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Abstract: Complex energy monitoring and control systems have been widely studied as the re-
lated topics include different approaches, advanced sensors, and technologies applied to a strongly
varying amount of application fields. This paper is a systematic review of what has been done
regarding energy metering system issues about (i) sensors, (ii) the choice of their technology and their
characterization depending on the application fields, (iii) advanced measurement approaches and
methodologies, and (iv) the setup of energy Key Performance Indicators (KPIs). The paper provides
models about KPI estimation, by highlighting design criteria of complex energy networks. The
proposed study is carried out to give useful elements to build models and to simulate in detail energy
systems for performance prediction purposes. Some examples of energy complex KPIs based on the
integration of the Artificial Intelligence (AI) concept and on basic KPIs or variables are provided in
order to define innovative formulation criteria depending on the application field. The proposed
examples highlight how modeling a complex KPI as a function of basic variables or KPIs is possible,
by means of graph models of architectures.

Keywords: energy systems; monitoring; energy control strategies; KPIs

1. Introduction

Energy systems correct management includes process modeling, process optimization,
hardware and software, appropriate setup design, and monitored operation procedures.
Scientific and industrial research often addresses the formulation of new energy strategies.
When a high number of variables is to be considered, the energy system modeling becomes
complex. To this purpose, scaling the model to propose a framework suitable for simu-
lations and measurements related to the effective energy scenario becomes an important
issue. A scaled model representing the main scenario of the proposed research is sketched
in Figure 1, where two areas can be distinguished:

(i) a main area related to the control and management of complex logistics fluxes, big
power plants, wide grid networks, and renewable energy sources;

(ii) a local area comprising smart cities including smart buildings, local transportation, city
lighting, local renewable energy sources, and smart manufacturing energy facilities.

The renewable sources play a very important role in economic and political strategies
for energy self-sufficiency of countries. Actually, important technology advances are
in the market in terms of biomethane/biogas, photovoltaic, wind, wave, geothermal,
hydrogen, thermoelectric, and hydroelectric plants. An important emerging topic for
research is the energy harvesting from alternative distributed available sources (light, wind,
electromagnetic waves, and vibrations). The full integration of renewable energy sources in
complex grid systems takes into account the implementation of sensor and storage systems,
and the possibility to apply innovative methodologies for data processing.
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hardware and software technologies, to be used for energy measurement and for data 
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timize the electrical systems, properly using resources, devices, and loads, addressing the 
network to low-cost solutions and economic risk-mitigation procedures. Models of com-
plex energy systems are usable to simulate the operation of interconnected hybrid micro-
grids and in general grid connections in the small, medium, and large period, supporting 
the choice of possible combinations of equipments and facilities working in a unique sys-
tem. 

 
Figure 1. Architecture of an energy monitoring scaled system. 

In this scenario, different systems are matched with conventional and renewable en-
ergy sources, storage devices, and efficient loads. The output results of the KPIs drive 
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The paper proposes an overview about energy systems by defining possible variables 
involved in different energy application fields. 

Methodology 
The methodology used in this work is sketched in Figure 2 summarizing the follow-

ing phases: 
(a) following specifications of research projects some topics concerning energy aspects 

were extracted; 
(b) keywords to be used for searching were chosen, such as: Sensors of Measurements, 

Smart Energy Meters, Advanced Metering Infrastructures, SCADA, Infrared Thermogra-
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Figure 1. Architecture of an energy monitoring scaled system.

Artificial Intelligence (AI) algorithms are increasingly used for data processing, thus
providing advanced analytical tools to estimate correlations between variables and pre-
dicting different scenarios including energy production, load consumption, and risks.
Following the model of Figure 1, an analysis can be carried out about possible innova-
tive hardware and software technologies, to be used for energy measurement and for
data processing, by identifying possible Key Performance Indicators (KPIs) modeling and
simulating complex energy systems. The KPI estimations are strategic to simulate and to
optimize the electrical systems, properly using resources, devices, and loads, addressing the
network to low-cost solutions and economic risk-mitigation procedures. Models of complex
energy systems are usable to simulate the operation of interconnected hybrid micro-grids
and in general grid connections in the small, medium, and large period, supporting the
choice of possible combinations of equipments and facilities working in a unique system.

In this scenario, different systems are matched with conventional and renewable
energy sources, storage devices, and efficient loads. The output results of the KPIs drive
decisions and procedures such as ordinary and extraordinary maintenance services and in-
grid/off-grid remote operations, thus ensuring reliable power and decreasing energy costs.

The paper proposes an overview about energy systems by defining possible variables
involved in different energy application fields.

Methodology

The methodology used in this work is sketched in Figure 2 summarizing the following phases:

(a) following specifications of research projects some topics concerning energy aspects
were extracted;

(b) keywords to be used for searching were chosen, such as: Sensors of Measurements, Smart
Energy Meters, Advanced Metering Infrastructures, SCADA, Infrared Thermography, Energy
Routing, Energy Technologies, Smart Cities, Renewable Energy, Lighting Control, Power
Forecasting, Measurement Approaches and Methodologies, Load Balancing, Load Matching,
Solar Radiation Estimation, Microgrids, High Voltage, Data Processing Algorithms, System
Grids, Energy KPI indicators, Energy and Manufacturing, etc.;

(c) searching process over the literature was performed by querying the main interna-
tional journal databases, especially those focused on energy. The Google Scholar
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engine was used as well. Open datasets concerning the topics of the examined litera-
ture and useful to test AI models were found;

(d) the searching process was optimized on a two-step basis: after a pre-screening, some
main works were filtered with a particular interest in the most recent ones; this refine-
ment process allowed us to group the selected papers into four classes: (i) sensors,
(ii) technology characterization depending on the application fields, (iii) advanced
measurement approaches and methodologies, and (iv) energy KPIs; repetitive older
papers were neglected;

(e) the common basic KPIs related the energy aspects were extracted from the selected papers;
(f) criteria were defined to formulate complex KPIs as functions of the basic KPIs

or variables.
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Figure 2. Diagram showing the methodology adopted for this study.

