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ABSTRACT Dyslexia is a neurological disorder that is characterized by imprecise comprehension of words

and generally poor reading performance. It affects a significant population of school-age children, with more

occurrences in males, thus, putting them at risk of poor academic performance and low self-esteem for a

lifetime. The long-term hope is to have a dyslexia diagnostic method that is informed by neural-biomarkers.

In this regard, large numbers of machine learning methods and, more recently, deep learning methods have

been implemented across various types of dataset with the above-chance classification accuracy. However,

attainment of clinical acceptability of these state-of-the-art methods is bedeviled by certain challenges

including lack of biologically-interpretable biomarkers, privacy of dataset and classifiers, hyper-parameter

selection/optimization, and overfitting problem among others. This review paper critically analyzes recent

machine learning methods for detecting dyslexia and its biomarkers and discusses challenges that require

proper attentions from the users of deep learningmethods in order to enable them to attain clinically relevance

and acceptable level. The review is conducted within the premise of implementation and experimental

outcomes for each of the 22 selected articles using the Preferred Reporting Items for Systematic review and

Meta-Analyses (PRISMA) protocol, with a view to outlining some critical challenges for achieving high

accuracy and reliability of the state-of-the-art machine learning methods. As an evidence-based protocol for

reporting in systematic reviews and meta-analyses, PRISMA helps to ensure clarity and transparency of this

paper by showing a four-phase flow diagram of the selection process for articles used in this review. It is

therefore, envisaged that higher classification performance of clinical relevance can be achieved using deep

learning models for dyslexia and its biomarkers by addressing identified potential challenges.

INDEX TERMS Dyslexia detection, biomarkers, feature extraction, classification algorithms, machine

learning, deep learning.

ACRONYMS AND DEFINITIONS

3D Three-Dimensional

AD Axial Diffusivity

ANN Artificial Neural Network

ANOVA Analysis of Variance

AUC Area under ROC curve

BET Brain Extraction Tool

BOF Bag of Feature

BOLD Blood Oxygenation Level Dependent
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CAT12 Computational Anatomy Toolbox

version 12

CNN Convolutional Neural Network

CSF Cerebrospinal Fluid

CTOPP Comprehensive Test of Phonological

Processing

CV Cross-Validation

DARTEL Diffeomorphic Anatomical Registration

using Exponentiated Lie algebra

dMRI Diffusion MRI

DNN Deep Neural Network
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DT Decision Tree

DTI Diffusion Tensor Imaging

EEG Electroencephalogram

EOG Electro-Oculogram

FA Fractional Anisotropy

FAST4 FMRIB’s Automated Segmentation

Tool v4

FDT FMRIB Diffusion Toolbox

FEAT FMRI Expert Analysis Tool

fMRI Functional MRI

FMRIB Functional Magnetic Resonance

Imaging of the Brain

GM Gray Matter

IEEE Institute of Electrical and Electronic

Engineers

KNN K-Nearest Neighbor

LASSO Least Absolute Shrinkage and

Selection Operator

Latent-DA Latent Dirichlet Allocation

LDA Linear Discriminant Analysis

LIBSVM SVM Library of MATLAB

Linear-R Linear Regression

LIPL Left Inferior Parietal Lobule

LOFG Left Occipital Fusiform Gyri

LOOCV Leave-one-out Cross-Validation

LR Logistic Regression

LSVM Linear SVM

MATLAB Matrix Laboratory

MD Mean Diffusivity

MEG Magnetoencephalography

MNI Montreal Neurological Institute

MRI Magnetic Resonance Imaging

MSE Mean Square Error

NPV Negative Predicted Value

PANDA Pipeline for Analyzing braiN

Difussion imAges

PCA Principal Component Analysis

PET Positron Emission Tomography

PPV Positive Predicted Value

PPVT-III Peabody Picture Vocabulary Test:

Third Edition

PRISMA Preferred Reporting Items for Systematic

review and Meta-Analyses

RD Radial Diffusivity

RF Random Forest

ROC Receiver Operating Characteristics

ROFG Right Occipital Fusiform Gyri

SPM12 Statistical Parametric Mapping

version 12

SURF Speeded-Up Robust Feature

SVM Support Vector Machine

SVM-RFE Recursive Feature Elimination with SVM

T1-w/T2-w T1 weighted image/T2 weighted image

TBSS Tract-Based Spatial Statistics

TNR True Negative Rate

TPR True Positive Rate

VBM Voxel-Based Morphometry

VOG Video-Oculography

WART-R,3,4&5 Wide Range Achievement Test:

Revision R, 3, 4, & 5

WASI, II,III&IV Wechsler Abbreviated Scale of

Intelligence, 2nd, 3rd, & 4th Editions

WJ-III Woodcock-Johnson Third Edition

WM White Matter

WoS Web of Science

I. INTRODUCTION

Dyslexia, an extremely complicated neuro-developmental

brain disorders, is attracting great attentions in recent time

among researchers in modern Neuroscience [1]. It is a neuro-

logical disorder [1], [2] characterized by sluggish and inac-

curate word comprehension and phonological impairment,

affecting about 5-17% [3] of the general population in most

languages and cultures. In most cases, the onset of this con-

dition progresses to adolescence from childhood and can

be counterproductive to academic performance [4]. Dyslexia

may also have significant negative influence on children’s

self-esteem and self-perception development [4], [5]. Stu-

dents with dyslexia experience high levels of bullying in

academic settings as well as feelings of alienation and exclu-

sion [1], [5], [6]. Adapting from the definition of Interna-

tional Dyslexia Association [7] and British Dyslexia Asso-

ciation [8], certain children with dyslexia exhibit deficits in

higher-order processing or executive control systems. Apart

from this, they also have visual attention span disorders

that significantly affect their ability to read. They may also

have memorizing issues as well as letter recognition diffi-

culties [8]. Dyslexic children and adults, therefore, display

major deficiencies in phonological processing, verbal work-

ing memory and speed of communication [8]. Dyslexia can

be developmental or acquired depending on whether the vic-

tim’s brain encountered deficit during developmental stages

or sustained serious injuries such as stroke [9].

In Figure 1, brain is the principal neurological source

of dyslexia which manifests as cognitive and behavioural

deficits in the other three interacting elements. From this

figure, it can be deduced that existing dyslexia interventions

are approached from three domains namely: behavioural,

cognitive, and biological domains respectively [10]. While

phonological disorder otherwise, known as language dis-

order manifests when the affected individual is unable to

develop association between letters (grapheme) and sound

(phoneme), leading to reading and spelling impairments [8],

visual deficit manifests when there is dysfunction in the

magnocellular and parvocellular subsystems of the brain.

