks, Ltd.) Only trials in which 80% or more samples were successfully 

tracked were included in the analysis. There was no significant difference in the mean 

number of included trials between the groups (mean good trials ASD=298; NT=261; 

t(23)=0.803, P=0.43). For pupil data blinks were treated with linear interpolation and the 

resulting pupil traces were low-pass filtered and smoothed following the conventions 

outlined in 62. To explore phasic pupil responses for correct trials traces were baseline 

corrected to the average response during the 500 ms preceding the outcome image. Tonic 

pupil responses were determined as the average of the z-scored pupil measurement across all 

trials. Z-scoring accounts for individual differences in baseline pupil size and has been 

employed previously in the literature 63,64. Mean absolute deviation (MAD) from fixation 

(in degrees of visual angle) across groups and conditions was used to assess fixation 

compliance on each trial 65.

Regression analyses were conducted to examine the effects of surprise based on the ground 

truth and volatility surprise (ε3: trial-wise precision-weighted prediction errors) on pupil 

dilation following outcome presentation. A similar approach has previously been employed 

in recent studies examining the relationship between pupil dilation and computational model 

parameters that vary across trials 9. The post-outcome period for each trial was sampled 

using 370 5ms bins. Regression analyses were conducted for each individual time bin, with 

HGF estimates of precision-weighted prediction errors (ε3) and the ‘ground truth’ contrast 

of unexpected (1) minus expected (-1) included as regressors of interest; trial type (0=face, 

1=house), fixation compliance (MAD), and RT for each trial were entered as control 

regressors. The resultant timeseries of beta-weights (e.g. multiple regression conducted at 

every time point) provide estimates of the effects of ‘ground truth’ surprise and volatility 

surprise on pupil dilation across all trials.

At the group level we then conducted t-tests for the positive or negative effect of the 

regressors of interest, and the independent-samples difference between groups, corrected for 

multiple comparisons using a cluster-based permutation approach at 2000 permutations 

(FWE alpha=0.05, 2-tailed) 66. This allowed us to assess when our surprise metrics were 

significantly encoded in the pupil timeseries. This approach protects against false positives 

across correlated measurements (i.e. maximizes temporal sensitivity).

Learning rate data—To test the hypothesis that individuals with ASD have problems with 

flexibly updating their rate of learning (precision weighting) in response to environmental 

change we examined the change (Δ) in α2 (probability) and α3 (environment) when 

switching from stable to volatile periods of the task. For this we used the dynamic α 
trajectories estimated on the basis of all trials, but specifically interrogated a period of 72 

trials (highlighted in green on Figure 1) in which the probabilistic association between tones 

and outcomes remained fixed, followed by a period of 72 trials (highlighted in violet on 
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Figure 1) in which the outcome probabilities switched three times. We compared the change 

in average α2 and α3 between these two periods, across the groups. Previous studies have 

examined how learning about how reward probability changes in response to volatility in 

healthy volunteers 8,10 and also in aversive environments 9. In these studies the 

participant’s responses are fit with a simple delta learning rule, (cf. Rescorla-Wagner 67) 

separately in volatile and stable task phases which annuls the elegance of the generative 

model approach by imposing knowledge of the task structure. In contrast, we fit subject RTs 

across all 456 trials using the HGF and the two learning rates (α2 & α3) dynamically vary as 

a function of each participant’s inferred beliefs about cue-outcome informativeness and 

changes in these associations over time. While simpler models approximate participant’s 

outcome probability estimates, assuming they are an ‘ideal’ Bayesian observer, the HGF 

addresses what kind of Bayesian observer each participant actually is, making is a more 

sensitive means of capturing individual differences in learning about uncertainty (see ‘HGF 

model validation’ section below and Figure 3C (inset) for comparisons between the HGF 

and simpler reinforcement learning models).

Bayesian Model Selection—To disambiguate alternative explanations (models) for the 

participants’ behaviour, we used Bayesian model selection (BMS). BMS evaluates the 

relative plausibility of competing models in terms of their log-evidences which quantifies the 

trade-off between accuracy (fit) and complexity of a model. Here, we used a recently 

updated random effects BMS method to account for potential interindividual variability in 

our sample quantifying the protected posterior probabilities of four competing models 68. 

Protected exceedance probabilities quantify the probability that any one model is more 

frequent than the others and also accounts for the fact that the observed variability in (log-) 

model evidences could be due to chance 68.