The complex KPIs are important to model energy systems characterized by a large
number of variables. If (a, b, . . . ) are either significant basic KPIs or measured variables, a
complex KPI can be expressed as

KPI = f (a, b, . . . ) (1)

2. Sensor Technologies and Energy Metering Systems

Different technologies can be implemented and executed to measure energy parame-
ters. Smart metering technologies [1–8] are suitable for power quality check, measurements
of active and reactive power, optimization of grid control, and power consumption mon-
itoring. Supervisory Control And Data Acquisition (SCADA) systems [9,10] are able to
integrate measurement systems by controlling parameters in real time. SCADA systems
can be used to set up synoptic dashboards monitoring energy and machine/plant pa-
rameters; graphical interfaces are typically used to check temperature, electric power,
mismatch losses, voltage peaks, and others. Long Range (LoRa) gateway technology and
Zigbee protocols are good candidates for horizontal integration of sensors and networks
monitoring energy.

A comfortable technology for measurement of energy efficiency is the infrared ther-
mography [11–16] combined with image processing techniques. Sensors can be imple-
mented in complex cloud-connected networks according to the locations of the sites to
be controlled. Concerning complex sensor network systems, Zigbee technology [17] and
Internet of Things (IoT) devices are appropriate for wireless mesh networks monitoring
energy systems. The choice of the network architecture is a function of the data protocol
to use and of the data transmission logics. In Table 1, some possible technologies are
listed, oriented to sensing and energy metering proposed in the literature and related to
the content of this paragraph.
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Table 1. State of the art: sensor technologies and energy metering systems.

Technologies/Metering
Systems Topic Description Ref. Basic KPI or Variable

Smart
Metering

Unbundled Smart Meters (USMs)
and Next-Generation Open

Real-Time Smart Meters (NORMs)
Grid-tied inverter control [1] Voltage, current, instantaneous

power, fault signal trend

Power Quality (PQ) meters

Measurements of active/reactive
energy, active/reactive power,
frequency, Root Mean Square

(RMS) voltage/current, FFT, Total
Harmonic Distortion (THD)

[2–4]
Voltage in percentage [2]; annual active
energy heat view, and nonlinear load

analysis [3]; sampling data granularity [4]

Simultaneous Wireless
Information and Power Transfer

(SWIPT) technique

Energy efficiency optimization
considering Orthogonal

Frequency Division Multiplexing
Distributed Antenna System

(OFDM-DAS) with Power
Splitting (PS)-SWIPT system

[5]
Power harvester, energy harvester,

energy, spectral efficiency [bits/s/hertz],
energy efficiency [bits/Joules/hertz]

Long Range (LoRa)
gateway technology

LoRa protocol network for
communication between the smart

meters and the gateway
[6,7]

Data granularity, current, voltage and
power weekly distributions, Wi-Fi

coverage, and packet loss rate (PLR) [6];
power load, load voltage, humidity, and

temperature [7]

Advanced Metering Infrastructure
(AMI) with data aggregation points

Metering system collecting power
consumption data from all smart

electrical appliances and
adopting unsupervised
clustering algorithms

[8] Signal-to-
Interference-plus-Ratio (SINR)

SCADA

Energy Management System (EMS)
developed using distribution

Supervisory Control And Data
Acquisition (SCADA)

System controlling devices used in
Heating, Ventilation, and Air

Conditioning (HVAC) and
lighting systems across

multiple locations

[9] Fault occurrence, addition of loads,
phase balancing

Data acquisition and remote
monitoring systems for micro-grid

Data acquisition
solar–wind–biogas integrated
micro-grid system (Raspberry

Pi technology)

[10]

Smart meters of Elite 440–443 series of
Secure Pvt. Ltd.PN: voltage, PP voltage,

power factor, active power, apparent
power, active/apparent forwarded
energy, reactive lag/lead forwarded

energy, phase angle, THD voltage, THD
current, THD power

Infrared
Thermography

Control the temperature of the
overhead conductor

Estimation of the temperature of
the power lines [11]

Infrared thermometer temperature [◦C],
Pt100 temperature [◦C], solar radiation

[W/m2], current [A], ambient
temperature [◦C], relative humidity [%],

perpendicular wind speed [m/s]

Photovoltaic panel checking defects

Application of the clustering and
of thermal pixel counting

algorithms to the radiometric
image enhancing panel defects

[12,13]

Infrared radiometric temperature [◦C],
total energy produced and predicted by
ANN [kWh] [12]; infrared radiometric

temperature [◦C], % of PV panel
variation versus temperature [13]

Radiometric image processing of
thermal insulation PVC

composite panels

Evaluation of thermal losses of
building panels along the

aluminum junctions
[14]

Infrared radiometric temperature [◦C],
homogeneity of aluminum panel

junctions (PV)

Application in energy router system
Applications for monitoring of

loads, energy source devices, and
energy storage systems

[15]
Infrared thermometer temperature, load

prediction, weather forecasting,
calculation of energy needs

Thermal dispersion evaluation in
indoor environments

Data mining (k-means algorithm
for clustering and the Nearest

Neighbor (NN) for classification)
enhancing thermal dispersions

[16]

External temperature, room temperature,
classification of parts of thermal image

(image processing evaluating the risk of
the heat leakage)

Zigbee

Wireless technology able to
exchange motion data of human

movement in rooms with a
centralized air conditioning unit

Switching off of centralized air
conditioning unit (reducing

unused electricity)
[17]

Display when an area served by an AHU
unit is without users, number of empty

rooms versus days

The main issue for the future research on complex systems will likely be combining
smart meter measurements using different sensor technologies with communication net-
works and protocols, so defining architectures suitable to collect synchronized data for
KPI evaluation, and to perform real-time control parameters (such as by SCADA systems
monitoring through cloud-connected dashboards).
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3. Application Fields

Energy measurements are required in many application fields both in the civil and
industrial sectors. Specifically, applications are in precision agriculture, logistics, buildings,
lighting, energy harvesting, wiring, etc. [18–33].

For what concerns smart buildings, the heating systems are combined with electrical
power modules where heating modules could include boilers, cogeneration, heat recovery,
and other energy systems to produce heat power. In complex systems, more applications
fields are joined, thus increasing the complexity of the model to analyze. In Table 2, the
most interesting application fields proposed in the literature are listed.

