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Abstract 

The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing 
data with the highest priority to achieve precise analyze and control, rather than using simplified physical models and 
human expertise. In the era of data-driven manufacturing, the explosion of data amount revolutionized how data is 
collected and analyzed. This paper overviews the advance of technologies developed for in-process manufacturing 
data collection and analysis. It can be concluded that groundbreaking sensoring technology to facilitate direct meas-
urement is one important leading trend for advanced data collection, due to the complexity and uncertainty during 
indirect measurement. On the other hand, physical model-based data analysis contains inevitable simplifications and 
sometimes ill-posed solutions due to the limited capacity of describing complex manufacturing process. Machine 
learning, especially deep learning approach has great potential for making better decisions to automate the process 
when fed with abundant data, while trending data-driven manufacturing approaches succeeded by using limited 
data to achieve similar or even better decisions. And these trends can demonstrated be by analyzing some typical 
applications of manufacturing process.
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1 Introduction
�e concept of “smart manufacturing” (also known as 

intelligent manufacturing) is experiencing an explosive 

propagation. According to Tan et  al. [1], smart manu-

facturing is the fusion of intelligent technologies and 

manufacturing technologies. Smart manufacturing is an 

umbrella term of manufacturing technologies and para-

digms aiming to automate production and transaction by 

taking full advantage of advanced information technolo-

gies [2]. Key technologies involved in smart manufac-

turing include but not limited to the Internet of �ings 

(IoT), cyber-physical system (CPS), cloud computing and 

big data analytics. �ese technologies, when integrated 

with manufacturing capabilities, initiated various para-

digms belonging to the smart manufacturing family, such 

as IoT-enabled manufacturing, digital twin, cloud manu-

facturing. Manufacturing data can be captured at all 

stages in a product life, ranging from explicit values such 

as material properties, process temperature, vibration to 

implicit ones like supply chain resource and customers’ 

preferences. �e volume of data generated by manufac-

turing systems is growing rapidly with over 1000 EB [3] 

collected in the year 2015, and is expected to increase 

20-fold in the next ten years. Data has been playing a cru-

cial role since the fourth industrial revolution initiated in 

Germany [4]. Data-driven decisions, on the other hand, 

distinguishes modern manufacturing from traditional 

ones in that decisions are made based on data of facts, 

not theoretical physical models, opinions and guesses.

So far, researchers have been investigating in the area 

of data-driven manufacturing for decades and have pub-

lished a great number of review articles about the latest 

achievements from different aspects. It all came about 

when large volumes of data were generated as an out-

come of digital manufacturing, along with data mining 

Open Access

Chinese Journal of Mechanical 
Engineering

*Correspondence:  liyingguang@nuaa.edu.cn
1 Nanjing University of Aeronautics and Astronautics, Nanjing 210016, 
China
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-4425-8073
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-020-00459-x&domain=pdf


Page 2 of 21Xu et al. Chin. J. Mech. Eng.           (2020) 33:43 

techniques developed since the 1990s [5]. Later, upon 

wide acceptance of data-driven methods, process diagno-

sis techniques were adopted to automate fault detection 

in industrial processes [6]. Wuest et  al. [7] gave a com-

prehensive review of machine learning methods utilized 

in manufacturing tasks. Since most manufacturing data 

are labeled data, supervised learning played a dominant 

role in practical applications. Zhong et  al. [2] surveyed 

associated topics in the context of Industry 4.0, including 

Internet of �ings, cloud manufacturing, cyber-physical 

systems, etc. based on which they provided detailed anal-

ysis on how these key constitutive technologies together 

can realize Industry 4.0. When data became available 

everywhere, data fusion techniques were also devel-

oped to facilitate industrial prognosis [8]. Kong et al. [9] 

reviewed the latest multisensor measurement and data 

fusion technology in precision monitoring systems. Tao 

et  al. [10] summarized the state-of-art development of 

new technologies through the lifecycle of manufactur-

ing data, including data collection, storage, processing, 

visualization, etc. �ese technologies altogether initiated 

smart manufacturing applications, such as smart design, 

smart maintenance and quality control.

