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Background

In the latest years, harmonic distortion has become one of the most significant power 

quality problems. �e primary causes of this problem can be sorted as soft starters, 

rectifiers and increase of devices that of semiconductor circuits. Nonlinear loads cause 

harmonic distortion within the voltage and current waveform in the power system. 

Harmonics result in numerous problems such as low power factor and overheat on the 

power systems, electrical devices and transformers (Lee and Wu 1998; Snal et al. 2004; 

Hamadi et al. 2010; Sekkeli and Tarkan 2013). In order to protect other users in power 

system from the effects of the harmonics caused by nonlinear devices, the IEEE 519-

1992 standard has imposed specific limits on levels of voltage and current harmonics. 

Mainly, it sets limits of harmonic current and voltage at the point of common coupling.

Harmonic distortion has been suppressed by passive filters, active filters, and hybrid 

filters. Among these, the passive filters have been widely applied in filtering harmonics 

in power systems up to the present since it has high reliability, efficiency, low cost and 

a simple configuration. Also, passive filters are preferred where harmonics and reactive 

power compensation have been desired. Many different topologies of passive filters have 

been suggested in the literature, and the parallel filter configuration is most preferred 

filter topologies (�irumoorthi and Yadaiah 2015; Zobaa 2005; Singh and Verma 2007; 

Cheng et al. 1996).
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Parallel passive filters are more suitable for compensating current source nonlinear loads. 

On the other hand, it has been shown that the parallel passive filter is suitable for compensat-

ing current source type of nonlinear loads. �e series passive filter can be used to compen-

sate for voltage source type of nonlinear loads. Hybrid passive filter (HPF) which consist of a 

serial passive filter and parallel passive filter can be used for all type of nonlinear loads. �e 

HPF delivers harmonic and reactive power compensation and is also insensitive to source 

impedance (Prasad and Sudhakar 2014; Dzhankhotov and Pyrhonen 2013; Jou et al. 2001).

Despite the fact that HPF is considerable performed to harmonic mitigation, this filter 

cannot be fully successful to compensate the reactive power for suddenly changing non-

linear loads.

In the study by Rahmani et  al. proposed a new single phase hybrid passive filter 

(SPHPF) for compensating load voltage and current harmonics, correct power factor. 

Additionally, the SPHPF eliminate the chances of series and parallel resonance and elim-

inates large variation of power factor and terminal voltage with varying loads under stiff 

and distorted source conditions (Rahmani et al. 2008).

Singh et al. focused on new hybrid passive filter topology, which provides harmonic 

compensation at par with active filters, whose design is insensitive to source impedance, 

eliminate the chances of resonance over wide spectra and reduces large variation of 

power factor and terminal voltage with varying rectifier load (Singh et al. 2005).

In the study by Hsan et al. proposed a shunt hybrid power filter (SHPF) which consists 

of a small-rated active power filter in series with a fifth-tuned passive filter. Since the latter 

takes care of the major burden of compensation, the rating of the shunt hybrid power filter 

is much smaller than that in the conventional shunt active power filter (Hsan et al. 2013).

Hamadi et al. proposed a novel topology for a three phase hybrid passive filter (HPF) 

to compensate for reactive power and harmonics. �e proposed HPF configuration has 

many features such as: insensitivity to source-impedance variations; no series or parallel 

resonance problems; fast dynamic response. According to experimental and simulation 

results show that the proposed HPF configuration provides compensate all voltage and 

current harmonics and reactive power for large nonlinear loads (Hamadi et al. 2010).

Few researchers have investigated the hybrid passive filter configuration in order to 

compensate for reactive power and harmonics (Hamadi et al. 2010; Rahmani et al. 2007). 

�e performance of the hybrid passive filter has been investigated for any load types 

such as rectifiers and motor drivers. Despite that, the nonlinear loads are acceptable for 

harmonics mitigation performance of the filters, these loads are not suitable for reactive 

power compensation performance. Since reactive power demand of the loads has been 

minimized. In order to analysis of reactive power compensation performance of filter 

should be used varying loads or suddenly switched on/off loads.