Table 2. State of the art: application fields of energy metering.

Application Field Topic Description Ref. Basic KPI or Variable

Precision
agriculture

Precision agriculture
reducing the use of resources

(energy, water)

Internet of Things-based systems for
greenhouse sensing and actuation [18,19]

Temperature, light detection by a photo resistor
(measurements in a greenhouse) [18];

monitoring energy consumption and control of
photovoltaic generation (to enable

powering devices only when needed) [19]

Logistics Logistics KPIs based on
energy aspects

Indicators based on fuel consumption,
vehicle kerb, weight, engine stress,

maintenance level
[20–22]

Load factor, cargo weight, router length, specific
fuel consumption (liters consumed every

100 km), vehicle kerb weight [20,21]; energy and
fuel consumption (driver costs) [22]

Buildings

Building Energy
Management System (BEMS)

Heating, Ventilation, and Air
Conditioning (HVAC) system reducing

energy consumption
[23] Temperature, humidity, and ambient lighting

Smart building architecture
with IoT sensing devices

and communication
network protocols

Energy consumption monitoring,
uploading data to a cloud server [24]

RMS, Fourier series, Power Factor (PF), active
power, reactive power, energy, Total Harmonic

Distortion (THD)

Building energy management
system and home automation

Temperature and illuminance wireless
sensor nodes with energy harvesting

and Zigbee modules
[25] Temperature and illuminance

Lighting

Smart public lighting control
and measurement system

Smart cities monitoring streetlights
by LoRa network [26]

Horizontal illuminance E [lux], KPI about the
illumination level has a function in relation to
time and pedestrian flow (total energy saved,

regulation percentage, %Reg)

Energy Management System
(EMS) by Internet of Things

(IOT) for lighting control

IoT technology for lighting control for
a university campus, providing energy

savings by eliminating standby
consumptions and adapting the user
behavior to the real environmental

conditions (building map construction)

[27] Human occupancy patterns

Public lighting control Energy saving technologies turning
on/off streetlights automatically [28] Distance detection switching on the light when

the object is sensed in a nearby area

Energy harvesting
measurement system

Wave Energy
Converter (WEC)

Floating buoy with sensors collecting
data processed by machine

learning algorithms
[29] Output power of wave energy harvester system

Energy harvesting system
from water flow

IoT-based energy monitoring system
monitoring the amount of

harvested energy
[30]

Output voltage [mV] versus distance between
sensor and water source [cm], output voltage
[mV] versus number of piezo sensors, output

voltage versus water flow rate expressed in liters
per second, output voltage [mV] versus

temperature [◦C], output voltage [mV] versus
angle between water flow direction and

sensors [Degree]

Road vibration
energy harvesting

Vehicle move sensor generating
electrical energy by using the pressure

of the vehicle’s weight
[31] Voltage

Electrical
cable connection check

Multisensor monitoring
system for medium voltage

cable electrical joints

Sensor node including radio, sensors,
and energy harvester checking

degrading cable connections for
medium-voltage grids

[32]
Current, Partial Discharge (PD), fault current,

over-temperature, vibration (measuring
external shocks)

Energy production
monitoring in industry

Energy consumption
monitoring in production

Multisensor system based on the
reading of electrical power
consumption of different

production machines

[33] Power of production machines
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Other application fields can be found at different scale dimensions with energy being
a variable characterizing processes and physical phenomena. The approach to follow to set
up KPIs will involve:

• a preliminary study to establish the parameters contributing to the energy behavior of
the specific application filed;

• an interaction analysis of elements in the surrounding environment (for example,
buildings, cabling, and lighting contributing to the smart city environment).

The KPIs of complex models can be structured in a multilevel architecture where the
KPI of a higher level embeds information of all KPIs of lower levels (the root KPI will
represent the final indicator of the whole complex system).

4. Advanced Measurement Approaches and Methodologies

Measurement approaches and methodologies [34–51], such as sensor allocations and
related protocols, mainly involve data processing techniques. Different data analysis tools
can be applied to extract more information, optimizing energy systems such as predictions,
parameter classifications, and possible unbalanced energy conditions. Supervised and
unsupervised AI algorithms represent advanced solutions extracting hidden information
and realizing Decision Support Systems (DSSs) for energy management. In Table 3 some
methodologies proposed in the literature are listed.

Table 3. State of the art: advanced measurement approaches and methodologies.

Measurement Approaches
and Methodologies Topic Description Ref. Basic KPI or Variable

Bayesian model Energy measurements

Energy measurement and verification by
Bayesian model; International

Performance Measurement and
Verification Protocol (IPMVP) solution by

Bayesian approach

[34] Energy [kWh] versus cooling
degree days

Load
forecasting

Load forecasting Weighted Least
Square (WLS) state estimation
algorithm for micro-grids and

network splitting problems

Load information obtained by forecasted,
historical data, and by smart real-time

meters; monitoring of switching devices
[35]

Active power, reactive power, loading
%, Power Factor (PF), voltage

magnitude error, voltage angle error,
bus voltage magnitude uncertainty %,
versus bus number, deviation between

the simulation results
regarding the estimated status of the

switching devices and their true status

Cloud electric load switching in
buildings, and electrical

outlet management predicting
exceeding thresholds

Long Short-Term Memory (LSTM) neural
network algorithms able to control, to
activate, and to disable electrical loads

connected to multiple outlets
placed in a building and having

defined priorities

[36] Current, total electrical current of
outlets, global active power

Power
forecasting

Adaptive Solar Power Forecasting
(ASPF) method for precise solar

power forecasting

Combination of data clustering
(k-means), variable selection, and neural

network optimizing solar
power forecasting

[37]
Output power [kW] versus time [h],
sunshine duration, relative humidity,

air temperature

Power load prediction for rural
electrical micro-grids

Long Short-Term Memory (LSTM)
Artificial Neural Network

(ANN) algorithms
[38]

Output power versus time, power load
prediction, measured power load

versus predicted power load

Data
analysis

Error minimization by
mathematical model for smart
metering system optimization

Identification and minimizing the
measurement errors to optimize the
electricity readings’ accuracy and to

reduce the electricity losses and
related costs

[39]

Own Technological Consumption
(OTC) as

the difference between the energy
entered in the commercial contour and

the energy distributed to
the consumers versus time (months of

the year)

Data-driven approach for large
distribution grids

Decentralized Pruned Physics-Aware
Neural Network (D-P2N2) estimating

power losses
[40] Estimated voltage magnitude in

different scenarios of node distribution

Network loss energy
measurement based on

machine learning

Machine learning algorithm calculating
network loss to obtain the optimal load

distribution map
[41] Prediction of network losses and loads
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Table 3. Cont.

