
Space Sci Rev (2019) 215:48
https://doi.org/10.1007/s11214-019-0615-9

Advanced Curation of Astromaterials for Planetary

Science

Francis M. McCubbin1
· Christopher D.K. Herd2

· Toru Yada3
· Aurore Hutzler1

·

Michael J. Calaway4
· Judith H. Allton1

· Cari M. Corrigan5
· Marc D. Fries1

·

Andrea D. Harrington1
· Timothy J. McCoy5

· Julie L. Mitchell1
· Aaron B. Regberg1

·

Kevin Righter1
· Christopher J. Snead6

· Kimberly T. Tait7
· Michael E. Zolensky1

·

Ryan A. Zeigler1

Received: 11 May 2019 / Accepted: 17 October 2019 / Published online: 7 November 2019
© The Author(s) 2019

Abstract Just as geological samples from Earth record the natural history of our planet,
astromaterials hold the natural history of our solar system and beyond. Astromaterials ac-
quisition and curation practices have direct consequences on the contamination levels of
astromaterials and hence the types of questions that can be answered about our solar sys-
tem and the degree of precision that can be expected of those answers. Advanced curation
was developed as a cross-disciplinary field to improve curation and acquisition practices in
existing astromaterials collections and for future sample return activities, including mete-
orite and cosmic dust samples that are collected on Earth. These goals are accomplished
through research and development of new innovative technologies and techniques for sam-
ple collection, handling, characterization, analysis, and curation of astromaterials. In this
contribution, we discuss five broad topics in advanced curation that are critical to improv-
ing sample acquisition and curation practices, including (1) best practices for monitoring
and testing of curation infrastructure for inorganic, organic, and biological contamination;
(2) requirements for storage, processing, and sample handling capabilities for future sample
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return missions, along with recent progress in these areas; (3) advancements and improve-

ments in astromaterials acquisition capabilities on Earth (i.e., the collection of meteorites

and cosmic dust); (4) the importance of contamination knowledge strategies for maximizing

the science returns of sample-return missions; and (5) best practices and emerging capa-

bilities for the basic characterization and preliminary examination of astromaterials. The

primary result of advanced curation research is to both reduce and quantify contamination

of astromaterials and preserve the scientific integrity of all samples from mission inception

to secure delivery of samples to Earth-based laboratories for in-depth scientific analysis. Ad-

vanced curation serves as an important science-enabling activity, and the collective lessons

learned from previous spacecraft missions and the results of advanced curation research will

work in tandem to feed forward into better spacecraft designs and enable more stringent

requirements for future sample return missions and Earth-based sample acquisition.

1 Introduction

Human fascination with the night sky and with celestial objects that fall to the Earth

from the sky is as old as our species, and use of these astromaterials as a natural

resource occurred at least as early as the Bronze Age (Jambon 2017; McCoy 2018;

McCoy et al. 2017). However, the initial curation of astromaterials as objects of scientific in-

terest to understand our universe began more recently (Marvin 2006) and in earnest with the

curation of meteorite samples in museums starting in the year 1748 at the Natural History

Museum Vienna (Brandstätter 2006). Meteorites have remained objects of fascination by

scientists and the public alike with the establishment of many meteorite collections across

the world. Meteorite recovery and curation practices vary widely and are highly dependent

on many factors, including the knowledge and resources of the finder and the financial and

technical support available for the collection in which the sample is curated. The scientific

importance of the sample can also be a determining factor, but this is predicated on the

aforementioned factors. All meteorites, regardless of how they were handled from recovery

to curation, have experienced uncontrolled entry and exposure to the terrestrial environment,

including, at minimum, the terrestrial atmosphere and the ground. This exposure results in

terrestrial contamination, the amount of which is typically dependent on the physicochem-

ical properties of the meteorite, the conditions at the fall site, and the amount of exposure

time to the terrestrial environment. Consideration of these factors can also be determining

factors in how a meteorite sample is curated. An overview of meteorite collections, their

contents, and curation practices is available in McCall et al. (2006).

Until the 1960’s, delivery of all astromaterials to Earth were unplanned events that re-

quired reactionary responses for recovery and curation. However, with the initiation of the

Apollo program, direct return of pristine astromaterials from another body became pos-

sible, and with it, established the need to design a facility to keep those samples in a

pristine state for an indefinite period of time. Planning for the Lunar Receiving Labora-

tory (LRL) began in 1964, and the facility was completed in 1967 (Calaway et al. 2017;

McLane et al. 1967). As part of this planning, stringent protocols in the handling, storage,

and processing of samples were developed. These protocols ensured that portions of the

samples remained pristine or as close to an “as returned” state as possible in perpetuity to

enable future scientific discoveries from the returned samples. The delivery of Apollo 11

samples to Earth occurred on July 24, 1969 at 12:50 EDT, four days after the first successful

human landing on the Moon. This round-trip journey marked a transformative milestone in



Advanced Curation of Astromaterials for Planetary Science Page 3 of 81 48

Table 1 Planetary sample return missions

Program/Mission Returned to Earth Destination Returned
sample

Apollo 11 (USA, NASA) July 24, 1969 Moon: Mare Tranquillitatis 21.55 kg

Apollo 12 (USA, NASA) November 24, 1969 Moon: Oceanus Procellarum 34.30 kg

Luna 16 (USSR) September 24, 1970 Moon: Mare Fecunditatis 101 g

Apollo 14 (USA, NASA) February 9, 1971 Moon: Fra Mauro Highlands 42.80 kg

Apollo 15 (USA, NASA) August 7, 1971 Moon: Hadley-Apennine 76.70 kg

Luna 20 (USSR) February 25, 1972 Moon: Apollonius Highlands 30 g

Apollo 16 (USA, NASA) April 27, 1972 Moon: Descartes Highlands 95.20 kg

Luna 24 (USSR) August 22, 1976 Moon: Mare Crisium 170.1 g

Apollo 17 (USA, NASA) December 19, 1972 Moon: Taurus-Littrow 110.40 kg

Genesis (USA, NASA) September 8, 2004 Earth-Sun Lagrange 1 Implanted Solar
Wind Atoms

Stardust (USA, NASA) January 15, 2006 Comet Wild 2/Interstellar Small Particles
Captured in
Aerogel

Hayabusa (Japan, JAXA) June 13, 2010 Asteroid 25143 Itokawa Tens of
thousands of
recovered small
particles

Hayabusa2 (Japan, JAXA) December 2020
(Planned; in Flight)

Asteroid 162173 Ryugu 0.1 to 10 g
Planned

OSIRIS-REx (USA, NASA) September 2023
(Planned; in Flight)

Asteroid 101955 Bennu 0.06–2 kg
Planned

human history and as the first sample return mission, provided the initial fuel to drive the

burgeoning field of planetary sample science.

The planning process for curation prior to the return of the Apollo 11 samples set the

precedent that curation involvement and planning begins at the inception of a sample return

mission, and this founding principle has guided sample return missions subsequent to Apollo

(e.g., Allen et al. 2011; Yada et al. 2014). There have been a total of 13 successful sample

return missions, including six manned Apollo missions from NASA, three unmanned lunar

sample return missions from the Union of Soviet Socialist Republics (USSR), the NASA

Long Duration Exposure Facility that exposed various materials to the low-Earth orbit envi-

ronment for approximately 6 years, the NASA Genesis mission that returned solar wind from

the Earth-Sun Lagrange point 1 (L1), the NASA Stardust mission that returned particles em-

bedded in aerogel from the coma of Comet Wild 2 and from interstellar space, and JAXA’s

Hayabusa mission that returned material from the surface of asteroid Itokawa (Table 1). In

addition, there are two sample return missions in flight, including JAXA’s Hayabusa2 mis-

sion that will return samples from the asteroid Ryugu and NASA’s OSIRIS-REx mission

that will return material from the asteroid Bennu (Table 1). Further details about each of

these missions are provided in Table 1. With each successive sample return mission comes

with it an important set of lessons learned that are used to inform subsequent sample return

missions, and these lessons learned extend to curation standards and practices.

The Apollo program offered the first set of lessons learned and set forth the modern

era of curation practices for astromaterials from the solar system. With the exception of

USSR Luna missions, all sample return missions in the last two decades have built upon the



48 Page 4 of 81 F.M. McCubbin et al.

legacy of Apollo. While recent missions have contributed to lessons learned, the majority

of lessons learned and established practices can be linked to Apollo. The Apollo program

actively sought out a wide range of scientists and eventually levied the scientific community

at large to influence mission conception and design. Mission decisions and laboratory re-

search on returned samples, at least peripherally, were focused substantially in maximizing

science obtained from samples in laboratory research. The majority of these sample scien-

tists were found in the field of geological sciences. The management environment was an

integration of human spaceflight mission objectives, engineering constraints, sample scien-

tists, and those responsible to prevent back contamination of the Earth. In this management

structure, conflicts routinely arose and were not only turf battles, but were rooted in basic

technical conflicts to balance crew safety, lunar sample preservation, and potential hazard

containment for unknown biological pathogens. Since Apollo was a series of missions, it

was possible to improve sampling hardware and laboratory handling devices using expe-

rience and samples from the lunar surface. For example, regolith drive tube function was

greatly improved through redesign for Apollo missions 15–17 to allow deep penetration with

minimal distortion of stratigraphy. Knowledge gained from examination of the first samples

(Apollo missions 11–14) allowed the switch from a high-vacuum gloved handling environ-

ment to pure gaseous nitrogen positive pressure gloveboxes, which better preserved sample

cleanliness and ease of use. A mission series like Apollo allows fine tuning of sample col-

lection and returned sample handling as knowledge is acquired. Building upon Apollo and

later sample return missions, a series of lessons learned and best practices for future sample

return missions were developed and listed as follows:

• World-class scientific expertise: Integration of planetary sample scientists as advisors on

science issues through formal organizations such as the historical Lunar Sample Analysis

Planning Team (LSAPT) and Lunar and Planetary Science Team (LAPST) and as well as

today’s Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM).

CAPTEM currently presents findings to NASA on sample allocations ensuring best sci-

ence and fair access to samples, current curation facilities, and inspection of laboratory

operations, capabilities, capacity needs, and staffing. CAPTEM also provides findings for

publicizing sample characterization information and service to the community. In addi-

tion, CAPTEM provides NASA with findings on design review of sample receiving and

curation facilities as well as material restrictions/suggestions to preserve science value of

samples.

• The integration of planetary science and geology training for astronauts, mission man-

agers, and engineers involved in sample return missions.

• The integration of sample scientists into landing site selection, traverse planning, and

sample acquisition.

• The integration of sample scientists into mission control operations and advisors during

missions.

• The integration of Earth receiving and curation operations personnel into mission con-

ception and engineering spacecraft design is critical for any sample return mission.

• Selection of materials that have low to zero particulate shedding mechanical properties

for spacecraft, primary sample containment, handling, and storage equipment to preserve

sample integrity.

• Selection of materials that have low to zero outgassing mechanical properties for space-

craft, primary sample containment, handling, and storage equipment to preserve sample

integrity.
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• Selection of a diversity of materials for primary sample containment, handling, and stor-

age equipment to enable scientific investigations of the entire periodic table, organic com-

pounds, and biological matter.

• Sample return missions should establish a concept of sample segregation for primary mis-

sion goals (e.g., segregation of samples in different containment/isolation used for inor-

ganic, organic, and biological investigations as well as focused goals of the mission). Sam-

ple acquisition and containment must always focus on prohibiting cross-contamination

and preservation of the scientific integrity of each sample.

• The integration of curation, proper material selection, and cleaning into mission con-

tamination control requirements and implementation during Assembly, Test, and Launch

Operations (ATLO) is critical for sample return.

• Use of inert and/or vacuum environments or environments close to native collection en-

vironments for processing and storage of astromaterials. Develop standard practices to

mitigate contamination from terrestrial atmosphere, pressures, and temperatures.

• Use of environmental monitoring methods, cleanroom technology, and biological safety

isolation to maintain desired processing and storage environments.

Lessons learned not only inform our best practices, but they also help to identify strategic

knowledge gaps that require new research to fill. Furthermore, if we look only at improving

upon our current curation capabilities, we will not be prepared when returned samples re-

quire care that is very different from those within our current collections. At present, most

returned samples are geological in nature, with the exception of the Genesis solar wind

atoms that are implanted within a number of high purity material substrates. Most of the

samples are kept close to room temperature and, when kept in the pristine environments of

a clean laboratory, will maintain their fidelity indefinitely. However, future sample return

missions could bring back samples that require storage and handling conditions outside of

current capabilities, including gases, liquids, ices, or biological materials. To successfully

curate these sensitive materials also requires new research, and we describe here a field of

research that we refer to as advanced curation.

Advanced Curation is a cross-disciplinary field that seeks to improve curation practices

in existing astromaterials collections, including meteorite and cosmic dust samples that are

collected on Earth. Specifically, advanced curation has two primary goals that include (1) ex-

pansion of the sample processing and storage capabilities of astromaterials facilities to pre-

pare for future sample return missions and Earth-based collection of astromaterials and (2) to

maximize the science returns of existing astromaterials sample collections. These goals are

accomplished through research and development of new innovative technologies and tech-

niques for sample collection, handling, characterization, analysis, and curation of astromate-

rials. In addition, advanced curation includes testing and evaluation of new technologies and

operational procedures for future sample return missions through human and robotic analog

studies. Here we outline best practices and procedures and highlight new results, capabili-

ties, and ongoing activities in the field of advanced curation of astromaterials. In particular,

we outline (1) the best practices for monitoring and testing of curation infrastructure for

contamination, (2) the development of new storage, processing, and sample handling capa-

bilities, (3) the development and improvement of new astromaterials acquisition capabilities

on Earth (i.e., the collection of meteorites and cosmic dust), (4) the importance of contam-

ination knowledge strategies for maximizing the science returns of sample-return missions,

(5) best practices and emerging capabilities for the preliminary examination and initial char-

acterization of astromaterials, and finally (6) a summary of the biggest challenges that lie

ahead as we look toward future sample-return initiatives.
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2 Monitoring and Testing of Curation Infrastructure

All sample return curation facilities are designed and built to meet specific controlled en-

vironment and cleanliness standards for the curated samples. Curation infrastructure is de-

fined as all engineering systems that control the sample’s storage and processing environ-

ment. This definition incorporates brick and mortar, temporary, modular, and mobile fa-

cilities. In addition, specialized equipment is included such as isolation chambers, glove-

boxes, and desiccators that have the ability to alter the atmospheric chemistry, tempera-

ture, and pressure of the environment. During the Apollo program, curation infrastructure

borrowed many innovative technologies from handling radioactive materials and biological

quarantine practices. Today, curation infrastructure is derived from many industries includ-

ing the nuclear, biotechnology, pharmaceutical, and semiconductor industries (USP 2013;

Whyte 2001; Ramstorp 2000). Methods and techniques are either borrowed, augmented, or

invented to maintain the controlled environment to mitigate terrestrial cross-contamination.

Contamination covers any element that could compromise sample integrity. To quote the

definition of pristine from Dworkin et al. (2018), it means that “no foreign material is in-

troduced to the sample in an amount that hampers the ability to analyze the chemistry and

mineralogy of the sample”. While sample return missions designate contamination limits

on specific elements and compounds at time of launch with focused science goals, samples

are effectively allocated over time to study everything on the periodic table. Therefore, the

implementation of curation infrastructure should be mindful that everything could be a con-

taminant to some research group. Modern cleanroom facilities have substantial infrastruc-

ture footprints that require continual monitoring to ensure they operate within the defined

strict contamination control guidelines. This requires continuous monitoring and testing of

the labs to verify that the sample processing environments remain clean from the standpoint

of inorganic, organic, and biological contamination. As it is unrealistic to eliminate all con-

tamination, careful monitoring and contamination knowledge must be conducted. To this

end, curation laboratories that house astromaterials have developed numerous protocols and

methods to monitor curation facilities and we outline those practices below.

2.1 Real-Time Continuous Monitoring and Testing of Curation Cleanroom

Laboratories

Cleanrooms are a specialized controlled environment that must be continually monitored to

verify whether they are working to defined parameters and specifications. The international

standards organization (ISO) have developed fundamental standards for cleanrooms, namely

ISO 14644. Curation cleanroom laboratories follow this standard as well as many adopted

recommend practices from several industries (e.g., IEST, SEMI, GSA, etc.). For curation

facilities, cleanroom measurements are regularly made to ensure that the heating ventila-

tion, and air conditioning (HVAC) system is creating the appropriate cascade of positive or

negative pressure and that Fan Filter Units (FFU), in conjunction with the HVAC system,

are delivering the proper level of airborne particles to accepted limits for the planned ISO

class. Temperature and humidity are also kept within pre-specified limits within the intended

operational parameters of the HVAC system.

Ideally, real-time remote monitoring can track airborne particulates, room-to-room dif-

ferential pressures, temperature, humidity, and HVAC operations. Remote airborne particle

counters have either internal or external pumps with a flow rate of 0.1 CFM (2.83 LPM)

or 1.0 CFM (28.3 LPM) dependent on ISO Class and desired statistics. Many of them can

output up to 6 channels of simultaneous data within the range of 0.3–25.0 µm. For ISO
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Class 4 and below, a dedicated 0.1 µm particle counter is desired to improve particle count

statistics. While real-time remote monitoring is ideal, hand-held manual particle counters

are sometimes used for spot checking spaces and annual ISO Class audits. For ISO Class 5

and above, these handheld particle counting instruments are typically set-up for a 2 minute

measurement with a total sampling volume of 5.68 L and particle channels set at 0.3, 0.5,

0.7, 1.0, 5.0, and 10.0 µm. In lieu of real-time continuous remote monitoring, weekly par-

ticle counts of all curation labs are desirable of key areas with a full ISO audits conducted

annually or bi-annually.

Curation cleanroom laboratories primarily use a positive pressure differential barrier to

reduce contamination. A pressure differential barrier is based on the concept of using posi-

tive pressure air flow cascade to create a cleaner zone towards a less clean zone as a first line

of defense to prevent cross-contamination between two adjacent spaces. The pressure dif-

ferential should be of significant magnitude and stability to prevent any reversal of air flow

between barriers including when barrier thresholds are crossed and/or doors are opened.

However, the pressure differential should not be too high as to create turbulent air flow that

could compromise the clean zone. In addition, too high of pressure between zones can also

prevent doors from opening. For example, at 0.10 inH2O (inches of water), a 3 × 7 ft. door

requires 11 lbs. of force to open and close. Furthermore, this pressure results in unwanted

turbulent air flow. ISO 14644-4, the design, construction, and start-up of cleanrooms and as-

sociated controlled environment, contains the international standard for cleanroom air-flow

monitoring. ISO 14644-4 Section A.5.3 states that the pressure between clean zones should

be set at: �P = 0.02 to 0.08 inH2O (5 to 20 Pa).

The cleanroom technology literature generally recommends a pressure differential of

0.04 inH2O (10 Pa) between two cleanrooms and a pressure differential of 0.06 inH2O

(15 Pa) between the cleanroom and an unclassified room (Sakraida 2008; Whyte 2001).

Whyte (2010) discusses the reason for ISO 14644-4 acceptable minimum of 0.02 inH2O

(5 Pa) pressure between adjacent rooms. This acceptable minimum was established for pro-

cessing facilities that handle products that can be adversely affected from greater pressures.

These low pressure differentials can sometimes be found in long tunnels between processing

cleanrooms that contain air flow sensitive products. Whyte (2010) further discusses if 0.02

inH2O (5 Pa) must be used; confirmation of the air flow direction must be verifiable with

routine observable smoke flow tests (assuming such tests would not be a source of contam-

ination). Sakraida (2008) discusses recent experimental studies that have tested the optimal

pressure differential between clean zones. Pressure differentials between 0.03 to 0.05 inH2O

were determined to be optimal for mitigating cross-contamination. The study further sug-

gested that clean zones with pressures above 0.05 inH2O showed little increased benefit to

mitigate contamination compared to increased energy costs of operating the air handling

unit.

Based on ISO 14644-4 standards and available cleanroom technology literature, astroma-

terials curation laboratories should ideally maintain ≥ 0.05 inH2O between interior “dirty”

hallways to laboratory anterooms and a minimum of 0.03 to 0.05 inH2O in most adjacent

rooms between anteroom and main laboratory. For primary astromaterials storage areas and

processing laboratories, ideally 0.05 to 0.08 inH2O should be maintained to mitigate the

long-term infiltration of contaminates. However, it is important to note that higher pressures

may be desired to create a buffer to mitigate the risk of dropping below 0.05 inH2O based

on air flow stability from the HVAC and laboratory layout.

Real-time continuous remote monitoring is common for modern cleanrooms with a de-

sired differential pressure accuracy of about ±0.001 inH2O or better. For older cleanroom

laboratories, manual magnehelic differential pressure gauges are sometimes still used for
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monitoring differential pressures. In addition, annual or biannual differential pressure audits

are conducted between each room doorway threshold with a handheld manometer and data

placed on a building map to verify proper cascade of pressures.

HVAC ON/OFF and velocity (m/s) are continually monitored in real-time. The data

displayed are also used to check air changes per hour towards the as-built of the cleanroom

and ISO standards. The FFUs are biannually or annually checked to be running at 90 ±

10 fpm. While FFUs are typically not monitored in real-time, this is an important routine

check to assess failing blower motors and the efficiency of the ULPA or HEPA filters to

determine when they need to be replaced.

Electrostatic charging and discharging in curation laboratories has the potential to cause

damage to samples and equipment. In addition, electrostatic discharges are a serious safety

hazard to laboratory personnel. Most curation cleanrooms maintain a temperature between

24 to 15 ◦C ± 1.0 ◦C and relative humidity (RH%) of <65% to >35% ± 1.0% RH. These

ranges are based on ISO 14644-4 and ISO 14644-5 standards and are only for laboratory

environments and do not reflect the environment of containment, such as in gloveboxes

where moisture (H2O) is commonly measured below 1 ppm.

A deviation in any of these parameters or over a certain threshold (per curation protocol

specific to the collection) triggers an investigation to understand the source of the problem

and mitigate any faults. In case the issue cannot be resolved in a timely manner, samples

are securely placed into storage and work stops in the lab, especially for samples processed

outside of gloveboxes.

2.2 Real-Time Continuous Monitoring of Curation Infrastructure Systems

2.2.1 Inert Environments

Most pristine astromaterials benefit from not being stored and processed in terrestrial atmo-

sphere. Since Earth’s atmosphere is an oxidizing environment, preservation of astromaterials

are preferred to be placed in an indigenous, vacuum, or inert environment. Most astroma-

terials on Earth are stored and processed in an inert gas such as nitrogen, argon, or helium,

with the exception of JAXA’s vacuum receiving glovebox used for the Hayabusa mission.

Of these three inert gases, nitrogen is the most cost effective and is often chosen over argon

and helium for routine storage. However, nitrogen analysis of astromaterials samples are

compromised by processing in nitrogen, so nitrogen is not used exclusively.

At NASA Johnson Space Center (JSC), building 31 and 31N has a dedicated 15000

gallon liquid nitrogen (LN2) tank and tank farm that converts high purity LN2 to gaseous

nitrogen (GN2) for the entire building infrastructure. This nitrogen gas system provides an

inert environment for processing and storing all NASA extraterrestrial sample collections

where gloveboxes and desiccators consume ∼3500 scfh of GN2. After gas production, the

GN2 is filtered for particulates by the use of sintered 316 stainless steel filters (1 micron

filtration at the tank farm and 3 nm point-of-use filters connected to all devices). In addition

to 3 nm particulate filtration, the Genesis lab uses point of use Pall gas purifiers that reduces

any H2O, CO2, O2, and CO in the GN2 to < 1 ppb. The LN2 is a modified Grade C per MIL-

PRF-27401G [LN2 purity 99.995%; H2O <10 ppm; Total Hydrocarbons as CH4 <1.0 ppm;

O2 < 10 ppm; H2 < 10 ppm; Ar <20 ppm; CO2 <10 ppm; CO <10 ppm; and particulates

<1.0 mg/L]. LN2 is delivered to JSC weekly and the Curation Office periodically tests the

purity of the liquid nitrogen beyond the NASA contract audits. For periodic sampling of

the LN2, a cryogenic liquid sampler is connected directly to the LN2 tanker truck with the

sampler hose. The LN2 sample is taken to an outside laboratory for analysis. The boil-off
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of this LN2 at the tank farm produces high purity gaseous nitrogen (GN2). JSC currently

tests the purity of the delivered GN2 by conducting airborne molecular organic sampling

and SEM triage of inorganic particulates captured in 3 nm sintered stainless steel filters.

Adsorbent sample tubes are used for sample collection and sent outside to Balazs Nanoanal-

ysis for TD-GC-MS analysis. GN2 results routinely show no infiltration particulates past

the filters and organic compounds and all hydrocarbon loads are below the reporting limit

of < 0.1 ng/L for >C7. The GN2 is also tested monthly for the nitrogen isotopic ratio in

a Finnigan MAT 253 IR-MS to ensure that no fractionation occurs over time or within the

line. K-bottles of GN2, Ar, and He are also supplied at high purity research grade when

required for certain processing activities or experiments. For example, the Subzero Facil-

ity for Curation of Astromaterials at the University of Alberta (see Cold Curation section)

uses high-purity (99.998%) Ar as a source, which is then further refined using a purification

system to bring oxygen (O2) and moisture (H2O) levels to <0.1 ppmv (Herd et al. 2016).

2.2.2 High Purity Cleaning Agents

Cleaning curation sample handling tools, containers, and other equipment (such as glove-

boxes, isolation chambers, and desiccators) is required for the curation of astromaterials.

Precision cleaning is typically required where equipment is cleaned to a specified clean-

liness and the cleanliness is measured and verified to a standard. These precision clean-

ing facilities are not a small foot-print and use substantial consumables and equipment for

operations. During final precision cleaning, specialized equipment is needed to purify the

aqueous cleaning solutions. Historically, Apollo used Freon 113 as the final cleaning agent.

