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GRAPHICAL ABSTRACT

Toward the development of titania nanotubes based multifunctional drug eluting Ti 

implants. The study presents a significant step development of multifunctional implants, able to 

simustaneously perform drug release, osteoblasts adhesion, and eradication of bacteria and 

biofilm. This study embarks on harnessing synergistic effects of the ttitania nanotubes (which act 

as container for drugs) and biopolymers (which have inherent antibacterial properties). Titania 

nanotubes (TNTs) grown on Ti implants are combined with biopolymer (Chitosan and PLGA)

coatings to simultaneously enhance their antibacterial and osteogenic properties. Chitosan 

coated TNTs-Ti implants are able to effectively kill bacterial and promote osteoblast adhesion. 
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Highlights

• We fabricate TiO2 nanotubes (TNTs) with controlled pore diameter and length on Ti 
substrate.

• Drug loading and release capabilities of these TNTs was explored using gentamicin as  
model drug. Drug release kinetics and burst release from TNTs was further controlled by 
biopolymer coating.

• Osteoblast adhesion activity suggested improved cell adhesion on TNTs surface than 
control surfaces (Ti plate or plastic surface). Osteoblast adhesion was greatest for 
biopolymer coated TNTs substrates (especially Chitosan).

• Antibacterial properties of gentamicin loaded TNTs suggest improved and long term 
antibacterial effect from biopolymer coated TNTs substrates.

• Chitosan coated TNTs displayed the best antibacterial and anti-biofilm formation 
capabilities.

• Altogether, biopolymer coated TNTs displayed simultaneous osteoblast adhesion and 
antibacterial properties.
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ABSTRACT

Here, we report on the development of advanced biopolymer-coated drug-releasing implants 

based on titanium (Ti) featuring titania nanotubes (TNTs) on its surface.  These TNTs arrays 

were fabricated on the Ti surface by electrochemical anodization, followed by the loading and 

release of a model antibiotic drug, gentamicin. The synergistic osteoblastic adhesion and 

antibacterial properties of these TNTs-Ti samples are significantly improved by loading 

antibacterial payloads inside the nanotubes and modifying their surface with two biopolymer 

coatings (PLGA and Chitosan). The improved osteoblast adhesion and antibacterial properties of 

these drug-releasing TNTs-Ti samples are confirmed by the adhesion and proliferation studies of 

osteoblasts and model gram-positive bacteria (Staphylococcus epidermidis). The adhesion of 

these cells on TNTs-Ti samples is monitored by fluorescence and scanning electron 

microscopies. Results reveal the ability of these biopolymer-coated drug-releasing TNTs-Ti 

substrates to promote osteoblasts adhesion and proliferation, while effectively preventing 

bacterial colonization by impeding their proliferation and biofilm formation. The proposed 

approach could overcome inherent problems associated with bacterial infections on Ti-based 

implants, simultaneously enabling the development of orthopedic implants with enhanced and 

synergistic antibacterial functionalities and bone cell promotion.

1. Introduction

A wide variety of orthopedic devices are implanted every year in millions of patients suffering 

from bone-related injuries or diseases, including fracture fixations, artificial joints, and 
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prostheses [1,2]. The benefits obtained from implants can be numerous, although they are 

susceptible to multiple problems such as infections, lack of integration, inflammations and total 

rejection by the host body. Bacterial infections are the main cause of implant failures (ca. 10 %) 

[1,2]. These are typically caused by adhesion, colonization, and biofilm formation by bacteria 

colonies on the implant surface after implantation [3]. Bacterial infections require complicated 

and costly clinical treatments (i.e. up to US$ 18,000 each) and can lead to morbidity and 

mortality in patients [4-8]. Therefore, considering the large number of patients requiring 

orthopedic implants, alternative approaches are urgently needed to prevent implants from 

bacterial infections. Current therapies to treat bacterial infections are based on prolonged and 

repetitive systemic administration of therapeutics. Intravenous delivery of antibiotics is the 

standard treatment, which is usually prescribed for 6-8 weeks upon surgical implantation [9].

However, these therapies are not always effective due to bacterial colonies forming biofilms on 

the implant surface. These biofilms provide bacteria with protection against the host immune 

system and also reduce the efficacy of systemic therapy since they act as natural barriers that 

hinder the diffusion of administered antibiotics [3,10,11 ].