Measurement Approaches
and Methodologies Topic Description Ref. Basic KPI or Variable

Solar radiation estimation and
forecasting by ANN

Models estimating solar data at a
specific time to optimize management

of energy and to anticipate the
production/consumption balance

[42]

Estimated Global Horizontal
Irradiation (GHI) [Wh/m2] versus

measured GHI [Wh/m2], 5-min solar
irradiation [Wh/m2] versus time [h],

global solar irradiance [W/m2] versus
time [h], direct normal irradiance

[W/m2] versus time [h]

Decision Support System (DSS) to
classify and optimize the

energy efficiency

Prediction of energy efficiency by
Zigbee sensors placed in strategic

locations in a smart building
[43] Mean compressor active power

versus date

Energy routing

ANN-based reinforcement
learning method optimizing

energy routing design

Energy Internet (EI) model and ANN
algorithm managing the optimal

energy routing path
[44]

Electrical demand [kW] versus time [h],
thermal demand [kW] versus time [h],
PV output power [kW] versus time [h],

voltage of ports connected with
connection lines [kV] versus time [h],
electrical power [kW] versus time [h]

Software-Defined Networks
(SDNs) enabling 5G
monitoring systems

Technique exploiting the network
combined with traffic engineering
techniques in order to reduce the

overall power consumption and the
number of active links

[45]

Average energy savings [%] versus
number of network controllers,

average number of pruned links [%]
versus number of network controllers,

cumulative distribution function of
link utilization varying the amount of

controllers in different areas

Wind speed forecasting LSTM predicting wind speed LSTM-based models improving the
forecasting accuracy [46]

Maximal Information Coefficient (MIC)
measuring the predictability of wind
speed series versus delay time [min],

wind speed components [m/s] versus
time [min], forecasting error [m/s]

versus number of forecasting samples

Selection of
metering points

Optimal location of metering
points in grid distribution for

power quality metering
and assessment

Approaches to use for complex energy
distribution systems [47] Cost function associated with metering

point allocation

Networked wireless
control systems Wireless Sensor Network (WSN)

New communication protocol for
energy efficiency and evaluation of the

network global energy
consumption levels

[48]
Energy consumed by a network

responsible for the transport of the
control signal

Energy measurement
Energy measurement approach in
high-voltage power networks at

low currents

Approach for measuring system
operating out of precision specification [49] Low current

Energy flow
management systems

Energy model applied for
residential premises

Statistical methods for the assessment
of the energy model using as input

data measured temperature
[50] Temperature

Cyber-enabled grids
(energy management)

Cloud sensing and actuation for
physical world (power grids) [51] Current, voltage, and

measurement approaches

Combining different approaches (for both measuring and processing data) to extract
more and new information useful for the definition of new efficient KPIs will be the key
concern for researchers in the future.

5. Energy KPI Indicators

KPIs are fundamental to estimate the energy efficiency of a system and are specific for
the application to be considered [52–69]. Complex KPIs can be formulated as a combination
of more KPIs properly taking into account weights for each parameter. The weights of the
variables to assign come from the related importance of the specific KPI. KPIs can refer
to energy efficiency, energy quality, economical and business aspects, losses, pollution,
consumption, and sustainability. In Table 4, KPIs for energy systems are reported and
commented upon.
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Table 4. State of the art: energy KPIs.

Indicator Application Field Description Ref. KPI Classification

Energy efficiency
in industries

Energy efficiency indicator by
utilizing data collected from the
textile industry in EU member

states

TFEE indicator (ratio of target energy input to the actual
energy input) by also taking into account policy goals of
energy saving, pollution reduction, and
sustainable economics

[52] Energy efficiency

Industrial needs Energy management in production and role of KPIs [53] Energy management
efficiency

Energy-based KPIs

Exergy-based performance indicators in industry (total
exergy efficiency, task exergy efficiency, exergy efficiency
disregarding transiting exergy, specific exergy-based
indicators, environmental exergy-based indicators)

[54] Energy efficiency

Energy efficiency indicator in
manufacturing sector

Measurement efficiency of the energy efficiency of
manufacturing activities from factory level to process and
product level:

# energy costs by type/kiloliters produced;
# energy consumption/kiloliters produced;
# energy consumption directly taken from

monthly invoices;
# (electricity produced by trigen. + PV)/(sum of

electricity produced on-site + electricity purchased);
# (electricity produced + HRSG * output + absorption

chiller)/(generators gas consumption);
# 1 − ((sum of energy purchased in current

month)/(sum of energy purchased in corresponding
month of previous year))

[55] Economic energy
efficiency

Energy
efficiency of components

Wind turbine energy efficiency
index

SCADA monitoring parameters of wind turbine such as loss
of heat and temperature, key performance indicators for
operational management of wind turbines estimating KPI
(power, wind conditions, wind speed, full load hours,
energy consumption, data availability, site quality, operating
hours, etc.)

[56,57] Energy monitoring
efficiency

Energy efficiency indicators for
water pumping systems in

multifamily buildings

Design guidelines for water pumping systems to serve
vertical multifamily buildings [58] Energy system

design optimization

Energy
quality

Energy quality control for the
power supply systems of

electrical devices and systems

Harmonic composition monitoring system by fluxgate
sensors (noninvasive monitoring) [59] Energy quality

Power Quality (PQ)

Statistical Signal Processing (SSP) and intelligent methods
for PQ analysis, PQ and reliability characterization,
management of PQ big data for smart grid, PQ monitoring
systems (architectures and communications), PQ losses and
mitigation assessment, new PQ monitoring norms
and standards

[60–65] Energy quality

Energy KPIs

Sustainability in urban areas

• Electrical performance KPIs (Electrical
Self-Production (ESP), Electrical Self-Production from
Renewable Energy Sources (ESPRES), Electrical
Self-Production from Combined Heat and Power
(ESPCHP));

• Thermal performance KPIs (thermal energy produced
by means of electric boilers (TB), thermal energy
produced with combined heat and power (TCHP),
thermal energy produced by means of heat pumps
(THP), thermal energy produced by renewable energy
sources (TRES), Global Self-Production from CHP
(GSPCHP));

• Environmental impact KPIs (tons per year of avoided
CO2

−ECO2
− , NOx

−ENOx
− , and SO2

−ESO2
−)

[66] Energy sustainability
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Table 4. Cont.