The Freon 113 recycled in-house by distillation to achieve the required high purity. Today,

NASA JSC uses ultrapure water (UPW) as the final cleaning agent and requires substantial

initial investment (>$3M USD) and monthly maintenance cost. For JSC, UPW is not only

used for precision cleaning, but is also used to decontaminate Genesis solar wind materials

contaminated by macro particles during the hard landing (see Genesis section).

The UPW purity is maintained and monitored in continuously flowing production lines.

The JSC UPW plant produces 10 gallons/minute of UPW serving 5 laboratories throughout

the building within a continuous flowing final loop connected to a 1000 gallon supply tank.

Future upgrades to the system will increase the capacity to a 5000 gallon tank producing

15 gallons/minute serving 7 laboratories. Once UPW leaves the final flowing loop, within

<5 seconds, CO2 and other compounds in the air quickly dissolve into the highly deionized

water and resistivity is immediately lowered from ∼18.18 M�-cm to <1.0 M�-cm. There-

fore, UPW cannot be stored or transported in containers for use and UPW must be used di-

rectly from the flowing final loop for the maximum cleaning effectiveness. The UPW system

is outfitted with a continuous real-time monitoring of critical components of the system as

well as final water quality. The system monitors flow rate, pressure, resistivity, conductivity,

temperature, particulates, total organic carbon, and tank levels. The UPW system conforms

to ASTM D 5127-13, Standard Guide for Ultra-Pure Water Used in the Electronics and

Semiconductor Industries and produces E-1.1 or better quality of water with a resistivity of

18.18 M�-cm and total organic carbon (TOC) between 1 to 3 ppb. The quality of the water

is routinely tested at least once a year or more for the following: (1) Anions by IC ranging

from > 0.05 to 0.02 ppb (µg/L) of Fluoride (F−), Chloride (Cl−), Nitrite (NO2−), Bromide

(Br−), Nitrate (NO3−), Phosphate (HPO2−

4 ), and Sulfate (SO2−

4 ); (2) Monovalent & Diva-

lent Cations by IC ranging from > 0.02 to 0.01 ppb (µg/L) of Lithium (Li+), Sodium (Na+),

Ammonium (NH+

4 ), Potassium (K+), Magnesium (Mg2+), and Calcium (Ca2+); (3) 30 ele-

ments Ultra Low Level in UPW by ICP-MS ranging from > 10 to 0.02 ppt (ng/L) of Alu-

minum (Al), Antimony (Sb), Arsenic (As), Barium (Ba), Bismuth (Bi), Boron (B), Cadmium
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(Cd), Calcium (Ca), Chromium (Cr), Cobalt (Co), Copper (Cu), Gallium (Ga), Germanium

(Ge), Iron (Fe), Lead (Pb), Lithium (Li), Magnesium (Mg), Manganese (Mn), Mercury (Hg),

Molybdenum (Mo), Nickel (Ni), Potassium (K), Silver (Ag), Sodium (Na), Strontium (Sr),

Tin (Sn), Titanium (Ti), Tungsten (W), Vanadium (V), and Zinc (Zn); (4) Low-level Dis-

solved Silica at > 0.1 ppb (µg/L); (5) Bacteria-ASTM Method-F1094—87 48 Hr Incubation

reported in > 1 Bacteria per 100 mL cfu.

2.2.3 Gloveboxes and Desiccators

The inert environments of gloveboxes and desiccators that house astromaterials in storage

or during processing should also be monitored. These environments are typically moni-

tored continuously in real-time for their pressure, temperature, and known contaminates.

For Apollo lunar material stored and processed in inert GN2, as well as the Subzero Fa-

cility used for processing Tagish Lake and other pristine astromaterials (Herd et al. 2016),

gloveboxes are continuously monitored for O2 and H2O at a resolution of ±1 ppm. For the

lunar sample collection at JSC, these environments are required to be at 1 inH2O positive

pressure, room temperature, <25 ppm of O2, and <50 ppm of H2O; but actual achievable

can be <1.0 ppmv for H2O and <15 ppmv for O2 with the current system. It should be

noted that the vast majority of H2O and O2 levels in gloveboxes do not originate from the

GN2 supply lines, but from the isolator gaskets and gloves through molecular infiltration of

terrestrial atmosphere even under 1.0 inH2O positive pressure.

2.3 Inorganic and Organic Testing of Curation Clean Labs

Since 1998, the NASA JSC Curation Office has contracted Air Liquide Balazs Nanoanal-

ysis to analyze airborne molecular inorganic and organic contaminates in cleanrooms and

laboratory suites (Calaway et al. 2014). Following sampling protocols developed for the

semiconductor industry, vertical exposure of 8′′ and 6′′ diameter high purity silicon semi-

conductor wafers are exposed for 24-hours on a work surface or inside gloveboxes to better

understand the airborne molecular contamination (AMC). The AMC data is also used to

calculate the rate of deposition of surface molecular contamination (SMC). The inorganic

and organic AMC for cleanroom monitoring is reported using ISO 14644-8 Classification of

Air Cleanliness by Chemical Contamination (ACC) and the SMC for ISO 14644-10 Classi-

fication of Surface Cleanliness by Chemical Concentration.

For routine inorganic lab and glovebox monitoring, pre-cleaned 8′′ silicon wafers are

packaged in two separate polypropylene wafer carriers; one for sample exposure and one for

control, which is not opened. After a 24 or 48 hour of vertical exposure, Vapor Phase De-

composition Inductively Coupled Plasma Mass Spectrometry (VPD ICP-MS) is conducted

at Balazs laboratories in Freemont, CA. The VDP-ICP-MS analyses report 35 elements (Al,

As, B, Ba, Be, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na,

Ni, Pb, Sb, Sn, Sr, Ta, Ti, W, V, Y, Zn, and Zr) with reporting limits ranging from 108 to

1010 atoms/cm2.

For routine organic lab and glovebox monitoring, two sets of prebaked 8′′ silicon wafers

are sandwiched together and triple-wrapped in baked-out aluminum foil; two for sample

exposure and two for control, which are not opened. After a 24 or 48 hour vertical exposure

on an aluminum stand, Thermal Desorption Gas Chromatography Mass Spectroscopy (TD-

GC-MS) is conducted at Balazs laboratories. The TD-GC-MS measures organic compounds

from C6 to C28 with a reporting limit of 0.1 ng/cm2.
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In addition to organic wafer exposure, which collect airborne molecular and particulate

contaminants well, proprietary air absorbent tests are routinely conducted to better under-

stand hydrocarbon and volatile organic compound (VOC) load in cleanroom air or glovebox

gaseous nitrogen environments. This test is implemented with an adsorbent tube with a

pump running at 100 mL/min, for 6 hours that is exposed to the cleanroom or glovebox.

The adsorbent tube is analyzed using the same TD-GC-MS method as the organic wafer, but

with a reporting limit of 0.1 ng/L.

Besides these traditional methods of monitoring, the JSC Curation Office also employs

the use of optical microscopy and Scanning Electron Microscopy (SEM) as a basic method

of direct analysis for inorganic and organic contaminates for the cleanroom laboratory and

infrastructure. Cleanroom construction materials, surfaces, sample handling tools, contain-

ers, and unknown visible material are analyzed directly or with tape-pulls or polyester wipes.

Optical microcopy and SEM typically are used as an initial screening before using other

methods of analysis. The following methods have been used in the past at the NASA JSC

Curation office, on an as-needed basis, on witness plates, test coupons, millipore filters,

and other material samples: (1) Optical Stereomicroscopy/Microscopy for macro particu-

late/other contamination, (2) FEG-SEM/EDX for micro particulate identification, (3) FT-IR

and Raman Spectroscopy for surface contamination, (4) XPS for complete surface/thin-

films/oxidation, (5) LA-HR-ICP-MS for gross surface inorganics, (6) VPD-HR-ICP-MS

for molecular airborne inorganics, (7) TD-GC-MS with GL Sciences SWA-256 wafer an-

alyzer for molecular airborne organics/outgassing, (8) DART-qTOF-MS for gross surface

organics, (9) LC-MS for amino acids, and (10) AFM (Atomic Force Microcopy) for sur-

face roughness/thin-films/cleaning changes. Although not continuously monitored, the Sub-

zero Facility for the Curation of Astromaterials used solid phase microextraction (SPME)

fiber GC-MS methods to characterize the glovebox atmosphere during commissioning (Herd

et al. 2016); this method shows potential for use in continuous monitoring, although its use

requires the assessment and selection of appropriate SPME fibers for the airborne organic

compounds of interest.

2.4 Biological Testing of Curation Cleanlabs

Biological testing of clean labs is important in many commercial and academic settings, and

biological testing in aerospace and medical settings, like spacecraft assembly facilities, hos-

pital cleanrooms, and pharmaceutical production labs are discussed here in the context of

the best practices for monitoring astromaterials curation facilities. The monitoring methods

differ among these labs, but the overall goal, to reduce or eliminate contamination, is al-

ways the same. A key difference for curation facilities is the need to identify contaminants.

Identification is not always a monitoring plan requirement in other industries. Microorgan-

isms like bacteria and fungi are capable of physically and chemically altering astromaterials

(Toporski and Steele 2007). Since the nutrient levels in cleanrooms are purposely kept at

very low levels, it is likely that microorganisms will seek out nutrient bearing phases in

the astromaterials themselves (e.g. phosphorous rich minerals, organic carbon). Therefore,

it is important to identify organisms in cleanrooms and understand how they might affect

samples stored within the cleanrooms. The most common monitoring method for any clean-

room is cultivation of viable microorganisms like bacteria and fungi. The implementation

of a variety of culture-independent analysis techniques that are employed more sporadically

are also discussed.

In the aerospace industry, biological testing is most commonly performed to meet plan-

etary protection requirements for individual pieces of hardware and entire missions. The
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goals are defined by Article IX of the 1967 United Nations Treaty on, “Principles Govern-

ing the Activities of States in the Exploration and Use of Outer Space, Including the Moon

and Other Bodies”. More detailed policies are outlined by COSPAR (Committee on Space

Research) (COSPAR 2011). The sampling and testing methods are implemented by NASA

(NASA 2010, 2017) and/or ESA (ECSS 2008).

NASA requirements for sampling an aerospace cleanroom to meet planetary protec-

tion requirements are described in the “Handbook for the Microbial Examination of Space

Hardware” (NASA 2010). Briefly, samples are collected with sterile swabs or wipes made

of cotton or preferably a synthetic material like polyester. The samples are exposed to

80 ◦C for 15 minutes and any surviving microorganisms are transferred to Petri dishes

filled with Tryptic Soy Agar (TSA) and incubated at 32 ◦C for 72 hours. Cultured or-

ganisms are counted but not necessarily identified. ESA requirements are similar, but re-

quire cultivation on Reasoners 2 Agar (R2A) for oligotrophic bacteria, Thioglycolate Agar

(TGA) for anaerobic bacteria, and Potato Dextrose Agar (PDA) for fungi in addition to

TSA (ECSS 2008). Only one set of R2A plates are heat shocked, while the remaining sam-

ples are incubated without being exposed to heat. The ESA standards also include provi-

sions for collecting air samples with an impactor style sampling device. Sampling to meet

planetary protection requirements is conducted with the assumption that all of the hard-

ware will be exposed to DHMR (dry heat microbial reduction) or an equivalent process

to sterilize the spacecraft. Organisms that survive the heat-shock treatment are counted

as a proxy for what might be capable of surviving DHMR. These are fit for purpose as-

says that are not designed or intended to capture the total diversity of the cleanroom en-

vironment. While some facilities and/or missions do identify and archive isolates, this is

not required or routine in every instance. Similar culture-based assays have been used

to monitor Chinese and Russian space craft assembly facilities as well (Novikova 2004;

Zhang et al. 2018).

Cleanrooms used to manufacture pharmaceuticals and package food are also monitored

for biological contamination. There are no detailed methods for how to monitor these types

of cleanrooms, but cultivation-based techniques are generally the norm. ISO 14698-1 sets

out very general principles and methods for biocontamination control in cleanrooms. The

document states, “The appropriate sampling method and related procedures shall be selected

and performed to reflect the complexity and variety of situations. Sampling shall be carried

out using a device and method selected in accordance with the written procedure and in ac-

cordance with the instructions provided by the device manufacturer,” (ISO14698 2003). The

United States Pharmacopeial Convention also relies on cultivation based methods without

specifying a particular set of sampling tools, growth conditions, or nutrients (USP 2013).

For example, air samples can be collected with a variety of tools, including: slit to agar

samplers, centrifugal samplers, gelatin filter samplers, sieve impactors, impingers, and set-

tle plates (USP 2013). However, the USP document does make several important points

regarding sampling methods and data analysis: (1) Total particulate counts from air sam-

pling do not correlate to microbial abundance, although this is an area of open research

(Raval et al. 2012). (2) Microbial monitoring is semi-quantitative at best. (3) Colony counts

(i.e. the number of culturable organisms) are highly variable from sample to sample and

from day to day. Recovery rate is a more reliable statistic for defining a microbial base-

line. Recovery rate is defined as: # of samples with>0 CFU

# total number of samples collected during a sampling event
where CFU

is a colony forming unit. For example, an aseptic ISO 7 cleanroom should have a baseline

recovery rate <10% (USP 2013). The USP document also emphasizes the importance of

identifying cleanroom isolates and taking action when new isolates appear and or when an

individual sample contains > 15 CFU. In general, sampling of pharmaceutical cleanrooms
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is focused on cultivating mesophilic organisms from surface swabs, air samples, and clean-

room personnel (Sandle 2012; Whyte 2010). A variety of media types and growth conditions

are acceptable as long as they are suitable for enumerating the organisms of concern.

Standard efforts to monitor microbial contamination in cleanrooms rely on cultivation

based techniques across all industries. Cultivation based techniques are relatively cheap and

easy to perform on a regular basis. However, they can be highly variable and even the most

comprehensive culture-based sampling campaign is guaranteed to under-sample the envi-

ronment (e.g., Hug et al. 2016; Lynch and Neufeld 2015; Rappe and Giovannoni 2003). The

community recognizes the need to assess these, “unculturable,” organisms and has employed

a variety of techniques to do so.

Next generation DNA sequencing is the most common culture-independent method. Am-

plification and sequencing of marker genes (tag or amplicon sequencing) like the ribosomal

16S gene for bacteria and archaea and the ITS region for fungi is one promising method for

monitoring unculturable organisms in the cleanroom environment. This measurement has

changed as the sequencing platforms have improved. Initial tag sequencing was performed

using clone libraries and Sanger type sequencing, which only generates about 1000 base

pairs of data for a single organism at a time (Shokralla et al. 2012). The 454 platform gen-

erates 102–104 sequences per sample and has allowed researchers to identify hundreds of

OTU’s (operational taxonomic unit) or organisms per sample (La Duc et al. 2014; Moissl-

Eichinger et al. 2015; Vaishampayan et al. 2013). Using this technology, archaea were found

to be persistent, viable (Moissl-Eichinger 2011) members of some cleanroom communities

(Moissl-Eichinger 2011; Moissl-Eichinger et al. 2015; Moissl et al. 2008). The Illumina

sequencing platforms are the current standard for tag sequencing (Mahnert et al. 2015;

Minich et al. 2018; Mora et al. 2016). These sequencers can generate 105–106 sequences

per sample, allowing researchers to identify even more organisms. A recent tag sequenc-

ing survey of the SAF (spacecraft assembly facility) at JPL identified > 16000 OTU’s. Tag

sequencing is a powerful monitoring tool, but it does have several important biases. PCR

(polymerase chain reaction) based amplification of DNA is required for most low biomass

samples. This amplification step does not amplify DNA from every organism equally. For

example Moissl-Eichinger et al. (2015) were able to cultivate organisms that they did not

detect using, “universal” PCR primers for amplification and subsequent tag sequencing.

Secondly, sequencing of any type cannot distinguish DNA from viable organisms from

relict environmental DNA inside dead organisms. Several researchers have started treating

their samples with compounds like PMA (propidium monoazide) to destroy DNA from non-

viable organisms prior to sequencing (e.g., Mahnert et al. 2015; Moissl-Eichinger et al. 2015;

Mora et al. 2016; Weinmaier et al. 2015; Zhang et al. 2018). Due to variations in primer

choice, sequence length, error rate, and total number of sequences produced, it is very diffi-

cult to quantitatively compare data generated by different sequencing platforms (Tremblay

et al. 2015). Care should be taken to keep these variables as consistent as possible during

monitoring. When changes are made, they should be directly compared to previous methods.

Rather than amplifying and sequencing specific marker genes, it is also possible to

sequence all of the DNA in a sample (with or without amplification) using the same

types of DNA sequencers discussed above. This sequencing technique is commonly re-

ferred to as shotgun metagenomics (e.g., Bashir et al. 2016; Minich et al. 2018; Moissl-

Eichinger et al. 2015; Weinmaier et al. 2015). Shotgun metagenomics provides more in-

formation about the function of abundant organisms in the environment but often fails to

detect rare members of the community (Tessler et al. 2017). Additionally, this technique

generates large amounts of data that can be very challenging and time-consuming to in-

terpret. At present, metagenomics is a powerful research tool, but it is probably not yet
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suitable for routine monitoring. New DNA sequencers, like the MinIon platform (Reuter

et al. 2015), that generate longer reads may eventually be able to generate metagenomic

data that are easier to assemble and interpret, but they are still being developed and im-

proved.

DNA sequencing can be used to inform the design of more rapid assays for biological

monitoring. qPCR (quantitative polymerase chain reaction) can be used to assess the number

of copies of genes in a sample that directly correlates to microbial abundance (Cooper et al.

2011; Hubad and Lapanje 2013; Kwan et al. 2011; Mahnert et al. 2015; Moissl-Eichinger

2011; Moissl-Eichinger et al. 2015; Schwendner et al. 2013; Vaishampayan et al. 2013;

Zhang et al. 2018). When interpreting qPCR data, care must be taken to account for organ-

isms that have multiple copies of the 16S or other marker gene (Větrovský and Baldrian

2013). DNA microarrays like the Phylochip have also been investigated as potential moni-

toring tools (Cooper et al. 2011; Jimenez 2011; La Duc et al. 2009, 2014; Probst et al. 2010;

Vaishampayan et al. 2013). Both of these techniques show promise as monitoring solutions,

but they probably require initial investigation with culturing and DNA sequencing in order

to ensure that probes and primers are designed to capture the communities present inside the

cleanroom in question.

Techniques that do not involve sequencing DNA are also being tested in cleanroom set-

tings. All living organisms on Earth produce a compound called ATP (adenosine triphos-

phate) for energy storage. Measuring the concentration of ATP in a cleanroom sample

provides information about the total number of viable cells (Benardini and Venkateswaran

2016; La Duc et al. 2007; Mahnert et al. 2015; Venkateswaran et al. 2003), but it is not useful

for identifying what organisms are present. MALDI-TOF (Matrix assisted laser desorption

time of flight) mass spectrometry is now commonly used in the medical field to identify

organisms, and it is being applied in aerospace cleanrooms as well (Andrade et al. 2018;

Moissl-Eichinger et al. 2015). However, this technique is still dependent on culturing organ-

isms. Fluorescence based monitoring systems can detect airborne cells but cannot identify

them (Hallworth 2012).

Biological testing of clean labs suffers from a lack of repetition. Outside the NASA stan-

dard assay, very few measurements are routinely replicated between labs. In some respects,

this is good and appropriate. Monitoring methods should be modified to suit the environment

and the questions being asked. The microbial profile of cleanrooms will be different in dif-

ferent environments (e.g., La Duc et al. 2009). For example, cold curation facilities should

explicitly test for the presence of psychrophilic organisms (Sandle and Skinner 2013). It

would be a waste of resources to look for psychrophiles in labs maintained at room tem-

perature. However, variations in sample collection, DNA extraction, DNA sequencing, and

data processing methods make inter-lab comparisons very difficult. Testing new methods

and techniques is an important area of research, but more effort should be made to relate

these new measurements to previously generated data.

Curation labs should design a monitoring plan that is capable of quantifying and identi-

fying the microbes present therein. Unfortunately, there is no single measurement or tech-

nique capable of thoroughly describing a microbial community. Each method discussed

above has its strengths and weaknesses. Therefore, a selection of culture-based and culture-

independent techniques should be used to monitor cleanroom ecology. Samples should be

collected from the air and from surfaces regularly and as frequently as daily when critical

operations are being conducted. Special care should be taken to avoid organic or inorganic

contamination during sampling. For example, agar filled contact plates used in the pharma-

ceutical industry are inappropriate for curation labs since they would introduce bioavailable

organic compounds and trace metals into the lab. Most importantly, sample collection and
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analysis methods should be as consistent as possible in order to generate a baseline dataset

that can be used as a basis of comparison for new techniques. Regular and consistent sam-

pling is the most important feature of any environmental monitoring program.

3 Development of New Storage, Processing, and Sample Handling

Capabilities

As technological advancements and new ideas expand the variety and scope of scientific

questions that can be asked with astromaterials samples, so expands the need for better

storage, processing and sample handling capabilities of curation laboratories that house and

process astromaterials samples. Here we summarize a number of important advancements

and areas of growth in sample storage, processing, and handling techniques that will be

important in the coming decades for maximizing science returns on astromaterials samples.

3.1 Cold Curation of Astromaterials and Associated Gases, Biological Samples,

and Hardware

The ever-expanding plans for the return of samples from volatile-rich solar system targets

and/or targets of astrobiological significance necessitates the development of curation at

temperatures below that of typical curation facilities (20 ◦C). Temperature requirements

depend primarily on which volatiles are expected within the returned sample, which in

turn relate to the conditions under which the material formed and has since been pre-

served. The term “cryogenic” is defined as relating to temperatures below −183 ◦C; the

normal boiling points of the noble gases, oxygen, nitrogen, and air lie below this temper-

ature. More generally, “cryogenic” refers to temperatures below approximately −150 ◦C

(https://www.nist.gov/mml/acmd/cryogenics/aboutcryogenics). The term “high temperature

cryogenic” is used to refer to temperatures from the boiling point of liquid nitrogen,

−196 ◦C, up to −50 ◦C, the generally defined limit of cryogenics (e.g., Zohuri 2017). The

curatorial temperatures for terrestrial materials, including tissue samples and ice cores, in-

clude: ≤−20 ◦C (the temperature of typical walk-in freezers in which physical processing

and documentation takes place); ≤−40 ◦C for archival storage (e.g., of ice cores); and −80

to −196 ◦C (liquid nitrogen) for biological samples (e.g., Anchordoquy and Molina 2007;

Rissanen et al. 2010). Thus, with the exception of biological tissue storage, the field of Earth

materials curation has not yet entered the realm of cryogenics.

3.1.1 Past and Present Practices in Cold Curation of Astromaterials

The expected range of temperatures required to preserve solar system materials spans from

those needed for (water) ice cores to cryogenic. Cold curation and sample handling of as-

tromaterials has been done to a limited extent at NASA-JSC over several decades. Several

Apollo 17 samples were initially processed under GN2 in a processing cabinet at room tem-

perature for about a month before being transported to cold storage (−20 ◦C) where they

have remained. Furthermore, the US Antarctic meteorite collection utilizes cold storage of

new Antarctic meteorites, and initially used cold stages in a nitrogen glovebox for cold sam-

ple handling. According to Annexstad and Cassidy (1980) “The specimens are transferred

from a small staging freezer to the processing cabinet. A specially constructed stage, cooled

by liquid nitrogen, is used to keep the sample frozen while an initial cold chip is removed

https://www.nist.gov/mml/acmd/cryogenics/aboutcryogenics
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from the meteorite. This chip is immediately returned to freezer storage for future experi-

ments when a frozen piece may be required. The parent meteorite is then allowed to warm

to ambient temperature naturally in the cabinet’s dry GN2 environment.” In the first few

years of Antarctic meteorite handling at JSC, the staff gained experience with storing and

handling samples frozen, using a cold processing plate in a cabinet and using a cold storage

room. Although some hardware was assembled to do this, it became clear after detailed tests

that this was not an effective way to handle samples due to the difficulty of keeping samples

cold while still allowing dexterity of the sample processor, length of time required to process

individual samples, and overall expense. The cold processing approach was abandoned at

JSC in 1979, after review and discussion by the Meteorite working Group (MWG) (Righter

et al. 2014).

More recently, insights into the benefits of curation and processing under cold condi-

tions have been gained from the collection, curation, and study of the Tagish Lake me-

teorite (Herd et al. 2016 and references therein). Tagish Lake is a unique carbonaceous

chondrite that fell January 18, 2000 onto the frozen surface of the eponymous lake in

northern British Columbia, Canada. The meteorite was collected about a week after the

fall, and collection was done without direct hand contact; more significantly, the mete-

orite specimens were kept below 0 ◦C after collection and during subsequent transport

to curation facilities (Herd et al. 2016). The cold ambient temperatures at the location of

the fall, coupled with the care with which the collection and subsequent curation were

carried out places Tagish Lake among the most pristine meteorites ever collected (Herd

et al. 2016). The meteorite is a type 2 carbonaceous chondrite with affinities to CM

and CI meteorites (Blinova et al. 2014; Zolensky et al. 2002), and contains among the

highest concentrations of organic matter measured in meteorites (Alexander et al. 2014;

Grady et al. 2002; Herd et al. 2011). The pristine nature of the meteorite, coupled

with the curation methods used to preserve it, have yielded new insights into the for-

mation of nanoscale organic globules in the coldest regions of the protoplanetary disk

(e.g., Nakamura-Messenger et al. 2006) as well as the role of asteroid parent-body aque-

ous alteration in the modification and synthesis of organic molecules (Herd et al. 2011;

Hilts et al. 2014).