Therefore, the use of biofilm-disrupting agents and localized administration of antibiotics have 

become one of the most promising alternatives to address this problem. In this regard, a number 

of strategies have been developed so far, including bioactive sol-gel glass, injectable polymers, 

peptides or protein-based surface coatings, poly(methyl methacrylate) (PMMA) beads, and bone 

cements [12-18]. Nevertheless, these alternatives present some inherent shortcomings, such as 

toxicity, removal complications due to cemented revisions, exothermic polymerization leading to 

thermal injury to tissue, protein denaturation that inhibits growth factors, insufficient antibiotics 

dosage for direct exchange, and low fracture toughness, low mechanical strength and load 
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bearing capacity [19-23]. In the case of orthopedic implants based on titanium (Ti), one of the 

most promising approaches to overcome these limitations is to generate a layer of titania 

nanotubes (TNTs) on the implant surface via electrochemical anodization [24,25]. This 

electrochemical approach is based on a simple, scalable and cost-effective industrial process that 

can be applied on currently used medical implants based on Ti and Ti alloys of a variety of forms 

and shapes (including screws, plates, nails and wires) [26]. TNTs layers have a high surface area 

and loading capacity, excellent chemical inertness, mechanical robustness, good 

biocompatibility, tunable nanotube dimensions and surface chemistry. Furthermore, the duration 

and kinetics of drug released from TNTs structures can be controlled ad-lib by either engineering 

the nanotubes’ dimensions or modifying their surface chemistry, and alternatively, by 

incorporating polymeric coatings on the TNTs-Ti implant surface through plasma polymerization 

or dip-coating [27-31]. For these reasons drug-eluting TNTs-Ti implants for localized delivery of 

therapeutics (e.g. anti-inflammatory, antibiotics, anticancer drugs and proteins) have attracted 

huge attention during recent years [9,24,25,27-29,31]. However, their potential applicability as 

an active nanostructured surface for antibacterial proliferation and biofilm formation has not 

been adequately explored yet. So far, only a few studies have reported on the antibacterial 

properties of TNTs loaded with antibacterial agents (i.e. antibiotics and silver) [32-38].

Therefore, given the widespread use of Ti-based implants in orthopedics and their susceptibility 

to clinical complications associated with bacterial biofilms, more in-depth studies should be 

carried out in order to fully exploit the potential applicability of TNTs in orthopedics. In 

particular, studies showing combined effect of antibacterial and osteogenic properties of drug-

releasing TNTs based Ti implants are scarce. This is a fundamental aspect to translate TNTs-Ti 

implants into real clinical therapies, where antibacterial properties and bone cell 
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promotion/integration are recognized as the most critical factors. 

Thus, our study is aimed at enhancing the therapeutic performance of drug-releasing TNTs-Ti 

implants in terms of osteoblast adhesion and antibacterial properties. To this end, we have 

developed Ti implants featuring two active layers, namely: i) TNTs layer loaded with an 

antibacterial drug, and ii) a coating based on specific biopolymers with improved osteoblast 

adhesion and antibacterial properties. This concept is graphically summarized in Scheme 1. 

First, TNTs were synthesized on flat Ti foils by means of electrochemical anodization and 

loaded with a model antibacterial drug. The top surface of the Ti plates was subsequently coated 

with a biopolymer film. This coating enables a controlled and extended release of the drug from 

the nanotubes and, at the same time, improves bone cell adhesion, promotes implant integration, 

and prevents the formation of bacterial biofilms. Gentamicin sulphate, an aminoglycoside 

antibiotic commonly prescribed against implant infections, was selected as a model drug due to 

its wide bactericidal spectrum [39]. To increase their bioavailability and extend their release in a 

physiological environment, gentamicin molecules were encapsulated in a micelle polymer 

nanocarrier, namely, d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) prior to their 

loading into TNTs. Two bioactive polymers, i.e. polylactic-co-glycolic acid (PLGA) and 

Chitosan were investigated as functional coatings on gentamicin-loaded TNTs-Ti samples. The 

osteoblast adhesion and antibacterial properties of the resulting TNTs-Ti samples were assessed 

through a series of osteoblasts adhesion studies and bacterial bioassays. The adhesion and 

proliferation of the human osteosarcoma cell line HOS and Staphylococcus epidermidis (S. 

epidermidis) on TNTs-Ti samples (i.e. as-produced TNTs-Ti, gentamicin-loaded TNTs-Ti, 

micelle-encapsulated gentamicin-loaded TNTs-Ti, and PLGA- and Chitosan-coated TNTs-Ti 

with and without gentamicin loading) and control samples (i.e. tissue culture plastic and bare Ti 
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metal) were systemically analyzed by optical and electron microscopes. 

2. Methods

2.1. Fabrication of TNTs on Ti.

Ti foils (99.6 % titanium with a thickness of 0.25 mm) supplied by Alfa Aesar (USA) were 

mechanically polished and cleaned by sonication in acetone for 30 min prior to anodization as 

reported elsewhere [25,26]. After this, TNTs layers were fabricated by anodizing these Ti foils 

through a two-step electrochemical anodization performed at 100 V in fluoride containing 

electrolyte (Supplementary Information – Section 1). Structural characterization of TNT-Ti 

samples during the different experimental stages were performed using a field emission scanning 

electron microscope (FESEM, Quanta 450, FEI).