Studies by Vidyasagar [11] and Danielli et al. [12] have

shown that abnormality in the magnocellular pathways and

cells is associated with various visual impairments, including

dyslexia. Auditory deficit, otherwise called hearing impair-

ment, manifests when there is impairment in central auditory
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FIGURE 1. Interaction between the elements of dyslexia: brain
abnormalities, phonological disorder, visual deficit, and auditory
dysfunction. Dyslexia occurs due to abnormalities and dysfunctionalities
of certain brain subsystems such as phonological, visual and auditory as
child develops right from birth. It manifests as both cognitive and
behaviour deficits when a child attains school age.

nervous system responsible for hearing leading to difficulty in

sensing, processing, and understanding sound signals. Recent

study by Kuhl et al. [13] has shown that dyslexia can be pre-

dicted through auditory cortex gyrification and abnormal neu-

ral connectivity within the speech processing system before

a child begins to learn how to read and write. Summarily,

these four elements constitute the basis upon which theories

of developmental dyslexia are formulated.

Researchers have proposed several methods for detect-

ing and classifying dyslexia and its markers using

datasets obtained from several multiple sources. These

sources include standardized psycho-educational tests,

web-based/mobile-based games, eye movement tracking,

MRI and EEG scans, MEG scans, PET scans, video

and images captured during cognitive/phonological tasks.

Standardized psycho-educational tests are used to mea-

sure study-participants’ achievement, intelligence, phonolog-

ical processing, reading skill and vocabulary development.

In other words, they are used to assess and quantify students’

cognitive abilities. They include Wechsler Abbreviated Scale

of Intelligence (WASI, II,III&IV) [14], Wide Range Achieve-

ment Test: Revision R,3&4 (WRAT-R,3&4) [15],Woodcock-

Johnson III (WJ-III) [16], Comprehensive Test of Phono-

logical Processing (CTOPP) [17], [18], and Peabody Picture

Vocabulary Test: Third Edition (PPVT-III) [19]. Web-based

e-learning systems have been developed by [20]–[26] to assist

schoolchildren suffering from dyslexia in reading and writing

across various regions, languages and cultures. Similarly,

mobile-based games such as Dyseggxia and GraphoGame

have also been developed by researchers to assist dyslexic

individuals in cognitive and phonological trainings [27]–[31].

For eye movement tracking, statistical measures such as

dispersion threshold identification, velocity threshold iden-

tification algorithms and eye trackers have been utilized

to detect learner’s eye movement features during cognitive

exercise. These features include fixations and saccades, used

by recent studies to classify learners into dyslexic and non-

dyslexic [32], [33]. Both MRI and EEG scans are used to

generate and detect images showing alterations in learner’s

brain normal morphology with electrical impulses within

it. For instance, different types of MRI scans have been

utilized for finding neural-biomarkers of dyslexia in the

structure, function, activation and geometric properties of

different brain tissues and regions [1]. Such alterations were

analyzed with the aid of voxel-based morphometry (VBM)

analysis [34]. VBM study utilizes software packages such

as BrainImage software and statistical parametric mapping

such as Statistical Parametric Mapping and Computational

Anatomy Toolboxes (e.g. SMP12 and CAT12) to normalize

the stereotactic brain MRI slice to a common study-specific

space, using voxel statistics to classify anatomical regions of

brain tissue density [1], [34], [35]. By definition, a biomarker

is a feature that is objectively measured and evaluated as an

indicator of normal biological processes, pathological pro-

cesses, or pharmacological responses to therapeutic interven-

tion. Meanwhile, neuroimaging biomarkers, often referred to

as neural-biomarkers, use brain imaging techniques to obtain

themorphology, function, micro-environment, metabolism or

molecular content of the brain and its lesions. Apart from

the fact that the above approach is very expensive, other

drawbacks include low coverage (i.e., not suitable for large

number of participants), undefined sensitivity and specificity

metrics, and more focuses on neurobiological characteristics

rather than biomarker definition. Other method for generating

data for dyslexia detection are video-oculography (VOG) and

electro-oculogram (EOG). Any deviation from normal read-

ing and writing abilities detected during cognitive tasks with

the aid of standardized psycho-educational tests is referred

to as behavioural marker while alterations detected in brain

morphology, eye movement and normal auditory system are

called neural-biomarkers or simply, biomarkers.

The usage of traditional machine learning methods and

deep learning algorithms for dyslexia and its biomarkers

detection is on the increase recently. Models such as Support

Vector Machine (SVM), Artificial Neural Networks (ANN),

Decision Tree (DT), Random Forest (RF), Linear Regres-

sion (Linear-R), Logistic Regression (LR), Linear Discrim-

inant Analysis (LDA), Naïve Bayes, K-Nearest Neighbor

(KNN), and various state-of-the-art Convolutional Neural

Networks (CNNs) have been exploited at various places and

time to detect and classify dyslexia using data obtained with

techniques mentioned above. Support vector machine (SVM)

focuses on selecting critical points for a given classification

task. Support vectors are the components of dataset related

to the hyperplane separation of the two different classes. The

Support vector algorithm finds decision function parameters

which maximize the margin between the training samples

and the class boundary. SVM’s learning principle is based

on systemic risk minimization [36], which addresses the

problem of balancing the complexity of the model against

the effectiveness of data fitting. ANNs are central nervous

system-inspired machine learning algorithms that depict the
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interconnection of well-established nodes, where each node

is a computational unit that represents a biological neuron.

A wide variety of ANNs architectures are available, with

extensive usage areas for classification problems. DTs are a

family of methods that use a branching decision model and

its possible implications to improve decision-making. The

expected outcome for the classification trees is a discrete

category (the class). The main drawback of DTs is that they

are prone to overfitting by creating complex models that are

not properly generalized. RF is composed of a large number

of individual de-correlated DTs that serve as an ensemble.

Ensemble method is a supervised learning algorithm whose

outcome of prediction is obtained by combining multiple

basic classifiers into a single classification model. It aims

to increase the accuracy and robustness of multiple classi-

fiers over a single classifier [36]. As a meta-estimator that

suits multiple DT classifiers on different dataset sub-samples,

a RF uses average to boost predictive accuracy in order to

control overfitting. Linear-R is the simplest type of regres-

sion analysis that estimates the relationship within a linear

model between the independent and dependent variables. One

method used where the dependent variable is categorical is

LR, like group diagnosis. LDA is a classifier used to identify

a linear combination of features in statistics, pattern recogni-

tion, and machine learning that characterizes or distinguishes

two or more classes. It is closely related to analysis of vari-

ance (ANOVA), regression, PCA and factor analysis in a way

in which linear combinations of variables are identified to

better explain the data [37]. Naïve Bayes classifiers are a

family of simple probabilistic classifiers or algorithms based

on the application of Bayes’ theorem. They are among the

simplest Bayesian network models with kernel density esti-

mation. Each pair of features classified by this model is inde-

pendent of each other. TheKNN classifier is a non-parametric

approach used for classification and regression tasks. In both

tasks, the input consists of the k-closest training samples in

the feature space while the output depends on the given task:

class in the case of the object’s classification or property value

in the case of regression. Deep neural networks (DNNs) are

the most recent machine learning models used in dyslexia

classification. Most popular among them is CNN which have

undergone several stages of architectural developments over

the last two decades. DNNs are derivatives of ANNs, particu-

larly feed forward multilayer perceptron with more than two

hidden layers. For detail discussion about derivation of CNN

fromANN, see the attached supplementary file with the name

Supplementary1.pdf. Supplementary1.pdf shows how CNN

model uses filters to extract feature maps in each of the con-

volutional, activation, and pooling (sub-sampling) layers to

predict patterns in the input images. Also, discussed in detail

are the types of machine learning algorithms, the general use

of deep learning in medical imaging, as well as the recent

application of deep learning algorithms for neuroimaging

analysis.