The majority of the Tagish Lake meteorite specimens are stored at −30 ◦C and processed

within the Subzero Curation Facility for Astromaterials at the University of Alberta; this fa-

cility houses an Ar glovebox within a walk-in freezer maintained at temperatures of −10

to −15 ◦C (Herd et al. 2016). While there are no indications that the Tagish Lake mete-

orite contains water ice or other such volatiles, these conditions of storage and handling are

justified by the discovery of especially volatile and/or reactive organic species (e.g., formic

acid, naphthalene, and styrene; Hilts et al. 2014). Challenges and limitations of the Sub-

zero Curation Facility include: mitigation of glovebox leaks, user comfort, and the extreme

dryness of the Ar atmosphere, which would result in the sublimation of water or other ices

from the samples (Herd et al. 2016). However, the facility achieves the goal of enabling

documentation and processing of pristine astromaterials under low temperature in an inert

atmosphere. The low-temperature curation of the Tagish Lake specimens reduces reaction

rates, preserves intrinsic (volatile) organic compounds, and discourages microbial activity

(Herd et al. 2016)—requirements that are desirable for returned samples from organic-rich

asteroids, cometary nuclei, Mars, or other volatile-rich returned sample targets (lunar poles,

icy moons, etc.) as discussed below.
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3.1.2 Volatile-Rich Samples from the Lunar Poles

The lunar poles are high-priority targets for sample return due to the possibility of significant

quantities of water-ice and other volatiles in permanently shadowed regions (PSRs). Remote

sensing data indicates that volatiles comprise up to several weight percent of materials in

PSRs; the composition of the volatiles in the crater Cabeus’ PSR included H2O, CO2, CO,

H2S, CH4, OH, SO2, NH3, C2H4, and CH3OH (Colaprete et al. 2010; Gladstone et al. 2010).

This mix of compounds present a complex curatorial challenge, and even more so in the

presence of local regolith/silicates (largely anorthosite or basalt). The volatiles detected by

LCROSS have a range of condensation temperatures, and a subset are highly reactive in the

presence of silicate minerals. If the solid and volatile components of a lunar PSR sample

are stored together, therefore, a mixed-phase, highly reactive sample will likely result. The

preservation of a lunar polar sample would therefore be maximized by separating the solid

and volatile components and storing them in that configuration for the long-term.

The presence of numerous reactive species presents several additional challenges. First,

the corrosive nature of H2S limits the materials to which the sample can be exposed with-

out alteration. Materials will therefore need to be selected that accommodate the curatorial

requirements for isolation (materials should not significantly contract under cold temper-

atures), durability during sample processing/preliminary examination, and particulate con-

tamination. Second, volatile-rich samples often contain gases that are hazardous to humans,

even at low concentrations (e.g., CO, H2S, SO2, NH3). This additional risk—on top of the

existing particulate exposure risk from solid samples—may require the use of respirators or

special masks during preliminary examination and curatorial operations. The need to min-

imize leakage from curatorial hardware (gas containers, analytical equipment, gloveboxes,

etc.) will be significantly higher for volatile-rich samples; because they will operate at cold

temperatures, proper materials selection from the component to the system level will be a

top priority.

3.1.3 Cometary Nucleus Samples

The preservation of a cometary nucleus sample lies at the extreme end of cold-curation stor-

age requirements because the sample would contain hypervolatiles including noble gases,

nitrogen, and oxygen (Bieler et al. 2015; Le Roy et al. 2015), although the retention of

these gases would only likely be achieved if they are trapped within solid ices of primarily

H2O, CO, and CO2. Insights from the ROsetta Spectrometer for Ion and Neutral Analysis

(ROSINA) instrument, which measured volatiles in the coma of comet 67P/Churyumov-

Gerasimenko demonstrate that, while dominated by water, the nucleus of 67P includes a

wide range of volatile compounds, including molecular oxygen, CO, CO2, HCN, H2S, CH4,

and many others (Bieler et al. 2015; Le Roy et al. 2015). Curation of these ices, which would

almost certainly be intimately mixed with non-volatile, fine-grained silicate, oxide, sulfide

and more refractory organic materials, would require significant technological development

for cryogenic curation—assuming that the sample could be collected and returned to Earth

under cryogenic conditions in the first place. Various options for the return of cometary nu-

cleus volatiles have been studied, including cryogenic sample return, for which significant

technical challenges exist (Veverka 2010b). Allowing volatile components to be released

by warming a comet nucleus sample and capturing them in a separate container removes

the need for cryogenic handling (Veverka 2010a), which was the approach proposed for the

CAESAR mission concept to comet 67P. No truly cryogenic sample return missions are

planned at the time of this writing.
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Fig. 1 The overlapping
challenges of cold curation and
biological containment present
unique challenges for future
astromaterials curation efforts

3.1.4 Biological Samples

Curation facilities may be required to curate biological samples as part of a contamination

knowledge collection from the spacecraft build and sampling of flight hardware. This re-

quirement is currently in place for the Mars2020 mission, which may be the first leg in a

Mars Sample Return Campaign. Although there are no requirements that the martian sam-

ples be kept cold, biological sampling during the spacecraft build and of the flight hardware

includes microbiological samples, including swab samples, liquids, isolated pure cultures

of bacteria and fungi, and DNA samples. The requirements for long term preservation of

these biological samples varies with sample type and intended use. We will discuss two

broad sample types: (1) Samples preserved for later growth and (2) samples intended for

molecular analysis like DNA sequencing.

The guidelines for preserving bacteria and fungi for later cultivation are well established

(CABRI 1998). Bacteria should be placed in a protective solution of 15–50% glycerol by

volume and frozen at −80 ◦C. Commercially available products like cryobeads should be

used to improve long-term viability. If viability needs to be maintained for > 5 years, sam-

ples should be frozen at −130 ◦C. Some species of bacteria and fungi can be freeze dried

with liquid nitrogen and stored at 4–8 ◦C. It is important to test the survivability of each

strain prior to committing to a preservation method.

Preservation of swabs, liquids, witness plates, or extracted DNA for later analysis

is less straightforward. As a general rule, colder is better, but there is little consensus

on what temperature is best. There is some evidence that storing samples at too low a

temperature can cause more damage than it prevents (Anchordoquy and Molina 2007;

Vaught and Henderson 2011). Rapid changes in DNA sequencing technology make it

very difficult to predict how samples will be handled in the future (Reuter et al. 2015).

DNA extraction techniques are also evolving and can have significant effects on sam-

ple quality (Dauphin et al. 2009; Mitchell and Takacs-Vesbach 2008; Rose et al. 2011;

Zielińska et al. 2017). Barring additional research, the best strategy is to store unprocessed

samples alongside extracted DNA so that future researchers have options for what to ana-

lyze.

Future sample return missions from icy moons will incorporate both the biological sensi-

tivity of a Mars Sample Return (MSR) campaign and the temperature sensitivity of lunar or

cometary samples (Fig. 1). Therefore, even if MSR does not have a low-temperature storage

requirement, it is inevitable that biological containment and cold curation will eventually

be needed concurrently. The challenges of operating a bio-safety level 4 (BSL-4) facility at

cold temperatures are unique to astromaterials curation, and will need to be addressed in the

coming years. Many materials suitable for biological containment (e.g., many plastics) be-

come brittle at temperatures at or below the freezing point of water. The additional presence
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Fig. 2 Sketch of typical assembled conflate flange (left). This design is very similar to the specialty “bolt
top containers” used for the Apollo program sample storage in 1969 to present (right), except that these are
now commercially available, and in various sizes and materials, as explained above

of salts (chlorides, sulfates, etc.) may pose challenges to the selection/durability of metal

components. The overlapping requirements for sterility, particulate cleanliness, temperature

control, leak prevention/sample isolation, gas safety, and curator comfort will need to be

met in the coming years as exploration efforts at Europa, Enceladus, and other icy moons

intensify.

3.2 Curation of Organics and Organic-Rich Materials at Room Temperature

Experience with the curation of the organic-rich Tagish Lake meteorite (Sect. 3.1), has pro-

vided ample evidence for the value of cold curation in the preservation of organics and

organic-rich materials; namely, the retention of volatile organics, the mitigation of volatile

organic contaminants, and the suppression of metabolism by any microorganisms in the cu-

ration facility (Herd et al. 2016). However, cold curation is not a requirement for the storage

of organic-rich materials. For example, curation planning for OSIRIS-REx turned instead

towards hermetically sealed storage of samples to preserve organics (Dworkin et al. 2018).

This approach had some precedent with the Apollo missions samples (Fig. 2), avoids the po-

tential contamination and time and dexterity intense processing issues associated with cold

curation, and is cost effective utilizing known commercially available and tested hardware

and approaches.

When handling organic-rich or organic sensitive materials the use of plastics should be

extremely limited. PTFE or Teflon is acceptable in some situations, but glass or metal is

preferable. Prior to use, tools and sample containers should be combusted at 500 ◦C to re-

move organic contaminants. Long-term storage of organically sensitive samples should use

well-characterized glass baked at ≥ 500 ◦C wherever possible (e.g., Grosjean and Logan

2007; Peters et al. 2005; Sherman et al. 2007). Furthermore, frequent microbial monitoring

of labs where organic-rich samples are stored and processed is critically important. More-

over, metagenomics studies of any microbes recovered from curation labs that house and

process organic-rich samples will be important, particularly for microbes that can metabo-

lize under anaerobic conditions. The primary goal of these metagenomic studies would be

to characterize the metabolic function of these anaerobic microbes to understand how they

might alter the samples if they are inadvertently introduced to the samples. This is particu-

larly important for organic-rich sample collections stored at room temperature.
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3.3 Future Restricted Earth Return Missions

In the 50 years since the Apollo 11 launch, advancements in knowledge and technology al-

low for not only unprecedented scientific investigations of extraterrestrial samples but also

a greater understanding of the potential hazards of sample exposure or release into the envi-

ronment (e.g. extraterrestrial life). However, in the case of a biological health hazard, more

precautions are required, not only to protect the samples from Earth, but also to protect

Earth from the samples. Under the UN Space Treaty of 1967, the Committee on Space Re-

search (COSPAR) maintains a planetary protection policy at the international level for all

space faring nations. The policy provides “international standard on procedures to avoid

organic-constituent and biological contamination in space exploration” (COSPAR Plane-

tary Protection Policy March 2017). The policy also promotes the prevention of “adverse

changes in the environment of the Earth resulting from the introduction of extraterrestrial

matter” as stated in the UN Space Treaty.

For the United States, the NASA Planetary Protection Office in the Office of Safety and

Mission Assurance provides the policies and requirements for all NASA exploration mis-

sions regarding forward and backward control of biological contamination. NASA Policy

Directive (NPD) 8020.7G, Biological Contamination Control for Outbound and Inbound

Planetary Spacecraft, complies with the UN Space Treaty and COSPAR planetary protec-

tion policy stating “the Earth must be protected from the potential hazard posed by ex-

traterrestrial matter carried by a spacecraft returning from another planet or other extrater-

restrial sources”. NASA Procedural Requirements (NPR) 8020.12D, Planetary Protection

Provisions for Robotic Extraterrestrial Missions, outlines requirements for meeting the NPD

8020.7G as well as specifies planning documents and reviews for Category V Restricted

Earth Returns. The Planetary Protection Office classifies any “samples from solar system

bodies that may harbor indigenous life” as Category V: Restricted Earth Return. Although

there are currently three bodies with this designation (Mars, Europa, and Enceladus), this

number can change in either direction as more information about any particular planetary

body is gained. For example, during the first three Apollo sample return missions (Apollo

11, 12, 13, and 14), the Moon was considered Restricted. Consequently, the Apollo 11,

12, and 14 samples and astronauts were quarantined upon arrival while health assessments

and biohazard tests were performed. However by Apollo 15, which launched just over two

year after Apollo 11, the Moon was reclassified as Unrestricted and the final three Apollo

missions (Apollo 15, 16, and 17) proceeded without the same level of biohazard Planetary

Protection precautions.

The scientific community has identified Mars Sample Return (MSR) as a high priority

sample return activity for many years, and support for such an endeavor has waxed and

waned over the last few decades. Current efforts relating to MSR are focused on a multi-

mission campaign, the first of which is the Mars 2020 rover mission to Jezero Crater. At the

time of writing, no space agency has fully committed to returning the samples that will be

collected by Mars 2020, but NASA and ESA are discussing the possibility of forming a part-

nership to complete the campaign and decisions are anticipated to be made in the year 2020.

Due to both Planetary Protection and Science requirements, the Mars 2020 rover mission has

the most stringent inorganic, organic, and biological contamination control requirements of

any sample return mission in history. Strategies for satisfying these and other requirements

related to MSR and Restricted Earth Return in general are described below.
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3.3.1 Facility Preparation

Infrastructure Samples returned from any planetary body designated as Restricted must

be contained within a Biosafety Level 4 (BSL-4) facility until it can be demonstrated that

either (1) the samples do not pose a threat to life on Earth or (2) the samples have been

adequately sterilized for release (Rummel et al. 2002, NASA technical publication 211842).

The requirements and processes associated with biohazard testing and/or sterilization are

developed specifically for each mission and each set of samples. International space treaties

with the United States, COSPAR planetary protection policies, and NASA planetary pro-

tection policy directives and requirements do not impose any specific design requirements

on a biocontainment architecture or BSL-4 facility. The policies simply state that the Earth

must be protected from the potential hazard posed by extraterrestrial matter and microbial

containment is required on Category V (sample return) Restricted Earth Returns. The U.S.

Dept. of Health and Human Services traditionally has jurisdiction of design and operating

requirements for a BSL-4 facility in the United States. The “Biosafety in Microbiological

and Biomedical Laboratories”, 5th Edition (Dec. 2009) authored by the U.S. Department of

Health and Human Services: Public Health Service, Centers for Disease Control and Preven-

tion, and the National Institutes of Health; HHS Publication No. (CDC) 21-1112 (hereafter

BMBL, 2009), houses the primary recommendations, standards, and design requirements for

all BSL labs. Under this regulation, any related agents with unknown risk of transmission

are classified to be under BSL-4 containment. Presumably, an extraterrestrial or unknown

pathogen would require, at minimum, a BSL-4 containment. At this time, we cannot predict

what other federal or international agencies may wish to impose additional guidelines and

requirements and/or request jurisdiction of a NASA BSL-4 sample return lab. For example,

the National Institute of Health (NIH) imposed additional design requirements at the Galve-

ston National Lab beyond the BMBL requirements. The World Health Organization also has

guidelines and requirements for BSL-4 laboratories and the Dept. of Agriculture has claimed

some jurisdiction of extraterrestrial soils. For the Apollo Program in January 1966, the In-

teragency Committee on Back Contamination (ICBC) was established to include the CDC

with Dr. David Sencer of the CDC as chairman, Department of Agriculture, Department of

the Interior, Department of Health, Education, and Welfare, National Academy of Sciences,

and NASA, which imposed strict requirements on the construction of the Lunar Receiving

Laboratory (LRL), JSC Bldg. 37. Therefore, historically, other agencies have been involved

in the construction and operations of such a BSL-4 type lab.

One of the major challenges in designing a facility for Restricted Earth Return Missions

is the integration of the Contamination Control (CC) requirements necessary to protect the

samples from terrestrial contamination and Planetary Protection (PP) requirements neces-

sary to protect the Earth and its inhabitants (all life: from humans to animals to plants, etc.)

from a possible extraterrestrial pathogen (e.g., microbes, viruses, or prions). While walls can

act as physical barriers for protections, developing the proper pressure differentials inside

and outside the laboratory is vital (Fig. 3). Unlike the curation of traditional unrestricted

samples, which utilizes positive pressure gradients to protect the samples from contamina-

tion, BSL-4 facilities rely on negative pressure gradients to protect the scientists and general

public from the samples. Although there have been a number of possible iterations demon-

strated in the Draft Test Protocol (Rummel et al. 2002; Fig. 3), the presumed baseline re-

quirement is that the samples must be contained within a BSL-4 Facility (BMBL 2009). In

order to best protect the samples and Earth, redundancies are built into the design schematic

(Fig. 3). Specifically, not only will the entire cleanroom laboratory be constructed within

a BSL-4 facility, but the use of a Biosafety Cabinet (BSC) III double walled isolator for
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Fig. 3 Comparison of differential pressure gradients used for containment of astromaterials samples from
bodies designated as restricted Earth return (adapted from Rummel et al. 2002: 6, Fig. 1): (1) The top
schematic represents a standard sample containment design for unrestricted sample return missions. In this
configuration, the highest pressure is situated inside a positive pressure glovebox or containment isolation
chamber and pushes out to a lower pressurized cleanroom. The cleanroom is also under positive pressure
relative to the outside of the lab. This positive pressure cascade is designed to mitigate the infiltration of
outside or laboratory contamination to the astromaterials samples. (2) The middle schematic is a standard
BSL-4 containment design for working with hazardous biological pathogens. In this particular configuration,
the glovebox or containment isolation chamber that houses the biohazard is under negative pressure rela-
tive to the laboratory space. In addition, the laboratory is also under negative pressure relative to outside of
the lab. This negative pressure cascade is engineered to protect the outside environment from a release of
any biohazard. (3) The bottom schematic is the current design concept for a restricted Earth return sample
containment that combines both of these technologies. The containment isolation chamber that houses the
samples is designed with a double wall and the interstitial space is filled with a high purity gas at a higher
pressure relative to the contained isolated samples and the cleanroom. The pressure between the cleanroom
and containment is still under a negative pressure differential to maintain BSL-4 containment standards, but
any leakage would be the high purity gas that pushes into the containment and out to the laboratory clean-
room. In addition, the cleanroom laboratory would be a positive pressure cascade with a negative differential
pressure plenum barrier to maintain BSL-4 containment to the outside environment of the facility

sample processing within the cleanroom will add an additional level of protection with the

corresponding differential pressure scheme. For current BSL facilities in the U.S., a Class

III BSC glovebox gastight (leak rate) criterion is < 1 × 10–5 cc/s with 100% He tracer gas

under 3 inH2O pressure in the cabinet (Stuart et al. 2012). Dependent on mission science re-

quirements, specialized double walled glovebox or containment seals could be required for

maintaining nitrogen or other inert gas environment purity under negative pressure. Non-

glove storage isolators can achieve a He leak rate of < 1 × 10–7 cc/s. However, achieving
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Fig. 3 (Continued)

a better leak rate on double-walled isolated containment may require additional engineering

development and challenges. While there have been some studies exploring how these re-

quirements could be implemented (Beaty et al. 2009), these studies need to be updated to

reflect some significant shifts in possible facility usage (e.g. no animal studies, long-term

use, multi-mission use).

Functional Laboratory Design The verification of extinct or extant life within a sample

may require the examination of organic compounds within the samples. As such, not only is

it vital to ensure no terrestrial biological contamination occurs during sample handling and

storage, but the amount of organic contamination must also be minimized. One of the main

ways to do this is through the selection of manufacturing equipment and laboratory space

with proper materials that have little to no potential to outgas or shed particles. This will

require the use of mainly 300 series stainless steel and Teflon in areas with intimate contact

with the samples. For this reason (as well as offering additional differential pressure gradi-

ents), double walled isolator cabinets are the likely choice for the handling of these materi-

als since the suits utilized in BSL-4 facilities and the glovebox gloves could contaminate the

samples with organic matter and make life detection more difficult (Vrublevskis et al. 2018a;

Holt et al. 2019). Although the utilization of a double-walled isolator (DWI) helps to mit-

igate the contamination risk, it requires a significant advancement in remote or robotically

assisted manipulation since manual manipulation via a glove port could compromise the

organic CC requirements due to material outgassing. Although there is work being done in

Advanced Curation related to small particle handling, there are other groups investigating

hepatic feedback remote handling, specifically for Mars Sample Return (Vrublevskis et al.

2018b). In addition to robotic sample manipulators, and any analytical equipment should be

developed to allow scientists to manipulate samples and run analyses remotely.

A further complication of returning samples from a restricted planetary body is the un-

known long-term space requirements of the collection. Although Apollo samples were even-

tually deemed safe and released (two years after the first samples were returned), this will

not necessarily be the case for future restricted Earth return missions. If a potential or ac-

tual health hazard is found, or if there are too many concerns about unknown unknowns,
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samples may never be released from containment. Therefore, multiple facilities and sam-

ple use strategies would need to be developed to conduct science in containment. One way

to approach this is to construct a modular BSL-4 facility that has walls that can be shifted

to accommodate the addition of new analytical instrument suites and other long-term cura-

tion/scientific needs.

Integration of Cleaning and Sterilization Techniques The safety of the samples and

the technicians and environment at large will require not only a well-designed facility, but

also the integration of cleanliness and sterilization protocols. While there are standard ster-

ilization techniques (e.g. heat, peroxide, formaldehyde) and cleaning procedures (e.g. IPA,

UPW), there is not one standard procedure that can do both simultaneously. In the case of

MSR, where a major part of “life-detection” will rely on DNA extraction and not viability,

any unviable biological matter remaining will compromise the samples and studies. Due

to these considerations, strategies for integrating these procedures are underway. A similar

strategy as that taken for flight hardware will be employed, clean the materials first and then

sterilize without generating contamination. Although the Mars 2020 Mission has integrated

the use of vapor phase hydrogen peroxide (VHP), they are using heat sterilization on the

sample intimate hardware. However, given the specs of isolator cabinets (e.g. size and me-

chanics) and the systematic sterilizations needed to avoid cross-contamination and ensure

safety, heat sterilization is not a viable option.

The need to integrate the isolator cabinets into the facility’s infrastructure will mean

that they will have to be cleaned and sterilized in place. For this we can draw upon best

practices used in Curation Glovebox Laboratories and BSL-4 Cabinet Laboratories. For

initial final cleaning/sterilization, a standard UPW/IPA cleaning procedure would likely

be utilized (see Sect. 3.7) followed by sterilization utilizing an ultra-pure hydrogen per-

oxide solution. Given the harshness of the high concentration peroxide required (35%),

amount of residual moisture after sterilization is complete, and its limitations in steriliz-

ing instrumentation due to unexposed surfaces, a new technique is being considered. Not

only does ionized hydrogen peroxide only require a solution of 8% hydrogen peroxide, it

more easily permeates instrumentation, and does not leave a liquid residue (Webb 2011;

Grimaldo 2017). Although more research is required to confirm sufficient sterilization with-

out generating long-term corrosion or systemic contamination, the outlook is promising.

3.3.2 Collection of Baselines for Science and Planetary Protection

The concurrent requirements for sterility, particulate and organic volatile cleanliness, tem-

perature control, leak prevention/sample isolation, and gas safety will need to be met in the

coming years as exploration efforts at Mars, Europa, and Enceladus come to fruition. The

classification of a mission as Category V Restricted Earth Return not only adds more CC and

PP constraints (https://planetaryprotection.nasa.gov/categories), it also broadens the scope

of required CK (Fig. 4) to include biological witness materials. Not only does this require

more rigorous sets of samples, unlike other collections, which only require storage in an in-

ert ultra-pure gaseous environments (e.g. nitrogen), biological CK will also require samples

to be frozen (see Sect. 3.1).

While all scientific investigations of returned samples are highly sensitive to terrestrial

contamination, contamination is especially detrimental where studies of extant or extinct

extraterrestrial life are concerned. The proper collection, storage, and cataloging of Con-

tamination Knowledge (CK) associated with the production and assembly of the spacecraft,

rover, lander, orbiter, and/or sampling system will be vital to these investigations. Without

https://planetaryprotection.nasa.gov/categories


Advanced Curation of Astromaterials for Planetary Science Page 25 of 81 48

Fig. 4 Cartoon illustrating the categories of samples needed for testing and verification of spaceflight mis-
sions. Each type of sample serves a different purpose and hence requirements for each sample collection
related to these categories must be defined

a well-constructed and curated CK collection, the baseline for contamination within the re-

turned samples cannot be established. Therefore, after mission inception and design, the

development of the CK collection as part of a mission’s curation plan (CP) should occur

in conjunction with the mission’s CC and PP plans. The CP, CC, and PP plans and imple-

mentation of these plans during ATLO and Earth receiving operations are paramount to the

ultimate value of the returned samples.

Technological advancements to instrumentation are continually progressing with greater

precision and accuracy for sample measurements, especially in the field of microbiology.

An array of CK samples must be made available to scientists once restricted samples are

returned to Earth, and those samples should be preserved in such a manner that they can be

analyzed by instrumentation that was not invented at the time of their initial storage. Col-

lecting and curating unanalyzed/unaltered samples will minimize the possibility that current

analysis and extraction techniques destroy or alter the samples or otherwise inhibit yet to be

developed measurements. Some of the types of biological CK samples the NASA Curation

Office requires for restricted Earth return missions include:

(1) Un-analyzed/Un-altered dry swabs and wipes in sterile containers stored at ≤−80 ◦C.

(2) All recirculation filters from the clean rooms used for spacecraft and spacecraft hard-

ware assembly and all filters from the laminar flow benches used to assemble sample

intimate hardware, packaged in sterile Teflon bags and frozen at −80 ◦C.

(3) Witness plates collecting airborne contamination within the assembly cleanrooms stored

at ≤−80 ◦C.