2.3. Drug and drug-micelle loading in TNTs-Ti samples.  

Direct loading of bare gentamicin inside TNTs was performed from an aqueous solution 

of gentamicin (50 mg/mL) by drop casting the drug solution as described previously [28]. The 

loading process involved the pipetting of 100 µL drug solution onto cleaned TNTs-Ti implants 

nanotube surface and drying the samples in air. After drying, the surface was wiped gently using 

a soft lint-free tissue to remove anysurface bound drug. The process of pipetting, drying and 

wiping was repeated 20 times to load substantial amount of drugs into the TNTs. For preparing 

drug encapsulated micelles, d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) polymer, 

which is a water-miscible, common vitamin E derivative, was used to formulate amphiphilic 
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micelles as drug carriers for the encapsulation of the model drug. They were synthesized using a 

simplified lyophilization technique. Firstly, 15 mg micelles were dissolved in 5 mL chloroform. 

Upon solvent evaporation in a rotary vacuum evaporator under vacuum, a layer of thin organic 

micellar film was obtained. The micelles were dispersed in 20 mL Milli-Q water, using gentle 

magnetic stirring for 15 min. The remaining chloroform was removed under reduced pressure via 

osmosis effect using regenerated cellulose membrane of 15 mm flat width with 20 cm long 

tubing (Spectrum Labs, Inc.). The loading of drug was performed by adding the aqueous 

gentamicin into the micelle solution (20 vol. %) under moderate magnetic stirring. Because 

gentamicin is a water soluble antibiotic, it is highly inferred that the drug exists in the 

hydrophilic region of TPGS or in the high affinity region of the micelle surface where the drug is 

retained. Samples were dialyzed against Milli-Q water for two days to eliminate excess drug and 

obtain the drug-micelle suspension. The same procedure applies for drug-micelle-contained 

solution, i.e. for the gentamicin-loaded TPGS micelles.

2.4. Coating of drug-loaded TNTs-Ti samples with biopolymers.

Polymer solutions of Chitosan [1 % (w/v) Chitosan + 0.8 % (v/v) acetic acid in Mili-Q water] 

and poly-(D,L-lactide-co-glycolide) (PLGA) [1 % (w/v) in chloroform] were prepared  and each 

separately coated onto the TNTs-Ti samples by the dip-coating method reported elsewhere [28]. 

The thickness of the deposited polymer was controlled by the number of dip-coating cycles and 

was measured by SEM. 

2.5. Drug release characterization.

In vitro release of gentamicin from drug-loaded and polymer-coated (PLGA and Chitosan) 

TNTs-Ti samples was investigated by measuring the changes in UV-visible absorbance with 
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time (Agilent technologies, Carry 60 spectrophotometer) using a quartz cuvette of 10 mm path 

length and 1 mL volume (Starna® Pty. Ltd.) (Supplementary Information – Section 2).

2.6. Osteoblastic cell culture and analysis.

The osteosarcoma cell line HOS (American Type Culture Collection, Rockville, MD, USA) 

was used as a model of human osteoblastic cells. This osteosarcoma cell line was chosen due to 

their similarity with normal osteoblasts in terms of their capability to produce bone matrix [40].

The materials and process for cell culture and TNTs adhesion is described in Supplementary 

Information – Section 3.

2.7. In vitro antibacterial characterization. 

Antibacterial bioassays were carried out on TNTs-Ti and PLGA- and Chitosan-coated TNTs-

Ti samples, with and without gentamicin payloads. Two gentamicin payloads (i.e. bare 

gentamicin and TPGS-gentamicin micelles) were used to evaluate the antibacterial activity of 

drug-loaded TNTs-Ti samples. Notice that bare Ti and bare TNTs-Ti samples without drug 

loading were used as the control samples for comparison. A summary of the performed 

antibacterial bioassays is presented in Scheme 2. Unless otherwise indicated, all aforementioned 

experiments were repeated in triplicate and statistically treated. Detailed methodology of 

bacterial incubation and inoculation is provided in Supplementary Information – Section 4.

3. Results and discussion

3.1. Structural characterization of TNTs-Ti samples.

SEM analysis was carried out for characterizing the morphology of the prepared TNTs-Ti 

samples before and after polymer coating, which are presented in Fig. 1A and B, respectively. 

SEM images of the top surface of TNTs-Ti samples (Fig. 1Ai) show nanotubes with opened 
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pores featuring an average diameter of 100 ± 20 nm. The actual size of a TNTs layer fabricated 

on the surface of Ti plates with a diameter of 10 mm is shown in Fig. 1Ai (inset). A high-

resolution cross-sectional SEM image of the TNTs is presented in Fig. 1Aii, displaying vertically 

aligned, highly ordered and densely packed arrays of TNTs. Images of the top surface of PLGA-

and Chitosan-coated TNTs-Ti samples after dip-coating are presented in Fig. 1Bi and Bii, 

respectively. These images are color-processed to discreetly highlight the ultra-thin film 

biopolymer coatings on the surface of TNTs-Ti samples. As these images reveal, the textured 

surface of these polymeric coatings contained micro and nanoscale roughness. However, the 

surface roughness is much less in comparison to uncoated TNTs. The thickness of the PLGA and 

Chitosan coatings was estimated to be ~2.5 µm and ~1.5 µm, respectively, as measured from the 

SEM images as well as verified by ellipsometry. 

