Advanced Composite High-κ Gate Stack for Mixed Anion Arsenide-Antimonide Ouantum Well Transistors

A. Ali, H. Madan, R. Misra, E. Hwang, A. Agrawal, I. Ramirez, P. Schiffer, T. N. Jackson, S. E. Mohney, J. B. Boos¹, B. R. Bennett¹, I. Geppert², M. Eizenberg² and S. Datta Penn State University, University Park, PA, USA;

¹Naval Research Lab, Washington, DC, USA; ²Technion - Israel Institute of Technology University, Haifa, Israel; Tel: (814) 865-0519, Fax: (814) 865-7065, Email: aua176@psu.edu

Abstract

This paper demonstrates the integration of a composite high- κ gate stack (3.3 nm $Al_2O_3\text{--}1.0$ nm GaSb) with a mixed anion $InAs_{0.8}Sb_{0.2}$ quantum-well field effect transistor (QWFET). The composite gate stack achieves; (i) EOT of 4.2 nm with $<10^{.7}\text{A/cm}^2$ gate leakage (ii) low D_{it} interface ($\sim 1 \times 10^{12} \ / \text{cm}^2/\text{eV}$) (iii) high drift μ of 3,900-5,060 cm²/V-s at N_S of $5 \times 10^{11}\text{-}3 \times 10^{12}/\text{cm}^2$. The $InAs_{0.8}Sb_{0.2}$ MOS-QWFETs with composite gate stack exhibit extrinsic (intrinsic) g_m of 334 (502) $\mu S/\mu m$ and drive current of 380 $\mu A/\mu m$ at $V_{DS}=0.5V$ for Lg=1 μm .

Introduction

Mixed anion $InAs_ySb_{1-y}$ quantum-wells (QW) with high electron mobility are candidates for integration with high hole mobility $In_xGa_{1-x}Sb$ QW for ultra-low power complementary applications¹. With the exception of a recent $In_{0.7}Ga_{0.3}As$ QWFET with high- κ gate stack², nearly all QWFETs, reported to date, use Schottky gates and suffer from high gate leakage. For further scaling, a gate stack is needed for integration with $InAs_ySb_{1-y}$ QWFET, with low EOT and J_{OX} , good interface properties and high carrier mobility in the channel. Here, we integrate a composite high- κ gate stack (Al_2O_3 -GaSb) with $InAs_{0.8}Sb_{0.2}$ QWFET, resulting in high performance transistors operating at 0.5V V_{DS} .

Materials Characterization

MBE grown mixed anion InAs_vSb_{1-v} QW exhibit room temperature electron mobility between 11,000-22,000 cm²/V-s with varying electron density³, corresponding to ballistic mean free path of ~400nm, making them promising channel material candidates for high-speed, low power electronics (Fig. 1). To retain the high carrier mobility in $InAs_{0.8}Sb_{0.2}$ QWFET, the high- κ dielectric is deposited on the upper barrier and not directly on the channel. We incorporated an ultra-thin (1nm) GaSb layer in the upper barrier as it avoids Al at the interface and associated surface oxidation. Using n-type and p-type GaSb(100) MOS capacitors, we evaluated both ALD and Plasma Enhanced ALD (PEALD) Al₂O₃ dielectrics and confirmed unpinned Fermi level in GaSb MOS system with the latter (Fig. 2a)⁴. By minimizing elemental Sb at the GaSb/Al₂O₃ interface using the low temperature PEALD Al₂O₃, we demonstrate low D_{it} (~1x10¹² /cm²/eV) near the valence band making the composite 3.3nm Al₂O₃/1nm GaSb gate stack suitable for InAs_{0.8}Sb_{0.2} QWFETs, where the surface Fermi level