This study presents a critical review of recent advances

in dyslexia detection using state-of-the-art machine learning

methods. The review is conducted within the premise of

implementation and experimental outcomes for each selected

study with a view to highlighting some critical challenges

mitigating against the clinical acceptability of these methods.

The objective of this paper is therefore, to review the signif-

icance, contributions, performance, and limitations of recent

studies which employ machine learning methods for dyslexia

detection. Specific focus of this review includes data collec-

tion, data preparation and preprocessing, feature extraction

and selection, training and classification, and performance

evaluation. Machine learning is a growing field of research

that can build predictive models from specific datasets. This

review showed how traditional machine learning and deep

learning methods have evolved over the last decade in the

field of dyslexia and biomarker detection. By identifying

potential challenges of state-of-the-art deep learning meth-

ods that are currently gaining attention in the diagnosis of

dyslexia and suggesting approaches to addressing them, this

will pave the way for them to reach a clinically-relevant and

acceptable level, hence the need for this study.

The entire article is broken down into the following struc-

tural components: Section 2 discusses the material and meth-

ods, on how the review was conducted, Section 3 presents

discussion of findings and outline potential challenges of

using state-of-the art machine learning models for dyslexia

detection. Section 4 concludes the review and provide some

future directions.

II. MATERIALS AND METHODS

A. IDENTIFICATION AND SELECTION OF STUDIES FOR

THE REVIEW

A critical literature review was performed in this study to

define a broad variety of machine learning methods for

detecting and classifying dyslexia and its markers in the

last one decade up to the year 2020 (2010-2020). The

selection process follows the guidelines of the Preferred

Reporting Items for Systematic reviews and Meta-Analyses

(PRISMA) [38] to discover and identify relevant articles.

Suitable articles were first of all, discovered using elec-

tronic literature search method from the Google Scholar,

Web of Science (WoS), Scopus, IEEE Xplore, PubMed

and Science Direct using the combination of queries terms

from the search keywords. Keyword searches for suit-

able articles include: ‘‘classification methods’’, ‘‘classifi-

cation problem’’, ‘‘biomarkers prediction’’, ‘‘intervention

programmes’’, ‘‘assistive technologies’’, ‘‘machine learning

methods’’, ‘‘deep learning algorithms’’, ‘‘neural networks’’,

‘‘deep neural networks’’, ‘‘neural-biomarkers’’ and ‘‘MRI

dataset’’ in the domain of dyslexia detection and analysis.

Searched results were filtered to sieving out those articles

that did not capture such discourse. Screening of the articles

was based on the titles, abstracts, and search keyword. The

total number of articles collected at the end of the search

was 334. After the elimination of duplicate papers, the orig-

inal total number of articles was reduced to 131. During

the screening stage two reviewers were assigned to evaluate
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FIGURE 2. Flow diagram of publication selection process for selecting 22 final articles according to PRISMA
protocol.

the papers independently. After the exclusion of 43 papers,

84 qualified articles were then distributed to three reviewers

for thorough screening exercise. These were then progressed

to another screening stage after meeting the criteria. The

inclusion criteria were as follows: (1) articles published in

English between 2010 and 2020; (2) articles used a partic-

ular machine learning method or combinations thereof for

the identification of dyslexia; (3) articles used the dyslexia

dataset category referred to in the introductory section. Fol-

lowing the screening process, the articles were then sent to

three reviewers for further consideration of the eligibility of

the articles in accordance with Table 1. The reviewers then

compared their analyses until they reached a consensus and

agreement. Finally, only 22 articles were selected for critical

review. Figure 2 displays a flowchart of the selection process

for articles from the early stage of the search to the final

number of selected articles.

In-line with recent dyslexia detection reviews based on

machine learning [9],[39] the specific focus of this review

includes data collection, data preparation and pre-processing,

extraction and selection of features, training and classifica-

tion, and performance evaluation. Existing reviews, however,

are limited in scope to a wide range of classical machine

learning methods and/or specific dataset types (e.g. EEG

TABLE 1. Criteria of inclusion and exclusion.

scans) as in the case of Perera et al. [39] without consideration

for deep learning methods. Figure 3(a) shows the annual

distribution of 84 articles that were thoroughly screenedwhile

the pie chart of Figure 3(b) shows the frequency of use of

machine learning algorithms in the final 22 reviewed articles.

Figure 3(a) shows that most of the studies were published

between 2014 and 2019, with 64 articles accounting for

76.2% of the total. Between 2010 and 2013, a total of 18 arti-

cles (21.4%) were published with the highest number of

articles in the year 2012. Only 2.4% of the total articles

were published in the year 2020. In Figure 3(b), 34% of the

22 articles reviewed used the SVM algorithm, followed by
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FIGURE 3. (a). Annual distribution of 84 articles thoroughly screened.
(b). Distribution of machine learning usage by researchers of final
22 reviewed articles.

the ANN algorithm (13%). The percentage of studies that

used the KNN algorithm is 10.5%, while the LR and RF

algorithms are 8% each. CNN algorithm usage accounts for

10.5%, Naïve Bayes and K-mean algorithms account for 5%

each, while AdaBoost and PCA account for 5% each.

B. DATA COLLECTION

The first step in dyslexia biomarker detection is acquisition

of dyslexia-related datasets using techniques mentioned in

the introductory remarks. Accordingly, three categories of

datasets have been collected by early studies for machine

learningmethods analysis. The first category of dataset shows

the behavioural symptoms noticeable in dyslexic individuals.

They are related to reading, writing, phonological aware-

ness, working memory and facial engagement during learn-

ing process. Psychologists have collected this category of

datasets using standardized tests such as WASI, WRAT,

WJ, CTOP, and PPVT [14]–[17], [19] to identify dyslexic

individuals based on their poor performance. Conducting

standardize testing is very tedious, time-consuming, and

not suitable for larger number of participants due to wider

variations in the exhibited behavioural patterns. Studies based

on machine learning methods obtain this category of datasets

from students’ handwritings, typing, reading, test scores and

facial engagements across varying languages and cultures.

Spoon et al. [40] and Spoon et al. [41] collected handwriting

dataset from 88 subjects (comprises 11 dyslexics, 77 con-

trols) and 100 subjects (comprises 22 dyslexics, 78 controls)

respectively for machine learningmethod analysis. The hand-

writing samples which were collected with the assistants of

participants’ parents and class teachers from grades K1-6

schoolchildren of both Spanish and Latin-speaking origins.