3.4 Sample Processing Cabinets Under Vacuum

Historically, vacuum processing of samples was employed for primary processing of Apollo

lunar materials. First envisioned in 1964, the 3 story “High Vacuum Complex” integrated

into JSC bldg. 37 Lunar Receiving Laboratory between 1967–1968 was a series of connected

glovebox isolation chambers operating at 10−6 torr vacuum environment to decontaminate,

process, and store samples (Calaway et al. 2014; White 1976). Although vacuum process-

ing takes a very direct approach to minimizing sample contamination by avoiding sample
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Fig. 5 A bird’s-view image of the sample-handling system for Ryugu samples. The system consists of five
chambers—CC3-1, CC3-2 CC3-3, CC4-1 and CC4-2

contact with gases, the process is inherently difficult. Maintaining vacuum in large pro-

cessing cabinets requires constant pumping and the use of cold traps to remove unwanted

pumping oils and other contaminants, which renders gloves stiff with attendant processor

fatigue, and any leaks in the system tend to introduce relatively humid ambient air. There

is also the danger of rapid pressure loss through mechanical failure, which would introduce

significant contamination and poses a physical risk to processors. Unfortunately, the F-201

processing glovebox chamber was prone to leaks and glove failures as well as difficulties

in using vacuum hardware with an increasingly large volume of lunar samples, which ulti-

mately drove the high vacuum complex to be used only for Apollo 11 and 12. For Apollo

14 onward, the high vacuum complex was replaced by a series of positive pressure gaseous

nitrogen gloveboxes called the Sterile Nitrogen Atmospheric Processing (SNAP) Line and

Nonsterile Nitrogen Processing Line (NNPL) (Reynolds et al. 1973; Simoneit et al. 1973).

The JAXA Extraterrestrial Sample Curation Center (ESCuC) in Sagamihara, Japan has

successfully employed vacuum storage for samples returned from the Hayabusa mission to

asteroid Itokawa and is planned for JAXA’s Hayabusa2 mission to carbonaceous asteroid

Ryugu that is currently in flight (Okazaki et al. 2017; Sawada et al. 2017; Yada et al. 2014).

In the case of the Hayabusa samples, all the sample handling processes occurred in puri-

fied gaseous nitrogen following the sample container opening process under vacuum condi-

tions (Yada et al. 2014). Installation of a newly-developed sample-handling vacuum process-

ing clean chamber (CC) was completed in October, 2018 at ESCuC (Okazaki et al. 2017;

Sawada et al. 2017; Fig. 5) two years prior to sample return. The entire sample-handling

system in ESCuC consists of five chambers—CC3-1, CC3-2, CC3-3, CC4-1 and CC4-2.

The returned sample container will be first connected to CC3-1 for opening in a vacuum,

and will be transferred to CC3-2 for vacuum-handling of samples. The container will be
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then transferred into CC3-3, where the sample handling environment will be changed from

vacuum to purified gaseous nitrogen. Further handling of samples will be done in purified

nitrogen in CC4-1 and CC4-2.

3.5 Sample Processing Cabinets with Remote Participation of Scientists

It is rather common for scientific investigations with astromaterials to require a specific

sample or specific portion of a larger sample for subsampling. Principle investigators will

occasionally travel to a curation facility to pick-out samples, provide input on sample sub-

division, and/or sample preparation. This requires that the PI arrange a visit to the facility to

communicate directly with the curatorial processors on which samples to pull and ultimately

choose for study. In some cases, travel can take a significant amount of time and cost. Today,

communication technology can almost eliminate the need for the PI to travel to the facility

with the integration of “Live” real-time video conferencing sessions with remote scientists.

NASA JSC has experimented with this technology during the Stardust preliminary exam-

ination in 2006 and again in 2014 with the retrofit of one of the Apollo 16 Lunar processing

cabinets (Calaway 2015). In this most recent technology demonstration, a Leica DMS1000

Macroscope and Axis Pan-Tilt-Zoom (18× optical zoom) IP camera system was integrated

into the Lunar processing glovebox. The Axis camera and macroscope were mounted on

the outside of the glovebox and focused through glass. This was done to eliminate the con-

cern for cross-contamination from the two systems. The Axis camera was mounted to the

top of the glovebox looking through the lighting window and could be used for situational

awareness of processing or zoomed in to look at sample splits. The Leica Macroscope was

mounted above the PI observation window at the end of the glovebox. A sample was placed

onto a jack-stand and the macrosope could focus on the sample through the glass window.

While both of these commercial-off-the-shelf (COTS) products offer video streaming ca-

pabilities, the video integration was complicated by the JSC firewall and mandated govern-

ment IT security requirements. In addition, remote wireless connections were hampered by

the thick walls of the curation facility. For both the systems, the video needed to be securely

accessed outside of JSC. Therefore, the video stream was required to push through the JSC

internal firewall to the JSC public zone and then pass through another firewall to get to the

internet for public access. The Axis camera browser software is capable of secure viewing

with passwords, and the IP address would be routed accordingly by our internal IT group.

For the macroscope video stream, a streaming service like YouTube or USTREAM from

the DMZ could be used. For the tech demo, a dedicated USTREAM account was set-up. At

the March 2015 Lunar and Planetary Science Conference, we demonstrated this system. We

successfully live-streamed the Leica Macroscope and Axis camera real-time images from

the NASA JSC Lunar laboratory to the Marriot Hotel in The Woodlands, Texas. However,

for this test we used the VPN network access to simplify the test due to time constraints.

Lunar curation now has all the equipment and tools needed to set up a permanent video

conferencing with external PIs during a video or teleconference. In the future, more collec-

tions could integrate this type of COTS technology to reduce time and travel costs where

appropriate.

3.6 Small Particle Handling

One particular objective of advanced curation efforts is the development of new methods

for the collection, storage, handling and characterization of small particles. In this context,

“small” refers to microscale particles, typically between one and several hundred microns
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in diameter (though submicron interstellar particles will be analysis targets in the future).

Particles in this size range include dust derived from comets and asteroids that is continu-

ously accreted by the Earth, as well as material collected by robotic sampling missions and

by astronauts during Apollo missions. The curation of small particles includes the unam-

biguous identification of particles in/on collection substrates, the transfer of particles be-

tween collection, analysis, and storage substrates, sample characterization, sample prepara-

tion/subdivision, and the preservation and documentation of samples in a publicly available

catalog. Astromaterials Curation facilities in the United States, Russia, and Japan currently

maintain several small particle collections (Allen et al. 2011): Lunar regolith fine-grained

samples returned by Apollo astronauts and by Soviet Luna robotic spacecraft, Cosmic Dust

that has been collected in Earth’s stratosphere by ER2 and WB-57 aircraft, Comet 81P/Wild

2 dust returned by NASA’s Stardust spacecraft, interstellar dust returned by Stardust, and

asteroid Itokawa particles that were returned by the Hayabusa spacecraft. NASA and JAXA

Curation offices are currently preparing for the anticipated return of two new astromate-

rials collections—asteroid Ryugu regolith collected by Hayabusa2 spacecraft in 2019 and

returned to Earth in 2020, and asteroid Bennu regolith to be collected by the OSIRIS-REx

spacecraft and returned in 2023 (Lauretta et al. 2017). A substantial portion of these antic-

ipated returned samples are expected to consist of small particle components, and mission

requirements necessitate the development of new processing tools and methods in order to

maximize the scientific yield from these valuable acquisitions.

There are several aspects of microscale astromaterials curation that present challenges

that are distinct from macroscopic sample curation. At scales of less than 100 µm, electro-

static and intermolecular forces dominate the behavior of particles. Particles adhere weakly

to glass or tungsten needles via Van der Waals intermolecular forces, usually enabling trans-

fer between analysis and storage substrates. These transfer operations are hindered by tran-

sient electrostatic forces. Triboelectric charging due to contact, separation, and frictional

electrification (Matsusaka et al. 2010) is the primary mechanism by which particles are lost

during transfer operations (although environmental and instrumental vibrations also con-

tribute to sample loss during transfers), and these triboelectric effects become more severe

in low-humidity environments. Hayabusa2 and OSIRIS-REx collections will be curated in

sample processing cabinets purged with dry GN2, and developing methods for suppressing

triboelectric charge accumulation in these dry environments will be critical for successful

sample processing.

Sample characterization at the microscale also presents unique challenges. Typically, op-

tical images of submicron to micron-sized particles do not provide sufficient information to

investigators to make informed sample selections. Microscale particles are often imaged and

characterized in scanning electron microscopes equipped with an energy-dispersive spectro-

scopic (EDS) detector for elemental characterization; such analyses are useful for inves-

tigators requesting samples with desired mineralogy and are necessary to distinguish true

extraterrestrial material from terrestrial contamination for samples that are collected in the

stratosphere. However, SEM analysis of microscale particles introduces an additional risk

of loss due to sample charging from electron beam bombardment; additionally, some frag-

ile organic and mineral phases may be potentially modified by e-beam characterization. In

some instances (especially with rare samples), it may be necessary to subdivide a parti-

cle via ultramicrotomy or by focused ion beam (FIB) sample preparation. These methods

must be carefully considered in order to avoid compromising the scientific integrity of the

sample. The objective of advanced microscale astromaterials curation research is to better

understand these challenges and to investigate tools, equipment, and methods that facilitate

microscale sample processing.
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3.6.1 Description of Tools and Equipment Used for Small Particle Handling

Tweezers Commercially available, low-Ni stainless-steel tweezers (e.g. Dumont No. 5

Dumoxel) can be utilized to reliably manipulate samples as small as several hundred mi-

crons by hand. Smaller particles (≥ 50 µm) may be manipulated by tweezers that are fixed

to devices that enable mechanical or electrical actuation, especially when mounted on a

micromanipulator. The NASA Curation Office at JSC has acquired two such devices man-

ufactured by Micro Support Co., Ltd.; these devices are being used to investigate methods

of particle removal from OSIRIS-REx contact pads. Challenges remain with small particle

manipulation via tweezers (either by hand or by electrical/mechanical actuatable devices)

due to lack of force feedback, and risk of deforming or fracturing particles with low tensile

strength remains significant.

The use of micro-electro-mechanical systems (MEMS) microtweezers for particle ma-

nipulation (Keller and Howe 1997) have also been investigated. Initial experiments with

these devices revealed similar force feedback limitations to stainless steel tweezers. In addi-

tion, silicon devices were more brittle, making removal and placement of particles on rigid

substrates precarious operations that often resulted in the shattering of the microtweezers

and the loss of the sample. Finally, the low-cost benefits due to mass production on a sin-

gle wafer have so far not been realized, and the cost of these microtweezers has remained

significantly more expensive than their stainless-steel counterparts.

Needles Manipulation of particles by fine-tipped needles is a technique that has been uti-

lized by curators since NASA initiated the cosmic dust collection in 1981. Particles smaller

than 20 µm are typically transferred from a collection medium to an analytical substrate

(e.g. beryllium disk or epoxy bullet) or to a storage container (e.g. concavity slide) using a

microneedle made from glass or tungsten. With skill and practice, curation personnel can

transfer particles as small as 5 µm between substrates by hand using a glass or tungsten nee-

dle attached to a pin vise. However, involuntary hand motions on the order of 100 µm make

routine and reliable transfer tedious and precarious operations. For critical transfers, needles

are attached to mechanical or motorized micromanipulators to improve transfer reliability

and precision, while minimizing user fatigue. The intermolecular forces between the needles

and the particles in this size range are typically sufficient to overcome repulsion due to tri-

boelectric charge accumulation. Larger (≥ 20 µm) particles have been more challenging to

manipulate. When using the same glass and tungsten microneedles for particles larger than

20 µm, triboelectric charging effects significantly hinder the reliable manipulation of parti-

cles. We have recently observed that, by utilizing tungsten carbide needles with low taper

ratios (∼3:1), particles as large as 200 µm can be manipulated successfully. We speculate

that these needles present greater contact surface area for intermolecular forces to capture

particles, and that the needle shape may aid in the rapid redistribution of accumulated tribo-

electric charge; however, more tests are needed.

Glass and quartz needles are fabricated using micropipette pullers that concentrate heat

at the center of a solid core glass rod or capillary tube while applying force to each end;

this action creates two needles with submicron tips. When a capillary tube is pulled in such

a manner, and the tip is carefully broken off, a micropipette is created. A vacuum can be

applied to this tube, creating a microscopic version of vacuum tweezers. We have investi-

gated utilizing such a system to manipulate particles that are too large to be handled by Van

der Waals adhesion. Our initial results are that, while the vacuum tweezer system is very

efficient at securing larger microscale particles, releasing the particle by removing the vac-

uum frequently results in sample loss. We speculate that the vacuum action induces strong

triboelectric charging effects.
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Microscopes Stereomicroscopes possess imaging characteristics such as long working

distance and laterally correct viewing that make them extremely well-suited for freehand

and mechanically assisted manual manipulation of microscale particles. Stereomicroscopes

from manufacturers such as Nikon, Leica, and Olympus utilize two main optical designs—

the Greenough design, which has two optically independent light paths, and the common

main objective (CMO) design, in which optically parallel light paths share a common ob-

jective (Zimmer 1998). Greenough designs are preferable in environments in which size and

weight must be minimized, and where high magnification is not necessary or desired (e.g.,

suspended over a collector during cosmic dust harvesting). CMO optical designs afford in-

creased magnification compared with Greenough type microscopes, and are utilized in more

critical sample operations such as mounting particles onto analysis substrates.

For the manipulation of very small (<10 µm) samples, upright microscopes equipped

with geared XY stages are utilized. These microscopes are equipped with long-working dis-

tance objectives capable of providing up to 500X magnification. The geared, manual XY

stage is coupled to the Z-focus mechanism that raises and lowers beneath a stationary ob-

jective; this enables movement in X, Y, and Z independent of objective position. By placing

a needle at the focal point of the objective, it is possible to transfer microparticles between

substrates by moving the stage rather than by moving the needle.

Digital microscopes are particularly useful in processing environments where stereo or

upright microscopes would be inconvenient—for instance, in a N2 sample cabinet or a

temperature-regulated environment. They also introduce the potential to perform curation

activities remotely, reducing contamination risks and operator fatigue. JAXA’s Hayabusa

sample processing cabinet uses three digital microscopes—two mounted inside the cabinet,

and one mounted externally—to image particles during transfer operations. Digital micro-

scopes are best utilized with micromanipulator assisted particle transfers, especially if the

microscope suffers from image lag.

Micromanipulators Micromanipulators are mechanical, hydraulic, and motorized/

electrical devices that enable the precise handling of microscale samples. Most commer-

cially available micromanipulators have three axes of motion, with motorized versions

often providing a virtual fourth axis of motion (which is desirable for performing micro-

fluid injections). Mechanical micromanipulators often use a combination fine-pitched screw

mechanisms and linear guide rails to achieve microscale positioning. Singer instruments

manufactures a mechanical micromanipulator with a 3D pantograph design (Robert 1951);

the user holds a pencil-grip stylus and, through the pantograph mechanism, manipulates a

probe with a 4:1 reduction of hand motions.

Motorized micromanipulators employ a combination of precision stepper motors and

worm gear mechanisms to achieve microscale positioning and motion. These have the ad-

vantage of being able to be operated remotely and, in some cases, can be programmed for

autonomous operation. A variety of input mechanisms can be utilized, including joysticks

and rotary optical encoders. Motorized manipulators can also be computer controlled.

Integrated Systems In order to achieve reproducible, robust, and reliable particle trans-

fers and processing, a combination of microscopes, micromanipulators, and XY/XYZ stages

are required. Motorized micromanipulators and XY stages require bulky power supplies and

motor drivers (sometimes one per axis of motion), and microscopes with digital cameras of-

ten require desktop computers to operate the imaging software. Such equipment occupies

large footprints in cleanrooms with limited space, compromises pristine environments with

instrument cooling fans, and leads to unsightly tangled masses of cables and wires. The
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NASA Curation Office has recently obtained an integrated system that includes dual mo-

torized micromanipulators, a motorized XYZ stage, and high-resolution digital microscope.

The MicroSupport AxisPro system utilizes a graphic user interface control system, allow-

ing all electromechanical components to be operated independently or simultaneously via

computer mouse. A number of manipulation and sampling tools are available for the Ax-

isPro, including an ultrasonic milling tool and a device that enables the electrical actuation

of stainless-steel tweezers. The compact, integrated design of the system enables the pos-

sibility of placing the AxisPro in a N2 sample cabinet with an operator performing sample

processing activities remotely. So far, the AxisPro system has been used extensively for

microsample handling technique development (e.g. implanting and extracting particles into

polyurethane foam collectors).

In order to minimize the risk of sample contamination (especially for collections that

have been returned from extraterrestrial sources via spacecraft), materials restrictions are

placed on tools and equipment used in sample processing cabinets.

JAXA manipulates samples within its Hayabusa processing cabinet using an integrated

mechanical manipulation system manufactured by Hitachi (Yada et al. 2014). The system

consists of an XYZ stage, a left and right micromanipulator, and a sealed digital camera; the

system is constructed from T6061 aluminum, 304/316 stainless steel, Teflon, and quartz. No

lubrication is used for the bearings, and the entire manipulator is disassembled and serviced

annually to maintain performance.

Six-Axis Compact Robot Arms While 3-axis micromanipulators have been extremely

successful for activities involving the transfer of isolated particles in the 5–20 µm range

(e.g. from microscope slide to epoxy bullet tip, beryllium SEM disk), their limited ranges of

motion and lack of yaw, pitch, and roll degrees of freedom restrict their utility in other appli-

cations. For instance, curation personnel removing particles from cosmic dust collectors by

hand often employ scooping and rotating motions to successfully free trapped particles from

the silicone oil coatings. Similar scooping and rotating motions are also employed when iso-

lating a specific particle of interest from an aliquot of crushed meteorite. While cosmic dust

curators routinely perform with these kinds of manipulations using handheld tools, oper-

ator fatigue limits the number of particles that can be removed during a given extraction

session. The challenges for curation of small particles will be exacerbated by mission re-

quirements that samples be processed in N2 sample cabinets. We have been investigating the

use of compact robot arms to facilitate sample handling within gloveboxes. Six-axis robot

arms potentially have applications beyond small particle manipulation. For instance, future

sample return missions may involve biologically sensitive astromaterials that can be easily

compromised by physical interaction with a curator; other potential future returned samples

may require cryogenic curation (Calaway and Allen 2013). Robot arms may be combined

with high resolution cameras within a sample cabinet and controlled remotely by curation

personnel. Sophisticated robot arm and hand combination systems can be programmed to

mimic the movements of a curator wearing a data glove; successful implementation of such

a system may ultimately allow a curator to virtually operate in a nitrogen, cryogenic, or bi-

ologically sensitive environment with dexterity comparable to that of a curator physically

handling samples in a glovebox.

3.6.2 Methods for Mitigating Triboelectric Charging

Developing tools and methods for mitigating the effects of triboelectric charging during

small particle processing activities is a major objective of microscale advanced curation
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research. Triboelectric charging results from contact, separation, and frictional charge in-

duction (Matsusaka et al. 2010). Examples include friction between storage substrates and

instrument support stages or friction between manipulation tools and particles. Many stor-

age substrates currently in use for small particle curation are fabricated out of glass, quartz,

corundum, or other optically transparent material that enables the utilization of transmit-

ted illumination; for example, interplanetary dust particles have traditionally been stored

and distributed to investigators between a flat glass slide and a glass concavity slide. How-

ever, most transparent materials possess poor electron mobility, and any local accumulated

charges are unable to easily redistribute. We have identified friction between these slides,

particles, manipulation tools, and instrument support stages as a major source of sample

electrification. In cases where substrate transparency is not a curation requirement, the glass

support slide may be replaced with a silicon wafer. Particles retain a high level of visi-

bility on such substrates (especially under coaxial illumination), and triboelectric charging

is significantly reduced such that particles between 40 and 100 µm can be reliably manipu-

lated and arranged in arrays without additional charge-mitigation devices. Recently, we have

experimented with producing storage receptacles in silicon using focused ion beam (FIB)

milling (Fig. 6). We used an FEI Quanta 3D-FEG Focused Ion Beam (FIB) to mill several

shallow (<20 µm) depressions between 30 µm2 and 80 µm2 into the surface of a silicon

chip; material was sputtered using a 65 nA Ga+ beam at 30 kV. A 10 µm particle of CM2

meteorite was placed into one of the FIB-produced wells using a pantograph mechanical

micromanipulator. The charge-dissipative nature of the Si chip enabled us to successfully

acquire a secondary electron image of the stored particle using a 190 pA beam current at

10 kV. Storage substrates that also enable electron beam imaging and characterization are

desirable, as they minimize the need for high-risk microscale particle transfers between stor-

age and analysis substrates. We are currently investigating this technique to produce storage

wells in other charge-dissipative substrates that could enable in-situ elemental analyses.

For instances where the use of transparent substrates is unavoidable, other steps may

be taken to minimize frictional contact between insulating materials. For instance, we have

constructed slide support frames out of conducting and electrically grounded materials (e.g.

miniature aluminum extrusion framing systems). One effective method for minimizing tri-

boelectric charging effects is to restrict small particle processing to times when the ambient

humidity is above 60% (Guardiola et al. 1995); however, this method is not viable for mi-

croscale samples that are processed in dry GN2 sample cabinets.

Another extremely effective method for mitigating triboelectric charging effects is the

use of a 210Po alpha ionizing source. Companies such as NRD® manufacture commercially

available devices designed to reduce static charge via alpha particle emission. Because alpha

particles have a short penetration range in air, the sources are most effective when placed

within 25 mm of the sample. Tools, substrates, and samples can be periodically exposed to

the Po-210 source as sample electrification is observed to worsen; alternatively, if working

distance permits, the source can be left in place during particle transfer operations to remove

any transient charges as they are produced. Due to the short half-life of Po-210 (138 days),

sources must be replaced annually to remain effective. Also, the use of radioactive sources

may be prohibited in certain facilities and typically requires specific safety training and

security protocols.

JAXA has developed an electrostatically controlled particle manipulation system to han-

dle Itokawa particles in an ultrapure GN2 sample cabinet (Yada et al. 2014). Instead of

attempting to neutralize the charge that has accumulated on the particle, they use it to an

advantage by attracting the particle with an oppositely charged needle. The system utilizes a

quartz needle with an embedded platinum wire; the samples rest on a grounded conductive



Advanced Curation of Astromaterials for Planetary Science Page 33 of 81 48

Fig. 6 Secondary electron image of Focus Ion Beam (FIB)-produced wells in Si chip for particle storage and
manipulation

surface. When voltage is applied to the system, a charge is induced to the needle by applying

a voltage to the platinum wire; this charge is used to attract and release particles and transfer

them to custom gold SEM mounts for characterization or to storage wells in quartz slides

for allocation and archiving. The NASA Curation Office has reproduced the electromagnetic

manipulation system (using needles fabricated at JAXA as part of an ongoing international

collaboration between NASA and JAXA curation facilities) and is currently investigating

applications for the system for its microscale particle collections.

The tools and methods described here represent only a fraction of the techniques and in-

strumentation currently utilized and under development for microscale astromaterials sam-

ple processing and analysis. An international collective of curators and small-particle sci-

entists at curation facilities, research institutions, and commercial industries continue to

collaborate to improve our ability to extract high-quality science from these valuable and

unique micro-sized samples.

3.7 Advanced Precision Cleaning for Storing and Handling Astromaterials

Precision cleaning of isolation chambers (e.g., gloveboxes and desiccator cabinets), sample

containers, and processing tools is important for mitigating terrestrial cross-contamination

to pristine astromaterials. Once samples arrive on Earth, the sample environment and how
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it will be handled will begin to alter the pristine nature of the sample. As stated before, the

term “precision cleaning” simply means cleaning materials to a prescribed level of cleanli-

ness, which is measured and verified. Aerospace, semiconductor, pharmaceutical, and op-

tics industries are historically concerned with precision cleaning. Standards for precision

cleaning are widespread across industrial processes through trade organizations like the In-

stitute of Environmental Sciences and Technology (IEST) (https://www.iest.org), ASTM

International (formerly American Society for Testing and Materials; https://www.astm.org),

SEMI (https://www.semi.org) and others. Since curatorial precision cleaning does not di-

rectly align with a single industry’s cleaning standard, curation precision cleaning proce-

dures and protocols for handling astromaterials are derived from many of these established

industry standards. NASA also has its own flight hardware precision cleaning standards and

are often different and dependent on program and mission. For the NASA Curation Office,

precision cleaning standards were mainly derived from the Apollo program and early clean-

ing recipes and history have been discussed in Calaway et al. (2014).

Currently, precision cleaning at the NASA Curation Office is divided into three cate-

gories: PreClean, Final Clean, and Advanced Clean. PreClean is considered gross cleaning

when parts arrive from fabrication/machining and/or procurements from a vendor. Final

Clean is typically linked to the use of a final cleaning agent, drying, and packaging of the

part. During Final Clean, the hardware cleanliness is also measured and verified to meet a

certain standard of cleanliness for use. Advanced Clean is a term used for non-routine av-

enues of cleaning and/or testing of new cleaning methods and techniques. Advanced clean-

ing is typically done after a routine PreClean and Final Clean process has been completed.

This might include techniques that require advanced particulate removal, organic-free clean-

ing or sterility. Advanced Clean may also use standard or advanced cleanliness verifica-

tion processes to assess surface cleanliness using a variety of state-of-the-art instrumenta-

tion.

In the NASA Curation Office, PreClean and Final Clean support all collections by clean-

ing the sample processing tools and containers. However, each collection has its own tools

and containers, which are cleaned in entirely separate cleaning sessions. All hardware items

are put away with the exception of items from the collection being cleaned. The cleaning

tanks are cleaned and refilled before starting a new collection. All of this careful effort is

taken to mitigate the potential for cross-contamination between the different astromaterials

collections. Before attempting gross cleaning, it is important to understand and verify the

cleaning chemical compatibility with the material that is to be cleaned. In addition, com-

plex equipment and tools are routinely disassembled, then cleaned and then reassembled

in a cleanroom after the precision cleaning is completed. PreClean typically consists of re-

moving any visible grease, dirt, adhesives, or other marks with the use of polyester wipes

saturated with isopropanol alcohol (IPA) (70% IPA and 30% UPW), if compatible with IPA.