Regression analyses—To examine the relationship between the primary behavioural 

measure of surprise (UE-E RT) and autism symptom severity we conducted a multiple linear 

regression with ADOS-2 scores for communication and reciprocal social interaction, and IQ 

as predictors. A secondary regression model was also conducted in which an sensory 

sensitivity scores (as measured by the adult sensory questionnaire 69) was also included as a 

predictor. Sensory scores were only available for 21/24 ASD participants, therefore this 

analysis was conducted on a reduced sample size. In response to a reviewer request we also 

conducted a third regression to predict UE-E RT that included baseline RT as an additional 

predictor. As both communication scores (r=-.421, P=0.04) and mean RT (r=-.341, P=0.017) 

correlate with UE-E RT difference in the ASD participants, we created centered versions of 

these variables and their interaction effect in the regression model.

To assess the validity of the HGF model parameters in predicting group status (ASD=1, 

NT=0) we conducted binary logistic regression (method=enter) using SPSS. The predictor 

variables in this analysis were the eight free parameters estimated by the HGF, namely the 

five response model betas (β0…4) plus decision noise (ζ) and the two omega parameters 

from the perceptual model(ω2, ω3). Additionally, we recreated this analysis in R and used 

the cv.glm function in the boot package to perform leave-one out cross validation.
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Please see the Life Sciences Reporting Summary for more details about the methods in this 

manuscript.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Task structure
Schematic of the task showing the volatile environmental structure (top) e.g. the probability 

of seeing a house (given the preceding high or low tone) across trials. Green area shows a 

“stable” period of 72 trials when the probabilities remained fixed and the violet area shows a 

“volatile” period of 72 trials where the outcome probabilities switched three times. A single 

trial is also seen (bottom) showing example stimuli.
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Figure 2. Behavioural results based on the ground truth
(a, b) reduced modulation of reaction time and (c, d) error rates as a function of expectation 

in ASD adults (n=24) relative to NT (n=25). Dotted lines show linear fits. ASD, autism 

spectrum disorder. NT, neurotypical. RT, reaction time. UE, unexpected. N, non-predictive. 

E, expected. Data points represent individual participants, red line shows the mean, shaded 

regions and error bars show 95% confidence intervals and 1 standard deviation of the mean 

for each condition and group. au, arbitrary units. Star indicates significance at P<0.05
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Figure 3. Relationship between behavioural surprise and symptoms
The magnitude of the reaction unexpected (UE) minus expected (E) reaction time (RT) 

effect is predicted by communication symptoms in the ASD group (Pearson correlation: 

r=-0.421, P=0.04) Data points show individual participants, n=24. ADOS, autism diagnostic 

observation schedule.
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Figure 4. Computational model details and results
(a) Schematic depiction of the 3-level HGF. The perceptual model comprises three 

hierarchical states (x1, x2, and x3). Participant specific free parameters (ovals) are estimated 

from individual log RT data - red parameters relate to the perceptual model whereas black 

parameters relate to the response model. Diamonds represent quantities that change over 

time (trials); hexagons, like diamonds, represent quantities that change in time but that 

additionally depend on their previous state in time in a Markovian fashion. See main text for 

more details. (b) Binary logistic regression – beta weights for each of the HGF free 

parameters showing the contribution of each to predicting group status (ASD, NT) across all 

participants (n=49). Significant predictors (P<0.05) are denoted with star. Error bars show 
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SEM for the beta estimates. All parameters were included in the same model but ω′s are 

plotted on a separate scale (in red). Group differences in the model parameters at the level of 

individual subjects can be seen in Figure S8. (c) Group differences in learning rate update 

(i.e. change from stable to volatile periods of the task). ASD participants (n=24) update α2 

less than NT participants (n=25), whereas they update α3 more than NT participants. Data 

points represent individual participants, red line shows the mean, shaded regions and error 

bars show 95% confidence intervals and 1 standard deviation of the mean. ASD, autism 

spectrum disorder. NT, neurotypical
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Figure 5. Pupillometry results
(a) solid yellow line shows cluster of time points where the UE-E group contrast was 

significantly positive in the NT participants; black solid line shows where NT’s were 

significantly greater than ASD (2000 permutations; FWE alpha=0.05, 2-tailed). (b) Blue 

solid line indicates where ASD participants showed a significant pupil response to precision 

weighted prediction errors (ε3), that is greater than zero and black solid line shows where 

this pupil response was significantly different from NT’s (2000 permutations; FWE 

alpha=0.05, 2-tailed). NT, n=14, ASD, n=11. X-axis represents time since outcome. ASD, 

autism spectrum disorder. NT, neurotypical. UE, unexpected. N. E, expected. au, arbitrary 

units
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