3.2. In vitro release of gentamicin from TNTs-Ti samples. 

Comparative in vitro drug release profiles from TNTs-Ti samples loaded with gentamicin and 

TPGS-gentamicin with and without biopolymer coatings (i.e. PLGA and Chitosan) are provided 

in Fig. S1 (Supplementary Information). These profiles show a biphasic release pattern 

composed of an initial fast (burst) phase over the first 6 h and a subsequent slow release phase. 

The release characteristics obtained from these profiles are listed in Table 1, which summarizes 

the percentage of drug released at specific time intervals (1, 6 and 24 h; and 8, 16, and 26 days) 

and the total time to complete the drug release. For uncoated TNTs-Ti samples, the release 

kinetics is divided into two phases, with 77 % of the drug being released in the first 6 h (i.e. 

initial burst release), followed by a slow release over the following 7 days. Favorable reduction 

in the burst release and a significant improvement in the overall release periods were observed 

for TNTs-Ti samples loaded with TPGS-gentamicin micelles. In these TNTs-Ti samples, the 
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burst release was reduced to 57 % and the elution period extended for up to 10 days. 

As for the drug-releasing performance, our results reveal that these biopolymer coatings can 

extend the release of gentamicin for up to 22 (Chitosan coating) to 26 (PLGA coating) days, in 

comparison to 7 days provided by gentamicin-loaded TNTs-Ti samples without any biopolymer 

coating (Fig. S1, Supplementary Information). Furthermore, the encapsulation of gentamicin 

into micelles enabled the extension of drug release and improved released kinetics due to the 

larger size of the micelle-drug particle, resulting in higher interaction with the nanotubes’ walls 

that eventually led to a delayed release. In addition to this, biopolymer coatings (Chitosan or 

PLGA) were shown to provide further extension of the release of drug molecules because they 

are capable of acting as a physical barrier to hinder the direct contact between drugs and the bulk 

solution. In that regard, the longer release period observed in PLGA-coated TNTs-Ti samples 

can be related to the thickness of these coatings (2.5 µm) as compared to Chitosan coatings (1.5 

µm). The SEM images of biopolymer coated TNT-Ti samples after drug release are provided in 

Fig. S2, Supplementary Information to show the degradation of polymer layer.

3.3. Adhesion and growth of osteoblast on TNTs-Ti samples. 

The analyses on the adhesion and proliferation of human osteoblastic cells (HOS) for the five 

different surfaces (i.e. plastic control, bare Ti metal, uncoated TNTs-Ti, Chitosan-coated TNTs-

Ti and PLGA-coated TNTs-Ti) are presented in Fig. 2. The total number of cells adhered on the 

surface of these substrates after 1.5 and 24 h was subsequently expressed in percentage, and the 

results are graphically represented in Fig. 2A. Interestingly, the adhesion of HOS osteoblast cells 

on TNTs-Ti samples was more avid in comparison to the plastic control sample at the early stage 

(i.e. 1.5 h). Moreover, significant differences were observed in the osteoblast-binding properties 

of TNTs-Ti samples featuring polymeric coatings as well.
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For instance, Chitosan-coated TNTs-Ti samples provided the greatest cell attachment during 

this stage and maintained this trend over the course of the next 24 h. It is worth stressing that the 

number of HOS cells on plastic and Ti controls increased after 24 h of incubation. HOS cells 

adhere and proliferate on TNTs and PLGA coatings as well, but relatively poorer performances 

were found for these surfaces. This analysis revealed that Chitosan-coated TNTs-Ti samples 

present the best statistical consistency in terms of osteoblast adhesion properties over 24 h of 

incubation. The ability of the cells to spread on the surface of TNTs-Ti samples was analyzed by 

cytoskeletal staining and confocal microscopy, presented in Fig. 2Bi-iv. Notice that the cellular 

actin filament networks were observed to be stained with phalloidin (red), whereas the nuclei 

with DAPI (blue). These images show that osteoblasts were attached and well-spread across the 

surface of the TNTs-Ti samples, including PLGA- and Chitosan-coated ones, indicating that 

these polymer coatings are able to support the attachment and viability of osteoblast cells. 

Chitosan-coated TNTs-Ti samples displayed improved cell adhesion, which can be associated 

with the positive charge inherently present on Chitosan due to the high density of amino groups. 

Fig. 2Bi-iv show that osteoblasts are well-spread and attached to the surface of polymer-coated 

TNTs-Ti samples, suggesting that both polymer coatings enhanced osteoblast adhesion and 

viability. These results are in good coherence with previous studies investigating the ability of 

Chitosan to promote the formation of bone tissues [42,43]. Note that, the mechanical stability of 

TNTs grown on Ti substrate is high significance since any delamination or chipping of tubes 

could lead to severe cytotoxicity at the implant site in the host body. Figure S3 provides digital 

photograph of an as-prodiced TNTs-Ti sample and a TNTs-Ti sample after osteoblast adhesion 

study, showing no physical damage to TNTs on the surface.

