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1. The Holonomic Systems Approach: Implementation of the
Mathematica package HolonomicFunctions

I Noncommutative Gröbner bases in Ore algebras
I Rational solutions of coupled linear systems of difference or

differential equations
I Closure properties for ∂-finite functions
I Summation/integration algorithms due to Zeilberger,

Takayama, and Chyzak
I http://www.risc.uni-linz.ac.at/research/combinat/software/

2. Three Advanced Applications
I Proof of Ira Gessel’s lattice path conjecture
I Relations between basis functions in FEM
I Computer proof of Stembridge’s TSPP theorem
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Introduction
Basic idea: describe functions/sequences via

I linear relations (PDEs, multivariate recurrences, mixed
difference-differential equations) and

I finitely many initial values.

All possible manipulations (addition, multiplication, substitutions,
summation, integration) are performed on this level.

(Informal) Definition: A function f(x1, . . . , xd) is called ∂-finite
w.r.t. the operators ∂1, . . . , ∂d if all its “derivatives” ∂α1

1 · · · ∂
αd
d (f)

span a finite-dimensional K(x1, . . . , xd)-vector space.

Remark: The notion ∂-finiteness is closely related with that of
holonomic systems.

Example: The Legendre polynomials Pn(x) are ∂-finite with
respect to the operators Sn and Dx.
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Standard Application 1

Abramowitz/Stegun (10.1.41)

∂jν(x)

∂ν

∣∣∣∣
ν=0

=
Ci(2x) sin(x)− Si(2x) cos(x)

x
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What we need

I Closure properties

I a database of functions whose ∂-finite description is known:

hypergeometric expressions, hyperexponential expressions,
algebraic expressions, AiryAi, AiryAiPrime, AiryBi, AiryBiPrime,
AngerJ, AppellF1, ArcCos, ArcCosh, ArcCot, ArcCoth, ArcCsc,
ArcCsch, ArcSec, ArcSech, ArcSin, ArcSinh, ArcTan, ArcTanh,
ArithmeticGeometricMean, BellB, BernoulliB, BesselI, BesselJ,
BesselK, BesselY, Beta, BetaRegularized, Binomial,
CatalanNumber, ChebyshevT, ChebyshevU, Cos, Cosh,
CoshIntegral, CosIntegral, EllipticE, EllipticF, EllipticK, EllipticPi,
EllipticTheta, EllipticThetaPrime, Erf, Erfc, Erfi, EulerE, Exp,
ExpIntegralE, ExpIntegralEi, Factorial, Factorial2, Fibonacci,
FresnelC, FresnelS, Gamma, GammaRegularized, GegenbauerC,
HankelH1, HankelH2, HarmonicNumber, HermiteH,
Hypergeometric0F1, Hypergeometric0F1Regularized, . . .
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What we need

I Closure properties

I a database of functions whose ∂-finite description is known:

. . .
Hypergeometric1F1, Hypergeometric1F1Regularized,
Hypergeometric2F1, Hypergeometric2F1Regularized,
HypergeometricPFQ, HypergeometricPFQRegularized,
HypergeometricU, JacobiP, KelvinBei, KelvinBer, KelvinKei,
KelvinKer, LaguerreL, LegendreP, LegendreQ, LerchPhi, Log,
LogGamma, LucasL, Multinomial, NevilleThetaC,
ParabolicCylinderD, Pochhammer, PolyGamma, PolyLog,
QBinomial, QFactorial, QPochhammer, Root, Sin, Sinh,
SinhIntegral, SinIntegral, SphericalBesselJ, SphericalBesselY,
SphericalHankelH1, SphericalHankelH2, Sqrt, StirlingS1,
StirlingS2, StruveH, StruveL, Subfactorial, WeberE, WhittakerM,
WhittakerW, Zeta.
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Standard Application 1

lhs = Annihilator[Derivative[1,0][SphericalBesselJ][0,x],

Der[x]]

{x3D4
x + 8x2D3

x + (2x3 + 14x)D2
x + (8x2 + 4)Dx + (x3 + 6x)}

rhs = Annihilator[

1/x*(CosIntegral[2*x]*Sin[x]-SinIntegral[2*x]*Cos[x]),

Der[x]]

{(12x5 + 5x3)D6
x + (144x4 + 70x2)D5

x + (132x5 + 475x3 + 260x)D4
x+

(1056x4 + 796x2 + 240)D3
x + (228x5 + 1991x3 + 1288x)D2

x+
(912x4 + 1110x2 + 560)Dx + (108x5 + 753x3 + 516x)}
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Standard Application 1

One ODE is a multiple of the other one:

OreReduce[rhs, lhs]

{0}

Therefore 6 initial values had to be checked.