Both Kohli and Prasad [42] and Khan et al. [43] collected stu-

dents’ test scores for training machine learning models dur-

ing dyslexia identification analysis. The test scores datasets

were collected from English-speaking and Malay-speaking

students respectively. Images of students’ facial engage-

ments have been collected by Abdul Hamid et al. [44] for

machine learning dyslexia detection. Participants comprises

30 dyslexic individuals (20 males, 10 females) between the

age 7-12 years old drawn from pool of students at Dyslexia

Association of Malaysia (DAM) Ampang and Bangi areas

in Malaysia. Reading test-errors dataset have been collected

by Lakretz et al. [45] for machine learning analysis from

313 Hebrew-speaking dyslexic subjects, aged 7 to 62 years,

at the Language and Brain Laboratory in Tel-Aviv University,

Israel.

The second category of dataset used by machine learn-

ing studies for dyslexia detection is by using brain imaging

modalities to capture distinctive behaviours and activations

of the study-participants’ brains. These imaging modalities

include fMRI, MEG, EEG, PET etc. EEG dataset have

been collected by Al-Barhamtoshy and Motaweh [46] from

80 schoolchildren around Makkah and Jeddah in Saudi

Arabia for early dyslexia detection. The schoolchildren

whose age ranged between 7-18 years old were made to

undergo Gibson test of cognitive skills prior the collec-

tion of EEG dataset. Perera et al. [47], [48] collected the

brain activation signal patterns of 32 English-speaking par-

ticipants (17 dyslexics, 15 controls, 15 males, 17 females)

for dyslexia detection study using EEG headset. All the

study-participants are right-handed, aged 18+ years with

normal/corrected-to-normal vision and normal hearing. Other

researchers who have used EEG datasets for dyslexia detec-

tion using machine learning methods include Chen Wan

Fadzal et al. [49], Karim et al. [50], and Fried and

Breznitz [51], [52]. For MRI datasets, Chimeno et al. [37]

collected 3D structural images for both fMRI and DTI scans

from 52 schoolchildren aged between 9 and 12 years old.

The two types of MRI dataset were obtained at different

acquisition times (i.e., 5 sec for fMRI and 4.2 sec for DTI).

In three independent studies using classical machine learn-

ing methods, Plonski et al. [53], Jednorog et al. [54], and

Plonski et al. [55] collected a high-resolution T1-weighted

(T1-w) images from 236 study participants (130 dyslexics,

106 controls) who are mainly schoolchildren. The samples

were drawn from among schoolchildren in three different
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countries: French, German and Polish. French samples com-

prise of 84 subjects (39 dyslexics, 45 controls), German

samples comprise of 71 subjects (45 dyslexics, 26 controls),

while Polish samples comprise of 81 subjects (46 dyslexics,

35 controls). Cui et al. [56] obtained a high-resolution 3D

T1-w images (MPRAGE) based on the protocol of the Imag-

ing Centre for Brain Research at Beijing Normal Univer-

sity. The total number of subjects that participated in the

study was 61 (28 dyslexics, 33 controls). All subjects were

right-handed Mandarin native speakers, who regularly attend

schools. Tamboer et al. [3] followed a standard acquisi-

tion protocol of the Spinoza Centre for Neuroimaging in

Amsterdam to collect 3DTI full-brain scans of 49 first-year

psychology students who were native Dutch speakers

(22 dyslexics, 27 controls, 45 women, 8 left-handed). Specif-

ically, 3D T1-w images Turbo Field Echo Sequences (TFES)

were collected by the study for machine learning dyslexia

detection. BOLD functional images MRI dataset were col-

lected by Zahia et al. [57] from 66 schoolchildren, aged

between 9-12 years old for dyslexia biomarker analysis.

These children who were native Spanish-speakers, were

recruited from schools and the University Hospital of Cruces

Paediatric Ophthalmology and Neurology Department in Bil-

bao, Spain. Usman and Muniyandi [58] collected 45 T1-w

images of schoolchildren (19 dyslexics, 26 controls) from

Kaggle Database for dyslexia biomarker detection.

The third category of dataset is associated with

eye-movement patterns during the cognitive tasks. This cat-

egory of datasets has been collected by Rello and Balles-

teros [59], Rello et al. [60], Benfatto et al. [61], Rello

and Ballestero [59] and Rezvani et al. [62] using machines

such as eye movement tracker and EEG scans. Other recent

machine learning studies combine the method of collecting

first category of dataset with method of collecting either

category two or category three dataset for optimal dyslexia

detection and analysis.

Although collecting second and third categories of dataset

can be beneficial in achieving higher accuracy for dyslexia

and its biomarkers detection, they are relatively very expen-

sive to collect. Also, their coverage is usually limited to a

smaller set of participants [9]. In addition, participants, most

especially, kids may behave in an unusual way during the

scanning process.

While there are several online platforms for collecting

first category dyslexia datasets (e.g. TestingMon.com and

Pearson), second and third categories, particularly, for some

aspects of neural dyslexia biomarkers are publicly available

in major databases and repositories such as Kaggle, Open-

Neuro, BishopBlog and The Eckert Laboratory, etc. Table 2

presents various sources and types of datasets for dyslexia

study.

C. DATA PREPARATION AND PREPROCESSING

The main aim of data preparation and preprocessing is to

enable classifier extract most relevant interpretable features

from the used dataset. Effective classification of dyslexia

biomarkers using conventional machine learning classifiers

is largely dependent on the type of preprocessing tasks per-

formed on the input dataset before they are fed into the

classification models. Preprocessing operations are carried

out for a variety of purposes, ranging from data normal-

ization, features extraction, tissue segmentation, smoothing

(also known as de-noise), alignment with a specific image

template andmodulation to mention just a few. For traditional

machine learning methods such as ANN, SVM, KNN etc.,

the first preparation and preprocessing step is to convert the

dataset into a quantitative (numerical) or qualitative (textual)

format. A typical example of this is the conversion of EEG

scans dataset into high pass and low pass filters using dif-

ferent wavelet transformation approaches [52]. Others used

standard algorithms to filter noise and irrelevant records from

dyslexia biomarker dataset as in the case of Al-Barhamtoshy

and Motaweh [46] who employed rule-based Fourier trans-

form algorithm to eliminate noise from EEG scans.

Studies such as Khan et al. [43] and Kohli and Prasad [42]

employed manual data preprocessing methods while vast

number of image-based dyslexia biomarker studies used dif-

ferent type of software packages to preprocess their datasets.