3.4. Antibacterial properties of TNTs-Ti samples.
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SEM analysis was employed as the visual assessment method for evaluating the antibacterial 

properties. Fig. 3Ai-vii show SEM images of bacteria on bare Ti and TNTs-Ti samples without 

drug payload, which were used as control samples. This analysis revealed that the bacterial cells 

were in healthy conditions featuring typical spherical shape with diameters between 800 nm and 

1.1 µm, which fall into the normal size range of a healthy S. epidermidis. These bacteria 

presented a fairly isolated distribution and they appeared in sporadic formation (i.e. in groups of 

4-10 cells per colony) on the TNTs-Ti sample surface. No biofilm formation was observed in 

these samples. Specifically, bacterial cell groups were observed to be random following a 

circular or linear organization. This behavior was more clearly seen on the surface of TNTs-Ti 

samples (Fig. 3Aiii-vii), as compared with bare Ti (Fig. 3Ai-ii). Fig. 3Aiii indicates that a 

greater number of bacterial cells are present on the surface of TNTs samples featuring a layer of 

TNTs. The bacteria that thrived over the surface of these samples also self-aligned themselves 

into either linear strands or grape-like micro-colonies (Fig. 3Aiv-vi), where they proliferated and 

were embedded in an ultrathin, slimy matrix of exo-polymeric substances (EPS) secreted by 

themselves (Fig. 3Avi). However, it is inferred that the biofilm was not actually mature as it was 

still within the motile stage due to the short 1-day assessment, which did not allow sufficient 

time for its transition to the sessile stage for complete formation. Fig. 3Avii shows a SEM image 

of a single healthy S. epidermidis bacterium with a diameter of approximately 800 nm.

SEM images of gentamicin-loaded TNTs-Ti and TPGS- gentamicin-loaded TNTs-Ti samples 

were compared to evaluate the affinity of S. epidermidis to the surface of these samples. Results 

are presented in Fig. S4 (Supplementary Information). Fig. S4a and b (Supplementary 

Information) confirm a substantial bactericidal effect of gentamicin when it was released from 

the surface of TNTs-Ti samples. Since the aqueous bacteria suspension was in direct contact 
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with the drug-loaded TNTs-Ti samples, the potent drug thus created a bactericidal environment 

as it diffused out from the TNTs-Ti surface to the culture medium. Similar results were obtained 

with TPGS-gentamicin-loaded TNTs-Ti samples (Fig. S4c and d, Supplementary 

Information). The successful eradication of bacteria from the surface of these TNTs-Ti samples 

(Fig. S4c and d, Supplementary Information) suggests that 24 h is a sufficient contact and 

exposure time for eliminating bacteria, even though the drug was loaded inside TPGS micelles.

Fig. 3B shows SEM images of TNTs-Ti samples featuring biopolymer coatings of PLGA and 

Chitosan on their top surface with and without gentamicin payload. Numerous bacteria were 

detected on the surface of PLGA-coated TNTs-Ti samples, with the whole sample surface 

covered with bacteria and a thick biofilm, confirming the enhancement of cell adhesion and 

proliferation over PLGA coatings (Fig. Bi). In contrast, large segregated colonies of bacteria 

were observed on Chitosan-coated TNTs-Ti samples (Fig. 3Biii). These visible bacterial cells 

observed in SEM images were not alive as shown by BacLightTM staining (vide infra) and the 

viable plate count method (Fig. S5, Supplementary Information). 

This can be ascribed to the initial stage of contact and adhesion of bacteria on the polymer-

modified surface of TNTs-Ti samples and its subsequent death due to the intrinsic antibacterial 

properties of these biopolymer coatings. Comparing PLGA-coated drug-loaded TNTs-Ti samples 

with Chitosan-coated counterparts, the former shows a lesser reduction of Gram-positive 

population (Fig. 3Bii and iv, respectively). It is hypothesized that PLGA is capable of inhibiting 

bacteria growth, although it is unable to impart sufficient cytotoxicity to completely eradicate 

bacteria on the TNTs-Ti samples. In contrast, Chitosan showed superior performance as a 

bactericidal agent. A possible reason is the fact that PLGA is more susceptible to degradation 

through hydrolysis of its ester linkages in an aqueous environment [28]. Another interesting 
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observation in these tests is that Chitosan exhibits stronger bio-adhesiveness than PLGA, as a 

vast amount of dead bacterial debris appeared on its surface; this can be assigned to rapid 

settlement of bacteria due to their negatively charged cell membranes.