Alternatively:

Together[

ApplyOreOperator[lhs,

1/x*(CosIntegral[2*x]*Sin[x]-SinIntegral[2*x]*Cos[x])]]

{0}

Hence, only 4 initial values have to be compared.
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Standard Application 2

A hypergeometric double sum

∞∑
r=0

∞∑
s=0

(−1)n+r+s
(
n

r

)(
n+ r

r

)(
n

s

)(
n+ s

s

)(
2n− (r + s)

n

)
=

∞∑
k=0

(
n

k

)4
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Standard Application 2

Annihilator[(-1)^(n+r+s)*Binomial[n,r]*Binomial[n,s]*

Binomial[n+r,r]*Binomial[n+s,s]*Binomial[2*n-(r+s),n],

{S[r], S[s], S[n]}]

{(n+ 1)(n− r + 1)(n− s+ 1)(n− r − s+ 1)Sn
+(n+ r + 1)(n+ s+ 1)(2n− r − s+ 1)(2n− r − s+ 2),

(s+ 1)2(2n− r − s)Ss + (n− s)(n+ s+ 1)(n− r − s),
− (r + 1)2(2n− r − s)Sr − (n− r)(n+ r + 1)(n− r − s)}

Takayama[%, {r, s}]

{(n+2)3S2
n−2(2n+3)

(
3n2 + 9n+ 7

)
Sn−4(n+1)(4n+3)(4n+5)}

Annihilator[Sum[Binomial[n, k]^4, {k, 0, n}], S[n]]

{(n+2)3S2
n−2(2n+3)

(
3n2 + 9n+ 7

)
Sn−4(n+1)(4n+3)(4n+5)}
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Standard Application 3

Andrews/Askey/Roy (6.8.10)

For λ > −1
2 and λ 6= 0, for l+m+ n even and the sum of any two

of l,m, n is not less than the third:∫ 1

−1
C

(λ)
l (x)C(λ)

m (x)C(λ)
n (x)

(
1− x2

)λ−1/2
dx =

π 21−2λΓ
(
2λ+ 1

2(l +m+ n)
)

Γ(λ)2
(
1
2(l +m+ n) + λ

)
×

(λ)(m+n−l)/2(λ)(l+n−m)/2(λ)(l+m−n)/2(
1
2(m+ n− l)

)
!
(
1
2(l + n−m)

)
!
(
1
2(l +m− n)

)
!(λ)(l+m+n)/2
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Standard Application 3

An annihilating ideal for the integral is obtained via creative
telescoping using Chyzak’s algorithm. The same ideal is obtained
for the right-hand side:

rhs = Annihilator[Pochhammer[..., {S[l], S[m], S[n]}]

{(l +m− n+ 1)(l −m+ n+ 2λ− 1)Sm
−(l −m+ n+ 1)(l +m− n+ 2λ− 1)Sn,

(l +m− n+ 1)(l −m− n− 2λ+ 1)Sl
−(l −m− n− 1)(l +m− n+ 2λ− 1)Sn,

(l −m− n− 2)(l −m+ n+ 2)(l +m− n+ 2λ− 2)
×(l +m+ n+ 2λ+ 2)S2

n

−(l +m− n)(l −m− n− 2λ)(l −m+ n+ 2λ)(l +m+ n+ 4λ)}

There seem to be lots of singularities!
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Standard Application 3

AnnihilatorSingularities[rhs, {0, 0, 0},

Assumptions -> lambda > 1/2 &&

Element[(l+m+n)/2, Integers] &&

l+m >= n && l+n >= m && m+n >= l]