Following the concept of Bag of Feature (BOF) image clas-

sification concept, Abdul Hamid et al. [44] implemented

Speeded-Up Robust Feature (SURF) descriptor in Com-

puter Vision Toolbox of MATLAB to extract facial engage-

ment features from image dataset. Jednorog et al. [54]

automatically segmented different tissue types from the

T1-w brain images using SPM8 software running on

MATLAB 7.11 software. FAST4 software was used by

Tamboer et al. [3] to segment gray matter (GM) tissue from

DTI generated brain image dataset. Recent version of SPM

package (SPM12, CAT12) was utilized by Zahia et al. [57]

and Usman and Muniyadi [58] to improve comparability

of pixels and voxels during data preprocessing. This soft-

ware package was implemented in MATLAB (R2017b) and

(R2018b) working environments respectively. Cui et al. [56]

created a map of white matter (WM) volume in the MNI

space using VBM8 toolbox in SPM8 software. In another

scenario, Cui et al. [63] developed a Pipeline for Analyzing

braiN Diffusion imAges (PANDA) MATLAB toolbox for

preprocessing dyslexia biomarker-related diffusion (dMRI)

dataset. FreeSurfer image analysis software was used by

Plonski et al. [53], [55] to derive accurate cortical vol-

ume and thickness features from the T1-w brain image

dataset. The Brain Extraction Tool (BET), the FMRIB Dif-

fusion Toolbox (FDT) and the Tract-Based Spatial Statis-

tics (TBSS) function software [64] were used to obtain

fractional anisotropy (FA) values from DTI dataset col-

lected by Chimeno et al. [37]. Statistical measures were

implemented on a computer system by Prabha and Bhar-

gavi [32], [33] to extract different fixation events and sac-

cades eye movements from the raw eye tracking dataset.

Following the concept of DeepWriter proposed by Xing and

Qiao [65], Spoon et al. [40], [41] generated 50 randomly

patches of handwriting features from each image handwriting
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TABLE 2. Sources of dyslexia datasets.

dataset used. Other data preparation and preprocessing

techniques used in the dyslexia detection related machine

learning studies include Least Absolute Shrinkage and

Selection Operator (LASSO) and Recursive Feature Elimina-

tion with SVM (SVM-RFE) used by Benfatto et al. [61] and

Rezvani et al. [62] to remove redundant and noisy features

from the eye tracking datasets. This study only appraises the

data preparation and processing methods; however, compar-

ative analysis of these methods is not covered in this work.

D. FEATURE EXTRACTION AND SELECTION

Appropriate feature extraction and selection process is an

important task in the detection of biomarkers of dyslexia

because the number of features to be predicted is largely

attributable to computational complexity. The purpose of fea-

ture extraction and selection is to generate most relevant and

highly informative features from the original features [67].

This is done in order to eliminate redundant data or noise in

the training dataset before they are fed into the machine learn-

ing predictive models, often called classifier. Features could

be numerical or categorical (text/an aspect of an image).

As presented in Table 3, studies have shown that relevant

and discriminative features have been selected from hetero-

geneous datasets for machine learning dyslexia detection.

Various machine learning dyslexia detection studies

have selected and used phonological features obtained

manually from standardized tests, learners’ handwritings,

questionnaires and test scores [40]–[43]. Many image-based

machine learning studies made use of MRI scans to extract

and select features from brain tissue properties. Such proper-

ties include volumetric information, geometric (shape-based)

measures, diffusion parameters, fractional anisotropy (FA),

and activation patterns [3], [54]–[58], [68]. For EEG based

machine learning studies, features relating to brain electri-

cal signals or eye movement patterns have been extracted

using various techniques, for example discrete wavelet trans-

form [51], [52].

Al-Barhamtoshy andMotaweh [46] extracted feature relat-

ing to the brain electrical signals from the study samples

using statistical functions and Fourier transform algorithms.

The algorithms employed rule-based paradigm to filter noise

and irrelevant features from the records of electrical sig-

nals dataset collected. Also, Artefact Subspace Reconstruc-

tion (ASR) based on sliding-window PCA was exploited by

Perera et al. [47] to filter unwanted signals and noise from

EEG brain electrical activity signals collected for dyslexia

biomarker detection. Such unwanted signals include eye

blinks and body movements.

In an MRI-based studies, Destrieux Atlas was used to

select 742 geometric brain properties features at the superior

and middle temporal gyri, subparietal sulcus, and prefrontal

areas of the brain in an independent study conducted by

Plonski et al. [53], [55] and Jednorog et al.. These areas are

located at both left and right hemisphere of the brain cortex.
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TABLE 3. Feature extraction methods for dyslexia biomarkers detection
using machine learning.

TABLE 3. (Continued.) Feature extraction methods for dyslexia
biomarkers detection using machine learning.

For each area, feature extracted included fold index, GM vol-

ume, cortical thickness, surface area, and mean curvature.

The above features were selected using three distinct feature

selection algorithms namely, t-test, Information Gain (IG),

and Random Forest Variable Importance. All the algorithms

were implemented in FreeSurfer image analysis suit.

In the study by Plonski et al. [53], optimum number of

features were selected as the subset with the lowest LogLoss

discriminatory power metric. These features comprise

25 most relevant features of cortical brain properties. Naïve

Bayes, Site-Dependent Whitening (SDW), Site-Dependent
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Extension (SDE) were modelled to extract these features at

(p-value<0.05).

In another study, Tamboer et al. [3] utilized GM vol-

ume of voxels found in the left and right occipital fusiform

gyri (LOFG, ROFG) and left inferior parietal lobule (LIPL)

as most discriminative features for training SVM model.

The volumes of these voxels were obtained by subtract-

ing the average VBM transformed brain of controls from

the dyslexic subjects’ average VBM transformed brain, and

z-transforming the resulting variations.

On the contrary to GM volumetric measures, WM vol-

ume, diffusion properties and FA features have been selected

as discriminating features for dyslexia in a study by

Cui et al. [56], [63]. These properties included mean diffusiv-

ity (MD), axial diffusivity (AD) and radial diffusivity (RD).

The regions of selection of these features were group into

three: putative reading system (which include the superior

longitudinal fasciculus, inferior fronto-occipital fasciculus,

thalamocortical projections, and corpus callosum); the limbic

system (which include the cingulum and fornix); and the

motor system (which include cerebellar peduncle, corona

radiata, and corticospinal tract). Extraction and processing of

these features were implemented using PANDA. Meanwhile,

the most discriminative features were selected using nested-

LOOCV, both inner and outer. These comprise 43 WM dis-

criminative features selected from 12 bilateral WM regions

in totality i.e., 31 WM volumes, 1 FA, 4 MDs, 4 ADs and

3 RDs. The procedure is preceded by non-rigid registration

(MNI152), bias-field correction, spatial normalization and

warping into Diffeomorphic Anatomical Registration using

Exponentiated Lie algebra (DARTEL) template.

Chimeno et al. [37] extracted both FA and activation

pattern features from DTI and fMRI scans. FA features

were extracted using Brain Extraction Tool (BET), FDT

(FMRIB Diffusion Toolbox) and Track-Based Spatial Statis-

tics (TBSS) functions while brain activation pattern features

were extracted using FMRI Expert Analysis Tool version

5.98 (FEAT) functions and Brain Extraction Tool (BET).

The extraction procedure was preceded by non-rigid reg-

istration and Gaussian smoothing to improve image tissue

comparability.