�is paper proposes a new configuration of hybrid passive power filter in order to 

overcome the above-mentioned harmonic standard. �e advanced hybrid passive filter 

(AHPF) configuration is composed of two thyristor controlled parallel passive filters 

(TCPF) and a serial passive filter (SPF). �e AHPF is designed to rapidly changing non-

linear loads in order to reactive power compensation. �e TCPF is capable both reactive 

power compensation and current harmonics mitigation of nonlinear loads.

�is paper is arranged as follows: “Hybrid passive filters” section briefly presents 

theory of hybrid passive filter. “Advanced hybrid passive filter configuration” section 
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presents details of advanced hybrid passive power filter. Simulation studies and results of 

AHPF shows in “Simulation results” section. “Conclusion” section delivers our conclu-

sions and a brief discourse on future research directions.

Hybrid passive �lters

Conventional HPF configuration that is composed of a TCPF and a SPF is illustrated in 

Fig. 1. In this configuration, the SPF and TCPF operate as a bandpass filter and a band-

stop filter respectively. �e HPF is connected to between the nonlinear loads which pro-

duce voltage and current types of harmonics and point of common coupling (PCC) in 

the power system.

�e SPF is presented a low impedance at the fundamental frequency thus absorbing 

the voltage harmonics of interest. While SPF blocks for voltage fed type of harmonics, 

the TCPF eliminates to current fed type harmonics. �erefore, HPF is able to compen-

sate to all type of harmonics caused by nonlinear loads (Rahmani et al. 2007).

Series passive �lter

Series passive filter is consist of series connection of a capacitor and a reactor. �e SPF 

blocks flow of the current type harmonics in the direction of the source side by supply-

ing high impedance path at all harmonic frequencies. At the fundamental frequency, the 

capacitor and reactor have equal impedance. Resonant frequency of SPF is selected at 

a value close to the power system frequency. Single phase equivalent circuit of SPF and 

impedance response is shown in Fig.  2. Impedance response of series passive filter is 

expressed as a transfer function. �e transfer function is calculated for a single-phase 

equivalent circuit. �is transfer function is defined as (Hamadi et al. 2010; Phipps 1997);

Figure 2b illustrate that the SPF offers high impedance to all higher harmonic frequen-

cies. Concurrently, SPF presents very low impedance at the fundamental frequency. �is 

(1)HF (s) = ZSF (s) =
s
2(LSCSF + LSFCSF ) + 1

sCSF

Fig. 1 Configuration of hybrid passive filter
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is significant because notable impedance at the network frequency may lead to consider-

able voltage drop.

Thyristor controlled passive �lter

TCPF consists of a reactor, a capacitor and thyristor valve. �e TCPF offers high imped-

ance at the fundamental frequency, however, presents low impedance for all higher har-

monic frequencies. �e single phase equivalent circuit of TCPF is illustrated in Fig. 3.

�e TCPF supplies a low impedance sink for currents at harmonic frequencies to pre-

vent the flow of harmonics towards PCC. �e filter’s characteristics are capacitive for 

all higher harmonics and inductive for below the fundamental frequency. �e output 

impedance transfer function of TCPF is defined as,

�e equivalent inductance of the star connection is given by (Garcia-Cerrada et  al. 

2000; Alves et al. 2008),

where the firing angle is bounded as (π/2) < α < π.

(2)ZPF (α)(s) = Hf (s) =
sLPF (α)

s2LPF (α)CPF + 1

(3)LPF (α) = LPF
π

2π − 2α + sin(2α)

Fig. 2 Single phase equivalent circuit (a) and frequency response (b) of series passive filter

Fig. 3 Equivalent circuit of TCPF
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�e impedance response of TCPF that is triggered π/2 firing angle is shown in Fig. 4. 

�e TCPF offers low impedance path for all harmonics currents, therefore, protecting 

against the harmonics to flow through the source while preventing the fundamental cur-

rent from following into the TCPF.