{{{l→ 0,m→ n}, λ > 1
2 ∧ n ≥ 0}, {{l→ n,m→ 0}, λ > 1

2 ∧ n ≥ 0},
{{l→ 0,m→ 0, n→ 0}, λ > 1

2}, {{l→ 0,m→ 1, n→ 1}, λ > 1
2},

{{l→ 1,m→ 0, n→ 1}, λ > 1
2}, {{l→ 2,m→ 0, n→ 2}, λ > 1

2}}

The isolated singular points are checked immediately.
For the first two cases, we apply creative telescoping recursively.
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Standard Application 4

Gradshteyn/Ryzhik (6.512.1)

∫ ∞
0

Jm(ax)Jn(bx) dx =

a−n−1bnΓ
(
1
2(m+ n+ 1)

)
Γ(n+ 1)Γ

(
1
2(m− n+ 1)

)
×2F1

(
1
2(m+ n+ 1), 12(−m+ n+ 1), n+ 1, b

2

a2

)
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Standard Application 4

CreativeTelescoping[BesselJ[m, a*x]*BesselJ[n, b*x],

Der[x], {Der[a],Der[b],S[m],S[n]}]

{{aDa + bDb + 1,
(b2m2 − b2n2 − 2b2n− b2)S2

n + (2a2bn+ 2a2b− 2b3n− 2b3)Db
−2a2n2 − 2a2n+ b2m2 + b2n2 − b2,

(abm+ abn+ ab)SmSn + (a2b− b3)Db − a2n− b2m− b2,
(a2m2 + 2a2m− a2n2 + a2)S2

m + (−2a2bm− 2a2b+ 2b3m+ 2b3)Db
−a2m2 − 2a2m− a2n2 − a2 + 2b2m2 + 4b2m+ 2b2,

(a2b− b3)DbSn + (abn− abm)Sm + (a2n+ a2 − b2m− b2)Sn,
(a2b− b3)DbSm + (b2m− a2n)Sm + (abm− abn)Sn,
(a2b2 − b4)D2

b + (a2b− 3b3)Db − a2n2 + b2m2 − b2},

{−x, 2(abnx+ abx)SmSn − 2
(
bmn+ bm+ bn2 + 2bn+ b

)
Sn

+ 2
(
b2nx+ b2x

)
, abxSmSn + b2x,

− 2(abmx+ abx)SmSn + 2
(
am2 + amn+ 2am+ an+ a

)
Sm

− 2
(
b2mx+ b2x

)
,−abxSm + b2xSn, b

2xSm − abxSn,
ab2x2Sm − b3x2Sn − b2mx+ b2nx+ b2x}}
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Standard Application 4

gb = OreGroebnerBasis[

Annihilator[BesselJ[m, a*x]*BesselJ[n, b*x],

{Der[x], Der[a], Der[b], S[m], S[n]}],

OreAlgebra[x, Der[x], Der[a], Der[b], S[m], S[n]],

MonomialOrder -> EliminationOrder[1]

];

LeadingPowerProduct /@ gb

{DaSn, DaSm, D2
a , DxSn, DxSm, DxDb,

DxDa, S
2
mSn, DbS

2
n , DbSmSn, DbS

2
m, x}

Christoph Koutschan



Standard Application 5

Gradshteyn/Ryzhik (4.539)

∫ 1

0

(− log(t))s−1 arctan(at)

t
dt = a2−s−1Γ(s)Φ

(
−a2, s+ 1, 12

)
where Φ(z, s, a) =

∑∞
k=0

zk

(a+k)s is the Lerch transcendent.
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Standard Application 5

Both sides contain non-holonomic expressions (see the ISSAC’09
paper by Chyzak/Kauers/Salvy).

Annihilator[

Integrate[(-Log[t])^(s-1)/t*ArcTan[a*t], {t, 0, 1}],

{Der[a], S[s]}, Assumptions -> s>0]

Annihilator::nondf: The expression (-Log[t])̂ (-1 + s) is not
recognized to be ∂-finite. The result might not generate a
zero-dimensional ideal.