In order to confirm the reproducibility of these results and given that the more promising 

results were obtained with Chitosan-coated gentamicin-loaded TNTs-Ti samples, a set of these 

TNTs-Ti samples was incubated with bacteria for a longer time period (i.e. 7 days). Fig. S6a

(Supplementary Information) reveals that bacteria were not able to proliferate properly on the 

Chitosan-coated gentamicin loaded TNTs-Ti samples. It is inferred that bacteria died as a result 

of the synergistic combination of two factors: i) the Chitosan coating kept bacteria stagnant and 

affixed on the surface as small random colonies due to their negatively charged surfaces, which 

prevented them from forming a protective biofilm, and ii) the bactericidal effect of the released 

gentamicin, which induced bacterial death. Fig. S6b (Supplementary Information) displays 

magnified images of these samples, elucidating synergistic bactericidal effects between the 

Chitosan-based coating and biocidal effects of gentamicin. We also observed thinning and 

decomposition of the Chitosan coatings after long exposure to the liquid medium (i.e. PBS), 

which is in good agreement with the biodegradability properties of this biopolymer. Furthermore, 

antibacterial drug release from TNTs-Ti samples plays a crucial role in eradicating bacteria from 

their surface. It is noteworthy that drug molecules were present in the surrounding environment 

of the samples as indicated by the in vitro drug release profile obtained for Chitosan-coated 

gentamicin-loaded TNTs-Ti samples Fig. S1 (Supplementary Information). In vitro release 

studies demonstrated the ability of biopolymer coatings to extend the release from 7-10 days to 3 

weeks as a function of the thickness of the polymeric coating. It is therefore envisaged that this 

strategy would protect the inserted samples from bacterial infections during their integration into 
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the host body.

3.5. BacLight
TM

 staining on TNTs-Ti samples. 

Bacterial cells on the surface of TNTs-Ti samples were analyzed by the Live/Dead bacterial 

staining kit BacLightTM and the obtained results are displayed in Fig. 4. Bright green dots in Fig. 

4Ai and ii indicate a vast number of live bacteria cells were present on the surface of bare Ti and 

TNTs-Ti samples, respectively. Both the samples display a thick layer of biofilm produced by 

the bacterial cells. Fig. 4Aiii shows BacLightTM staining on a gentamicin-loaded TNTs-Ti 

sample, confirming that most bacteria were dead and were washed away from the surface. A 

large number of stained live bacteria (greenish-yellow dots) can be seen on PLGA-coated TNTs-

Ti samples (Fig. 4Bi). In contrast, a negligible number of such greenish-yellow dots were 

observed on PLGA-coated TNTs-Ti samples loaded with gentamicin, as shown in Fig. 4Bii. This 

indicates that the release of gentamicin into bacterial medium led to their death, while PLGA 

prevented their attachment on the sample surface. Chitosan-coated TNTs-Ti samples showed a 

small amount of greenish-yellow dots on their surface and no dots were observed on Chitosan-

coated gentamicin-loaded TNTs-Ti samples as shown in Fig. 4Biv. Fig. 4Bii-iv show no 

evidence of biofilm formation, which reveals the antibacterial effect of polymeric coatings on the 

surface of TNTs-Ti samples as compared to uncoated ones (Fig. 4Ai-ii and Bi). Note that the 

background color observed in these images can be associated with weak adsorption of staining 

dye molecules on the TNTs-Ti sample surfaces. The antibacterial properties revealed by 

BacLightTM  staining are in a good agreement with the results obtained from SEM imaging, 

revealing that coatings based on Chitosan have a superior bactericidal effect compared with 

PLGA ones.
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3.6. Viable cell count. 

Table 2 summarizes the viable cell count for all samples assessed through bacterial testing. A 

reduction of bacterial counts by a total amount of ca. 7.7 log10 was substantiated for TNTs-Ti 

samples. TNTs-Ti samples loaded with gentamicin encapsulated in TPGS, TNTs-Ti samples 

coated with Chitosan (both with and without gentamicin payload) and PLGA-coated TNTs-Ti 

loaded with gentamicin displayed complete elimination of bacterial populations from the initial 

seed value. PLGA-coated TNTs-Ti samples and gentamicin-loaded TNTs-Ti samples recorded 

quantities of 2.8 × 107 and 4 × 102 bacteria (i.e. estimation of 7 and 2 log10 equivalent), which 

correspond to a reduction of < 1 log10 and > 5 log10, respectively. The antibacterial assay results 

for the TNTs-Ti samples (except for bare Ti, TNTs and PLGA-TNTs) met the minimum 

requirement of a 2 log10 reduction from all control inoculums that must be achieved as 

recommended by the JISZ2801 standard for bactericidal surfaces. Additional information 

regarding viable cell counts is included in Fig. S5 (Supplementary Information). Therefore, 

our results confirm the effective antibacterial properties of these biopolymers coatings combined 

with gentamicin-loaded TNTs-Ti samples.