Indicator Application Field Description Ref. KPI Classification

Renewable Energy Source
(RES) KPIs

% share of RES for electricity, heating/cooling, and
Domestic Hot Water (DHW), % share of
Decentralized/Distributed Energy Resources (DERs), %
reduction of the power peaks, generation forecasting
accuracy, energy losses, % voltage variations, on-site energy
ratio, Maximum Hourly Surplus–Deficit (MHS-Dx),
Reduced Energy Curtailment of RES/DES, grid congestion,
battery degradation rate, System Average Interruption
Frequency Index (SAIFI), System Average Interruption
Duration Index (SAIDI), unbalance of the three-phase
voltage system, harmonic distortion, storage energy losses,
degree of PV self-supply, frequency control, Energy Return
on (Energy) Investment (EROI), CO2 tons saved, % noise
pollution exposure, reduced fossil fuel consumption
(TOE/year), carbon footprint of heating houses (Kg
CO2/year), economic KPIs, social KPIs, legal KPIs

[67] Energy efficiency

Building-level energy
performance indicators

Total energy use, life cycle building energy use, Electrical
Load Factor (ELF), Energy Use Intensity (EUI), Energy
Performance Coefficient (EPC), building efficiency index,
EnergyStar Score, Zero Energy Performance Index (ZEPI),
Home Energy Rating System Index (HERS), Smart
Readiness Indicators (SRIs), whole building performance
indicator, Lighting Power Density (LPD), Daylight
Effectiveness Indicators (DEIs), Total System Performance
Ratio (TSPR), HVAC operational consistency indicator, Load
Energy Ratio (LER), HVAC Energy Efficiency (η(HVAC)),
plug-load off-hours ratio, Coefficient of Performance (COP),
Energy Efficiency Ratio (EER), Seasonal Energy Efficiency
Ratio (SEER), Heating Seasonal Performance Factor (HSPF),
Integrated Part Load Value (IPLV), boiler efficiency η,
luminous efficacy, Fan Energy Index (FEI)

[68] Energy efficiency

Flexible buildings and reliability
of the electric power

Load cover factor, supply cover factor, Loss of Load
Probability (LOLP), energy autonomy (1-LOLP), mismatch
compensation factor, On-site Energy Ratio (OER), Grid
Interaction Index (GII), no grid interaction probability,
Capacity Factor (CF), connection capacity credit, One
Percent Peak (OPP), Peaks Above Limits (PALs), absolute
grid support coefficient, relative grid support coefficient,
equivalent hours of storage, Flexibility Factor (FF),
Flexibility Index (FI), procurements cost avoided flexibility
factor, volume shifted flexibility factor, available structure
storage capacity, storage efficiency, available electrical
energy flexibility efficiency, flexible energy efficiency

[69] Energy flexibility

The proposed state of the art is quite exhaustive about standard indicators including
costs, losses, quality, and pollution. Complex systems, such as sustainable energy systems
in a large scale (green economy), could require the use of more of these KPIs which can be
furthermore interrelated.

6. Discussion: Research Topics Correlated to Energy Complex Models

Basic KPIs and variables discussed in Tables 1–4 can be associated with each element
(subsystem) of the energy system of Figure 1. In Table 5, the references matching the ten
subsystems are grouped.

Table 5. References including basic KPIs and energy variables associated with the subsystems of
Figure 1.

Sub System References Mainly Indicated for Basic KPIs or
Variables and Associated Research Topics Main Key Energy Variables

(A) Smart Building [9,16,17,23–27,34–36,43,49,50,66,68,69] Lighting power electricity, temperature, load
power electricity

(B) Smart Industry/Manufacturing [6,7,9,17,23,24,33,53–55,66,68] Machine power electricity, temperature
(energy losses)

(C) Lighting [25–28,68] Illuminance, lighting power density

(D) City Smart Transportation [20–22,26,31] Fuel consumption
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Table 5. Cont.

Sub System References Mainly Indicated for Basic KPIs or
Variables and Associated Research Topics Main Key Energy Variables

(E) City Smart Grid Energy System [1–10,12–14,16,17,28,31,34–39,43–45,48–50,66,68,69] Current, electrical power, power distributed in the
grid, electrical losses

(F) Local Renewable Energy Source [1–8,12–15,29–31,37,42,46,59–67] Power generated

(G) Wide Energy Logistics [20–22,26,31] Fuel consumption

(H) Grid Hub Connection [1–8,11,32,39–41,44,45,47,48,50,51] Electrical power losses (energy efficiency)

(I) Renewable Energy Source (wider areas) [1–8,10,12,13,15,18,19,29,30,32,34–37,41,42,46,51,59–65,67] Electrical power generated

KPIs of complex energy systems are estimated by processing a big quantity of vari-
ables. Distributed energy systems require a high computational cost for data processing. In
this trend, quantum computing and related frameworks could support this weakness [70].
For the energy applications, another main issue correlated to the data extraction for pro-
cessing is the communications systems choice which requires optimized networks [71,72].
Quantum computing represents a powerful solution for complex systems data processing
when applications deal with fossil, renewable, or nuclear energy, even when different
aspects such as energy management, efficiency of innovative materials, grid security, and
simulations [73] have to be addressed. Quantum algorithms and quantum computing
approaches are also suitable for electrical grid operation planning [74,75]. Energy cloud
management [76] and big data analytics [77] become fundamental tools when upgrading
to energy data processing issues, especially concerning electricity load forecasting where
large datasets are required for modeling self-learning of the AI supervised algorithms.