{aDaSs − s}

Annihilator[2^(-s-1)*Gamma[s]*a*LerchPhi[-a^2, s+1, 1/2]]

{aDaSs − s}

Christoph Koutschan



Advanced Application 1

Proof of Gessel’s conjecture
(joint work with M. Kauers and D. Zeilberger)
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Advanced Application 2

Relations for speeding up FEM
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Problem setting

Joachim Schöberl (RWTH Aachen): Simulate the propagation of
electromagnetic waves using the Maxwell equations

dH

dt
= curlE,

dE

dt
= − curlH

where H and E are the magnetic and the electric field respectively.
Define basis functions (in 2D) in order to approximate the solution:

ϕi,j(x, y) := (1− x)iP
(2i+1,0)
j (2x− 1)Pi

(
2y
1−x − 1

)
Problem: need to represent the partial derivatives of ϕi,j(x, y) in
the original basis (i.e., as linear combinations of shifts of the
ϕi,j(x, y) itself)

Christoph Koutschan



The Gröbner approach

The numerists need a relation of the form∑
(k,l)∈A

ak,l(i, j)
d
dxϕi+k,j+l(x, y) =

∑
(m,n)∈B

bm,n(i, j)ϕi+m,j+n(x, y),

that is free of x and y (and similarly for d
dy ).

I consider the operators Dx, Si, and Sj
I basis functions ϕi,j(x, y) are ∂-finite with respect to them
I compute generators of an annihilating left ideal for ϕi,j(x, y)
I represent them in the algebra

Q(i, j)[x, y][Dx; 1, Dx][Si;Si, 0][Sj ;Sj , 0]
I compute a Gröbner basis in order to eliminate x and y
I takes very long, interrupt as soon as a desired operator is

found
I result is quite big (2 pages of output)
I because of “extension/contraction” we can not be sure that

we obtain the smallest operator

Christoph Koutschan
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The ansatz approach

The numerists need a relation of the form∑
(k,l)∈A

ak,l(i, j)
d
dxϕi+k,j+l(x, y) =

∑
(m,n)∈B

bm,n(i, j)ϕi+m,j+n(x, y),

that is free of x and y (and similarly for d
dy ).

I work in the algebra Q(i, j, x, y)[Dx; 1, Dx][Si;Si, 0][Sj ;Sj , 0]
I compute a Gröbner basis G of a ∂-finite annihilating ideal for
ϕi,j(x, y)

I choose index sets A and B
I reduce the above ansatz with G
I do coefficient comparison with respect to x and y
I solve the resulting linear system for ak,l, bm,n ∈ Q(i, j)
I can find the “smallest” relation
I certain optimizations (e.g., using homomorphic images)

reduce the computation time to a few seconds
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Optimizations (1)

Of course,

nf

(∑
k

ak∂
αk

)
=
∑
k

ak nf (∂αk)

I reduce each monomial ∂αk separately

I use previously computed normal forms
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Optimizations (2)

Idea: Can we use homomorphic images for finding a good ansatz?

I surely we can compute in
Zp(i, j, x, y)[Dx; 1, Dx][Si;Si, 0][Sj ;Sj , 0]

I this does not help much

I better: try to reduce polynomial arithmetic

I have to keep x and y symbolically (coefficient comparison)

I what about i and j? If we plug in values for them, we loose
noncommutativity!
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Recall: normal form computation

Let O be the operator algebra.

Input: p ∈ O, a Gröbner basis G = {g1, . . . , gn} ⊆ O
Output: normal form of p modulo O〈G〉

while exists 1 ≤ k ≤ n such that lm(gk) | lm(p)
g := (lm(p)/lm(gk)) · gk
p := p− (lc(p)/lc(g)) · g

end while

Christoph Koutschan



Modular normal form computation

Input: p ∈ O, a Gröbner basis G = {g1, . . . , gn} ⊆ O
Output: normal form of p modulo O〈G〉

while exists 1 ≤ k ≤ n such that lm(gk) | lm(p)
g := h((lm(p)/lm(gk)) · gk)
p := p− (lc(p)/lc(g)) · g

end while

where h is an insertion homomorphism, in our example

h : Q(i, j, x, y) → Q(x, y)
f(i, j, x, y) 7→ f(i0, j0, x, y), for i0, j0 ∈ Z
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Result