Chitosan is renowned for its extraordinary antimicrobial properties [46,47]. In our study, we 

compared antibacterial properties of PLGA- and Chitosan-coated TNTs-Ti samples. We 

observed that bacterial mortality was seven log values higher for Chitosan-coated TNTs-Ti 

samples as compared to PLGA-coated ones. PLGA coatings on TNTs-Ti samples (Fig. 4Bi) 

evidence the formation of bacterial biofilms, which was not observed in Chitosan-coated TNTs-

Ti samples (Fig. 4Bi and iii). Therefore, Chitosan coatings have superior intrinsic antibacterial 

properties over the PLGA coatings. To further elaborate, a long-term (1 week) antibacterial 

studies of Chitosan-coated gentamicin-loaded TNTs-Ti samples demonstrated the synergistic 
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effect of combining biopolymer coatings with antibacterial therapeutics loaded inside TNTs 

coatings as no bacteria and biofilms were observed in these TNTs-Ti samples (Fig. S6, 

Supplementary Information). The prime reason for antibacterial activity of Chitosan is deemed 

to the high electrostatic interactions between positively charged amino moieties and the 

negatively charged bacterial cell membrane leading to chelation of trace metal ions from cell 

walls and disruption of protein channels and transport of essential nutrients, at pH values above 

pKa (i.e. neutral pH) [46,47].

In summary, our study has demonstrated that TNTs-Ti samples featuring Chitosan coatings 

and TPGS-gentamicin payloads can effectively extend the release of therapeutics from TNTs for 

up to several weeks, thus allowing the promotion of osteoblast cells adhesion and growth without 

any cytotoxicity and, at the same time, enabling the prevention of bacterial adhesion, 

proliferation and biofilm formation (Table S1, Supplementary Information). 

The selective growth of osteoblast cells and eradication of bacteria are dependent on several 

factors, such as the difference in their structure, size, functionality, mode of contact, location and 

membrane properties. Therefore, to understand these properties, as well as that of cells, are 

essential factors to design and engineer orthopedic implants that favor the adhesion and 

proliferation of osteoblast, while impeding the development of bacterial biofilms. The proposed 

multi-functional drug-eluting implantable system is envisaged to overcome potential biomedical 

complications associated with orthopedic implants, as well as be applicable to treat other types of 

diseases such as bone cancers and osteoporosis. 

4. Conclusions

In conclusion, TNTs-Ti substrates were succesfully prepared by means of simple 

electrochemical anodization of Ti foil and were used as a model of multifunctional drug-
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releasing bone implant. To endow these TNTs-Ti with osteoblast adhesion and antibacterial 

properties, TNTs were loaded with TPGS micelles as drug-carrier for the encapsulation of 

gentamicin drug and coated with a thin layer of biopolymers. These TNTs-Ti surfaces presented 

a threefold ability: (i) to release gentamicin for extended time periods (i.e. up to 3-4 weeks), (ii) 

excellent osteoblastic adhesion, and (iii) effective  antibacterial properties. These results were 

proven by SEM imaging, BacLightTM staining, and subsequently verified by means of viable cell 

count. The antibacterial properties of TNTs-Ti samples coated with two biopolymers (i.e. PLGA 

and Chitosan) were evaluated with respect to bare Ti (control), bare TNTs-Ti, TNTs-Ti loaded 

with gentamicin and TPGS-gentamicin micelles. The results reveal a significant antibacterial 

effect of Chitosan coatings, which has become more efficient when combined with gentamicin or 

TPGS-gentamicin payloads inside the TNTs. The reduction of the bacterial viability was well-

above the minimum two log value threshold as recommended by the standard for bactericidal 

surfaces. Hence, our results demonstrate that these remarkable properties of polymer-modified 

drug-releasing TNTs-Ti samples have equipped them to become potential candidates for future 

biomedical applications due to their ability to simultaneously deliver therpeautics, reduce 

implant-related infections and promote osteointegration. 

Supporting Information. 

The Supporting Information file provides further information about the materials and methods 

used in this study along with the drug release curves, SEM images of TNTs after drug release, 

and bacterial viability. This material is available free of charge via the Internet at 

http://www.sciencedirect.com.
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Figures

Scheme 1:

Scheme 1. Schematic diagram summarizing the ability to impart effective antibacterial 

properties to the proposed TNTs-Ti drug-relasing implants combining drug/micelle (drug/micelle 

model: Gentamicin/TPGS) payloads and biopolymer coatings (PLGA and Chitosan). The lower 

part of the scheme shows the chemical structure of the drug/micelle payloads and the two 

biopolymers used for coating the surface of TNTs-Ti samples. PLGA: polylactic-co-glycolic 

acid.
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Scheme 2:

Scheme 2. Flow scheme showing the TNTs-Ti samples employed for antibacterial testing and 

the characterization techniques used for their qualitative and quantitative analysis. Bacterial 

growth and biofilm formation on the TNTs-Ti surface were analyzed using BacLight™ staining 

technique and SEM imaging. Quantitative measurement of surviving bacteria was performed by 

culturing and counting the viable bacteria. 
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Figure 1:

Fig. 1. SEM images of TNTs-Ti fabricated by electrochemical anodization of Ti showing A) 

uncoated TNTs-Ti substrates with (i) showing the top surface with open nanotubular structure 