If IPA wiping does not work or is not compatible with the material, other cleaners that

will not contaminate the material will be used to remove the visible dirt (e.g., citrus-based

solvents to remove silicones, ammonia-based solutions, hexane, and household dish liquid

have been used for initial gross cleaning). In addition, mechanical gross cleaning may also

be necessary in conjunction with cleaning chemicals, such as razor blades and scrubbers

(e.g., Scotch Brite pads and nylon brushes). After all visible material is gone, PreClean uses

a gross degreasing procedure to remove any machining oils and grease from manufactur-

ing. This is done by soaking and sometimes sonicating the part in a degreasing detergent

or chemical. Brulin 815GD (at 5 to 30% concentration with UPW) is commonly used for

stainless steel, aluminum, and titanium metal parts. Freon 113 replacements are also some-

times used for degreasing; for example Honeywell Solstice Precision Fluid, DuPont Vertrel

https://www.iest.org
https://www.astm.org
https://www.semi.org
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specialty fluids (e.g., Vertrel XF), or 3M HFE 7100-DL. Dilute nitric acid is also routinely

used to remove trace metal contaminants, such as lead, from newly fabricated items. Af-

ter degreasing, the hardware is then cleaned with a surfactant. Mechanical scrubbing with

polyester wipes or soft brushes are used in a surfactant bath and then placed into a sonication

bath for 5 to 15 minutes. Afterwards, parts are removed and spray rinsed with UPW and air

dried.

Final Cleaning of equipment and tools are typically centered on high purity chemicals or

cleaning agents. Final Clean also incorporates a verification step to evaluate the cleanliness

of the part and certify the level of cleanliness and qualification for use. From 1966 to 1994,

the final cleaning agent at JSC was Freon 113. Established during Apollo, Freon 113 was an

excellent degreaser and final cleaning solvent. The United States government environmen-

tal policies on ozone depleting chemicals phased out chlorofluorocarbon production from

1992–1995 which forced the NASA Curation Office to change degreasers and final cleaning

agent. After an in-depth research process, the final cleaning agent was changed to UPW in

1994 and is used currently (see Sect. 2.2.2 for details on current UPW purity and system).

Final Clean can sometimes redo surfactant cleaning or use of a pre-degreaser, however, most

of the time, parts are rinsed with UPW and placed into a UPW cascade bath and sonicated

for 5 to 15 minutes. The UPW is often heated to 40 to 70 ◦C to provide better cleaning. GN2

is also used during the end of sonication to remove particulates out of the bath. Parts are then

removed from the bath and thoroughly spray rinsed with UPW. If another high purity chem-

ical is used (such as IPA or a Freon 113 replacement), this would be applied at this stage,

then spray rinsed again with UPW and dried by GN2 (sometimes heated GN2) to remove

all visible water. During the final rinse, run-off aliquots of UPW may be taken for optical

particle counts, liquid particle counts, or TOC analyses. It should be noted that traditional

non-volatile residue (NVR) mass balance measurements and black-lights used to be used,

however, these methods were eliminated since the Final Clean often showed cleanliness be-

low detection limit of those techniques. The part is then either left to continue to air dry or

placed into an oven to remove any more water. After drying, parts are triple bagged in FEP

Teflon or nylon bags depending on the collection and its material restrictions. Before bag-

ging, precision cleaning verification often entails an optical inspection of the parts. If parts

are shown not to be cleaned to the specified cleanliness standard, parts are sent through the

process again.

In the NASA Curation Office, the verification of cleanliness reference standard is fre-

quently IEST-STD-CC1246E, Product Cleanliness Levels—Applications, Requirements,

and Determination (IEST-STD-CC1246E 2013). This is a derivative of the historical mil-

itary discontinued standard MIL-STD-1246 (MIL-STD-1246C 1994). It is in IEST-STD-

CC1246E that hardware surface cleanliness levels are specified per unit measure both

for particles and non-volatile residue (NVR). Particle counts are measured by optical mi-

croscopy and/or liquid particle counts. Most NASA astromaterials collections use Level 50

cleanliness standard from IEST-STD-CC1246E. However, the Genesis collection has a ded-

icated precision cleaning lab, and hardware is generally cleaned to Level 25. For example,

cleaning for flight of the Genesis mission involved most surfaces being cleaned to level 25

(no particles > 50 µm/0.1 m2) for particulates per surface area (a function of particle abun-

dance vs. particle size). NVR is traditional measured by means of gravity mass calculation

(a as function of mass vs. surface area) but are often limited to technique sensitivity. As an

example, R1E-4 is a designation for NVR indicating < 100 ng/0.1 m2. More recent tech-

niques have relied on bench-top total organic carbon (TOC) analyzers (as a function of ppb

vs. surface area) and more time-consuming analytical instrumentation. This standard is use-

ful because it is frequently cited when cleaning hardware for spaceflight, including sample
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Fig. 7 Basic cleaning process for hardware and tools used in astromaterials curation laboratories. Items to be
cleaned are first introduced to a PreClean process that is configured for gross cleaning. Afterwards, items are
introduced to a Final Clean process where they are precision cleaned, cleanliness level verified, and packaged
for use in the lab. If specialized advanced cleaning is desired, the item(s) are further processed after the
routine Final Clean process. This diagram shows the hypothetical process path for organic and sterilization
of hardware and tools. These processes could be a single advanced cleaning process or a combination of
several advanced cleaning processes. In addition, cleanliness verification can occur at multiple points during
the cleaning process or after the process is completed before packaging. Hardware and tools, coupons, and/or
final cleaning agent aliquot are commonly used to verify cleanliness to a set standard

collection devices on spacecraft. However, new missions are generally citing total organic

carbon (TOC) and the TOC is not always transferable to the NVR level.

3.7.1 Technical Tensions Among Cleaning for Particulate, Molecular Organics, and

Sterility

UPW cleaning to remove inorganic particles is a mature process for curation of astroma-

terials. However, the expanding diversity of requirements for high level organic cleaning

and sterility invokes conflicts among cleaning techniques that need to be managed. Manage-

ment options for reconciling these tensions requires attention to detail, perhaps a complex

handling sequence, or subdivision of samples into separate handling tracks such as organic-

cleaned vs. metal-free (e.g. metal vs. plastic handling tools and containers).

A simple model of a cleaning process line (Fig. 7) starts with pre-cleaning followed by

UPW cleaning for particle removal. This particle-cleaned product is suitable for inorganic

usage or for further cleaning. The product could be further cleaned to high organic clean-

liness or to sterility by separate tracks. Selection of a direct separate track may be most

efficient and adequate. Greater cleanliness or sterility might be achieved by cleaning for

both low organics and sterility. However, due to conflicts in materials, environment, pro-

cess chemicals, and packaging for high level organic cleaning and sterility, adaptability for

specific situations is required.

The revived need for both high-level organic cleanliness and sterility, driven by recent

missions such as OSIRIS-REx, Hayabusa2, and possibly Mars Sample Return, have re-

sulted in investigations into advanced techniques and methods for cleaning and for verifi-

cation of cleanliness. Traditional methods to achieve organic cleanliness, such as solvent

extraction and bake-out, can be augmented by UV-ozone cleaning, plasma cleaning, super-

critical fluid cleaning, and CO2 SNOW cleaning (Mickelson 2002a, 2002b; Calaway et al.
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2007, 2009; King et al. 2010; Schmeling et al. 2013; Kuhlman et al. 2013). Assessment

of surface cleanliness has included the use of instrumentation such as SEM, TEM, FT-IR,

Raman, XPS, SIMS, AMF, LC-MS, DART-MS, TD-GC-MS, LA-ICP-MS, and VDP-ICP-

MS. Protocols to remove adventitious carbon must be followed by surface passivation and

extreme control of environment, which includes packaging. Packaging materials must not

off-gas organics. Thus, maintaining an organic-clean surface after cleaning is challenging.

Traditional heat-sealing will not work for organic samples. For example, the Mars 2020 CK

collection has used hermetically-sealing bag clips in-place of traditional heat sealing. Tech-

niques for achieving sterility of containers and tools include standard autoclave, dry heat,

UV, hydrogen peroxide vapor and gamma irradiation and electron beam (Allen et al. 1999;

Clark 2004). NASA JSC is currently constructing an advanced precision cleaning lab to

further study some of these techniques for future missions.

4 Development of New Astromaterials Acquisition Capabilities on Earth

The study of astromaterials in the laboratory allows direct analysis of material arising from

the full breadth of the history of our Solar System. The continuing advance of technology

has improved not only our technological capacity to make measurements but also our abil-

ity to minimize contamination and sample modification during collection of freshly fallen

meteorites and cosmic dust. Some of these improvements are related to educating the pub-

lic on proper methods of handling meteorites, but many of the technological advances have

focused on improving our ability to track and find materials. In many cases, these improve-

ments result in reduction of exposure time to uncontrolled conditions, which could reduce

terrestrial contamination, especially if clean-collection practices are used during recovery

operations. Collection of material has been steadily improved by advances in ground-based

and satellite sensors, dissemination of information with the growth of the internet and vari-

ous social media platforms, and especially by the flow of data through freely available data

sources. Although the collection of astromaterials may seem, at first, to be a prerequisite of

curation, one of the primary goals of advanced curation is aimed at maximizing the science

returns of astromaterials samples, and improvements in sample collection techniques has a

direct benefit to science. We are in the midst of an exciting period of growth of truly in-

novative astromaterials sample collection techniques on Earth, and this section illustrates a

current snapshot of a rapidly evolving field.

4.1 New Astromaterials Collection Capabilities for Cosmic Dust

Since inception in 1981, the NASA Cosmic Dust collection has collected interplanetary dust

from Earth’s stratosphere using flat-plate, oil-coated collectors. The oil is a high-viscosity

silicone (polydimethylsiloxane, (C2H6OSi)n) that is mechanically stiff at collection altitude

and temperature but engulfs and protects collected material on return to room temperature.

This oil has a long track record of successful recovery of cosmic dust, and recent tests have

shown that even oil used for sampling in 1981 retains its original viscosity properties. This is

heartening for long-term storage of cosmic dust, but silicone oil has a significant drawback

in that it is a contaminant for important studies such as oxygen isotopes, organic species, and

amorphous silicates. The community has expressed a desire for at least a subset of samples

collected “dry”, without the contaminating oil.

Foam collectors are a promising means to accomplishing dry collection. A small number

of foam collectors have been flown as a test of concept, which yielded a few cosmic dust
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samples (Messenger et al. 2015). The results were generally acknowledged as positive, and

comments to the NASA CD Curator indicate that the scientific community has a strong in-

terest in additional dry collection. To this end, NASA will fly foam collectors as a subset

of future collection flights. Collection in foam appears to be straightforward and Messen-

ger et al. (2015) claims that the collection rate is comparable with silicone oil (albeit with

a short total collection time for reference), but extraction of collected material from foam

is a nontrivial exercise. Foam features relatively deep pits in its surface from which the

particles must be extracted. This problem is exacerbated by the observation by Messenger

et al. (2015) that “20–50%” of individual foam cells were broken when observed post-flight,

probably by aerodynamic pressure. In order to test identification and extraction methods,

NASA Cosmic Dust personnel fabricated an analog foam collector by adhering a 1/8′′ thick

sheet of white polyurethane foam to a surplus Lexan IDP flag using double-stick tape; excess

foam was trimmed to match the profile of the flag. Small (<20 mm) particles of Bells CM2

meteorite were transferred from a concavity slide into individual foam cells using a Mi-

croSupport AxisPro micromanipulation system and bent glass needles. 210Po sources were

utilized to minimize triboelectric charging effects. Ten particles were implanted into the

experimental foam collector apparatus using this technique. The transfer process was then

reversed to remove four of the particles from the collector onto cleaned glass slides. None

of the particles were lost due to vibration or triboelectric charging effects. Ultimately, foam

may be replaced by a more rigid material, but this awaits future work. For the near term, the

use of a computer-controlled micromanipulator shows promise in removing material from

foam collectors using standard pulled-glass needles.

In addition to dry foam collectors, NASA Cosmic Dust is conducting a project with

undergraduate students at Texas A&M to develop a prototype, high altitude balloon-

based dust collection platform. The intent of this new system is to supplement exist-

ing aircraft-based collection for two major reasons. One, expanding into a new collec-

tion platform adds programmatic depth and resilience to CD collection efforts. Should

the existing ER-2 and/or WB-57 aircraft become unavailable (either temporarily or per-

manently), dust collection will continue with a balloon-based platform. NASA balloon

flights also regularly operate from both the northern and southern hemispheres, open-

ing up the possibility of CD flights intended to collect material from cometary debris

streams, which preferentially impinge on the southern hemisphere. The second reason is

to offer new ways to improve CD “timed collection” efforts (Dermott and Liou 1994;

Messenger 2002). “Timed collection” is collection of material in the stratosphere timed to

coincide with the settling time of material sourced from a specific meteor shower and thus

with a specific parent body. Collection by aircraft is possible and has been demonstrated

(e.g. timed collection of comet Grigg-Skjellerup in 2003 and of comet Giacobini-Zinner in

2012), but significant flight time constraints can impede both the total flight time and timing

of “timed collection” attempts. Collection by high-altitude balloons may be more accom-

modating, as NASA long-duration balloons (LDBs) feature flight times of up to 100 days.

Cosmic dust collector(s) could fly on long-duration missions and deploy for collection only

during the settling time for material from a specific meteor shower, maximizing collection

time at precisely defined intervals to maximize the chances of collecting material from a

specific parent body.

A cosmic dust collector prototype for use on high altitude balloons was tested in mid-

2019 at the NASA balloon research center in Fort Sumner, NM. The prototype is called

Cometary and Asteroidal Research of Dust in Near-space Atmospheric Levels (CARDI-

NAL), a name chosen by the students. CARDINAL uses a swing arm with collectors at each

end as a low-power means to move air over the collectors, spinning the arm with a small
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electric motor. Collector size, rotation size, and swing arm length were chosen to produce

an estimated one cosmic dust particle per day per collector. While this collection rate is about

1/48th that of aircraft-based collection, LDB flights last up to over 100 days as opposed to

the typical tens-of-hours collection time of aircraft-based collection. The lower airspeed of

balloon-based collection may also be advantageous for collection using collectors that are

free of silicone oil, or “dry” collection. CARDINAL seals the swing arm within its body to

protect the collectors from contamination, and remains sealed at all times below a set alti-

tude. The lid is movable to expose the collectors at high altitude. CARDINAL draws power

from the balloon gondola, and both housekeeping and operations data are stored by the on-

board microprocessor for post-flight analysis. CARDINAL is self-contained with respect

to communications, with all flight functions programmed prior to flight and no communi-

cations needed with a ground station or other external controller. Testing at Fort Sumner

revealed significant performance shortcomings, which prevented the first test flight. A sec-

ond design, which draws heavily on lessons learned from CARDINAL, is currently in early

development. This design will simplify the collector encapsulation design, reduce weight

considerably, and feature its own battery and solar power module that will perform double

duty as flight trim ballast. Ultimately, the intent of this project is to collect cosmic dust dur-

ing precisely defined periods when specific meteor showers are active, to attempt to collect

material from known cometary parent bodies. Both oil-based and dry-foam collectors will

be used as part of the continuing development of dry-foam cosmic dust collection.

4.2 New Astromaterials Collection Capabilities for Meteorites

Meteorite falls represent opportunities for the recovery of samples that have been briefly

exposed to the oxidative, organic-, and moisture-rich environment at the Earth’s sur-

face, which is also teeming with life. Substantial contamination of freshly fallen mete-

orites by such exposure can occur in a matter of days to weeks (Burton et al. 2014;

Hilts et al. 2014; Kebukawa et al. 2009). At the same time, advances in curation and contam-

ination knowledge in support of sample return (e.g., Allen et al. 2011; Dworkin et al. 2018;

Yada et al. 2014) have resulted in the establishment of curation facilities that prevent or mit-

igate against such contamination (Herd et al. 2016). Therefore, the present-day challenge

is to reduce the amount of time that meteorite samples spend in the field and apply the

best methods for their field collection and laboratory curation and handling. The faster the

meteorite is recovered and removed to a curation facility, the more scientifically valuable

such a sample will be. Rapid collection of meteorites can be seen as strongly complemen-

tary to established efforts to collect meteorites from dry deserts such as the Sahara (Grady

2000) and Antarctica (Harvey 2003). These collection efforts produce the large number of

meteorites necessary to routinely produce weathered but unusual types such as martian, lu-

nar, ungrouped achondrites, and many others, while rapid collection of fresh falls produces

a relatively small number of unweathered meteorites. The combination of both approaches

provides a comprehensive approach to meteorite collection, which facilitates study of a wide

range of meteorite types with unweathered examples for studying weathering effects, pris-

tine organics and fragile mineral phases (e.g., Haberle and Garvie 2017), and as ground truth

for quantifying alteration due to terrestrial weathering.

Significant technological advances have been made in recent years that enable more pre-

cise observations and more accurate modeling of meteorite falls, and thus the more rapid

potential recovery of the meteorites. Advances fall into two main categories: improved ob-

servation of meteor/fireball phenomena, and characterization and modeling of meteorites in

dark flight.
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4.2.1 Fireball Detection and Tracking

One of the most important “sample return spacecraft” may be the Earth itself. As our

planet orbits the Sun, it collects around 40000 tons of extraterrestrial material each year

(Flynn et al. 2004; Zolensky et al. 2006a; Zook 2001), ranging from microns in size to

occasional large meteorites (and less frequent large impactors). This material originates

from a wide range of parent bodies and so has the potential to inform us about the sta-

tus and histories of a great many parent bodies. Historically, efforts such as the Prairie

Fireball Network (Wetherill and Revelle 1981), the Meteorite Recovery and Observa-

tion Project (MORP) in Canada (Halliday et al. 1978), the European Fireball Network

(Oberst et al. 1998), and others (Bland 2004; Colas et al. 2015; Cooke and Moser 2011;

Gritsevich et al. 2014; Hindley and Houlden 1977; Kokhirova and Borovička 2011;

Shiba et al. 1997; Sullivan and Klebe 2004; Trigo-Rodriguez et al. 2006; Watson 2009;

Weryk et al. 2008; Wiśniewski et al. 2017) surveyed meteors using networks of cam-

eras and recovered small numbers of meteorites. Perhaps the most scientifically signif-

icant outcome of these efforts was their recovery of meteorites paired with calculations

of their original orbits. This allowed something new in meteoritics—laboratory studies of

the recovered meteorites were given a precise “home” in the Solar System, at least im-

mediately prior to the meteorites’ fall to Earth. The large number of fireballs observed

by these networks and need for accurate fall location calculation encouraged the devel-

opment of meteor dynamics (e.g., Ceplecha et al. 1998) and strewn field modeling. Today,

improvements in digital imagery, geographical information systems, computational capa-

bility, and the growing power of the internet to quickly collate data submitted by the pub-

lic, have driven the development of new fireball reporting networks (Venton 2017). A hall-

mark of these new networks is their emphasis on including the general public in reporting

and other forms of participation (Day et al. 2018a). Another is regular calculation of fire-

ball orbits, such that today the orbits of more than two dozen meteorite falls are known.

The Desert Fireball Network (DFN) has used a network of 52 automated digital camera

devices to recover four meteorite falls in the period of 2007–2015 (Bland et al. 2012;

Sansom et al. 2015). All of the falls are associated with pre-atmosphere orbits, as are a

larger number of fireballs that have not yet yielded meteorites. Recent funding from the

Australian Research Council expands the Australian-based Desert Fireball Network into a

Global Fireball Observatory (GFO), bringing the total area covered by all-sky cameras to

over 12 million km2, and enabling 24-hour all-sky observation from both hemispheres with

156 state-of-the-art camera stations. The GFO is expected to see 800 bright fireballs every 6

months and track 5 meteorite falls per month globally.

4.2.2 Eyewitness Reporting via the Internet

Historically, most meteorite falls have been recovered based on eyewitness accounts and

many of these recoveries were facilitated by eyewitnesses close enough to observe a me-

teorite striking the ground. Many eyewitnesses doubtlessly observed meteorite falls from

a distance, but the fragmented nature of eyewitness reports and lack of widespread public

understanding inhibited collection of fallen material. With the growth of the internet, how-

ever, several organizations have begun collating eyewitness accounts into meaningful bodies

of data capable of rapidly constraining the site of potential meteorite falls. The non-profit

American Meteor Society (AMS) stood up a webpage with this purpose in 2006, allowing in-

dividuals to log meteor sighting reports at no cost to the user (https://www.amsmeteors.org).

The sightings are collated into reports of individual fireballs, and automated calculations,

https://www.amsmeteors.org
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Fig. 8 Top-down composite view of weather radar signatures of falling meteorites. This shows meteorites
falling during the Park Forest, IL meteorite fall (26 March 2003). The meteorites are size sorted during
free fall to the ground with the most massive stones landing first, and individual radar “sweeps” record a
cross-section of the resulting curtain of falling material. Signatures here record meteorites from 15.5 km down
to 5.0 km altitude, and the altitude range can change for different falls based on the observation geometry of
nearby radars. Typical detection timing for a meteorite fall ranges from radar detection of the fireball itself to
observation of the last material (larger than dust) to reach the ground ∼10–12 minutes later. Data is provided
via website access by NOAA, and this image was composed in Google Earth

based on sighting azimuths, produce an estimated ground track for each event. Similar web-

sites are operated by the International Meteor Organization (IMO) (https://www.imo.net),

Fireballs in the Sky in Australia (http://fireballsinthesky.com.au), the UK Meteor Network

(https://ukmeteornetwork.co.uk), and EXOSS Citizen Science in Brazil (https://exoss.org).

The AMS, for example, recorded 5473 separate fireballs in 2017 and has produced

eyewitness-based reports for meteorite falls to include Park Forest, IL (27 March 2003),

Battle Mountain, NV (22 August 2012), Sutter’s Mill, CA (22 April 2012) and others. With

the increase in public access to the internet, these organizations have seen significant growth

and can rapidly provide public notice of new meteorite falls (Fig. 8).

4.2.3 Weather Radar Detection of Meteorite Falls

Weather radars are commonly used for weather observation and forecasting worldwide, but

the cost of building and maintaining a nationwide weather radar system demands that most

weather radars are operated as nation-wide, government-run networks. The upside of this is

that data is standardized within a national network and many countries maintain archives of

their radar imagery. The downside is that public access to weather radar imagery is scant,

with most data available in a short-lived image download format, often in the form of a cal-

culated product such as rainfall rate. The United States has, arguably, led the way in free

https://www.imo.net
http://fireballsinthesky.com.au
https://ukmeteornetwork.co.uk
https://exoss.org
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public dissemination of weather radar imagery, with the nationwide NEXRAD network op-

erated by the National Oceanic and Atmospheric Administration (NOAA). NEXRAD data

are freely available in all formats, from lightly formatted data to compiled images and calcu-

lated products (Fig. 9). All NEXRAD data are available online at no cost and are updated in

near real time. NEXRAD data are made available on the internet at such a rapid rate that, for

a typical meteorite fall lasting 10–15 minutes, at least one set of radar data showing falling

meteorites is available online before all of the meteorites have reached the ground. Find-

ing a meteorite fall in weather radar imagery currently requires manual data processing and

analysis, but falls have been identified within hours of the event via weather radar imagery

(Jenniskens et al. 2012) and the possibility exists for more rapid, automated identification of

meteorite falls.

Weather radar detection of meteorite falls was first demonstrated with the Ash Creek,

TX fall of 15 Feb 2009 (Fries and Fries 2010). Two researchers, Drs. Marc Fries and Robert

Matson, had been investigating weather radar for this purpose without knowledge of the

others’ efforts and independently noted the ability of NEXRAD radars to detect falling me-

teorites and provide their fall location with great accuracy. Ash Creek was also noted by

a National Weather Service office in Dallas, TX, who serendipitously noted the fall in the

imagery of the KFWS radar. Ash Creek was a perfect test case in that it was a sizable fall

that occurred in otherwise clear skies and stands out clearly in radar imagery. Since then,

twenty-four recovered meteorite falls have been identified in NEXRAD imagery from 1997

to the present, with an additional thirteen identified that have not been recovered for various

reasons (Fries et al. 2017). This is an average of 1.8 meteorite falls found per year, with 1.1

per year recovered in the United States and Canada (Fig. 10). Falls are identified by a com-

bination of factors. Falls occur at the time and location identified by eyewitnesses, progress

from high altitude to low over a period of 10–15 minutes, may include short-range turbu-

lence caused by supersonic meteorites, and progress from moderate to high spectral width

(a measure of the range of sizes of reflectors in a given image pixel) to low spectral width

as the meteorites size-sort on the way to the ground. By contrast, nearly everything else

that appears in weather radar imagery—such as weather, birds, insects, and aircraft—move

laterally and do not show the other features listed above. Work is currently underway to

include quantitative measurements of meteorite fall mass, and it may be possible to suggest

meteorite types from radar data based on the fragmentation behavior of the bolide.

Weather radars are not limited to the U.S., of course. According to the World Meteorolog-

ical Organization (a United Nations Specialized Agency), weather radars around the world

comprise approximately 3.6× the total areal coverage of the NOAA NEXRAD network. In

other words, if all the world’s weather radars could be put to use finding meteorite falls, the

number of falls observed on radar could conceivably increase by an additional ≈3.6×. Such

an increase should provide freshly-fallen meteorites for study and constitutes significant

public outreach potential. There are significant obstacles to using weather radar to search

for meteorite falls to include (1) some national radar networks choose to limit public access

to data, (2) many countries do not archive sufficient data to be useful, and/or (3) some coun-

tries use proprietary data formats that are difficult for the public to utilize. These problems

must be overcome within individual nations in order to realize the full potential of weather

radar data to identify and locate meteorite falls.