Advanced hybrid passive �lter con�guration

Proposed AHPF system configuration is shown in Fig. 5. �e AHPF consists of a series 

passive filter and two thyristor—controlled hybrid passive filters. �e new proposed fil-

ter configuration is more accuracy than conventional HPF to eliminate voltage and cur-

rent harmonics. While HPF is limited to control reactive power compensation on linear 

and nonlinear load, AHPF supplies more precise control on it. Detailed comparison of 

the HPF and AHPF are given in Table 1. It can be safely said that AHPF is more accuracy 

Fig. 4 Frequency response of TCPF

Fig. 5 Configuration of AHPF
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and superior than HPF compared with reactive power compensation and harmonic 

mitigation.

Operating modes of the AHPF are listed in Table 2. Each TCPF of the proposed filter 

has two roles for reactive power and harmonic compensation. �ese roles briefly explain 

as compensator or filter. �e roles of TCPFs in the proposed AHPF system configuration 

are decided by the condition of nonlinear loads. Working combinations of the TCFPs 

are compensator–compensator, filter–compensator, or filter–filter for harmonic mitiga-

tion and reactive power compensation. Detailed explanation of how works AHPF con-

trol system is given as flow chart in Fig. 6. In order to achieve fast and accurate power 

quality and power factor improvement, measurement and calculation process has to be 

performed precisely and accurately. Because of the non-sinusoidal form of the voltage 

and current sample, signal processing methods are very important to calculate the fun-

damental component of the power. FFT or Goertzel Algorithms are generally utilized for 

calculating fundamental harmonic in industrial application. Voltage and current signals 

at PCC and load side is sampled with 20 kHz sampling rate. Two parameters are used to 

decide operating modes as follows;

  • One of them is total harmonic distortion level of current (THD
I
) at the load side.

  • Another one is the ratio of reactive power and active power.

If distortion level (THDI) at load side is smaller than 5 % and ratio of power parameters 

is smaller than 20 %, the AHPF is operated without compensator and filter. �is operat-

ing mode is normal operating mode of AHPF. If distortion level (THDI) at load side is 

smaller than 5 % and the ratio of power parameters is greater than 20 %, the AHPF is 

operated as reactive power compensator. If distortion level (THDI) at load side is greater 

than 5 % and ratio of power parameters is smaller than 20 %, the AHPF is operated as 

harmonic filter. If distortion level (THDI) at load side is greater than 5  % and ratio of 

power parameters is greater than 20 %, the AHPF is operated as both harmonic filter and 

reactive power compensator at the same time.

Table 1 Comparison of the HPF and AHPF

Comparison criterions HPF AHPF

Voltage fed type harmonics compensating Capable Accuracy

Current fed type harmonics compensating Capable Accuracy

Reactive power compensating Limited Accuracy

Table 2 Operating modes of the AHPF

Operating mode TCPF 1 TCPF 2

Normal operating – –

Power factor improver Compensator Compensator

Power factor and power quality improver Compensator Filter

Power quality improver Filter Filter



Page 7 of 20Kececioglu et al. SpringerPlus  (2016) 5:1228 

Simulation results

In this section, the AHPF configuration is simulated by using MATLAB/Simulink envi-

ronment and Sim Power System Toolbox in order to validate the precision of the pro-

posed configuration. For the purpose of revealing the performance of AHPF system, 

simulation works are also realized separately for five different parts. Nonlinear and lin-

ear load groups of simulated power system is modeled and analyzed in the first part of 

simulation works. In the second part, control system of TCPFs is designed by using Pro-

portional–Integral–Derivative (PID) controller. Detailed comparison between AHPF 

and HPF is examined in the third part of simulation works. In the last two part of simu-

lation works, the AHPF is simulated separately for two different scenarios in order to 

examine of the performance of the designed AHPF. Additionally, according to the load 

condition power and quality parameters of simulated power system are measured using 

new Simulink block that is improved for this purpose separately. �e power system and 

simulation parameters are listed in Table 3.

�e performance of the designed AHPF system has been simulated under current and 

voltage fed types of harmonic producing nonlinear loads and fixed load. Calculated val-

ues of new filter topology parameters are listed in Table 4.