sweeps below the midgap of GaSb towards the valence band (Fig. 2b). From XPS measurements we estimate the valence and conduction band offsets to be 3.4eV and 2.4eV respectively, sufficient for gate leakage suppression (Figs. 4a,b). Fig. 3 shows the schematic of the InAs_{0.8}Sb_{0.2} MOS QWFET with GaSb and Al₂O₃ dielectric which forms a composite gate stack on top of the QW. Fig. 5 shows the energy band diagram of the InAs_{0.8}Sb_{0.2} QW structure with the composite Al₂O₃-GaSb gate stack using Schrodinger-Poisson simulation, indicating strong electron confinement in the InAs_{0.8}Sb_{0.2} QW. Figs. 6a,b show the TEM micrographs of the InAs_{0.8}Sb_{0.2} QWFET stack grown on GaAs by MBE and the active device layers. Hall measurements were performed on the device layers by varying the temperature from 4K-300K (Figs. 7a,b). Table 1 shows the percentage contribution to 1/µ from individual scattering mechanisms at 300K. Near the room temperature, intra and inter sub-band acoustic deformation potential (ADP) scattering and interface defect scattering⁵ dominate. Shubnikov-de Haas (SdH) oscillations (Fig. 8a) are observed at low temperature (2-15K) and high magnetic fields (0-9Tesla) confirming excellent channel and interface quality. An effective mass of 0.043m₀ is extracted from the temperature dependence of the amplitude of SdH oscillations, which is lower than 0.05m₀ reported for InAs QW due to quantization and band non-parabolicity⁶. FFT of SdH oscillations vs. 1/B at 2K (Fig. 8b) shows single peak confirming majority carrier transport in the first subband of the QW at $n_s=2x10^{12}/cm^2$ and no parallel conduction.

Device Characterization

Figs. 9a,b show the top view SEM and cross-section TEM of the $InAs_{0.8}Sb_{0.2}$ MOS QWFET with 100nm physical gate length (L_G) and the composite Al_2O_3 -GaSb gate stack. Pd/Pt/Au metal stack was alloyed to form embedded contacts making direct contact with the QW (Fig.10). Circular TLM measurements before and after PEALD Al_2O_3 deposition are shown in Fig. 11. Figs. 12a,b show the split C-V_G characteristics of $InAs_{0.8}Sb_{0.2}$ MOS-QWFET for 4.4nm and 3.3nm physically thick Al_2O_3 and the frequency dispersion characteristics. The EOT of the thinner stack is 4.2 nm which includes the 9 nm $Al_{0.8}In_{0.2}Sb$ barrier and 12 nm $InAs_{0.8}Sb_{0.2}$ QW capacitance. Conductance vs frequency contour plot (Figs. 13a,b) shows positive slope with V_G indicating electron capture/emission process. This could be due to

the traps at the oxide-GaSb interface. Fig. 14 plots $J_{\rm OX}$ vs V_G showing less than 10⁻⁷ A/cm² of gate leakage in InAs_{0.8}Sb_{0.2} MOS-QWFET. Room temperature drift mobility values of 3,900-5,060 cm²/V-s at carrier concentrations of 5x10¹¹-3x10¹²/cm² are extracted from split C-V_G data (Fig. 15). Figs. 16-17 show the drain current (ID) vs. gate voltage (VG) of InAs_{0.8}Sb_{0.2} MOS-QWFET for various L_G and L_{SIDE} . Parasitic access resistance limits the achievable on-current in the fabricated devices. For the shortest L_{SIDE} of $0.25\mu m$ and $L_G = 1 \mu m$, the best extrinsic g_m and I_D at 300K are 334 μ S/ μ m and 380 μ A/ μ m, and at 77K are 630 μ S/ μ m and 411 μ A/ μ m at V_{DS} = 0.5V. Peak intrinsic gm increases to 502 μ S/ μ m (1,070 μ S/ μ m) at 300K (77K) (**Fig. 19**). Fig. 18 shows the output characteristics of the device at 300K and 77K for L_G = $1\mu m$ and L_{SIDE} = 0.25 $\mu m.$ The high off-state leakage of InAs_{0.8}Sb_{0.2} MOS-QWFET at 300K is likely due to the hole accumulation in the Al_{0.8}In_{0.2}Sb barrier layer screening the gate potential as well as the generation of holes due to impact ionization. The source side effective injection velocity, Veff, is extracted as a function of V_{GSi} - V_{T} at 77K for InAs_{0.8}Sb_{0.2} MOS-QWFET (Fig. 20). The highest V_{eff} obtained is 1.4x10⁷ cm/s, one of the highest values ever reported for III-V MOS QWFETs.