(inset: a digital photograph of the actual TNTs-Ti sample), and (ii) showing an angled cross-

sectional image of TNTs with straight and high aspect-ratio nanotubes, B) angled cross-sectional 

images of TNTs dip-coated with biopolymers (i) PLGA (inset: top-view, Scale bar 1 μm) and (ii) 
Chitosan (inset: top-view, Scale bar 1 μm).
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Figure 2:

Fig. 2. A) Evaluation of osteoblast adhesion (%) on characterized substrates, including: plastic 

(control), Ti surface (control), TNTs-Ti, and TNTs-Ti coated with PLGA and Chitosan. Data 
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shown are means ± SD from triplicate assays.B) Confocal microscopy images of HOS osteoblast 

cells on different TNTs-Ti samples (i) Ti metal (control), (ii) TNTs-Ti, (iii) PLGA coated TNTs-

Ti, (iv) Chitosan coated TNTs-Ti. Phalloidin (red, cytoskeleton) and DAPI (blue, nuclei) stains 

show distinct spreading of the attached cells and their morphological outline (Scale bars = 

200 μm).

Figure 3:

Fig. 3. SEM images of S. epidermidis on (A) uncoated Ti ad TNTs-Ti substrates (i-ii) Ti metal 

(control); and (iii-vii) TNTs-Ti implants, showing that the surface is only partially covered by 
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bacterial colonies, aligned in linear and grape-like cluster configuration (Scale bar for (v): 1 μm).
B) SEM images of S. epidermidis on TNTs-Ti coated with PLGA (i) without gentamicin (inset: 

Scale bar 2 μm), and (ii) loaded with gentamicin. SEM images of TNT-Ti coated with Chitosan 

(iii) without gentamicin (inset: Scale bar 2 μm), and (iv) loaded with gentamicin.

Figure 4:
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Fig. 4. BacLightTM staining microscopy images of bacterial adherence and biofilm formation on 

TNTs-Ti samples. A) uncoated Ti metal and TNTs-Ti samples (i) Ti metal (control), (ii) TNTs-

Ti, and (iii) Gentamicin-loaded TNTs-Ti. B) PLGA and Chitosan coated TNTs-Ti samples (i) 

PLGA-coated TNTs-Ti without gentamicin, (ii) PLGA-coated TNTs-Ti loaded with gentamicin,

(iii) Chitosan-coated TNTs-Ti without gentamicin, and (iv) Chitosan-coated TNTs-Ti loaded 

with gentamicin.
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Tables

Table 1

Drug release characteristics of prepared TNTs-Ti samples loaded with gentamicin and coated 

with Chitosan and PLGA polymer films. (Mean ± SD, n = 3). Here, Gent-TNTs-Ti: gentamicin 

loaded TNTs-Ti sample, TPGS-Gent-TNTs-Ti: TPGS micelle encapsulated gentamicin loaded 

TNTs-Ti sample, Chitosan-Gent-TNTs-Ti: gentamicin loaded TNTs-Ti sample coated with 

Chitosan polymer, and PLGA-Gent-TNTs-Ti: gentamicin loaded TNTs-Ti sample coated with 

PLGA polymer.

Drug release 

(%)

Implant type

6 h 1 day 7 days 14 days 21 days

Total drug elution 

period

(days)

Gent-TNTs-Ti 77 86 99 100 100 7±2

TPGS-Gent-TNTs-Ti 57 64 90 100 100 10±1

Chitosan-Gent-TNTs-Ti 60 66 85 95 99 22±3

PLGA-Gent-TNTs-Ti 50 55 71 91 98 26±1

Table 2

Viable bacteria (S. epidermidis) counts performed from the overnight bacterial suspension 

removed from all tested TNTs-Ti samples: Ti metal: titanium metal control, TNTs-Ti: Titania 

nanotubes grown on Ti metal, PLGA-TNTs-Ti: PLGA coated TNTs-Ti sample, Chitosan-TNTs-

Ti: Chitosan coated TNTs-Ti sample, Gent-TNTs-Ti: gentamicin loaded TNTs-Ti sample, 

TPGS-Gent-TNTs-Ti: TPGS micelle encapsulated gentamicin loaded TNTs-Ti sample, 

Chitosan-Gent-TNTs-Ti: gentamicin loaded TNTs-Ti sample coated with Chitosan polymer, and 

PLGA-Gent-TNTs-Ti: gentamicin loaded TNTs-Ti sample coated with PLGA polymer.

Implant type Viable cell count (CFU/mL)

Ti metal (control) 7.7 × 107

TNTs-Ti 9.5 × 107

PLGA-TNTs-Ti 2.8 × 107

Chitosan- TNTs-Ti 0

Gent-TNTs-Ti 4 × 102

Gent-TPGS-TNTs-Ti   0

PLGA-Gent-TNTs-Ti 0

Chitosan-Gent-TNTs-Ti 0