Loads modelling

Loads groups of simulation studies are modelled using two six pulse rectifiers and two 

fixed load groups that are made up series combination of reactor and resistor. �e loads 

groups consist of fixed linear and nonlinear load and switchable linear and nonlinear 

loads. Switchable loads of simulated power system is used in order to obtain suddenly 

Fig. 6 Flow chart of AHPF
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changing loads groups. Loads in simulated power system are illustrated in Fig.  7 and 

parameters of loads are listed in Table 5.

Voltage and current waveforms of fixed loads groups is given in Fig. 8. �e harmonic 

spectrums of single-phase voltage and current of this loads is shown in Fig. 9. �e wave-

forms are sampled for five periods. As clearly seen in Fig. 8, voltage and current wave-

forms include notches and many harmonic frequencies respectively. Six pulse three 

phase rectifiers cause that type of distortion. As shown in Fig. 9, the load current mainly 

Table 3 Power system parameters

Line voltage Vp–p 400 V

Line frequency f 50 Hz

Line impedance Ls 0.5 mH

Rs 0.1 Ω

Simulation step time Ts 5 µs

Table 4 Calculated values of new �lter topology

SPF capacitor CSF 299 µF

SPF reactor LSF 33.67 mH

TCPF capacitor CPF 90 µF

TCPF reactor LPF 113 mH

Fig. 7 Load groups of simulated power system
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includes 5th, 7th, 9th, 11th, 13th harmonic frequencies, and total harmonic distortion of 

load current is 23.70 %, �e harmonic distortion level of load voltage is 14.25 %.

Control system of TCPFs

In this part, the thyristors of TCPFs are controlled by PID control system. Proportional–

integral–derivative (PID) controller is one of the earlier control techniques (Åström 

Table 5 Parameters of load models

Fixed nonlinear load RL 100 Ω

LL 25 mH

Switched nonlinear load RSL 200 Ω

Fixed load PFL 500 W

QFL 1500 VAr

Load 1 P1 100 W

Q1 1000 VAr

Fig. 8 Voltage and current waveform of fixed loads

Fig. 9 Harmonic spectrum of load current and voltage
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and Hägglund 2006). Moreover, it is known that PID controller is widely used in many 

industrial and practical applications because of its simple structure and effective con-

trol capability (Visioli 2006). In PID controller structure, there are three coefficients 

such as proportional, integral, and derivative. �ese coefficients are summed to calculate 

the output of the PID controller. �e control signal of the PID controller can also be 

expressed as below (Keel and Bhattacharyya 2008; Ang et al. 2005):

where the control signal u(t) is the sum of three coefficients. Each of these coefficients is 

a function of the tracking error e(t). �e proportional (P) coefficient produces the out-

put of controller depending on the amount of error, and the proportional coefficient 

increases the static accuracy and dynamic response of the system. �e integral (I) coef-

ficient reduces steady-state errors through low-frequency compensation. �e derivative 

coefficient improves transient response through high-frequency compensation. Each of 

these coefficients operates independently of each other (Åström and Hägglund 2006; 

Silva et al. 2002).

�e block diagram of PID control system for TCPF is given in Fig. 10. Proportional, 

integral and derivative parameters of the control system are listed in Table 6.

Comparison of conventional HPF and AHPF

In this part of simulation studies, proposed AHPF configuration is compared to con-

ventional HPF. �e effect of proposed configuration on the simulated power system is 

examined for reactive power compensation and harmonic mitigation. Although HPF 

has only filter mode, the AHPF has three different operating modes. While HPF is only 

operated power quality improver, AHPF is operated both power factor and power qual-

ity improver in this simulation studies.

(4)U(t) = Kpe(t) + Ki

∫
e(t)dt + Kd

d

dt
e(t)

Fig. 10 Block diagram of control system

Table 6 Parameters of control system

Proportional gain KP 0.3

Integral gain KI 35

Derivative gain KD 0.02
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Firstly, fixed linear and nonlinear loads groups are used in order to analyze harmonic 

mitigation performance of HPF and AHPF. Voltage and current type of harmonics of 

the loads groups are compensated with HPF and AHPF configurations, respectively. 

Harmonic spectrums of voltage and current at the PCC side with HPF configuration are 

given in Fig. 11.