With this method, we find in a few seconds relations like

(2i+ j + 5)(2i+ 2j + 7) d
dxϕi,j+1(x, y)

+2(2i+ 1)(i+ j + 3) d
dxϕi,j+2(x, y)

−(j + 3)(2i+ 2j + 7) d
dxϕi,j+3(x, y)

+(j + 1)(2i+ 2j + 5) d
dxϕi+1,j(x, y)

−2(2i+ 3)(i+ j + 3) d
dxϕi+1,j+1(x, y)

+(2i+ j + 5)(2i+ 2j + 7) d
dxϕi+1,j+2(x, y) =

2(i+ j + 3)(2i+ 2j + 5)(2i+ 2j + 7)ϕi,j+2(x, y)
−2(i+ j + 3)(2i+ 2j + 5)(2i+ 2j + 7)ϕi+1,j+1(x, y)

−→ these formulae already caused a speed-up of
20 percent (!) in the numerical simulations.
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3D case

We would like to do the same thing in 3D.

I now the basis functions

ϕ(i, j, k, x, y, z) := Pi

(
2z

(1−x)(1−y) − 1
)

(1− x)i(1− y)i

P
(2i+1,0)
j

(
2y
1−x − 1

)
(1− x)j

P
(2i+2j+2,0)
k (2x− 1)

contain 6 variables

I computations become too big and too slow
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A first result for 3D
One of the supports looks as follows:

{SjS4
k , S

2
j S

3
k , S

3
j S

2
k , S

4
j Sk, DxSjS

3
k , DxS

2
j S

2
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3
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5
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3
k , SjS

8
k ,

S2
j S

7
k , S

3
j S

6
k , S

4
j S

5
k , DxSjS

7
k , DxS

2
j S

6
k , DxS

3
j S

5
k , DxS

4
j S

4
k , DxSiS

7
k ,

DxSiSjS
6
k , DxSiS

2
j S

5
k , DxSiS

3
j S

4
k , DxSjS

8
k , DxS

2
j S

7
k , DxS

3
j S

6
k ,

DxS
4
j S

5
k , DxSiS

8
k , DxSiSjS

7
k , DxSiS

2
j S

6
k , DxSiS

3
j S

5
k , DxSjS

9
k ,

DxS
2
j S

8
k , DxS

3
j S

7
k , DxS

4
j S

6
k }

Joachim Schöberl was impressed but not too happy about these
results...
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Divide . . .

Idea: Write ϕ = u · v · w with

u = Pi

(
2z

(1−x)(1−y) − 1
)

(1− x)i(1− y)i

v = P
(2i+1,0)
j

(
2y
1−x − 1

)
(1− x)j

w = P
(2i+2j+2,0)
k (2x− 1)

and use the product rule

dϕ

dx
=

du

dx
vw + u

dv

dx
w + uv

dw

dx

We now want to find a relation between e.g. uvw and du
dxvw.
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. . .

Task: find relation between uvw and du
dxvw

How does this fit into our framework?

Usually we have something like

op • f = 0.

Now we search for a relation of the form

op1 • f = op2 • g.

Trivial solution: op1 ∈ Ann f and op2 ∈ Ann g. But since f and g
are closely related we expect that there exists something “better”.
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. . . and conquer

The natural way to express a relation like

op1 • f = op2 • g

is by using operator vectors in M = O×O which we let act on
F × F by

P•F = (P1, P2)•(f, g) := P1•f+P2•g, where P ∈M,F ∈ F×F

But how to compute a Gröbner basis for the ideal of relations
between f and g, i.e. the annihilator AnnM (f, g)?
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Closure properties

Let f = uvw and g = du
dxvw.