4.2.4 Seismic Data

Another important asset for locating meteorite falls is seismic data. Seismometers monitor

ground motion over most of the Earth’s surface, and they are capable of detecting sonic
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Fig. 11 Seismometer trace showing a sonic boom from a meteorite fall. Seismometers often record a pair
of intensity “spikes” like the ones shown here, one from a ground-coupled signal and another transmitted
directly through the air (see text). This signature is from the Cartersville meteorite fall (02 Mar 2009), which
resulted in a single recovered stone. This illustrates how seismometers provide useful information for even
small meteorite falls. Seismometer data provides precise timing of a bolide and can locate the event through
triangulation

booms from both high-altitude deceleration of meteoroids (Edwards et al. 2008) and rela-

tively closer low-altitude passage of falling meteorites in “dark flight”, or the portion of a

meteorite fall after luminous flight. Seismometers are typically operated in networks, and

those networks are usually regional or local suites of instruments operated by government

entities, universities, or other research facilities. The Incorporated Research Institutions for

Seismology (IRIS) database collates publicly-available seismometer data into a common

format and makes it available online.

Sonic booms from meteorite falls often appear as a pair of peaks in signal intensity

graphs, or seismograms (Fig. 11). The main signature seen in most seismometer data comes

from the point of maximum sonic boom generation during the fall, between ∼20–30 km

altitude (Ceplecha et al. 1998). The first peak comes from coupling of the air-transmitted

pulse with the ground underneath the sonic boom. The resulting ground-transmitted pulse

moves approximately 6 km/s and outpaces the air-transmitted pulse, usually arriving at the

seismometer first. The air-transmitted sonic boom pulse moves approximately 340 m/s but

is a stronger signal, producing a stronger pulse shortly after the ground-transmitted pulse

arrives. Additional sonic booms may arrive afterwards, from individual falling meteorites in

dark flight. Such signals are usually less intense than the initial signature. The arrival time

of each of these signals is strongly dependent on the distance between the source and the

seismometer, permitting triangulation of the source location.
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4.2.5 Meteorite Recovery from Bodies of Water

Approximately 70% of the Earth’s surface is covered by water, and that same percentage

of meteorite falls disappear into the oceans and other bodies of water. Most of these have

historically been lost, although there have been several meteorite falls wherein significant

meteorite masses were recovered by people diving after an observed fall. These include

Angra dos Reis (the namesake of the angrite clan of meteorites) (Prinz et al. 1977), Peña

Blanca Spring where the recovered meteorite landed in a pond in front of a group of ranch

hands (Lonsdale 1947), the main mass of Björbole which was recovered from icy water in

1899 (Martin and Mills 1976), and the main mass of Chelyabinsk which was recorded on

video landing in a lake (Popova et al. 2013). These were fortuitous recoveries that all feature

relatively shallow water and eyewitness(es) who saw the actual point of entry into the water.

Recently, attempts have been made to expand this capability by recovering probable mete-

orite falls from deeper water using Remotely Operated Vehicles (ROVs) and other modern

deep-sea technologies.

The Aquarius Project (Bresky and Fries 2018) is a student project to recover mete-

orites from Lake Michigan. On 06 Feb 2017, a bright green fireball accompanied by sonic

booms heralded a large meteorite fall into the lake. The fall was observed by four radars in

the NEXRAD national weather radar network. The meteorites now lie on the lake floor

at a depth of around 100 meters. A consortium of Lake Michigan-area institutions was

formed, including the Field Museum of Chicago, the Shedd Aquarium, and the Adler Plan-

etarium with assistance from NASA and NOAA. Teenage students from Chicago public

schools have worked with the project and assist in the design and testing of original devices

used to collect meteorites from the lake floor. Aquarius Project updates are archived on-

line (https://openexplorer.nationalgeographic.com/expedition/rovmeteoritehunt). In July of

2018, the students deployed their equipment to attempt to recover meteorites from the lake

bed, recovering small rocks and sediment. This material is currently under examination by

Aquarius Project institutions, and additional trips to collect material are planned for 2019.

Another attempt to retrieve meteorite material from an observed fall occurred in early

July 2018, targeting a very large meteorite fall that occurred in the Pacific Ocean on

07 March 2018 about 20 km off of the coast of Washington state. Calculations of total

meteorite mass based on radar reflectivity indicate that this fall was the most massive fall

seen to date by the NEXRAD system since its inception in the mid-1990’s. More impor-

tantly, the distribution of meteorite mass is unlike any of the two dozen recovered meteorite

falls recorded by NEXRAD. The Washington coast fall features significantly more large,

surviving meteorites proportional to smaller size fractions than previous events. This im-

plies a stronger than typical mechanical toughness for this fall, which may in turn come

from a slow infall velocity or a meteorite type that is inherently stronger than typical or-

dinary chondrites. The fall itself occurred during region-wide cloud cover and so was not

observed directly, although at least two videos record bright flashes through the clouds. It is

scientifically important to understand the reason why this fall produced an atypically large

number of large meteorites, both as a planetary defense issue and to allow identification

of future meteorite falls of the same type from radar data. For these reasons, a one-day ef-

fort was mounted by the Ocean Exploration Trust (OET) exploration vessel E/V Nautilus to

map the fall site with multibeam sonar and attempt retrieval of meteorite material sufficient

to identify the meteorite type. Sonar revealed that the ∼100 m-deep seafloor was flat and

featureless. The ROV pair Argus and Hercules performed a seafloor examination/sampling

transect along a ∼1.6 km track, collecting one sample with a magnetic rake, five more with

a water-jet sediment sampler and one with a scoop. These samples were examined by op-

tical microscopy, Raman spectroscopy, and electron beam analysis at NASA JSC. In June

https://openexplorer.nationalgeographic.com/expedition/rovmeteoritehunt
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2019, a follow-on team returned to the site aboard the research vessel R/V Falkor, operated

by the Schmidt Ocean Institute (SOI). This second expedition focused specifically on re-

trieving ∼1 cm-sized meteorite fragments from the area of the meteorite strewn field where

that size of meteorite should predominate. Over the course of three continuous days of ROV

operations, an SOI-developed pair of sediment samplers sifted a large volume of ocean floor

sediment but did not recover cm-sized meteorites. A suite of sediment samples was col-

lected, washed, sieved, and searched in a manner identical to the Nautilus samples, in an

iterative search for progressively smaller meteorite fragments. This effort was ultimately

successful in the size fractions below ∼ 2 mm in diameter. At the time of this writing, over

100 small melt spherules and other fragments have been recovered from a combination of

the Nautilus and Falkor samples. Work continues on this project to identify any meteorite

type(s) among the spherules and whether they can be definitively linked to the fall event on

March 07, 2019.

The public outreach aspect of this effort was a dramatic success, with a large global au-

dience watching in real time via the OET webpage as the Argus and Hercules scanned the

seafloor and collected samples. Through the course of eight hours with the ROVs on the

seafloor, the crew took questions and narrated the effort for a pan-global audience. Overall,

both the Aquarius Project and the Washington coast fall recovery show that modern oceano-

graphic surveying and sampling techniques have made water-borne recovery of meteorite

falls a real possibility. These pioneering efforts are yielding a first trip up the learning curve

towards optimizing the techniques needed, and have set up a powerful new means of engag-

ing students and the public for meteorite research and recovery. At present, the majority of

all meteorite falls are lost to science because they fall into the oceans, which cover ∼70% of

the Earth. In the future, development of the meteorite recovery techniques explored in this

effort could be used to identify and sample meteorite falls for any event that terminates into

water. Costs and effort requirements would naturally limit that number, but seaborne mete-

orite fall recovery could be employed for extraordinary events such as the recent (18 Dec

2018) 173 ktonne-TNT event over the Bering Sea. Another example of a worthy recovery

target is the infall of 2019 MO, which was observed while still in space and fell into the

Caribbean Sea on 22 June 2019.

4.2.6 The Geostationary Lightning Mapper on GOES Satellites—A New Meteorite

Fall Detector

NOAA recently launched the GOES-16 and -17 satellites, a new design of geostationary

weather surveillance satellite. These satellites provide weather imagery services for most of

the United States and parts of contiguous countries. For the first time, the GOES-16/17 satel-

lites feature a lightning mapper instrument—the Geostationary Lightning Mapper (GLM).

GLM “stares” at a large ground footprint area, collecting imagery at a rate of up to 500

frames/second. The instrument features sufficient dynamic range to detect lightning during

local daytime on the ground, and can discern altitude sufficiently to differentiate cloud-to-

ground from cloud-to-cloud lightning. Inadvertently, NOAA built a superb meteorite fall

detector with the GLM sensors. While visible and IR-wavelength weather satellite imagery

can detect meteorite falls (e.g. Almahata Sitta as described in Borovička and Charvát 2009

and Chelyabinsk as seen by ESA’s Meteosat-9 and reported in Miller et al. 2013), consid-

erable luck is required because the image collection rate is very low. Previous GOES satel-

lites, for example, only collected images once every few minutes and a meteor would have

to happen exactly at the moment when the camera was operating to be recorded. GLM’s

rapid imaging and sensitivity to bright flashes renders it a very capable meteor detector, as
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Fig. 12 NOAA graphic indicating the overlapping imaging footprints of GLM sensors on the two GOES
satellites, one located off of the US east coast and another off of the west coast. Colors indicate the expected
lightning frequency per year. Note that the imaging footprints of the two satellites overlap over most of the
contiguous United States and Central America, where stereo imaging of bolides over land is theoretically
possible

described recently (Jenniskens et al. 2018). Jenniskens et al. (2018) describe ten separate

bolides detected by GLM to include one meteorite fall (British Columbia, Canada, 05 Sep

2017) and has since detected another (Hamburg, MI, 16 Jan 2018). GLM provides location,

fireball luminosity, timing, and light curve data for bolides. Presently, both of NOAA’s new

GOES satellites are in place (GOES-16 and GOES-17) and their GLM sensors are operating

and data is available online (https://www.class.noaa.gov). The two satellites cover the con-

tinental United States from locations near the east and west coasts, which may allow stereo

observation of some meteorite falls (Fig. 12). This feature may be used to rapidly identify

bolides among the lightning flashes that GLM is intended to monitor. Lightning usually

occurs below 15 km altitude (e.g., Mecikalski and Carey 2018) while meteors produce op-

tically bright signatures between ∼20–90 km (Ceplecha et al. 1998). Stereo observation

of bolides from the two satellites should yield rapid calculations of the altitude of various

events, and finding bolides would be a matter of identifying bright flashes that occur at

higher altitudes than that of lightning. The possibility exists that streaming GLM data can

be used to identify the location, timing, and potential for producing meteorites from bolides

in near real-time.

4.2.7 Putting It All Together—Dedicated Collection of Fresh Meteorite Falls

The march of technology has availed the astromaterials community with the new technolo-

gies and capabilities described here. Historically, even though meteorite falls are far out-

https://www.class.noaa.gov
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numbered by meteorite finds, the light terrestrial alteration inherent in recent falls makes

them highly scientifically valuable. Regular and rapid collection of freshly fallen meteorites

is possible to an extent that a new possibility exists—dedicated recovery of freshly fallen

meteorites by a dedicated recovery team. The nature of such a team can take many forms,

to include enlisting the assistance of the general public. This approach takes advantage of

the spirit of public inclusivity, which created such endeavors as the American Meteor Soci-

ety’s eyewitness reporting program and is a powerful opportunity for outreach. A nationwide

program could stand up to mobilize meteorite falls as they are detected, using eyewitness

accounts and GLM to identify a new meteorite fall, seismic and radar data to calculate the

strewn field, and astromaterials experts encouraging and guiding meteorite recovery at the

fall site. Impromptu public lectures and media contact shortly after a meteorite fall have

a history of enthusiastic reception from the public and tend to promote recovery of mete-

orites. The possibility exists that a dedicated collection(s) of freshly fallen meteorites could

be founded and sustained in this way.

5 Importance of Contamination Knowledge Strategies for Sample Return

Missions to Maximize Science Returns from Samples

The scientific value of the returned samples for all previous sample return missions have

benefitted from having an archive of contamination knowledge (CK) materials that could

include (1) spacecraft hardware, spares, and flight-like coupons, (2) materials used in the

fabrication of spacecraft hardware or construction of a curation lab, and (3) witness materi-

als deployed during ATLO or during construction of the curation lab. The information gained

from studying the collected reference materials and witness plates is defined as the CK of

a sample collection, and the CK is crucial for verifying and validating scientific results. As

part of a sample return mission, these CK samples are archived along with the returned

samples and the CK samples are made available for allocation and analysis by the scientific

stakeholders of a sample collection. These flown, flight-like, and non-flight reference mate-

rials and witness plates provide the scientific community investigating astromaterials with

the fundamental ability to reconstruct the contamination history of a sample collection. Fur-

thermore, they serve as a baseline from which to compare tantalizing results attained from

the analysis of astromaterials. CK collections are a requirement for sample return missions

because contamination control efforts cannot anticipate all possible contamination vectors

that can occur during the dynamic activity that is a sample return mission. In fact, all sam-

ple return missions have developed non-nominal contamination to some degree, which are

highlighted in this section as important lessons learned. In every case, the CK samples have

helped to mitigate these unplanned contamination events, improving and, in some cases,

enabling scientific returns on the returned astromaterials. The NASA Curation Office has al-

located hundreds of samples to scientists in support of gaining contamination knowledge for

their respective collections (mainly Apollo, Genesis, and Stardust, and a newly constructed

OSIRIS-REx collection). We outline the CK methodology and lessons learned for many

completed and ongoing sample return missions and provide insights into best practices for

collecting CK when biological contamination from indigenous or exogenous extant life is a

possibility.

5.1 Apollo Program

For Apollo, contamination knowledge has a broader definition and overlaps with contamina-

tion control, compared with recent sample return missions, principally because Apollo was
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a series of missions in which in-lab monitoring of returned samples and hardware resulted

in improvements for subsequent missions. Here we cite a 1965 formal report wherein three

scientific discipline groups made early recommendations concerning sample collecting ma-

terials and procedures relevant to contamination. This is followed by examples of organic

and inorganic contamination of samples being measured, by both curatorial staff and by

researchers using samples, which resulted in improvements both to lunar surface sampling

procedures and hardware and curation handling practices. Thus, contamination knowledge

is an ongoing process for returned sample collections.

Early advice on contamination issues was captured through 3 of the 7 discipline working

groups convened in 1965 for the purpose of advising NASA on science for a 10-year period

(NASA 1965). Geochemistry, Bioscience, and Geology Group reports were most concerned

with contamination knowledge. For example, top level equipment requirements included:

(1) “Sample containers should keep samples sterile and chemically clean. Stainless steel

is acceptable. More studies should be completed relative to the use of Teflon in the lunar

environment.” It was the Geochemistry Group that emphasized the value of sample analysis

and foresaw many of the curation guidelines that are still followed today. The report calls

for CK studies to determine the amounts and effects of outgassing of the astronaut suits,

the escape of atmosphere from the Lunar Excursion Module (LEM), analyses of possible

contaminants in LEM fuel and effects of those contaminants on samples. The Geochemistry

Group specified acceptable materials to touch the samples (materials that would not interfere

with scientific measurements). In general, this meant use of materials of known and simple

chemistry, easily distinguishable from lunar material.

5.1.1 Apollo Organic Contamination Knowledge

Apollo organic contamination monitoring conducted in the Lunar Receiving Laboratory

(LRL) offers an opportunity to compare the monitoring effort on sample handling equip-

ment to the actual detection of organic compounds in lunar samples by investigators. Apollo

planners conducted extensive organic contamination monitoring of the containers, tools,

and sample handling facilities. Simoneit et al. (1973) summarized the potential sources of

organic contamination: (1) surface contamination of the lunar-bound rock box and its con-

tents; (2) surface contamination on the Apollo lunar hand tools used to obtain samples on the

lunar surface; (3) exhaust products from the lunar descent engine and reaction control system

engines (both using unsymmetrical dimethyl hydrazine and nitrogen tetraoxide); (4) lunar

module outgassing; (5) astronaut spacesuit leakage; (6) particulate material abraded from

spacesuits or other sources during EVA; (7) venting of lunar module fuel and oxidizer tanks,

cabin, and waste systems; (8) venting of spacesuit life support back packs; (9) exposure to

LRL vacuum or nitrogen processing chambers; (10) surface contamination of sample pro-

cessing tools and containers; (11) surface contamination of containers sent to PIs. Items 1,

2, 3, 9, 10, and 11 were considered most serious. Simulations, modeling, and engineering

data were used to estimate the contamination contributed by flight items 3, 4, 5, 7, and 8

(Aronowitz et al. 1966a, 1966b). Virtually all rocket exhaust products were low molecular

weight and rapidly diffused over large areas. Because of their low concentration, this was

not predicted to be a major contaminant. The varied organic products included acetylene,

HCN, ethylene, formaldehyde, methyl amines, and others.

For laboratory handling operations, measurements of contamination via “monitors” or

witness plates were used. Clean coupons of a woven aluminum alloy called York mesh

(2024 aluminum alloy) or aluminum foil were processed along with the lunar-bound tools

or placed inside the rock boxes bound for the Moon. Upon return, these coupons were an-

alyzed by solvent extraction and subsequent gas chromatography and mass spectrometry.



Advanced Curation of Astromaterials for Planetary Science Page 51 of 81 48

Aliquots of clean Ottawa sand, exposed inside sample processing cabinets, were analyzed

by direct pyrolysis and mass spectrometry. The solvent rinsings from tool, container, and

cabinet cleaning were also analyzed. Some of the most frequently encountered contami-

nants were hydrocarbons from pump oils and fatty acids. Detected in the vacuum chamber,

some of the fatty acids were thought to be from the polishing compound used on the rock

boxes. Dioctylphthalate, a common plasticizer additive for polyethylene, was ubiquitous in

cabinets and bags. Simoneit and Flory (1971), Flory and Simoneit (1972), and Simoneit

et al. (1973) provide an extensive list.

York mesh and aluminum foil monitored organic contamination levels of about 1 µg/cm2

inside the rock boxes. Bakeout of the Apollo 11 rock box actually added organic contami-

nation, but as a result of the monitoring, cleaning improvements were made which produced

flight hardware for Apollo 12 through Apollo 15 with only 10–100 ng/cm2 contamination

(Simoneit et al. 1973). With exceptional care, curatorial cleaning procedures during Apollo

could produce 1–10 ng/cm2 contamination ranges for polished, planar surfaces. Flory and

Simoneit (1972) concluded that organic contamination to lunar samples during Apollo 11

was in the 1 µg/g (ppm) range, but improved to 0.1 µg/g (ppm) for Apollo 12.

The actual analyses of lunar samples were consistent with the estimated contamination

levels. Burlingame et al. (1970) concluded, based on analyses of their allocated samples,

existence of systematic organic contamination of about 5 µg/g for Apollo 11 samples, except

for those samples processed in the organic reserve cabinet. Reports of organic compounds in

lunar fines from other investigators were mixed, ranging from no detection at the ng/g levels

(Abell et al. 1970; Lipsky et al. 1970; Meinschein et al. 1970) to ng level detection of various

organics (Henderson et al. 1971; Murphy et al. 1970; Preti et al. 1971) and 0.5 ppm via

pyrolysis (Oro et al. 1970). Porphyrin-like pigments were detected at the trace ng to pg level

by Kvenvolden et al. (1970) and Hodgson and co-workers (1970, 1971), but not by Rho et al.

(1970, 1971, 1972). Porphyrins as a possible rocket exhaust contaminant were discussed.

Amino acids were detected at the 50 ng/g level by Hare et al. (1970) and Gehrke et al.

(1970) after aqueous or other processing to the sub-nanogram level (Murphy et al. 1970) and

below detection by Gehrke et al. (1972). No viable organisms were detected in Apollo 11

and 12 samples (Oyama et al. 1970, 1971; Taylor et al. 1971). (For estimates of indigenous

lunar carbon in soils and breccias, Vaniman et al. 1991 present values of about 100 ppm

selected from analyses less likely, but still possibly, containing terrestrial contamination.)

The presence of diamond and polishing compounds on the surfaces of Apollo thin sections

have also been documented by Raman spectroscopy, and these contaminants are likely a

common result of the thin-section making process (e.g., Steele et al. 2010).

Keeping samples organically clean in the LRL proved difficult. Thus, a small facility to

analyze and repackage a lunar sample collected in a special container was constructed at

the University of California, Berkeley (Burlingame et al. 1971). The organically clean area

consisted of two gloveboxes in tandem preceded by a vacuum entry chamber. The atmo-

spheric nitrogen gas was scrubbed to remove oxygen, water, and organics. The glovebox

was equipped with a liquid nitrogen cold finger to remove water generated by the glove

operator.

In summary, Apollo organic contaminants were greatly reduced by institution of (1) re-

strictions on materials allowed contact with, or proximity to samples; (2) isolation of sam-

ples in controlled environments; (3) procedures to clean all surfaces in proximity to or con-

tact with samples; and (4) controls on fabrication, processing, and handling of lunar sample

hardware.
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5.1.2 Inorganic Contamination Knowledge

As is the case with organic contaminants, feedback from investigators on inorganic contam-

inants was essential in improvement. Some materials were selected for use as lubricants or

seals because those materials were not predicted to interfere with scientific measurements.

Thus, it made engineering sense to use an alloy of 90% indium and 10% silver for the

metal knife-edge seal on the Apollo rock boxes. It made engineering sense to use molyb-

denum disulfide as thread lubricant in curation sample containers. However, these materials

were not of sufficient purity for high precision scientific research. Only a few unopened lu-

nar samples remain in indium-silver sealed containers. The use of MoS2 was discontinued

and all containers removed from service. Molybdenum disulfide was replaced with a Teflon

thread lubricant Xylan. However, Xylan was not pure Teflon and contained a binding agent,

so Xylan was also removed.

Attention to detail is required and compromises made, especially for the fabrication pro-

cesses, and this is illustrated by engineering selection of surface treatments for the Apollo

drive tube cores and drill cores. The materials used for fabrication of the large diameter

Apollo drive tubes, anodized aluminum, and the drill core tubes, canadized (a proprietary

passivation technique) titanium were selected for engineering reasons. A list of materials

would not normally raise contamination flags, unless the reviewer understood the details

of the process (and in many cases an engineering requirement might be the best solution

anyway). Lead content in amounts compromising science results was found in the anodized

aluminum and in the canadized titanium by investigators making extremely low level mea-

surements. The solution in the drive tube case was to physically remove the outer 1 mm of

regolith during core dissection, before sample allocation.

One excellent example of institutionalized CK in Apollo sample curation was the con-

struction, completed in 1979, of Building 31N at JSC to house the Apollo lunar collection.

The entire design and construction was reviewed in real time by a facility subcommittee of

the Lunar and Planetary Sample Team. The committee, comprised of planetary petrologists

and geochemists—users of the lunar samples for research—requested chemical analysis for

most of the material selections and reviewed the data in detail. Examples are chemistry of

paint, floor coverings, adhesives, electrical cords, etc.

5.1.3 Ongoing Contamination Knowledge Efforts

Collection of CK for the Apollo curation lab continued after construction of the lab and

continues to this day. This process is often a joint effort between curation personnel and

members of the scientific community that develop in response to interesting, novel, or un-

expected results stemming from scientific analysis of the samples. We provide here two

notable examples of successful collaboration between curation personnel and the scientific

community to better understand the contamination environment within curation facilities

at NASA JSC. As mentioned above, Xylan was used on screw threads in the Apollo pro-

cessing cabinets, tools, and containers to prevent galling. Over time, however, it became

evident that the Xylan did not adhere well to the screws because it was flaking off into the

processing cabinets and hence served as a potential source of contamination to the Apollo

and Antarctic Meteorite samples (Xylan has 45 wt.% C and 4 wt.% N, and it is not re-

moved by step combustion until samples are heated above 600 ◦C; Wright et al. 1992). In

response to the characterization of Xylan as a potential contaminant that could affect the

analysis of H, C, N, and O in astromaterials samples, Xylan was banned from use in any of

the curatorial sample-handling hardware at NASA JSC. More recently, a concern was raised



Advanced Curation of Astromaterials for Planetary Science Page 53 of 81 48

that the stainless steel tools used during the processing of Apollo samples may contribute

highly siderophile elements (HSE) to the processed samples (Papanastassiou et al. 2015;

Tikoo et al. 2014), given the low abundances of HSE that occur naturally in lunar samples

(Walker et al. 2004). Consequently, the stainless steel tools and sample containers used in the

Apollo curation labs were subsampled and analyzed to determine a contamination threshold

that would affect HSE analyses of Apollo samples (Day et al. 2018b). Day et al. (2018b)

reported that the potential for HSE contamination from the stainless steel containers and

tools was low.

5.2 Genesis

Genesis was the first sample return mission since the Apollo program and ended a 32 year

hiatus for sample return missions. The Genesis mission launched on August 8, 2001 and

traveled to the Earth-Sun Lagrange 1 (L1) point. The Genesis spacecraft was held in halo

orbit at L1 outside Earth’s magnetosphere for 2.3 years, and the mission collected solar wind

plasma that was implanted into several arrays of high purity materials and subsequently re-

turned to Earth for analysis. Unfortunately, due to an inversion design mistake of the sample

return capsule’s (SRC) drogue parachute gravity switch, the SRC experienced a terminal ve-

locity hard landing at the Utah Test and Training Range (UTTR) on September 8, 2004. The

impact into the lacustrine sediment breached the science canister and littered thousands of

broken high purity collectors throughout the science canister and SRC. Despite this set-back,

curation contingency plans were invoked and after much effort decontaminating samples at

UTTR and JSC’s curation laboratory, all primary science mission goals were achieved and

Genesis is marked as a successful mission. The ability of Genesis to rise from the ashes was

in-part due to the fact that at mission inception, the mission had a well-orchestrated CK plan

that led to a remarkable CK collection.