As shown in Fig. 11, total harmonic distortion levels of voltage (THDV) and current 

(THDI) is 0.05 and 4.17 %, respectively. THD level of current (THDI) is smaller than spe-

cific limit that is mentioned IEEE 519-1992 standard. As a result, conventional HPF con-

figuration is successful in compensating voltage and current types of harmonics at load 

side.

Harmonic spectrums of voltage and current at the PCC side obtained by AHPF are 

given in Fig. 12. Waveforms of current and voltage at the PCC side measured by AHPF 

are illustrated in Fig. 13.

As shown in Fig. 12, THD level of PCC voltage (THDV) is nearly close to 0.00 and THD 

level of PCC current (THDI) is 2.34 %. As clearly seen in this Fig. 13, the voltage and cur-

rent waveforms at the PCC become close to a sinusoidal form after using by AHPF. It is 

explicitly illustrated from Figs. 12 and 13 that proposed filter configuration almost com-

pletely eliminate the harmonics caused by nonlinear load. As shown in Fig. 13, due to 

AHPF is capable of working reactive power compensation mode, current of loads at the 

Fig. 11 Harmonic spectrum of voltage and current at the PCC side with HPF

Fig. 12 Harmonic spectrum of voltage and current at the PCC side with AHPF
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PCC is decreased compared to unfiltered conditions. Consequently, it is observed that 

AHPF is more precise than HPF.

Lastly, comparison of reactive power compensation performances of HPF and AHPF 

are studied in this part of simulation. For this purpose, sudden switchable linear load is 

used for analyzing performances of reactive power compensation. Total simulation time 

is 3 s. Load 1 is switched on 2.5th seconds in simulation time. Reactive power at PCC 

and load side with HPF is shown in Fig. 14.

After the switched on load 1, it is observed that reactive power of loads groups has 

increased from 945 to 1276 VAr. As clearly seen in Fig. 14, reactive power compensa-

tion performance of HPF is limited and fixed. Capacitive reactive power of the HPF 

is 483  VAr. Before switched on load 1, power factor value at PCC side is 0.79. After 

Fig. 13 Voltage and current waveform at the PCC side with AHPF

Fig. 14 Reactive power at the PCC and load side with HPF
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switched on load 1, it is shown that power factor has decreased. Reactive power at the 

PCC side has increased from 462 to 793 VAr. Performance of HPF configuration is not 

satisfactory for reactive power compensation.

Reactive power compensation performance of AHPF is shown in Fig. 15. In this sim-

ulation parts, reactive power at the load side has increased from 945 to 1276 VAr by 

means of switching on load 1. Respond to it, AHPF has supplied variable capacitive reac-

tive power. Supplied capacitive reactive power is increased from 896 to 1226 VAr after 

the 2.5th seconds. Power factor at the PCC side is fixed 1.00 before and after switched 

on load 1. It is explicitly illustrated from Fig. 15 that AHPF provides more accuracy than 

HPF for reactive power compensation.

Scenario 1: Switching load 1

�e unexpected events in power systems such as suddenly switched on/off nonlinear 

and linear loads cause disturbance effects on filter, reactive power compensator, and 

power systems. In this simulation scenario, performance of AHPF is examined against 

abovementioned disturbance effects. Total simulation time is 4  s. In addition to fixed 

loads, the load 1 is switched on 2th seconds and switched off 3th seconds in simulation 

time. Reactive power and power factor changing at the PCC and load side are given in 

Figs. 16 and 17 and are plotted red and blue colors on all figures respectively. As shown 

in Fig. 16, reactive power value at the load side has increased from 930 to 1260 VAr after 

2th seconds. In response to this changing, reactive power value at the PCC has sud-

denly increased from 55 to 310 VAr. However, it has rapidly reached set value of reactive 

power for PCC side by means of PID controller. �e settling time of control system is 

0.08 s and it is acceptable for reactive power compensation. As clearly seen in Fig. 17, 

although power factor value at the load side is decreased from 0.55 to 0.46 after 2th sec-

onds, power factor value at the PCC side has fixed 0.99.