We start with u and u′ = du
dx :

AnnM (u, u′) =

O

〈{
(p, 0)|p ∈ AnnO u

}
∪
{

(0, p)|p ∈ AnnO u
′} ∪ {(Dx,−1)

}〉

After computing a Gröbner basis of the above, we can perform the
closure property “multiplication by vw” in a very similar fashion as
usual (using an FGLM-like approach).
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Result
Finally we can use the ansatz technique as before in order to find
an {x, y, z}-free operator:

−2(1 + 2i)(2 + j)(3 + 2i+ j)(7 + 2i+ 2j)(5 + i+ j + k)
(7 + i+ j + k)(8 + i+ j + k)(8 + 2i+ 2j + k)(9 + 2i+ 2j + k)
(11 + 2i+ 2j + 2k)(15 + 2i+ 2j + 2k)f(i, j + 1, k + 3)+

...
〈 31 similar terms 〉

...
−2(4 + 2i+ j)(5 + 2i+ j)(5 + 2i+ 2j)(5 + i+ j + k)
(6 + i+ j + k)(8 + i+ j + k)(10 + 2i+ 2j + k)
(11 + 2i+ 2j + k)(11 + 2i+ 2j + 2k)(15 + 2i+ 2j + 2k)
g(i+ 1, j + 2, k + 3) = 0

where f = uvw and g = du
dxvw.
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Advanced Application 3

Stembridge’s TSPP Theorem
(motivated by a $300 prize from D. Zeilberger)
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Totally Symmetric Plane Partitions (TSPP)

Theorem: (John Stembridge, 1995)
The number of TSPPs whose 3D Ferrers diagram is bounded
inside the cube [0, n]3 is given by the product-formula∏

1≤i≤j≤k≤n

i+ j + k − 1

i+ j + k − 2
.

Soichi Okada proved that the TSPP formula is true if

det (a(i, j))1≤i,j≤n =
∏

1≤i≤j≤k≤n

(
i+ j + k − 1

i+ j + k − 2

)2

,

where

a(i, j) =

(
i+ j − 2

i− 1

)
+

(
i+ j − 1

i

)
+ 2δ(i, j)− δ(i, j + 1).
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Translation to holonomic framework
Doron Zeilberger proposed a method for proving that

det(a(i, j))1≤i,j≤n = Nice(n),

for some explicit expressions a(i, j) and Nice(n), and for all n ∈ N:

Find another discrete function B(n, j) such that the following
identities hold:

n∑
j=1

B(n, j)a(i, j) = 0, i, n ∈ N, i < n

B(n, n) = 1, n ∈ N,
n∑
j=1

B(n, j)a(n, j) =
Nice(n)

Nice(n− 1)
, n ∈ N.

Then the determinant evaluation follows as a consequence.
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How to find B(n, j)

I we do not know a closed form for B(n, j), but

I we can guess recurrences for it.

Result of guessing: 65 recurrences for B(n, j), total size about
5MB (done by Manuel Kauers)

∂-finite description: We succeeded in computing a Gröbner basis
of these recurrences.
The Gröbner basis consists of 5 operators; their leading monomials
S4
j , S

3
j Sn, S

2
j S

2
n , SjS

3
n , S

4
n form a staircase of regular shape.
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Several summation approaches

n∑
j=1

B(n, j)a(n, j) =
Nice(n)

Nice(n− 1)

There are several methods for treating such holonomic sums; we
unsuccessfully tried

I elimination (Zeilberger’s slow algorithm),

I Takayama’s algorithm,

I Chyzak’s algorithm

(but could not accomplish the necessary computations).
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The right ansatz

Chyzak’s algorithm makes an ansatz of the form

d∑
i=0

pi(n)Sin + (Sj − 1)
∑

Sl
j S

m
n ∈U

ql,m(n, j)SljS
m
n

for pi ∈ Q(n) and ql,m ∈ Q(n, j). Uncoupling is needed!

Finally, we succeeded by using a “polynomial ansatz” for a creative
telescoping operator:

d∑
i=0

pi(n)Sin + (Sj − 1)
∑
k,l,m

qk,l,m(n)jkSljS
m
n

Nevertheless, the computations were very much involved; some of
the output relations consume up to 700 MB of memory.

Christoph Koutschan



Outlook

This technique can be extended in a straight-forward manner to
the q-case (which is an open problem for more than 25 years!).

From the computational point of view, this is still a big challenge!
−→ START project

Thank you for your attention!
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