E. MACHINE LEARNING TRAINING AND CLASSIFICATION

For classification of dyslexia and its biomarkers, construction

and training of models is achieved using machine learning

or deep learning algorithms. While early studies focused

on a single traditional machine learning algorithm [3],

[42], [43], [47], [50], [59], [60], other studies developed

hybrid methods for dyslexia detection [32], [44], [61]. The

implementation of deep learning algorithms are the most

recent studies in dyslexia and its biomarkers detection

researches [57], [58]. Meanwhile, majority of the studies

compared different types of machine learning methods using

the same dataset [32], [37], [44]–[46], [52], [55], [56], [62].

It is a usual practice to partition datasets into two during the

training of machine learning models: training set (containing

larger percentage of the entire data, ≥70% in most cases),

testing or validation set (containing 30% or lesser of the

dataset). Existing studies have used support vector machine

(SVM), logistic regression (LR), artificial neural network

(ANN), random forest (RF), linear discriminant analysis

(LDA), k-nearest neighbour (KNN), k-mean classifier, Naïve

Bayes, principal component analysis (PCA) and different

architecture of convolutional neural network (CNN) as the

machine learning algorithm to classify study-samples into

binary class with significantly high classification accuracy.

As illustrations, Khan et al. [43] proposed KNN model

for developing a diagnostic and classification system for

children with dyslexia. Results from implementation of this

machine learning model showed that 23% and 21% of the

pupils sampled during the study were at the risk of dyslexia

with 98% classification accuracy. ANN model proposed by

Kohli and Prasad [42] achieved maximum accuracy of 75%

after 10-fold cross-validation (CV) when implemented with

student performance dataset obtained with the aid of struc-

tured questionnaire. Chimeno et al. [37] achieved highest

classification performance for 3-layered ANN model amidst

other machine learning classifiers that were compared against

it. This result shows 94.87% accuracy, 94.73% sensitivity and

95% specificity respectively.

Tamboer et al. [3] present a study on finding the structural

biomarkers in dyslexic by analyzing GM volume in the brain

regions of the study participants using SVM classifier. SVM

model yields an accuracy of 80%, sensitivity of 82%, speci-

ficity of 78% on the training and testing dataset. Cui et al. [56]

proposed a Linear SVM (LSVM) model for investigating the

biomarkers of dyslexia from WM volumetric and diffusiv-

ity features. Results from LSVM showed 83.61% accuracy,

75.00% sensitivity, 90.91% specificity, 87.50% TPR, 81.08%

TNR and AUC of 0.86 (p-value<0.001) respectively, which

is significantly higher than the baseline. This model shows

improved performance compared against LR classifier which

achieved 73.77% accuracy, 67.86% sensitivity, 78.79% speci-

ficity, 73.08% TPR, and 74.29% TNR when trained with

the same features and datasets. Plonski et al. [55] compared

three different machine learning methods for discriminat-

ing dyslexia biomarkers in schoolchildren. These methods

include LR model, SVM with linear kernel, and RF clas-

sifier. Although, almost all combinations of classifiers give

significantly above chance performance with classification

accuracy up to 65%, but most stable feature selection in all

CV iterations is LR which achieved 65% accuracy and AUC

of 0.66 which are significant at (p-value<0.01).

Spoon et al. [40] proposed CNN model to automatically

identify possible indications of dyslexia from the children’s

handwritings (behavioural biomarker). By employing a

5-fold CV method, the proposed CNN model achieved an

average accuracy of 55.7±1.4% above the random baseline

of 50%, which has been found to be higher than current detec-

tion rate. Themodel was further enhanced by Spoon et al. [41]

to achieve an accuracy of 77.6% through the process of

hyper-parameters fining tuning. Zahia et al. [57] proposed
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3D CNN model and achieved highest accuracy of 72.7%,

sensitivity of 75%, specificity of 71.4%, 60% precision and

67% F1-score while Usman and Muniyandi [58] proposed

two-way cascaded CNN model and achieved highest accu-

racy of 84.6%, sensitivity of 76.5%, specificity of 78.2% and

AUC of 0.76 respectively.

From Table 3 and Figure 3, SVM is the most used machine

learning model (13 studies, 34%), followed by ANN (5 stud-

ies, 13%), KNN (4 studies, 10.5%), CNN (4 studies, 10.5%),

LR (3 studies, 8%), RF (3 studies, 8%), Naïve Bayes (2 stud-

ies, 5%) and k-means algorithm (2 studies, 5%). AdaBoost

and PCA are less commonly used for dyslexia detection

(1 study, 3% each). Worthy of note is fact that, most of

the above models are instance-based interpretable machine

learning algorithms. As an instance-based machine learning

algorithms, KNN, K-means, Naïve Bayes and SVM con-

struct assumptions directly from training instances (features)

by adjusting their classifiers to the test dataset. While the

asymptotic complexity of their assumptions increases in pro-

portion to the volume of data, they possess the ability to

store new features (instances) and discard old ones. Linear-

R, LR, DTs, RF, SVM, ANN and deep CNNs used for

dyslexia detection possess learned structures and learned

parameters such as weights with specific interpretations [69],

[70]. Also, sensitivity of their components to the new dataset

as well as parameter adjustments can be analyzed. For exam-

ple, components of CNN architectures implemented in both

Zahia et al. [57]and Usman and Muniyandi [58] as well as

generated feature maps can be visualized and interpreted at

any layer of model activation during the training stage. Con-

clusively, the selection of suitable machine learning meth-

ods for dyslexia detection depend ultimately on the type of

dataset for training the generatedmodels. Therefore, potential

studies should conduct a comparative performance of various

advance machine learning methods in order to analyze the

output of different classifiers rather than focusing on the

performance of only one selected method.

F. PERFORMANCE EVALUATION

As shown in Table 4, existing studies have implemented

machine learning or deep learning algorithms on MATLAB,

WEKA, and Python environments using different Toolboxes

and libraries functions such as LIBSVM, train_test_split(

) function, scikit-learn, Keras and TensorFlow in order to

construct predictive models. Evaluation of these models are

based on different metrics of machine learning for dyslexia

detection. This includes accuracy, sensitivity, specificity, pre-

cision, recall, mean square error (MSE), F-scores, positive

predictive value (PPV), negative predictive value (NPV),

receiver operating characteristic (ROC) curve and area under

ROC curve (AUC). Accuracy is the percentage of dyslexic

subjects correctly classified as positive. Sensitivity, also

known as true positive rate (TPR) or recall, represents a pro-

portion of correctly classified subjects with dyslexia. Speci-

ficity, or the true negative rate (TNR), is the proportion of the

correctly classified subjects without dyslexia. The ROC curve

FIGURE 4. Distribution of literatures according to number of citations.

is a precision plot against recall, and thus provides a reflection

of the trade-off between correctly classified dyslexic subjects

and incorrectly classified dyslexic subjects from where AUC

can be calculated directly.

In all the reviewed studies, evaluations of the machine

learning model performance are based on k-fold cross valida-

tion (CV), where k=4, . . . , 10) [41], [55], [57], [58], [60]and

leave-one-out-cross-validation (LOOCV) [55], [56], [62].