Conclusions

An advanced composite high- κ gate stack (3.3nm Al_2O_{3} -1.0nm GaSb) is successfully integrated in the mixed anion $InAs_{0.8}Sb_{0.2}$ QWFET with low EOT (4.2nm), negligible J_{OX} (10 $^{-7}$ A/cm 2) and high drift μ (3,900-5,060 cm $^2/V$ -s). The $InAs_{0.8}Sb_{0.2}$ MOS-QWFETs with Lg = 1 μm exhibit intrinsic transconductance of 502 $\mu S/\mu m$ and 1,070 $\mu S/\mu m$ and drive currents of 380 $\mu A/\mu m$ and 411 $\mu A/\mu m$ at room temperature and 77K, respectively, all at $V_{DS}=0.5V$.

References

¹J. B. Boos et al., *IEICE Trans.* vol. E85-A/B/C/D, no. 7, July (2008) ²M. Radosavljevic et al., *IEDM Tech. Dig.* pp. 319, Dec (2009) ³B. P. Tinkham, et al., *J. Vac. Sci. Technol.* B 23, pp. 1441 (2005) ⁴A. Ali et al., *Dev. Res. Conf.* June (2010) ⁵C. Nguyen et al., Appl. Phys. Lett. pp. 1854 (1992) ⁶D. Jin et al., *IEDM Tech Dig.*, pp. 495 (2009)

Acknowledgement

We acknowledge financial support from DARPA/SRC sponsored MARCO-MSD Center.

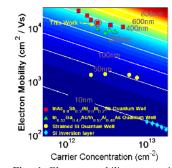
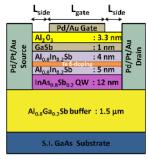
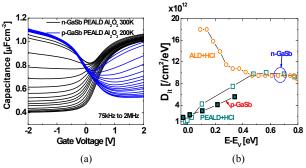




Fig. 1 Electron mobility vs carrier concentration overlayed on a contour map of ballistic mean free path

Fig. 3 Schematic of InAs_{0.8}Sb_{0.2} MOS QWFET on GaAs substrate with 1nm GaSb and 3.3nm PEALD Al₂O₃ dielectric which forms a composite Al₂O₃-GaSb gate stack on top of QW

Fig. 2 (a) Unpinned C-V characteristics of n-type and p-type GaSb (100) MOS capacitors with PEALD Al_2O_3 (b) D_{it} of 1-3 x 10^{12} /cm²/eV near E_V achieved with PEALD Al_2O_3 samples

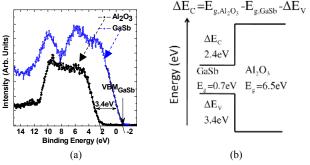
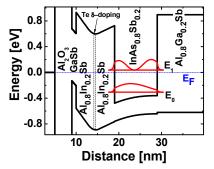
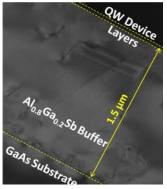
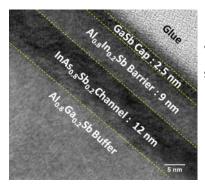
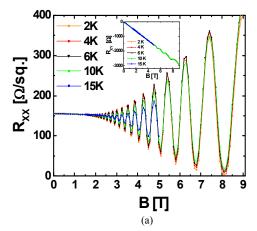



Fig. 4 (a) Measured energy difference between the valence band spectra of Al_2O_3 and GaSb (100) gives valence band offset of 3.4eV (b) Valence and conduction band offsets derived from XPS analysis