Pollution monitoring is a research topic too, as carbon dioxide, carbon monoxide,
unburned hydrocarbons, particulate matter, sulfur dioxide, and nitrogen oxides emissions
have to be counted to match ever higher environmental prescriptions [78–80]. To this goal,
estimating parameters strictly correlated to the green sustainability indexes becomes of high
importance, such as Carbon Footprint (CF) (a parameter taking into account greenhouse
gas emissions towards the atmosphere caused, for example, by an energy system in the
construction of components, during the operation, and when dismissed). For example,
the release of about 6,218,222.4 kgCO2/year (see Figure 3) can be avoided by installing an
8 MW photovoltaic plant to match the electrical energy needs in the south of Italy. The CF
estimation is possible by considering the “factor of emission of the electricity mix” which
represents the average value of CO2 emissions due to the production of electricity in Italy.
The factor is provided in Italy by the Ministry of the Environment and is 0.531 kgCO2/(kWh year).

Concerning renewable energy, data of environmental pollution due to energy genera-
tion can be analyzed by means of different tools such as drones (such as for water quality
in solar farms by applying underwater image detection [81]), acoustic signal processing in
biodiesel production [82], the Life Cycle Impact Assessment (LCIA) approach determining
resource consumption and substance release in the environment [83], and a multivariate
time series method predicting air pollution [84].

Further important research topics concern the energy storage technologies [85,86], and
the related operational approaches [87–90]. The impact of deep refurbishment and the use
of renewable energy sources of buildings can be significant when passing from a single
building level to a district scale [91]. In addition, the energy model can be more complex
when a capillary distribution in the city is considered for small energy producers such
as owners of small wind turbines [92], and hybrid solutions combining solar radiation,
wind power, and biomass [93]. Numerical tools and data mining platforms such as Kon-
stanz Information Miner (KNIME) [94–96] can support the calculus of complex structured
indicators by applying AI data processing. In Appendix A, an example of KNIME data
processing predicting PV power is reported.
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The monitoring of energy consumption in industrial applications can be optimized
by the energy manager who manages data processing and processes correlated to the
primary energy consumption [97]. A complex energy system takes into consideration
many processes related to energy consumption and production as can happen in indus-
trial applications. In this scenario, process mining implementation (processes automa-
tized by AI controls [98]) could support process implantation and data-driven efficient
energy strategies.

Energy Management Systems (EMSs) [99,100] represent important applications and
research topics. Different rule-based strategy models are proposed in the literature. Some
authors discuss control approach schemes with an operation process for micro-grid systems
including forecasting, sensing, and actuation [99]. The energy management problem is
typically formulated as a deterministic Optimal Control Problem (OCP) [100].

Other EMS approaches are mainly focused on the analysis of management uncertain-
ties such as fuzzy-based methods, linearization approach, probabilistic method, Monte
Carlo method, Gaussian mixture model, estimation distribution and stochastic models [100].
Probabilistic methods are classified as numerical and analytical ones [100]. Hybrid ap-
proaches are possible such as scenario based and probabilistic approaches [100]. Control
and optimization processes play an important role in EMSs [101].

AI algorithms are proposed as real-time application optimization control algorithms
for energy management strategies for hybrid power engines [102], thus suggesting a similar
use for a general energy system equipped with an AI supporting decision management.
Concerning electricity market bidding, some authors analyze a theoretical framework of
energy management optimization, by taking into account the interaction between the Inde-
pendent System Operator (ISO) agent, commercial user agent, and power plant agent [103].

7. Conclusions and Perspectives

The paper focused on an overview of technologies, KPI investigation and definition,
measurement approaches, and data processing methods, spread out over different energy
application fields covering civil and industrial scenarios. The specific literature analysis
defines many aspects which have to be considered when more complex systems character-
ized by multilevel KPIs processing different input parameters are addressed. The present
review highlights important elements to be considered in real applications modeling ad-
vanced energy systems that manage a large number of variables, including the AI concept
improving KPIs or defining new ones.

Complex KPIs can be modeled by architecture based on nodes linked into a unique
graph. Each node can represent a Basic Variable (BV), a Basic KPI (BK) over a Complex KPI
(CK) formulated as a combination of a BV and BK as in Equation (1). The nodes representing
the CK behave as a “supernode” [104]. Each node belongs to a hierarchical level. Different
levels represent the whole complex system. The KPI design criteria based on a hierarchical
or a multilevel approach allow one to better distinguish the energy efficiency of a single
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element of the whole energy system. The KPIs characterized by a higher level will contain
the information of lower levels. The lower KPIs or variables will be independent from KPIs
of higher levels.

A main application field is that of the smart buildings, where energy control and
management involve a large number of electric loads and plants, especially if large indoor
areas are considered. The formulation of complex KPI systems can define correlated
indicators supporting the full energy management process, which can be performed by:

• a cloud framework;
• reading signals detected by sensors;
• processing data by means of AI algorithms predicting daily loads, optimizing energy

consumption and loads;
• switching electric power (as for energy routing applications).

KPIs in smart buildings could take into account other important aspects such as
wellness/security (gas sensing) and can be matched with home automation applications.
The KPI model can be more complex if more buildings are considered in the same system
to be analyzed; all the KPIs of all the buildings can be combined to define a unique one for
a neighborhood or a whole city. The modularity of the model is then useful to scale the
application for wider areas. An example of complex KPIs in smart building is provided in
Appendix B.

Energy KPI models can also be formulated in particular application fields such as
logistics. Actually, logistics applications are commonly characterized by energy aspects. A
logistics system can be characterized by different variables contributing directly (vehicle
load factor, cargo weight, router length, specific fuel consumption, vehicle kerb weight, etc.)
or indirectly (such as for the driver behavior which can influence the vehicle consumption).
The KPI model will be useful to optimize logistics fluxes based on the energy behavior
model of the fleets. More complex systems can be associated with the joined actions of
different vehicles involved in the transportation of the same product (transport by truck,
plane, train, ship, etc.), and different logistics networks composed of different hubs. An
example of complex KPIs in logistics is provided in Appendix C.