The most common type is 10-fold CV where the experi-

mental dataset is randomly divided into 10 equal folds, and

9 of the folds used for model training while the remain-

ing 1-fold is used for testing and validation. With excep-

tion of Plonski et al. [53], all other literatures reviewed

in this study made use of accuracy metrics. The overall

performance accuracy of machine learning models based

on the data-type used is summarized thus: test-based meth-

ods ranges between 73.9%-99%, handwriting-based method

ranges between 55.7%-77.6%, EEG-based methods ranges

between 78%-95%, MRI-based methods ranges between

64%-94.8%, video-based methods ranges between 77.6%-

97.8% and lastly, eye tracker-basedmethod is 80.2%. It would

therefore be interesting to understand how the performance of

these machine learning methods changes when dataset from

multiple sources and types are combined for model training.

Figure 4 presents the distribution of the review articles in

Table 4 according to the number of citations.

III. DISCUSSION AND POTENTIAL CHALLENGES

Machine learning algorithms are general-purpose methods of

artificial intelligence that can learn patterns from data without

the need to define them apriori and have been widely used for

the detection of dyslexia over the past decades. The typical

machine learning workflow for dyslexia prediction involves

five distinct steps: data collection, data preparation and

pre-processing, extraction and selection of features, model

(classifier) training and simulation, as well as performance

evaluation, thus forming the focus of this review. Although

still in its infancy, the different architecture of deep learning

algorithms is currently being applied in the field of dyslexia

studies due to the inability of conventional machine learning
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TABLE 4. Machine learning classifier performance for dyslexia biomarker detection.
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TABLE 4. (Continued.) Machine learning classifier performance for dyslexia biomarker detection.
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TABLE 4. (Continued.) Machine learning classifier performance for dyslexia biomarker detection.

algorithms to process data in their natural raw form, coupled

with other limitations.

Evidence emanating from the reviewed studies has shown

that, collection of dyslexia datasets from the standardized

psycho-educational tests and learners’ handwritings (first cat-

egory) is relatively cheap, as demonstrated in the studies by

Spoon et al. [40], [41]. However, they may be difficult to

collect until the child reaches school age. The child’s brain

structure remains unchanged from childhood to adulthood,

although its pattern of activation changes due to the rapid

formation of synapses as the child grows up, unless the child’s

brain is severely injured or critically ill. Studying dyslexia

from image-based or eye pattern movement datasets (second

and third categories) therefore, delivers more accurate results

despite the fact that, they are currently relatively expensive to

collect.

Khan et al. [43] proposed a KNN model for the

classification of children with dyslexia and achieved a

98% accuracy. The ANN model proposed by Kohli and

Prasad [42] achieved a maximum accuracy of 75% after

10-fold cross-validation (CV). Chimeno et al. [37] achieved

the highest classification performance for the 3-layer ANN

model with 94.9% accuracy, 94.7% sensitivity and 95%

specificity. The ANN model proposed by Karim et al. [50]

achieved a classification accuracy of 85% and 86% when

trained with a backpropagation algorithm.

The performance of the SVM model proposed by Tam-

boer et al. [3] was found to be 80% accuracy, 82% sensitivity,

78% specificity on a training and a testing dataset samples

containing 49 neuroimages. A significant decrease in model

performance was observed when the model was validated

on new datasets comprising 816 neuroimaging samples with

59% accuracy, 67% sensitivity and 59% specificity. This

was due to high rate of false alarms, class rarity (imbal-

anced dataset) and undiagnosed cases of dyslexia in the

sample, among others. Abdul Hamid et al. [44] proposed

linear SVM, RBF-SVM, Naïve Bayes and KNN models and

achieved the highest classification accuracy of 97.8%, 97.1%,

97.3% and 77.6% using the same image-based dyslexia

dataset. Perera et al. [47] proposed a cubic SVM model

with 78.2% accuracy, 88.2% sensitivity and 66.7% specificity

using the brain pattern signal features extracted from the
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EEG dataset. Prabha and Bhargavi [32] proposed SVM and

SVM-PSOmodels for linear and hybrid kernels, respectively.

These models achieved the highest classification accuracy

of 90% and 95% respectively. In addition, Rello et al. [60]

achieved the highest classification accuracy of 84.6% with

the SVM classifier. Benfatto et al. [61] achieved 95.6%

accuracy, 95.5% sensitivity and 95.7 specificity using the

SVM-RFE model for the classification of dyslexia. Rello and

Ballestero [59] achieved 80.2% with the SVM model, while

Rezvani et al. [62] achieved 95.4% and 86% accuracy for

SVM and KNN respectively.

Cui et al. [56] proposed a linear SVM model and achieved

83.6% accuracy, 75% sensitivity, 90.9% specificity, 87.5%

TPR, 81.1% TNR and 0.86 AUC, respectively, which is

significantly higher than the baseline. This model shows

improved performance compared to the LR classifier, which

achieved 73.8% accuracy, 67.9% sensitivity, 78.8% speci-

ficity, 73.1% TPR and 74.3% TNR when trained using the

same extracted features. Plonski et al. [55] compared three

different methods of machine learning, including LR model,

SVM with linear kernel and RF classifiers. Although, almost

all combinations of classifiers give significantly high classifi-

cation performancewith accuracy of up to 65%. Themost sta-

ble feature selection in all CV iterations was found in the LR

model, which achieved 65% accuracy and AUC of 0.66. With

the SVM model, Frid and Breznitz [52] achieved 78% accu-

racy. This performance was found to be better than the equiv-

alent ANN and PCAmodels respectively. Chimeno et al. [37]

proposed models LDA, SVM, ANN, K-means, KNN, and

AdBoost. Analysis of the six proposed models showed that

the ANN model achieved the best performance with 94.8%

accuracy, 94.7% sensitivity and 95% specificity.

Lakretz et al. [45] proposed LDA and Naïve Bayes

and achieved the highest classification accuracy of 73.9%

and 80.1% respectively. Al-Barhamtoshy and Motaweh [46]

achieved classification accuracy of 89.6%, 89.6% and 85.7%

respectively with K-means, ANN and fuzzy logic classifiers.

The overall accuracy of the three models was found to be

81.1% accuracy, 62% precision, 100% recall and 76.6%

F-score. Most of the traditional machine learning algorithms

discussed above for the detection of dyslexia suffer from

a number of problems ranging from data sparsity [37],

[40], [44], [46], [47], [51], [56], [59], [62] curse of dimen-

sionality [42], [43], [45], underfitting [32], [51], overfit-

ting [3], [53], [62], high false alarm rates [3] and imbalanced

classification [40], [60], [61] to mention but a few.

The CNN model proposed by Spoon et al. [40] achieved

a test accuracy of 55.7% when validated using a 5-fold CV

method. However, this accuracy was found to be higher

than the current baseline detection rate. The accuracy of the

model was further improved by Spoon et al. [41] in order

to achieve an accuracy of 77.6% through the process of

hyper-parameter fine-tuning. Zahia et al. [57] proposed a 3D

CNN model and achieved 72.7% accuracy, 75% sensitivity,

71.4% specificity, 60% precision and 67% F1-score, while

Usman and Muniyandi [58] proposed a two-way cascaded

CNNmodel and achieved 84.6% accuracy, 76.5% sensitivity,

78.2% specificity and AUC of 0.76, respectively.