Fig. 5 Band diagram of InAs_{0.8}Sb_{0.2} MOS QWFET with 1nm GaSb and 3.3nm PEALD Al₂O₃ dielectric from Schrodinger-Poisson simulation


Fig. 6 (a) Cross-sectional TEM micrograph of $InAs_{0.8}Sb_{0.2}$ QW stack on GaAs substrate using $Al_{0.8}Ga_{0.2}Sb$ relaxed buffer layer

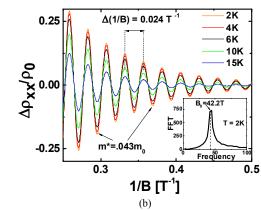


Fig. 6 (b) High resolution TEM micrograph of InAs_{0.8}Sb_{0.2} QW stack with as deposited 2.5nm GaSb (surface preparation prior to oxide deposition reduces GaSb thickness to 1nm)

	% contribution to 1/μ at 300K
Interface Charge	50%
ADP Scattering	23%
Remote Ionized Impurity Scattering	13%
Alloy Scattering	8%
Polar Optical Phonon Scattering	6%

Table 1 Percentage contribution to $1/\mu_{Total}$ at 300K

Fig. 8 (a) Shubnikov-de Haas (SdH) oscillations in the sheet resistance. Temperature dependence of the amplitude of these oscillations is used to calculate \mathbf{m}^* (b) FFT of SdH oscillations vs. 1/B at 2K (inset) shows single peak confirming majority carrier transport in the first subband of the QW at n_s =2x10¹²/cm² and no parallel conduction

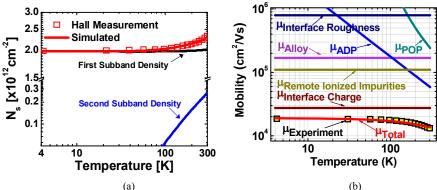


Fig. 7 (a) Carrier density (N_s), and (b) Hall mobility vs temperature for InAs_{0.8}Sb_{0.2} QW

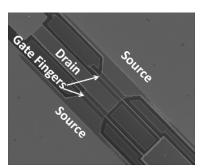


Fig. 9 (a) Top view SEM of $InAs_{0.8}Sb_{0.2}$ QWFET with composite Al_2O_3 -GaSb gate stack on top of the QW

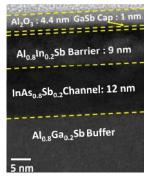


Fig. 9 (b) Cross-section TEM of $InAs_{0.8}Sb_{0.2}$ MOS QWFET with 1.0nm GaSb-4.4nm PEALD Al_2O_3 composite gate stack on top of the QW

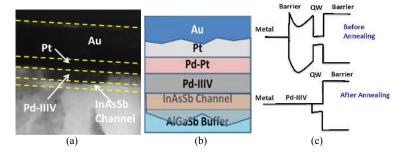


Fig. 10 (a) Cross-section TEM of $InAs_{0.8}Sb_{0.2}$ MOS QWFET under the alloyed embedded contact directly contacting the $InAs_{0.8}Sb_{0.2}$ channel (b) Schematic cross-section of the region underneath the ohmic contact (c) Band diagram explaining the embedded ohmic contact formation

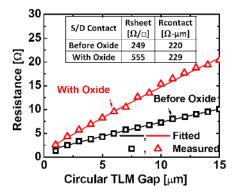
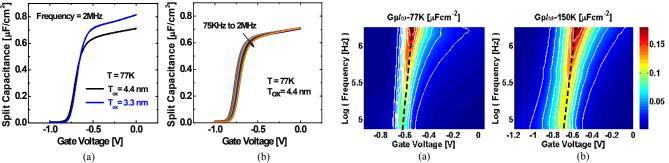