Concerning renewable energy systems, the KPI model can be characterized by different
elements such as renewable sources, local electrical networks (medium-voltage electrical
cabling and electrical components of the site where the energy sources are allocated), and
high-voltage networks. The complexity of the system is increased when different renewable
energy fields are considered; the monitoring and control of more PV fields (structured in
subfields) transmitting energy to a high-voltage power plant is an example of a complex
system. An example of complex KPIs in photovoltaic plants is provided in Appendix D.
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Appendix A

KNIME is an open source tool suitable for AI data processing. Different supervised
and unsupervised data mining tools are available as libraries implemented in objects
(nodes) linked as a workflow. Figure A1 illustrates an example of KNIME data processing
testing the dataset found in [105] (solar power generation and sensor data of PV power
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plants). The open dataset is typically used to test data models supporting the choice of the
algorithm to adopt for forecasting or for classification. The workflow is structured in three
main parts:

• data pre-processing, preparing the dataset to process (filtering, data cleaning, normal-
ization, etc.);

• data processing (data processed by AI algorithms);
• data output (results, algorithm scoring, data storage).

In the proposed example (Figure 3), an Artificial Neural Network Multilayer Per-
ceptron (ANN-MLP) supervised algorithm is executed (identification of the electrical
power as labeled class to predict), processing a dataset of 68,777 records. Other open
datasets useful to test AI algorithms, and matching the topics of the paper, can be found
in the Kaggle database, and are related to wind turbine power [106–110], solar power
generation [111–114], smart buildings [115,116], energy generation and consumption [117–120],
smart grid stability [121,122], fault detection [123,124], and energy demand [125].
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Appendix B. Example of Complex KPI in Smart Building

Energy control and management in smart building applications can involve different
variables according to loads and plants, especially if large indoor areas are considered.
The full energy management process can be performed in a cloud framework, by reading
signals detected by sensors, and processing data by means of AI algorithms predicting daily
loads, optimizing energy consumption and load and switching electric power (as for energy
routing applications). In Figure A2, an example of a complex system integrating data
sensors in smart building is shown; the system is able to detect basic energy parameters
and to enable loads as a function of data processing. In the proposed example, an efficiency
indicator characterizes each floor. In the model, indicators are included estimating photo-
voltaic and thermal/electrical efficiencies by means of KPIs and different sensor data. All
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the KPIs of each floor are combined into a high-level KPI representing the energy efficiency
of the whole system. The system of Figure A2 takes into account both sensing and actuation
functions including AI data processing. All the AI algorithms can be executed into a unique
platform as an AI engine. The terms used in the architecture and the meaning of each
term are discussed below (BV is a basic value, BK is a basic KPI, CK is a complex KPI as a
function of BV and BK).

• Room i = f (ThEnIN, ElPow, Well, LigEl, VenEl): total room efficiency KPI (CK);
• Floor i = f (Room 1, Room 2, . . . Room n, Photovoltaic): total floor efficiency KPI (CK);
• Building = f (Floor 1, Floor 2, . . . Floor n, ExLigEl): total building efficiency KPI (CK);
• VenEl = f (Act2, Deh, SV1): ventilation electricity indicator indicating power consump-

tion KPI (as a function frequency of Act2 and Deh activations, and on SV1) (CK);
• ThEnIN = f (Act3, ST1): thermal energy indicator (KPI as a function frequency of Act3

activations, and on ST1) (CK);
• SV1 = f (air flux/velocity): sensor of ventilation measuring air flow from window (BV);
• Act1 = f (SL1, AI): actuator of lighting (actuation based on AI prediction in the short

period and on SL1);
• Act2 = f (Deh, SV1): actuator for ventilation synchronized with Deh (actuation based

on SV1);
• Act3 = f (ST1, AI): water heater actuator for heating (actuation based on AI prediction

of building external temperature and on ST1);
• Deh = f (Act2, UM1): dehumidifier actuator synchronized with Act2 (actuation based

on UM1);
• AI = f (SL1, PowM, ST1): artificial intelligence predictor algorithm;
• Hu1: humidity sensor measuring relative percentage humidity (BV);
• ST1: sensor of temperature measuring indoor temperature (BV);
• Well = f (Hu1, ST1, CO2, Gas): wellness indicator (CK);
• Gas: gas sensor monitoring air pollution coming from automobiles (external pollution)

such as nitrogen oxides, NOx (NO and NO2), and carbon monoxide (CO) (BV);
• CO2: carbon dioxide sensor (BV);
• SL1: sensor of lighting measuring illuminance and enabling Act1 (BV);
• LigEl = f (Act1, SL1, PowM): lighting electricity KPI (CK);
• ElPow = f(PowM, SwLo): electrical power indicator including switching load efficiency (CK);
• PowM: power meter (BV);
• SwLo = f (AI, Act1, PowM): energy router actuator managing switching load;
• Photovoltaic = f (SE1, SE2, . . . SEn): photovoltaic synoptic monitoring solar radiation

and PV (hardware and software units/modules);
• SEi: solar radiation sensor measuring solar energy (BV);
• ExLigEl = f (SLext): external lighting electricity indicator (CK);
• SLext (BV): sensor of external lighting measuring power consumption of external

lights and external solar illuminance;
• ActEx: actuator for external lighting.

The complex model of Figure A2 takes into account other important aspects such as
wellness/security (gas sensing) and can be matched with home automation applications.
The model can be more complex if other buildings are considered in the system to be
analyzed. In this case, combining the KPIs of all the buildings, defining a unique one
concerning a neighborhood or a city, is also possible. The modularity of the model is then
useful to scale up the application to wider areas. The complex KPI referring to the building
can be modeled by Equation (1).
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Appendix C. Example of Complex KPI in Logistics

Logistics applications are deeply characterized by energy aspects. A logistics system
can be characterized by different variables contributing directly or indirectly (such as for
the driver behavior which can influence the vehicle consumption) to the estimation of the
KPIs. In Figure A3, an example of a complex system associated with estimated KPIs in
logistics is illustrated.
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Specifically, the system of Figure A3 defines a model estimating KPIs in three main
hierarchical levels, where the final complex KPI (KPI level 3) is the total KPI (“Energy” KPI)
including the calculation of all the parameters contained in the analyzed model. In the
example of Figure A3, the KPIs refer to two hypothesized vehicle fleets traveling through
two different country regions, and each KPI can be expressed, similar to Equation (1), by
the following linear function:

KPI = ay1 + by2 + . . . (A1)
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where a, b, . . . are the weight coefficients and y1, y2, . . . are the parameters/variables
defined in Table A1. Each KPI must be properly normalized in order to use consistent scales.