Contamination knowledge for Genesis solar wind sample return is captured in archived

reference materials and associated documentation of six types, from pre-launch to post land-

ing events: (a) flight-like collector substrates; (b) science canister duplicate components;

(c) assembly environment material coupons and process witness plates; (d) post-landing

UTTR soil samples; (e) post-landing science canister and sample return capsule hardware;

(f) recovery processing tools and containers. Thus, Genesis is an example that contami-

nation knowledge is an ongoing effort and that post-recovery contamination knowledge is

important.

5.2.1 Flight-Like Collector Substrates

Genesis had ambitious goals for determining the elemental and isotopic composition of

the solar nebula. Desired elemental accuracy was 2σ limits of ±10% of the number of

atoms/cm2 on the collector substrates. Desired isotopic precision for many elements was

±1% compared to terrestrial standards. Given that the estimated 2-year fluence (atoms per

cm2) for the more abundant elements is in the 108 to 1012 range, requirements for bulk pu-

rity and surface cleanliness of collectors were very stringent (Burnett et al. 2003). Much

effort was expended by the science team in verifying purity and surface cleanliness of can-

didate batches of collector substrates. Fifteen types of ultra-pure materials were flown as

collector substrates. Three hundred passive collectors, mounted in 5 arrays, individually

consisted of single crystal silicon (FZ and CZ), sapphire, germanium, and sapphire coated

with aluminum, silicon, diamond-like-carbon, or gold. Targets in a concentrator for O, N,

and C were comprised of silicon carbide, isotopically enriched polycrystalline diamond and
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diamond-like-carbon coated on silicon. Additionally, special collectors of metallic glass,

gold foil, polished aluminum alloy and molybdenum coated foils were deployed (Jurewicz

et al. 2003). The diversity of the collector materials on these arrays not only provided mul-

tiple analytical background choices for optimum specific analyses, but also multiple mate-

rial choices for the various surface cleaning processes that the hard landing subsequently

required. The samples archived for CK served as reference pieces for purity and surface

cleanliness or may have been implanted to make calibration pieces during analysis. These

materials were also widely used to test surface cleaning protocols before cleaning Genesis-

flown samples. It was evident in some cases of solvent application that reactivity of Genesis-

flown pieces was different than non-flight reference pieces, presumably due to solar irradia-

tion. To date, allocations of 600 Genesis-flown samples were accompanied by allocations of

300 collector reference materials. The base inventory supporting these allocations is 5000

Genesis-flown collector samples and 2000 non-flown collector reference substrates.

5.2.2 Science Canister Duplicate Components

The canister containing the payload of samples for return was cleaned using ultrapure wa-

ter (> 18 M�-cm resistivity) inside of an ISO Class 4 cleanroom. Re-assembly, including

installation of ultraclean collectors, was performed by staff completely enclosed in pow-

ered HEPA filtered Dryden suits. More than 200 duplicate canister components, with many

cleaned exactly like flight components, are archived for comparison of contaminants. Some

cleaning fluids and manufacturing fluids (e.g. electric discharge machining oil) were also

archived.

5.2.3 Assembly Environment Material Coupons and Process Witness Plates

More than 100 environment material coupons of the assembly room are archived. Exam-

ples include samples of wall construction material, flooring materials, adhesives, paint, fire

retardant and subsamples of air handler intake filters. Process witness plates for particle

chemistry and airborne molecular contaminants were periodically set out, but only the data

were saved (Allton et al. 2016).

5.2.4 Post-Landing UTTR Soil Samples

Just prior to Genesis capsule return, 8 UTTR soil samples from 5 sites were collected by the

helicopter recovery crews as they practiced. These samples are archived and have been allo-

cated for contamination studies on solar wind collectors. After the capsule hard landing and

recovery of the spacecraft components, eighteen 5-gallon buckets of UTTR soil and space-

craft materials from the impact site were collected and archived. Subsequently, collector

fragments were high-graded and removed from buckets for permanent archive.

5.2.5 Post-Landing Science Canister and Sample Return Capsule Hardware

Many of the collectors were broken, but most remained confined in the science canister. The

field crew was able to gather and transport to a nearby cleanroom the entire science canister

containing most of the collectors and the sample return capsule major components within 8

hours of the crash. All of this material is archived for CK, except for pyrotechnic devices and

batteries, which were deaccessioned after 5 years (Stansbery and Team 2005). Ellipsometry

was used to measure molecular contamination on some of the collector plates (McNamara

and Stansbery 2005; Stansbery and McNamara 2005).
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5.2.6 Recovery Processing Tools and Containers

Select recovery and UTTR processing tools and containers are archived for CK. Examples

include polystyrene containers, fine brushes, and cleanroom post-it paper used for securing

small fragments. The post-it adhesive remains under investigation and these CK samples

have been helpful. The lesson here is awareness that any material added to the handling

stream at the last minute should have batch specific material archived.

5.3 Long Duration Exposure Facility

The Long Duration Exposure Facility (LDEF), was a school bus-sized cylindrical facility

designed to provide long-term data on low-earth orbit (∼300 miles altitude) environment

and its effects on space systems, materials, and operations (Kinard and O’Neal 1991). Orig-

inally intended to be the cargo for the first space shuttle mission in 1981, it was finally placed

in low-Earth orbit by Space Shuttle Challenger in April 1984. Fifty-seven science and tech-

nology experiments from nine countries flew on the satellite. The original plan called for

the LDEF to be retrieved in March 1985, but because of the destruction of Challenger (the

only shuttle with a sufficiently large cargo bay to accommodate LDEF) it was eventually re-

turned to Earth by the newly built Columbia in January 1990. LDEF was an early test bed for

ideas on micrometeoroid capture. It was carefully placed in orbit and gravity stabilized such

that its orientation relative to Earth remained constant. Thus, the trailing side of the satel-

lite would capture micrometeoroids but no space debris and see no secondary impacts from

satellite surfaces—completely eliminating the most significant sources of contamination to

captured astromaterials. No subsequent spacecraft has repeated this feat.

Unfortunately, shortly after recovery into the still open Columbia cargo bay the shuttle

began to rotate end over end, destroying many experiments and causing severe sample con-

tamination. NASA Mission Control chose not to waken the sleeping astronauts and halt the

rotations, despite pleas from the LDEF science team. Thus, recovery of LDEF by the Space

Shuttle was non-nominal, resulting in contamination and thereby degrading many mission

goals. An important lesson is to carefully consider the possible deleterious consequences of

using an astronaut crewed platform for sample recovery operations.

Despite these problems, the LDEF mission was successful in guiding scientists to the

design of the capture media for the subsequent Stardust Mission. However, one LDEF lesson

was not properly learned. Outgassing of silicone-based adhesives and lubricants coated most

of the exterior of the satellite with a Ca- and Si-containing coating, which was baked to a

brown color by solar radiation (Whitaker and Dooling 1995). This “brown stain” was to

reappear with a vengeance in the Genesis, and to a lesser extent Stardust Missions.

5.4 Stardust Mission

For the Stardust Mission, contamination control procedures were integral to flow of space-

craft manufacture, assembly, testing, flight, and recovery, and the science team took a very

active role in planning and implementing contamination control measures, monitoring con-

tamination through numerous witness materials (Sandford et al. 2010; Zolensky and Girard

1997). However, despite these precautions, the captured comet Wild 2 coma dust grains

experienced significant contamination from several sources, including the presence of in-

digenous organic and inorganic material in the silica aerogel capture media, spacecraft out-

gassing, and an unfortunate sample return capsule (SRC) recovery procedure.
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5.4.1 Preflight Contamination

The flight aerogel used in Stardust was marveled, but cleaning it was not a sufficiently high

priority for the mission. There were alternative sources for the silica aerogel, which were

known to be cleaner than the material manufactured by the Jet Propulsion Laboratory in

Pasadena, CA. In addition, recommended work on improving aerogel cleanliness were not

adequately performed. Synthesis of the aerogel employed a tetraethyl orthosilicate precursor

in a solvent that included ethanol, methanol, acetonitrile, and/or other organic liquids, and

Synlube 1000 was used as a mold release agent (Sandford et al. 2010). In the end, the

severely contaminated aerogel was baked to reduce the volatile organic content, but several

weight percent of carbon in the form of organics remained strongly bonded to the aerogel. To

be fair, most persons believed at the time that organics could not be adequately captured by

aerogel at the mission capture velocity of 6.2 km/s. The comet Wild 2 coma grains entered

the Stardust aerogel at ∼6.1 km/sec. Such collisions are sufficiently energetic that they

could alter any organic compounds originally present in both the impacting particles and the

aerogel collector material (Sandford et al. 2010; Sandford and Brownlee 2007; Spencer et al.

2009; Spencer and Zare 2007). Thus, it came as a surprise when relatively intact cometary

organics were recovered from a few captured coma grains. Had we known this was possible,

we would have undoubtedly made greater efforts to fly organically-clean aerogel.

It is now clear that some fraction of the impacting comet Wild 2 coma particles sur-

vived with little or no alteration, while other portions of the samples were severely heated

(Brownlee et al. 2006; Elsila et al. 2009; Sandford et al. 2006, 2010; Zolensky et al. 2006b).

Conversion of carbon original to the aerogel, and in the impacting cometary particles, into

new forms likely occurred in a similarly variable manner. Thus, before one can assign organ-

ics seen in Stardust samples to a cometary origin, it is necessary to consider the possibility

that they are either altered cometary materials or materials formed from carbon original to

the aerogel. IR absorption difference-maps of individual tracks suggest that impacting Star-

dust particles do not convert the majority of the original carbon in the aerogel tiles into

new chemical forms that remain in the aerogel. However, laser ablation, laser ionization

mass spectrometry (L2MS) studies demonstrate that at least a small amount of the original

aliphatic carbon in the aerogel is converted into aromatic materials in the form of lightweight

polycyclic aromatic hydrocarbons (PAHs). Thus, while most of the original aerogel carbon

appears to be unaffected by the impact process, the issue of the possible presence of impact

converted organics must be considered on a case-by-case basis whenever specific organics

are being sought in Stardust aerogel samples.

Additional contaminants found their way into the aerogel during flight. These include

materials outgassed from nearby spacecraft components, propellant byproducts, and sec-

ondary materials from dust impacts on other parts of the spacecraft, particularly the Whipple

shields and solar panels. Cometary particles impacted on the aerogel tiles in the collector

tray perpendicular to the forward direction. Thus, any tracks seen with oblique orientations

must be either due to strikes by random interplanetary dust particles or to secondary ma-

terials from impacts on other parts of the spacecraft. Oblique tracks have, in fact, been

found in the flight aerogel tiles, most of which fall in non-random spatial distributions on

the cometary collector (Westphal et al. 2008). The materials in these tracks could include

components from both the original impactor and from the spacecraft. Many of these tracks

originated from a grazing impact on the central Whipple shield of the spacecraft as the origin

of clustered low-angle oblique tracks. In these tracks, the most likely contaminant would be

the Mylar thermal protection material that wrapped the edge of the Whipple shields. A sec-

ond population of high-angle oblique tracks unambiguously originate from a non-cometary
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impact on the spacecraft bus just forward of the collector. The exact location of this strike

on the spacecraft bus is not known, but possible contaminants include materials used for the

sides of the spacecraft bus—highly ordered graphite embedded in an epoxy matrix.

In summary, it is clear that the Stardust cometary collector tray was struck by a limited

number of secondary particles resulting from impacts on other parts of the spacecraft. Mate-

rials in these oblique tracks should be viewed with considerable caution before interpreting

their significance as possible cometary materials. Fortunately, the most likely contaminants,

Mylar wrap on the Whipple shields and carbon composites from the body of the spacecraft,

have distinctive C X-ray absorption near-edge spectra (XANES) that make them relatively

easy to recognize. At present, there is no evidence that this process has introduced contami-

nation outside the domain of the oblique tracks themselves.

5.4.2 Contamination During Flight

It is possible that contaminants could have been introduced to the Stardust sampling trays

directly from the spacecraft during its nearly 7-year flight. This is of special concern for the

aerogel collectors since aerogel, with its very large surface area to mass ratio, is an excellent

‘sponge’ for adsorbing contaminants. To assess the extent of on-flight contamination, several

‘witness coupons’ were enclosed in the Stardust SRC (Tsou et al. 2003). These coupons

included 1 cm diameter disks of aluminum and sapphire, and one ‘interstellar’ aerogel tile

(2 cm wide × 4 cm long × 1 cm deep). These coupons were located on the arm that deployed

the aerogel collector array and were placed low enough that they resided in the shadow of the

main Whipple shield. Thus, these coupons were exposed to the same flight environment as

the aerogel collectors for the entire mission, but were never directly exposed to the cometary

influx.

Examination of the aerogel witness coupon showed no visible signs of adhering materials

or stains. Although we know that silicone-based adhesives and lubricants outgassed during

the mission (famously coating the cold camera optic surface), none of the exposed surfaces

in the Stardust sample return canister showed any signs of the ‘brown stain’ seen on many of

the surfaces of the LDEF (Fred Hörz, personal communication, 1990) and Genesis hardware

(Burnett 2013). Analyses of the aerogel witness coupon (i.e., aerogel that was exposed to

all environmental conditions as the collector aerogel except the comet) shows similarities to

collector aerogel, although the levels of contaminants, when detected, are generally lower

and some components (for example, the carrier of the 1700 cm-1 IR C=O feature) are

dramatically less abundant. This suggests that contamination associated with the operational

environment of the spacecraft during flight was not a major source of sample contamination.

5.4.3 Contamination from SRC Recovery and Curation Operations

The accumulation of local soils (mud) from the recovery site was a major issue of concern

for the Stardust Science Team prior to recovery of the SRC. Fortunately, integrity of the

SRC during landing, the relative inability of the mud at the recovery site to stick to the SRC,

and the fact that none of the bouncing impacts occurred at the locations of the two backshell

vents greatly decreased the magnitude of this concern. Thus far, there is no indication that

soils from the recovery site infiltrated the sample canister or in any way contaminated the

returned samples. However, an unfortunate decision was made to place the recovered SRC

into a polypropylene bag during the brief helicopter transport from the landing site to a

hangar for preliminary deintegration operations. Subsequent detailed analysis revealed that

the aerogel soaked up outgassed organics from this bag, providing an additional source
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of organic contamination to the comet coma grains (Hope Ishii, personal communication,

2007). One important lesson learned from the stardust mission is that recovery operations for

the SRC significantly suffered from the lack of a hermetic seal for the samples, probably in

many additional ways that will only become apparent in the future. Mission engineers should

be pushed to provide truly hermetic seals for future returned samples. Contamination from

curatorial operations has been carefully mitigated, although there is some evidence that the

Stardust Interstellar aerogel has collected some contamination during handling in various

labs during analyses (Bechtel et al. 2011).

5.5 Hayabusa Mission

The curation and contamination knowledge of the samples recovered from asteroid Itokawa

by the Hayabusa mission (2004–2010) are very well described by Yada et al. (2014). In

order to limit contamination to the recovered samples, the constituents of the Hayabusa

sampler were limited to A6061 aluminum alloy coated with pure aluminum, stainless steel

(304), Viton, aluminum oxide glass, and Teflon. Before launch, every part of the sample

container was cleaned in 2-propanol using an ultrasonic cleaner, installed in an ISO Class 7

cleanroom. A contamination coupon made of aluminum oxide glass was installed inside the

sample catcher to monitor contamination during the mission. In order to minimize ground

contamination following Earth return, the sample container was designed to seal the sam-

ples, though the mission budget did not permit a hermetic seal. However, terrestrial atmo-

sphere permeating through the double O-rings seal was estimated to be <1 Pa. During at-

mospheric entry, the sample container was designed to experience less than 80 ◦C by using

carbon fiber-reinforced plastic (CFRP) capsule ablators. The actual temperature from recov-

ery on the Australian desert until introduction to the JAXA cleanroom was monitored with

a temperature logger attached to a transportation box for the reentry capsule. The data of

the logger showed that the sample container had been kept under 30 ◦C. The JAXA clean-

rooms are maintained under 26 ◦C. The magnetic condition of Hayabusa-returned samples

should have been disturbed during a return trip to Earth due to the Hayabusa ion engine

operation. Additional electric disturbance and shock from atmospheric entry, landing, and

transportation, which might affect the samples, are still poorly understood.

5.5.1 JAXA Hayabusa Lab

The JAXA Hayabusa curation laboratory (hereafter “curation lab”) consists of four clean-

rooms of different clean levels: a planetary sample handling room (ISO Class 5 to 6), an

electron microscope room (ISO Class 6), a sample preparation room (ISO Class 6), and

a manufacturing and cleaning room (ISO Class 7). These have vertical air flow from the

ceiling into a raised, perforated stainless steel floor. All filters used in fan filter units are

polytetrafluoroethylene (PTFE), and an additional chemical filter absorbs acid gases such as

halogen, sulfate, nitrate, elemental boron, and borate. Design of this lab made effective use

of decades of knowledge from NASA’s curation labs, and then significantly improved upon

them.

Four special-use rooms exhaust their air independently to outside of the cleanrooms to

protect the other cleanrooms from chemical and particle contamination. Additionally, there

is a basement for equipment that cannot be set in the cleanrooms, such as roughing pumps

for vacuum systems, a compressed air supply system, an ultra-pure water supply system,

and nitrogen purifiers.
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The curation lab has two clean chambers for initial sample handling, Nos. 1 and 2. These

are constructed mainly of 304 stainless steel, and their inside walls were electrochemically

polished. They were baked in vacuum to at least 120 ◦C before and after the installation

to reduce residual contamination. Both chambers are equipped with turbo molecular pumps

(TMPs) and dry scroll pumps. Clean nitrogen supplied by a cyclic type nitrogen purifier

and a flow type nitrogen purifier. The former is directly connected to each of the chambers

to exclude H2O, O2, and hydrocarbon from the circulating nitrogen. The chambers operate

at positive pressure to exclude ambient air. Chamber 1, where the Hayabusa capsule was

initially opened, can be operated at conditions of ultrahigh vacuum or purified nitrogen.

Residual gas expanding into the chamber from the container was collected in bottles made

of stainless steel. The lower part of the sample container was maintained in cabinet No. 1

under a vacuum. Chamber No. 1 was also equipped with Viton gloves through gate valves

permitting the sample container and catcher to be manipulated with special tools.

After opening, the sample catcher was sent to chamber 2 (in nitrogen) for the extraction

of captured Itokawa grains. Both chambers 1 and 2 contain ultraviolet (UV) neutralization

lamps to compensate electrostatic charge, which should occur in the pure nitrogen condi-

tion. Also, an alpha-ray neutralizer containing a grain of 210Po is employed for the same

purpose—use of this neutralizer was pioneered in NASA’s Stardust and Cosmic Dust Labs.

The clean chambers were constructed using stainless steel (304 and 316), aluminum, and

A6061 aluminum alloy, quartz glass, PTFE, and Viton. Gold and copper are used for ma-

terials in Itokawa grain sample holders, borosilicate glass for containers of less important

items, and polyetheretherketone (PEEK) for electric connectors.

5.5.2 Measurement of Gas in the Capture Cell upon Initial Opening

Residual gas sampling bottles connected to clean chamber 1 were prepared to capture gas

released from the container at the time of its initial opening (on June 23, 2010, 13 days after

capsule recovery). As it expected that the container could contain some terrestrial atmo-

sphere, O2 and 40Ar could be used to identify any leaks into the “sealed” sample container.

Noble gases sampled in the gas bottles were analyzed at the University of Tokyo (Okazaki

et al. 2011). Elemental ratios of the noble gases collected from the sample container were

essentially identical to the terrestrial atmosphere. The inner pressure of the sample container

was much higher than expected. Possible causes are a small leak of air through the double

Viton O-rings seal, larger-than-expected permeability of the Viton O-rings, or a temporary

leak of air accidentally happening during deintegration of the sample return capsule.

5.5.3 Sample Removal from the Container

On 24 June, 2010, the sample container was transferred to the transportation chamber from

clean chamber 1 and the inner lid and the sample catcher were set into a catcher handling

container. The inner lid, which was connected to the cover of sample catcher room A (there

was also a room B), was removed, and its inner surface was observed and photographed.

The catcher was placed into the catcher handling container, and these were transferred to

clean chamber 2. The inner surface of catcher room A was observed in detail by optical

microscopy, and very few particles larger than a few hundred micrometers were observed

inside room A.

Initial attempts to remove Itokawa grains from the aluminum sample catcher were unsuc-

cessful. Without exception, every suspected grain proved to be a small piece of protruding

Al metal. Next, a special PTFE spatula was used to sweep the interior surface of catcher



48 Page 60 of 81 F.M. McCubbin et al.

room A. Observation of the spatula in the FESEM showed the presence of hundreds of

rocky particles 1–30 µm in size, half of which proved to be Itokawa regolith grains (based

on EDX spectra, Nakamura et al. 2011). Finally, the inverted sample catcher rooms A and

B were tapped with a screw driver, causing a rain of Itokawa and Al grains to fall onto

specially-prepared quartz glass disks. The particles were moved from the quartz disks to

copper SEM mounts for examination by FESEM-EDS at low kV and no conductive coat-

ing. It was thought that particles analyzed by FESEM might be contaminated by vacuum

pump hydrocarbons. However, Naraoka et al. (2012) showed that no measurable hydrocar-

bons could be detected on identically-treated witness surfaces by time of flight-secondary

ion mass spectrometry.

Because of differences in the requirements for proposed analyses, sample containers used

in the initial analyses of Itokawa grains varied. The samples analyzed for the mainstream

of initial analyses, including synchrotron X-ray computed tomography and diffraction, FE-

SEM and FE electron microprobe analysis, and a secondary ion mass spectrometry were

embedded in epoxy resin and mounted onto glass fibers. They were transported within a

stainless steel container filled with nitrogen. Samples for transmission electron microscopy

were mounted in epoxy resin in a special nitrogen glovebox and transported within the same

containers. In this case, they were processed without exposure to air. Samples for noble gas

analyses were set in holes in a stainless steel base in a special flange of stainless steel, which

had been baked beforehand to decrease contamination. This process was performed in nitro-

gen. Samples for organic analyses and instrumental neutron activation analysis were set in

holes in a diamond plate with a diamond cover. Each investigation required special sample

handling and encapsulation procedures.

5.5.4 NASA’s Hayabusa Curation Laboratory

Ultimately, 10% of the captured Itokawa grains will be transferred to NASA, and curated

in the Hayabusa Curation Laboratory at JSC, although at the time of this writing less than

100 grains have been transferred to NASA’s care. Sample containers for the NASA samples

distribution consists of a pair of vacuum flanges of stainless steel as an outer container and

a pair of synthetic quartz glass plates as a case to enclose the samples. All parts of the

containers are separately cleaned by JAXA. The samples are placed into the quartz dimple

slides using an electrostatically-controlled micromanipulator in clean chamber 2 at JAXA.

The flanges are sealed with six screw bolts and oxygen-free copper gasket coated by gold.

The sealing was also performed in the clean chamber, so the inside of the container was filled

with atmospheric pressure nitrogen in the clean chamber. Only three materials are used for

these sample containers: synthetic quartz, gold, and stainless steel. The NASA Hayabusa

Cleanroom is a single room, containing at its core a stainless steel and glass cabinet for

sample storage. No special sample handling is performed in this lab, as of now. Samples are

merely stored, and allocated as needed.

5.6 OSIRIS-REx

Contamination knowledge for the OSIRIS-REx mission was covered in detail by Dworkin

et al. (2018). This section will be a broad overview of the approaches and implementation of

CK for OSIRIS-REx. Because curation scientists were involved in mission planning from

the start, level 1, 2 and 3 mission requirements address aspects of CK and are integrated

into the Contamination Control and Contamination Knowledge Plans. Because the mission

is focused on amino acids and in general a carbonaceous asteroid, contamination efforts
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included attention to organics. An amino acid baseline of 180 ng/cm2 for OSIRIS-REx was

based partly on analysis of Stardust foils, most of which was from a known contaminant

called epsilon amino caproci acid (EACA), which is derived from hydrolyzation of nylon

(Elsila et al. 2009). The planning for CC/CK involved identification of restricted materials

and assessment of hydrazine contamination (from monoprop thrusters), ATLO cleanroom

and payload faring monitoring, coupon and material archiving, flight system witness plates,

and sample container air filter system. All of these activities and categories have led to a

detailed understanding of potential contaminants for the collected sample.

5.6.1 Materials Restrictions

The OSIRIS-REx team was already aware of several specific and classes of compounds

that would need to be avoided or restricted due to contamination concerns such as nylon

and organic polymers (e.g., silicones, lubricants, adhesives). However, through open com-

munication channels with engineers, additional materials or components were identified in

advance, allowing ample time for identification of substitutes. For example, one process

required diamond abrasives while another used a coating that included amorphous silica;

both nanodiamonds and amorphous silica may also be present in primitive asteroid materi-

als. The diamond-abraded surface was cleaned and verified diamond-free at JSC via FTIR,

and the silica-containing material was removed. Galling (i.e., wear resulting from adhesion

between sliding surfaces) is a frequent problem in spacecraft assembly and can be mitigated

using various lubricants. This unavoidable use of lubricants is an example where material

archiving can be helpful, and indeed the Braycote lubricant was archived for every use on

the spacecraft during ATLO. Open communication between the subdiscipline engineers also

led to the chemical investigation of products whose chemical makeups were unclear and/or

proprietary. Analyses at GSFC and JSC allowed materials of concern to be tested in more

detail, including couplants and adhesives, in several cases helping to identify replacement

products (Dworkin et al. 2018). Detailed reports of materials testing were shared with the

mission contamination knowledge scientists and placed on the internal science team website

for review.