While the use of deep learning models, specifically CNN

models is beginning to gain attention in dyslexia detec-

tion researches, it is therefore pertinent to discuss some

of the potential challenges users of contemporary architec-

tures of deep CNN in dyslexia analysis will need to address

in order to maximize the state-of-the-art benefits of these

models.

1. Achieving biologically-interpretable biomarker fea-

tures remain one of the prominent challenges in

MRI-based studies due to inconsistent and varied

image acquisition protocols. Since CNN models learn

high-level abstract features directly from the images,

potential CNNmodel users need to device amechanism

for improving the homogeneity and comparability of

this kind of dataset before using them to train CNN

models. Such mechanism could be smoothing and nor-

malization and are capable of improving the state-of-

the-art deep learning performance.

2. Accuracy of the state-of-the-art deep CNN classifier

is largely dependent on the type of preprocessing

tasks performed on the input dataset before feeding

them into the CNN-based models. This may be neg-

atively affected if not properly handled for any kind

of dataset. It is therefore, recommended that potential

deep learning users for dyslexia biomarker analysis

need to devise an algorithm that will improve existing

data preprocessing methods in order to enhance com-

mon interpretability of relevant features to be studied.

Consequently, the suggested improvement plan will,

in no doubt, enhance the performance of the state-

of-the-art deep CNN models. Furthermore, adapting

existing supervised learning algorithms for training

deep learning can also improve the interpretability of

relevant dyslexia features if attempted.

3. Privacy of both experimental dataset and CNN model

hyper-parameters is also a major potential challenge in

achieving state-of-the-art classification performance.

Increasing generation of dyslexia dataset across mul-

tiple sources has prompted the need for cloud-based

classifications, a concept otherwise, referred to as

privacy-preserving classification. A typical example of

this setup is Microsoft Azure Machine Learning Stu-

dio and Google Cloud Machine Learning Engineering.

The protection of patient medical records has become

highly necessary in this situation [71], particularly,

when such data is related to learning disability such

as dyslexia. While remote classification can play a

significant role in enhancing the quality and timely

availability of medical decision by reducing the cost,

such data may be exposed to various forms of secu-

rity, privacy, confidentiality, and integrity threats. It is

therefore recommended that potential deep CNN users

should devise an encryption system for both the dataset

and the model parameters if this kind of situation is
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inevitable. The use of homomorphic encryption [72]

system can be helpful in this regard.

4. Inadequacy of dataset, parameter optimization and pos-

sibility of overfitting have remained a serious problem

in deep learning implementation from the inception.

At present, there exist problem of paucity of dataset,

particularly those of the brain anatomy and activation

patterns for dyslexia study. Nearly all MRI-based stud-

ies reviewed suffer from inadequate MRI dataset lead-

ing to model overfitting in some cases. Overfitting also

occurs in situation when a deep learning architecture,

particularly CNN models, contains large number of

hyper-parameters [73]. It is therefore, suggested that

potential users of CNN for dyslexia detection from

image-based dataset employ approaches recommended

in the existing deep learning studies to minimize the

effect of overfitting. Such approaches include dropout

technique [74], data dimensionality reduction e.g., cre-

ation of smaller image patches [40], 58], parameters

fine-tuning [41], data augmentation [75], and regular-

ization (L1 and L2) to mention but a few.

5. Selection of hyper-parameters is also a potential chal-

lenge considering their impact on deep CNN perfor-

mance. A minor change in the values for hyperpa-

rameter will have significant effect on CNN’s overall

efficiency. Careful selection of parameters is therefore

a possible design problem that needs to be addressed

when using deep CNN to evaluate dyslexia-related

dataset.

6. Finally, efficient deep CNN training requires pow-

erful hardware tools like Graphics Processing Units

(GPUs). The GPU-base processors are powerful in

terms of processing speed and memory usage. They

are up to 100 times faster than their Central Processing

Units (CPUs) equivalent, with an enlarged arithmetic

computational capability [76] and have been used to

achieve reduced processing time in studies such as [77]

and [78]. Implementing deep learning algorithms on a

system based on this type of hardware resources will

help in boosting the classification speed for dyslexia

and its biomarkers detection.

IV. CONCLUSION AND FUTURE DIRECTION

This study focuses on reviewing existing machine learn-

ing and deep learning algorithms which have been imple-

mented for dyslexia and its biomarker detection. Dyslexia,

an exceedingly complicated brain developmental disorder,

has attracted considerable interest in modern neuroscience

and machine learning field in recent times. Although, con-

siderable machine learning methods have been applied in this

domain of study during the last two decades, the use of deep

learning algorithms is still at its infant stage. Also, from our

review, it can be deduced that SVM is the most used machine

learning method for dyslexia detection and prediction. Data

for dyslexia detection and analysis have been collected from

multiple heterogeneous sources.

For the purpose of this review, selected articles for critical

analysis were discovered through major academic databases

using some combinations of search keywords and crite-

ria. They were screen and selected following the steps of

PRISMA flow diagram and certain pre-defined inclusion

criteria. Consequent upon the above selection process, only

22machine learning based studies for dyslexia detectionwere

thoroughly reviewed and summarized in Table 4.

Results from all machine learning methods reviewed are

promising and attest to the fact that, dyslexia is a heteroge-

neous disorder caused by alterations in brain tissues char-

acteristics. By extension, they also complement the existing

computer-based interventions in that, most of these inter-

ventions are AI-based computer games. With the increasing

usage of deep learning in modern medical field coupled with

recent state-of-the-art performance shown by CNN models,

this review holds the view that achieving high classifica-

tion performance with CNN models for dyslexia and its

biomarkers detection is feasible through tackling the identi-

fied potential challenges. As an example, many recent stud-

ies and reviews [79]–[82] have shown how different CNN

model architectures have been used to analyze MRI datasets

of various critical brain disorders such as brain tumor,

Alzheimer’s disease, Parkinson’s disease and schizophrenia.

For CNN to compete favourably with other existing machine

learning methods and attain clinically acceptable level, it is

therefore suggested that serious consideration should be

accorded to the identified challenges by future researches.

Meanwhile, there is a need for future studies to develop a

language-independent data collection protocol for machine

learning dyslexia detection since this learning disability is

not specific to a region, language, or culture. It would be an

interesting research, if future studies can evaluate the impact

of ensemble methods, a situation where prediction capabil-

ities from multiple machine learning models are hybridized

to improve performance of the machine learning methods.

In addition to the above, potential dyslexia detection studies

should also consider the implementation of multimodal DL

frameworks [80]–[85] which allow the capitalization of dif-

ferent dyslexia datasets frommultiple heterogeneous sources,

as well as the use of multi-task techniques to manage auxil-

iary tasks for improved performance.

APPENDIX

See supplementary file with name Supplementary1.pdf

for more details about artificial neural network and deep

learning.
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