Fig. 11 Circular TLM measurements before and after PEALD Al₂O₃ deposition

with various composite gate stack thickness (b) Frequency dispersion of the composite gate stack; peak conductance trace reflects Fermi level movement C-V_G characteristics of InAs_{0.8}Sb_{0.2}MOS QWFET

Fig. 12 (a) Measured split C-V_G characteristics of InAs_{0.8}Sb_{0.2} MOS QWFET Fig. 13 (a-b) G-V_G characteristics of InAs_{0.8}Sb_{0.2} MOS QWFET with in the InAs_{0.8}Sb_{0.2}QW

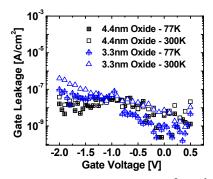


Fig. 14 J_{OX} vs V_G showing lower than 10⁻⁷ A/cm² of gate leakage in InAs_{0.8}Sb_{0.2} MOS-QWFET

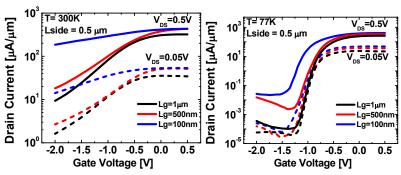


Fig. 16 L_G scaling: Drain current (I_D) vs. gate voltage (V_G) of InAs_{0.8}Sb_{0.2}MOS-QWFET with L_G= 1 μm, 500nm, 100nm and Al₂O₃-GaSb composite stack (EOT= 4.2nm) at 300K and 77K at $V_{DS} = 0.5V, 50mV (L_{SIDE} = 0.5 \mu m)$

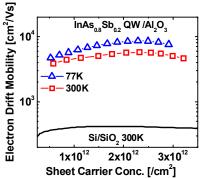


Fig. 15 Drift μ vs N_s at 77K and 300K in InAs_{0.8}Sb_{0.2} MOS QWFET from split C-V_G measurements

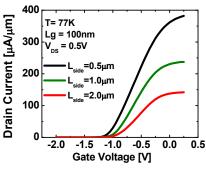


Fig. 17 L_{SIDE} scaling: I_D vs. V_G of L_G = 100nm InAs_{0.8}Sb_{0.2} MOS-QWFET with composite stack at 77K at V_{DS} = 0.5Vwith L_{SIDE} = 0.5, 1 and 2 μm

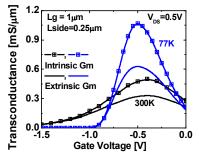


Fig. 19 Transconductance (g_m) characteristics of InAs_{0.8}Sb_{0.2} MOS-QWFET with L_G= 1 μm, L_{SIDE} = 0.25 μm and Al₂O₃-GaSb composite stack (EOT= 4.2nm) at 300K and 77K. Intrinsic peak gm is $502 \mu S/\mu m$ and $1070 \mu S/\mu m$ at 300 K and 77K, respectively

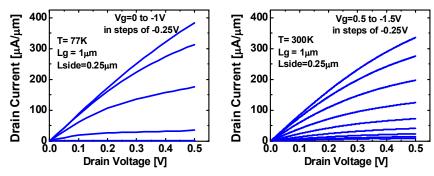


Fig. 18 Output Charactersitics: I_D vs. V_{DS} of $InAs_{0.8}Sb_{0.2}$ MOS-QWFET with L_G = 1 μm , L_{SIDE} = 0.25 μm and Al₂O₃-GaSb composite stack (EOT= 4.2nm) at 300K and 77K

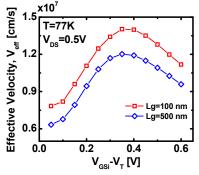


Fig. 20 Extracted effective injection velocity, V_{eff}, as a function of V_{GSi}-V_T using the charge obtained from split C-V $_{G}$ measurements and $I_{D,SAT}$ vs V_{GSi} -V $_{T}$. The V_T from split C-V_G is matched to the $V_{T,SAT}$ from $I_{D,SAT}$ vs V_{GSi} - V_T to obtain V_{eff}