5.6.2 Hydrazine

OSIRIS-REx thruster propellant, hydrazine, is known to react with organics via a Wolff-

Kishner reduction (Dworkin et al. 2018). The mission team conducted tests of the reac-

tivity of various organic compounds with anhydrous hydrazine, and decided that spacecraft

thrusters should be canted away from the sampling site, which would result in <180 ng/cm2

hydrazine to be deposited on TAGSAM surfaces. Even this hydrazine will rapidly evaporate

from bare metal at sampling temperatures, but traces might be adsorbed by minerals or re-

act with free carbonyls. In addition, drawing on experience from the Mars Phoenix lander

mission and carrying out new calculations specific to OSIRIS-REx, mission engineers were

able to estimate the amount of unreacted hydrazine in a thruster plume seeing the sample

would be <120 ng/cm2 for a single collection event. The only times when the spacecraft

thrusters could deposit hydrazine onto the TAGSAM head are when the head is in the sam-

pling configuration. This occurs during initial deployment and checkout, baseline sample-

mass measurements, the TAG rehearsals, and the TAG event(s). All these considerations led

to a much better understanding of potential for hydrazine interaction with the samples, and

alleviated concerns for contamination.
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Fig. 13 Simplified schedule for SARA development, fabrication and assembly, and OSIRIS-REx Assembly,
Testing and Launch Operations (ATLO)

5.6.3 Materials and Coupon Archiving

Archiving of materials identified to be of potential concern included those associated with

the construction of the spacecraft, launch vehicle, SRC, TAGSAM (and associated hard-

ware), science instruments, and materials used for packaging, containment, and processing

of samples. During spacecraft assembly, the science and curation teams worked with the

OSIRIS-REx mission engineers and ATLO personnel to archive materials from the space-

craft. Archiving began in February 2014, with work on the sample acquisition and retention

assembly (SARA) composite panel in Denver, peaked near launch, and was completed by

January 2017. Additionally, as the instruments were assembled and readied for integration,

members of the instruments team packaged materials to send to JSC. As instruments and

sub-assemblies of the spacecraft were tested and integrated, material coupons and items

were sent to JSC through integration at KSC, with the last items having arrived at JSC in

early 2017. A total of 406 items were received for the non-flight contamination knowledge

collection. Data archived for each item also includes photos, its location on the spacecraft,

physical description, the company that made the item along with its webpage or other contact

information, the archiving location, archiver, and date. The materials fall into general cat-

egories including metals (stainless steel, aluminum, titanium alloys), epoxies, paints, poly-

mers, lubricants, non-volatile-residue samples (NVR), sapphire, and various miscellaneous

materials (a detailed list of items is found in Dworkin et al. 2018). The collection of CK ma-

terials, including witness plates, is archived and stored at NASA JSC in an ISO 7 cleanroom

in dedicated stainless steel desiccator cabinets, with separately supplied dry nitrogen lines.

5.6.4 Monitoring ATLO Cleanrooms: LM, KSC, and Payload Faring

Witness plates were deployed to monitor cleanliness levels in the spacecraft assembly clean-

rooms, high bay, environmental test facilities, spacecraft transport containers, Kennedy

Space Center (KSC) Payload Hazardous Servicing Facility (PHSF), and the interior of the

Atlas V launch vehicle fairing up until one day prior to launch of O-REx. All through the

ATLO process (from March 2015 until late August 2016; Fig. 13) Si wafer and Al foil wit-

ness plates were deployed in these areas at LM and KSC to provide a record of particle

counts and volatiles for current and future scientific studies. These plates were deployed in
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roughly monthly increments for 16 months with each unit containing 4 Si wafers and 4 Al

foils, for a total of 128 individual witness plates (64 Si wafers and 64 Al foils). One of each

witness plate (Si and Al) was analyzed immediately, while the remaining three are archived

at JSC with the materials archive (described in previous section) for future analysis. In ad-

dition to the witness plates, gas samples were collected in selected ATLO locations such as

cleanrooms and testing facilities, with the goal of identifying any unexpected or problematic

species, although no unexpected species were identified.

5.6.5 Flight Witness Plates and Air Filter CK

To witness the environment experienced by the sample collection system on the spacecraft,

a series of witness plates were designed and implemented in three different areas in the

sample canister—the top of the TAGSAM head, the TAGSAM wrist joint assembly, and the

inside of the sample canister. The aluminum and sapphire witness plates are designed to

be deployed on TAGSAM and in canister recording three different exposure timeframe—

always, pre-stow, and post-stow. These plates will be removed immediately upon return to

JSC in the cleanroom and then stored in dedicated cabinets for contamination assessment

studies. In addition to the witness plates, the sample canister has a two-way air filter in

its lid which protects the sample from external contaminants, but the lid can also trap any

volatile or particulate material from leaving the canister after TAGSAM is stowed. The filter

performance was tested for moisture, particulate, and organic trapping efficiency during pre-

launch activities and also drew heavily on similar filters used for the Stardust mission.

Additional contamination knowledge activities will continue during Phase E of the mis-

sion (Sept. 2016 to September 2023) with archiving of materials associated with the clean-

room construction at JSC and materials from the UTTR recovery site (might include soil,

air, and other environmental background materials that could pose a contamination risk to

OSIRIS-REx samples).

5.7 Mars 2020 Rover Mission

Although the Mars 2020 rover mission is not a sample return mission itself, it will be col-

lecting and caching samples from the martian surface that could be picked up by a future

mission, and hence Mars 2020 may represent the first mission in an overall Mars sample re-

turn campaign. Apart from in situ surface science, the goal of this first mission is to assem-

ble a collection of rigorously documented and returnable cached samples. Contamination

knowledge samples from Mars 2020 are in the process of being collected and curated to be

part of the overall Mars sample collection if the cached samples are eventually returned.

While there are many aspects of the MSR contamination knowledge samples that will

be similar to previous sample return missions, this sample return campaign has presented

a number of unique opportunities and challenges. Perhaps the most notable is that due to

the possibility of extinct or extant life on the surface of Mars, this sample return mission is

designated as restricted by NASA’s Planetary Protection Office. This designation requires

more stringent organic contamination control requirements as well as the addition of biolog-

ical contamination control and CK. Furthermore, this designation requires that the returned

martian samples are curated in a containment facility in order to protect Earth from possible

martian biohazards. The second notable difference is that the Mars 2020 mission would be

part of a MSR campaign. Therefore, not only will the CK collection need to be coordinated

between multiple missions, but significant point sources of possible contamination will re-

main on the martian surface. This mission architecture could make it more challenging to
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track a contaminant to its source. To minimize this knowledge gap, the CK samples col-

lected will have to be more extensive than traditional sample return mission architectures.

Finally, the Mars 2020 mission was not officially considered a sample return mission from

its inception, so interaction with curation personnel and/or appropriate curation expertise

was delayed and did not occur during the early stages of mission design, which has added

an extra complication given the additional costs and time constraints of assembling a com-

prehensive CK collection.

5.7.1 Contamination Knowledge Samples

As with other sample return missions, an array of CK samples will be collected throughout

ATLO. These samples will range from high fidelity flight reference materials to airfall wit-

ness samples. The flight and non-flight hardware and spacecraft components considered for

CK are those items that are a potential contamination risk to the sample intimate hardware

during launch, cruise, Mars entry/decent, landing, and rover surface operations. These “line-

of-site” items are determined based on the Master Equipment List (MEL) and the Master

Material List (MML). The MML will also be utilized to determine materials that have any

potential to shed particulates and/or outgas molecular organics, directly or indirectly im-

pacting the sample and caching subsystems. These samples can range from paint samples

to flight spares or flight spare equivalents. Given the expanded scope of CK samples, an

array of non-flight reference materials could help in tracing contamination. Some of these

non-flight reference materials include: facility tools, equipment, and environmental compo-

nents used during the fabrication, part processing, precision cleaning, and assembly that are

considered a potential contamination risk. Witness items (e.g. plates and wipe samples) will

be deployed within cleanrooms and on flow-benches during the assembly of the sample and

caching subsystem. These witness items are duplicates of the witness items deployed and

taken for CC and PP verification. All data collected during CC and PP verification will be

tied to the respective CK sample, integrated into the CK database, and made available to the

scientific community. Finally, unlike all other CK collections stored in nitrogen at ambient

laboratory temperatures, the introduction of biological CK samples add the requirement to

curate frozen samples (<−80 ◦C).

5.7.2 Innovation in Sample Storage

Due to the stringent organic, inorganic, and biological CC and PP requirements, new ways to

secure and store CK samples were developed for Mars 2020. Due to organic contamination

concerns, all storage bags utilized for organic CK cannot be heat-sealed, so we developed

customized bag clips. These two piece bag clips are constructed from 300 series stainless

steel and Teflon. These clips will provide a strong seal that will ensure sample safety during

shipment and long-term curation, and they will be used for future missions.

For the long term storage of CK samples, a few different storage containers needed to be

upgraded or designed from scratch. Due to size constraints, this most high fidelity sample

intimate hardware will be stored in a custom 316 stainless steel bolt-top canister with a

Teflon seal, plumbed to accommodate an inert atmosphere to ensure sample safety in case

of a breach in the primary containment. However, the bulk of the inorganic and organic

reference and witness items will be stored within highly customized desiccators. As with the

bolt-top containers, this highly customized desiccator is a modified version of the desiccators

utilized for the other Astromaterials collections. However, due to stringent contamination

control, the construction materials are highly limited. For example, unlike other desiccators
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that can utilize traditional flexible and highly compressible multi-use gasket material, the

organic contamination requirements for Mars 2020 preclude their use. Therefore, a new

door gasket design was required. Due to its low outgassing properties, a Teflon gasket was

the preferred material. However, the trade-off for low outgassing is low flexibility and low

compressibility, which means a whole new door gasket design was required. The new design

leverages the slight compressibility of the Teflon gasket material while also utilizing it as a

barrier material between a possible contaminant and the samples.

The collection of Mars 2020 CK is an ongoing activity that will continue until the space-

craft is launched from Kennedy Space Center in July of 2020. Full details of the contamina-

tion knowledge collection and the laboratories that support these samples will be described

in subsequent publications through joint efforts between the Mars 2020 science team and

JSC curation personnel after a decision is made regarding the overall MSR campaign, which

is expected sometime in 2020.

6 Preliminary Examination of Samples

The preliminary examination (PE) of returned samples, be they collected from an extrater-

restrial body and returned by spacecraft or recovered from a frozen lake or someone’s back

yard on Earth, is arguably the first step in their curation. The importance of this step can-

not be overstated with respect to either the early identification of the sample type or the

careful preservation of planetary materials for the future. Preliminary examination affects

both of these, and many activities in between. Simply defined, preliminary examination is

the process by which returned samples are documented and characterized to the point that

the appropriate scientific research community is provided with enough information to select

and request the samples for their individual, PI-led scientific studies. The results of prelim-

inary investigations are typically presented in catalogs or online databases that are publicly

available, and preliminary examination is considered to be a science-enabling activity.

6.1 Steps Involved in Preliminary Examination

The very first steps of preliminary examination of samples may take place before they

are even collected. For all returned samples, the astronauts and/or instruments onboard the

spacecraft (orbiter, lander, or rover) will gather as much data as possible about the surface of

the body from where the samples are gathered. These data will likely include photographs,

spectroscopic data, and other possible measurements given the available instruments/crew.

For samples collected on the ground, such as meteorites, ideally, a photograph including

a scale bar with an indication of compass orientation, a general description of the sam-

ple (e.g., percentage of fusion crust, possible rock type, notable physical characteristics),

and a description of the site where the sample was found or any other noteworthy features.

Care should be taken during these steps to minimize exposure to contamination sources,

and any potential contamination should be documented in the collection notes; a list of rec-

ommended procedures and materials for collection of freshly-fallen meteorites is provided

in Herd et al. (2016). Photographs of sample containment vessels may occur during and

after collection. At the very least, the type of sample containment/transport vessel should

be documented, to inform future sampling and curation documentation as well as subse-

quent scientific analysis. In all cases, the utmost care should be taken to ensure curation best

practices are implemented to minimize forward contamination.
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Once samples are received in a curatorial facility, documentation of their current state

should be made. These details may include information about the type of materials that the

astromaterials samples were transported in, the state of those materials after landing (e.g., are

seals intact? are they covered in dust?), and the documentation should include photographs.

Any sampling of head gas in sample containment vessels that would be required should be

completed and documented before sample containers are opened. Once the sample vessels

are breached, information that may be of interest to research will be lost, along with the

opportunity to ever gather it on those particular samples again. In addition, any tomographic

scanning (e.g., X-ray or neutron) that is required to occur before samples are opened should

be completed, and all processes involved in those analyses should be carefully documented.

Once samples are opened and, if applicable, removed from their sample containment

vessels, the initial, curatorial steps involved in basic characterization of these materials take

place. The main purpose of these efforts is to document exactly how the sample existed

when it was opened. A documentation should be made as to the sample mass and its ap-

pearance at the time of opening. There should be a written description of the state of the

material (intact rock, crumbled rock or sediments, powder, microscopic grains in a gel, etc.),

its general attributes (color, grain size, physical appearance) and any notable features that

are present (veins, fractures, fusion crust, metal content, etc.). Of utmost importance is pho-

tographic documentation (possibly with video, depending on the type of samples). Sample

numbers should be assigned during this phase if they were not designated during collec-

tion. In short—the initial characterization of samples includes any process that can take

place without making changes to the state of the samples other than opening their sample

containment device, which is obviously unavoidable. Ideally, these steps should be made

without touching the samples with anything other than curatorial tools comprised of ma-

terials determined to make contact with the samples without compromising their pristine

nature. Determination of appropriate materials to use are based on several factors and typ-

ically represents a compromise between functionality and contamination risk, but foremost

those materials must not compromise the ability of the samples to be used to answer the

primary science requirements for a mission.

After basic characterization is completed, the curatorial phase of preliminary examina-

tion of the samples begins. Preliminary examination is distinct from science activities, and

its goal is to produce a sample catalog with a level of detail about each sample that is suf-

ficient for members of the scientific community to make informed requests of materials

to conduct their PI-led scientific investigations. Preliminary examination of materials can

occur for each representative portion of a sample, if needed to produce a meaningful and

informative sample catalog. For Preliminary examinations on samples that also have a mis-

sion science team, preliminary examination can happen in parallel with science activities,

but the goals of these two activities remains distinct. The methods and analytical techniques

used during preliminary examination of a sample will be tailored to the primary science re-

quirements for that sample. Furthermore, these processes will be determined based on sam-

ple size, sample form, sample vessel, and the need to prevent either forward or backward

contamination. Large samples such as meteorites need to be touched with tools/gloves to be

weighed, photographed, and described, and they need to be broken with tools to provide ma-

terial for their classification. The next steps of preliminary examination of meteorites require

the classification chip to be processed even further. As part of the U.S. Antarctic Meteorite

Program (AMP) the smaller meteorite chip is weighed, placed into a sample container, and

sent from NASA JSC to the Smithsonian National Museum of Natural History for further

visual examination via binocular microscope, chipping, insertion into a sample holder grid,

and polishing for energy dispersive spectroscopic (EDS) analyses, and/or made into a pet-
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rographic thin or thick section (both of which involve exposure to epoxy and polishing grit).

These samples are coated with carbon and analyzed with a scanning electron microscope

with EDS and/or an electron microprobe to determine their mineral compositions (namely

olivine, pyroxene, and in the case of iron meteorites, FeNi metal). Other collections contain

much smaller specimens and require much more careful micromanipulation of materials as

discussed previously in the small particle handling section.

Preliminary examination of gas and volatile-rich samples present unique challenges to

the curatorial preliminary examination process. In the gas phase, samples cannot be photo-

documented or weighed. Condensed volatiles can be weighed, but only as a supplement to

total or partial-pressure measurements of the quantity of sample in the gas phase. Whether

the sample is condensed or not, total and partial pressures of major species (e.g. H2O, CO2,

etc., depending on the sample origin) should be monitored using techniques that consume

little to no sample. Spectroscopy-based techniques (e.g., FTIR, Raman, cavity ring-down

spectroscopy) provide possible non-destructive means by which an initial characterization

of the compounds in a sample can be ascertained; however, care must be taken to ensure that

the techniques (and wavelengths) used do not pose a risk of altering the sample composition

or isotopic distribution. High-sensitivity gas chromatography-mass spectrometry (GC-MS)

or other high-sensitivity gas analysis techniques can be used to supplement spectroscopy

using small quantities (<1 g) of sample.

The concept of a “representative sample” for allocation purposes requires further de-

velopment for gas and volatile-rich samples. Depending on the temperature at which pre-

liminary examination takes place, some species may be condensed while others remain in

the gas phase. Additionally, thorough mixing of a gas-phase sample may be impossible to

guarantee, especially while the sample remains sealed in the flight sample container. There-

fore, when producing aliquots of gas samples for distribution to the scientific community,

homogeneity between aliquots should not be expected. One possible solution is to separate

gas-phase compounds by their condensation temperatures, freezing out compounds in a se-

quence that allows them to be separated by composition. This would limit (and possibly

prohibit) bulk compositional analyses, but it would separate the sample into known com-

positions from which aliquots could be obtained. Regardless of how representative samples

are defined, significant development is still required to address this capability gap for future

volatile-rich sample return missions. An alternative to conducting preliminary examination

of gas samples is to immediately conduct analysis of the gases for scientific purposes prior to

preliminary examination. This option would be desirable in any instance where the primary

science goals for a sample could be compromised through any preliminary examination

processes.

Once the data are collected during preliminary examination, they are compiled and re-

leased to the scientific community in various online/digital formats or sample catalogs

in order to allow researchers to request them for study. For U.S. meteorites, this is the

Antarctic Meteorite Newsletter published in February and September each year (for exam-

ple, https://curator.jsc.nasa.gov/antmet/amn/amn.cfm#n412). For other collections, different

mechanisms of reporting of available materials are put in place. All NASA curated samples

are detailed in the ARES website (https://curator.jsc.nasa.gov/), and new samples announced

biennially in the Astormaterials Newsletter (https://curator.jsc.nasa.gov/newsletter/#n0101).

And meteorites from around the world are detailed in the Meteoritical Bulletin (https://www.

lpi.usra.edu/meteor/metbull.php).

Preliminary examination does not end with the process of reporting data in a newsletter.

The curation process regularly involves the subsampling of materials. Each time this occurs,

https://curator.jsc.nasa.gov/antmet/amn/amn.cfm#n412
https://curator.jsc.nasa.gov/
https://curator.jsc.nasa.gov/newsletter/#n0101
https://www.lpi.usra.edu/meteor/metbull.php
https://www.lpi.usra.edu/meteor/metbull.php
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the subsampling process is ideally well documented with photographs, diagrams of sub-

sampling, the weights of both removed and remaining materials, and descriptions of those

materials if noteworthy. The process of subsampling larger samples involves exposing new

material to the sample surface and to the curatorial environment. These newly exposed mate-

rials may require description, and in extreme cases, if they reveal something extraordinary,

may necessitate announcement to the scientific community of new sample opportunities.

Preliminary examination, unlike initial characterization, will go on as long as there is sam-

ple remaining in our collections, and hence sample catalogs are living documents.

6.2 Who Does PE?

Who should be involved in the preliminary examination of samples depends on the mech-

anism by which the samples were recovered. For spacecraft missions to planetary bodies

within our Solar System, there are numerous stakeholders. These stakeholders include the

mission science team that orchestrated and successfully executed the sample return mission,

the scientific community at large that will also want to study the returned samples, and fu-

ture generations of scientists that will want to study these samples with technology that has

not yet been invented. It is the responsibility of a collection curator to defend all of these

stakeholders and to find the right balance between sample consumption and sample conser-

vation that maximizes science returns on the samples over multi-decade timescales. Given

the important role of a collection curator for the safety and long-term viability of returned

samples, it only makes sense for astromaterials returned from spacecraft missions to be re-

ceived, opened, processed, and characterized within a sample curation facility by specially

trained personnel under the management of a curatorial authority. That said, the people in-

volved in the preliminary examination of returned materials will not be limited to curation

personnel. The people involved in the preliminary examination should include some combi-

nation of curatorial processors trained to process and document miniscule samples, collec-

tion curators, and members of the sample science team. There may be a healthy tension that

develops between the curator and members of a sample science team (i.e., conservation vs.

consumption, respectively) because the science team has scientific mission requirements to

achieve within a fixed period of time, and the curator must think beyond that time frame to

the long-term viability and availability of the samples. To minimize such tensions, it is im-

portant to have policies in place prior to the samples being returned that outline how much

sample can be consumed by the mission science team to achieve the primary science goals.

With less controlled sample collection, such as meteorite falls recovered anywhere in

the world, the very first steps of preliminary examination (i.e., basic characterization) may

take place in the field by trained meteorite hunting/recovery programs such as those run

by the US (ANSMET), Japan, Belgium, China, South Korea, and the UK. The ANSMET

program, for example, documents the field location of each meteorite recovered with a GPS

position, a photograph next to a field number, the percentage of fusion crust visible on the

sample, an educated guess at the meteorite type, a general description of any other notable

features (i.e., it was found in liquid water, it was found half buried in ice, it was broken in

half), and anything else that may require comment (i.e., it was accidentally touched with

a glove, a bare hand, a snowmobile) and could possibly affect future analyses. Once the

field documentation is completed and the samples are sent to a curation facility, preliminary

examination largely occurs by curation personnel, and the samples are made available for

request without first being analyzed by a mission science team.
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6.3 Where do We Draw the Line Between Preliminary Examination for Curation

and Science?

Basic characterization and preliminary examination are, as stated above, the processes by

which returned samples are initially documented and sufficiently characterized to provide

the appropriate scientific research community with enough information to select and request

them for scientific study. A long standing discussion is carried on by curators worldwide

as to what constitutes “too much characterization” and where the line is drawn between

performing that characterization and conducting research that should be PI-led. The line is

particularly difficult to delineate for small particle collections where the entire particle may

be <10 µm and almost any observation with an electron beam or laser could alter the sample

(e.g., interplanetary dust particles in NASA’s Cosmic Dust collection). However, there are

also some examples of disagreement among curators as to which instrumentation and anal-

yses are appropriate for preliminary examination on large samples where subsampling does

not negatively impact the availability of the material (e.g., oxygen isotopic measurements,

X-ray computed tomography, etc.). Nonetheless, the line between characterization and sci-

ence is going to be different for each sample type, and that line should be optimally placed

such that wasted sample consumption resulting from insufficient information about the sam-

ples in a catalog (i.e., the consumed sample did not have the phase of interest) is minimized

whilst serendipitous discoveries within the samples during scientific investigations can still

occur.

One of the questions meteorite curators commonly ask, for example, is whether or not

oxygen isotopic compositions should be determined for meteorite samples returned from

Antarctica or elsewhere. These measurements are very much in the realm of PI-led research,

but with meteorites coming from a variety of different Solar System bodies, providing the

�17O composition gives the curator and requesting scientist the background information

needed to identify potentially unique samples or those thought to be from Mars or other

potentially unknown sources. Generally, isotope labs in the U.S. have provided the U.S.

Antarctic Meteorite Program with these data as needed, but O-isotope analysis should only

be used as a characterization tool when other, less destructive, methods cannot be used to

uniquely classify the material. Another example is the use of X-ray computed tomography

(XCT) as a characterization tool. Having three-dimensional context of samples provides

curation personnel with invaluable information about the contents of samples, particularly

highly heterogeneous samples like regolith breccias. This information can be used to identify

clasts that are not exposed at the surface, and it can be used to make informed decisions about

cuts or sample splits during sample processing. However, XCT exposes samples to radiation

doses that can have lasting effects on the samples. Thermoluminescence in particular is

negatively impacted by XCT analysis of samples (Sears et al. 2016, 2018), and studies are

underway to better characterize its effect on organic compounds in samples (Hanna and

Ketcham 2017; Friedrich et al. 2019).

Most curated astromaterials samples today are room-temperature solids; however, as we

advance to collecting materials that require cryogenic storage or gas-phase samples, further

questions arise as to how to conduct a preliminary examination, especially if the “shelf-

life” of the samples prohibit waiting for the technology of tomorrow to analyze the samples.

An alternative approach to a preliminary examination for materials that may have a short

shelf-life is to organize a large scale consortium study where all stakeholders in the sci-

entific community are given the opportunity to join, either through an “all are welcome”

approach like Stardust or competitively through a proposal process if there is a need to limit

the number of investigators. Conservation for the sake of conservation is not a meaningful
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philosophical approach to astromaterials curation. It is important that the goals of maximiz-

ing science returns on samples over their viable lifetimes are an integral part of a long-term

sample conservation plan.

7 Looking Forward

Advanced curation is a critical function to the success of sample return missions and Earth-

based sample acquisition and plays an integral part in enabling the high precision measure-

ments that are often done on astromaterials samples. Looking forward, advanced curation

must prepare for sample return missions from any celestial body within the solar system,

including planets, moons, asteroids, and/or comets. The direction and scope of advanced cu-

ration research is driven by (1) existing strategic knowledge gaps identified through lessons

learned from previous sample return missions and Earth-based programs that collect as-

tromaterials; (2) the emerging needs of the scientific community that study astromaterials

samples; and (3) the selection of new targets for sample return missions and the associ-

ated curation and sample handling requirements of those missions (e.g., Beaty et al. 2019;

Haltigin et al. 2018; McLennan et al. 2011; Vander Kaaden et al. 2019). The primary re-

sult of advanced curation is to both reduce and quantify contamination to astromaterials and

preserve the scientific integrity of all samples from mission inception and through ATLO,

sample collection, curation/preliminary examination on Earth, curation/storage, and secure

delivery of the samples to Earth-based laboratories for in-depth scientific analysis. Advanced

curation is an interdisciplinary field of research and development and also serves as an im-

portant science-enabling activity. The collective lessons learned from previous spacecraft

missions and the results of advanced curation research will work in tandem to feed forward

into better spacecraft designs and enable more stringent requirements for future sample re-

turn missions.
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