Total harmonic distortion level of voltage (THDV) and current (THDI) with AHPF 

at the load and PCC side are shown in Figs. 18 and 19. As clearly seen in Figs. 18 and 

19, while THDV value at the load side has increased from 1.6 to 1.9 %, THDV value at 

Fig. 15 Reactive power at the PCC and load side with AHPF
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a

b

Fig. 16 Reactive power at PCC (a) and load side (b)

a

b

Fig. 17 Power factor of PCC (a) and load (b)
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a

b

Fig. 18 THD level of voltage at PCC (a) and load (b)

a

b

Fig. 19 THD level of current at PCC (a) and load (b)
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a

b

Fig. 20 Reactive power at PCC (a) and load side (b)

the PCC side has fixed after switched on load 1. Although THD level of current at the 

load side has decreased from 27.02 to 21.52 %, THD level of current at the PCC side has 

fixed to 2.56 % after switched on load 1. Consequently, before and after switched on load 

1, THDV and THDI values at the PCC are smaller than specific limit and the AHPF is 

smoothly compensated harmonics and reactive power for this simulation scenario.

Scenario 2: Switching nonlinear load

�is part of simulation studies is performed to examine harmonic mitigation and reac-

tive power compensation performance of AHPF. For this purpose, in addition to fixed 

load groups a new nonlinear load is suddenly switched on 2th seconds. Reactive power 

and power factor changing at the PCC and load side are given in Figs. 20 and 21 and are 

plotted red and blue colors on all figures respectively. As it is also clearly seen in this 

Fig. 20 that reactive power value at the load side has increased from 930 to 1110 VAr 

after 2th seconds. However, reactive power value at the PCC side has increased from 50 

to 87 VAr and power factor value at the PCC side is nearly fixed to 1.00.

�e total harmonic distortion level of voltage (THDV) and current (THDI) with AHPF 

at the load and PCC side are shown respectively in Figs. 22 and 23. Before the 2th sec-

onds, while THDV value at the load side is 1.65 %, THDV value at the PCC side is 0.02 %. 

After the 2th seconds, THDV value at the load side has increased 2.07 %. However, THD 

level of voltage at the PCC side has not changed. As clearly seen in Fig.  23, although 

THDI value at the load side has decreased from 27.02 to 21.77 % after the switched on 

the new nonlinear load, THDI value at the PCC side has decreased from 2.6 to 2.0 %. 
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a

b

Fig. 21 Power factor of PCC (a) and load (b)

a

b

Fig. 22 THD level of voltage at PCC (a) and load (b)
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As a result of this scenario, it is observed that AHPF is so useful for power quality and 

power factor improvement.

Conclusion

In this paper, a new hybrid passive filter that is named AHPF is developed in order to 

both harmonic mitigation and reactive power compensation. Reactive power and har-

monic compensation performance of AHPF compared to conventional HPF. Many 

simulation studies have been performed for this purpose. �e mainly advantage of pro-

posed filter, while HPF provides limited capacitive reactive power, AHPF provides pre-

cise capacitive reactive power for power factor improvement. Whole simulation studies 

show that, THD levels of current and voltage at the PCC side are acceptable for the 

power quality standards. Additionally, simulation results indicate that power factor of 

the system is fixed about 1.0 for all simulation conditions. As a result of this studies, per-

formance of AHPF configuration is more accuracy in order to reactive power compensa-

tion and harmonics mitigation as compared to conventional HPF.

Abbreviations

AHPF: advanced hybrid passive filter; HPF: hybrid passive filter; TCPF: thyristor con-

trolled parallel passive filter; SPF: series passive filter; THD: total harmonic distortion; 

PCC: point of common coupling.

a

b

Fig. 23 THD level of current at PCC (a) and load (b)
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List of symbols

Z  impedance
L  inductor
C  capacitor
V  voltage
Q  reactive power
P  active power
f  frequency
T  time
R  resistor
K  gain

Subscripts

S  source
SF  series passive filter
PF  parallel passive filter
L  load
I  current
v  voltage
p–p  phase–phase
SL  switched load
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