Table A1. KPIs in “Energy logistics” (BV means basic values, BK means basic KPI, CK means complex KPI
as a function of BV and BK).

Level KPI Description

1(CK) KPIDi = f (Ds , De , . . .)

KPIDi that is the KPI of the driver Di (Ds (BV) is the parameter estimating the effect of the average
velocity provided by a GPS, the revolutions per minute (rpm) (BV) accelerations, and other engine
parameters (data provided by the engine control unit); the parameter De (BV) represents the driver

efficiency correlated to a correct driving style (use of AI algorithm).

1(CK)
KPIVi = Vi =

= f
(

γ, CW, RL, s f c, vkw,
ES, f c, ml

)
γ (BV): vehicle load factor (filling factor of the space dedicated to the product loading); CW: cargo

weight (BV); RL: router length (BV); s f c: specific fuel consumption as L/100km (BK); vkw (BK):
vehicle kerb weight; ES (BK): engine stress (estimated by the data extracted from the engine control
unit); f c (BK): effective fuel consumption; ml (BK): maintenance level (information about ordinary

and predictive maintenance performed by AI algorithm) [126].

1(CK) KPI f i = f
(

KPIDi , KPIVi

) KPI f i = KPI of the fleet i including information of KPIDi (CK) and KPIVi that is KPI of the single
vehicle Vi (CK) (linear combination with specified weights as in Equation (1)).

1(CK)
KPIE1 = f (lp, tr, tor, . . .)

As well as
KPIE2 = f (lp, tr, tor, . . .)

Indicator depending on the specific fleet. lp: load prediction for the specific region (BK); tr: traffic
(BK); tor: type of road (BK) (highway, provincial road, mountain road, etc.).

1(CK) KPIE3 = f ( f p, et, . . .) Exogeneous indicators such as fp (BV): actual fuel price (BV); et: economic trend either of the fuels
or of specific logistics services (BK).

2
(CK) KPIE level2 = f

(
KPI f i , KPIE1, KPIE2,

KPIE3, M1, HR

) KPI combining information of KPfi (CK), KPIE1 (CK), KPI E2 (CK), KPIE3 (CK), M1 (CK) where M1
represents a process management indicator including logistics planning efficiency and vehicle
management, HR (CK) indicates a human resource indicator about the correct choice of drivers

(reliability, specific experience, etc.). KPI E level 2 can be a “supernode” [104] reducing
network complexity.

3
(CK) KPIE level3 = f

(
KPIE level2( f leet1),
KPIE level2( f leet2)

) KPI “supernode” embedding information of KPIE level 2 of the two considered fleets: this KPI
represents the final “Energy” indicator of the whole complex system.

In Figure A4, an example of the KPI simulation related to the model of Figure A3 is
shown. The proposed approach is useful to optimize logistics fluxes, taking into account
an efficient energy behavior of the fleets. More complex systems can be associated with
the joined actions of different vehicles involved in the transportation of the same product
(transport by truck, or by plane, or by train, or by ship, etc.), and different logistics networks
composed of different hubs.
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Appendix D. Example of Complex KPI in Photovoltaic Plants

Renewable energy systems are characterized by different elements such as renewable
sources, local electrical networks (medium-voltage electrical cabling and electrical site
components where the energy sources are allocated), and high-voltage networks. The
complexity of the system is increased if different renewable energy fields are involved. In
Figure A5, an example of a complex system associated with the monitoring and control of



Sensors 2022, 22, 4929 17 of 22

two PV fields transmitting energy to a high-voltage power plant is shown. The example
refers to the model of two PV controlled fields structured in subfields. Their elements are:

• Pi = f(Voltage, Current): PV dashboard reading generated voltage (BV) and generated
current (BV);

• Moti = f(SPVi): motor of the solar tracker controlling string orientation angle;
• SPVi = f(θ): solar sensor detecting maximum radiation (BV) due to the optimization of

solar incidence θ);
• WheatS = f(wind speed (BV), rain(BV), humidity(BV), ...): sensors detecting weather

parameters (wind speed, rain, etc.);
• INVai = f(input current(BV), input voltage(BV)): datalogger controlling inverter operation

and input current and voltage (each inverter is installed in each subfield);
• Trai = f(Converted Power): datalogger controlling transformer operation about the

converted power from DC in AC (each transformer is installed in each subfield);
• AI = f(SynPVi): artificial intelligence engine predicting malfunctions of each component

of both the PV fields.
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Figure A5. Complex architecture controlling two PV fields and related high-voltage network. The
graph with linked nodes has been designed by Cytoscope.

The KPIs of the analyzed system are listed in Table A2. All the variables are indicated
in the graph of Figure A5.

Table A2. KPI related to each level of PV complex system to control (BV is a basic value, BK is a basic
KPI, CK is a complex KPI as a function of BV and BK).

Level KPI Description

1(BK) STkatPVi =f (Pi, Moti); (k = 1, . . . M; t = 1,
. . . N; i = 1,2, . . . l)

KPI as dashboard monitoring M number of PV
strings related to N subfields and for n PV fields

(monitoring Pi variables and solar
tracker efficiency).

2(CK) SynPVi = f (STkatPVi, TRai, WheatS,
INVai); (i = 1,2, . . . n) KPI as dashboard monitoring each PV field.

3(CK) KPI_F_Tot = f (SynPVi, AI); (i = 1,2, . . . n) Total indicator of the n PV fields.

4(CK) KPI_Cab = f (KPI_F_Tot, losses of high
voltage cables)

KPI indicator of 30 kV (nominal high voltage)
cables connecting PV fields to the high-voltage
power plant (monitoring of power losses as a

function of the KPI_F_Tot (CK) and power losses
of high-voltage cables (BV)).

5(CK) KPITot = f (KPI_Cab) KPI including all KPIs and high-voltage power
plant components.
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