As an increasing number of researchers started to 

realize the importance of manufacturing data, data 

collection and analysis have been broadly studied and 

incorporated into modern manufacturing. Neverthe-

less, few of the aforementioned review articles focused 

the evolution pattern of data collection and analysis 

towards modern manufacturing processes. As depicted 

in Figure  1, data collector, e.g., sensor is designated 

to capture useful physical values generated by manu-

facturing event. �e acquired data is further analyzed 

and interpreted into optimal decisions to enhance the 

performance of the manufacturing system. �is closed-

loop form of manufacturing inscribed a fundamental 

paradigm of data-driven manufacturing, as opposed 

to conventional model-based manufacturing. As the 

development of various sensoring technologies and rel-

evant infrastructures, modern manufacturing systems 

are equipped with a large number of sensors captur-

ing data at an unprecedented rate [12]. New challenges 

are thus raised: First, erroneous or patchy data can dis-

tort results and lead to faulty decisions [11]. Maintain-

ing the veracity of data with respect to the concerned 

target is challenging, because most data captured via 

generic sensors cannot directly reflect the actual on-

site situation. Secondly, transforming these data into 

useful knowledge and decision is also challenging, as 

the volume, variety and velocity of the captured data 

are already beyond normal capacity [13]. Inaccurate 

methods to analyze only partial information from col-

lected data can also mislead the final decision and 

performance.

To deal with these challenges, researchers have been 

centralized in this area and yielded rich outcomes. �e 

main purpose of this paper is to summarize the devel-

opment and trend of data collection and analysis in 

the era of data-driven manufacturing by conducting 

a thorough review of the state-of-art. �e rest of this 

paper is organized as follows: Section  2 will elaborate 

the framework of data-driven manufacturing and dem-

onstrate some representative applications in different 

aspects. �e evolution of data collection and analyt-

ics will be separately discussed in Sections  3 and 4. 

Section  5 will summarize and give outlook of future 

trend in advanced monitoring systems in modern 

manufacturing.
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Figure 1 Closing the loop of data-driven manufacturing
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2  Concept and Key Components of Data-Driven 
Manufacturing

2.1  Data‑Driven Manufacturing

�e major distinction between the paradigm of modern 

and conventional manufacturing can be viewed in Fig-

ure  2. Conventional manufacturing automation can be 

regarded as model-based manufacturing [14]. Experts 

gain experience by making physical observations, such 

as visual inspection, noise recognition from manufac-

turing systems. �ese experiences together with human 

intelligence will derive physical models using theo-

retical, experimental and numerical methods, to bet-

ter understand the mechanism behind. Although great 

achievements have been made and applied in various 

applications, such as simulation [15] and performance 

evaluation [16], these model-based methods are nev-

ertheless inferior with their limited effective range and 

accuracy. �is is mainly because a great deal of simpli-

fications and assumptions are made when deriving the 

physical models, while the human experts are not assured 

to be mentally stable and impartial towards all gained 

experiences.

Modern manufacturing, on the other hand, is data-

driven [10], in the sense that data generated through 

manufacturing activities is fully utilized to positively 

enhance manufacturing quality and thus enrich flexibil-

ity and autonomy of the system. �e framework of data-

driven manufacturing is outlined in Figure 3 consisting of 

four layers. �e bottom layer is known as the manufac-

turing layer comprising different types of manufacturing 

processes, through which a product is designed, manu-

factured, assembled and evaluated from scratch. Data 

layer locates on top of manufacturing layer via sensor 

interface. Various types of sensors are integrated into the 

manufacturing system to monitor and inspect during the 

manufacturing process. In data layer, data is collected, 

stored and visualized for the preparation of data pro-

cessing. In knowledge layer, raw data transformed into 

insightful features and knowledge via data processing 

technologies. In decision layer, through the utilization of 

intelligence, knowledge eventually becomes decisions to 

make accurate simulation, evaluation and prediction, etc. 

to facilitate smart manufacturing.

�e major distinctions between data-driven manufac-

turing and conventional manufacturing are the genera-

tion, collection and utilization of data, which have been 

regarded as the key enabler to realize smart manufactur-

ing [17]. As can be implied from Figure  3, data eventu-

ally becomes decisions to automate the manufacturing 

process and enhance its performance. In this manner, 

accuracy of the decision predominates the manufac-

turing outcome, e.g., a false decision could potentially 

jeopardize the delicate product or even the manufactur-

ing system. It is conceivable that through all these layers, 

accuracy and fidelity of the final decision will decrease 

according to several reasons. In data layer, data acquisi-

tion may cause accuracy loss depending on the speci-

fication of sensors adopted. �e correlation between 

the acquired data and the actual physical value actually 

involves certain assumptions/simplifications. In knowl-

edge layer, the extraction of knowledge from raw data 

further induces error since extracted features may not 

perfectly define the overall profile of the original data. 

In decision layer, improper data analysis could lead to 
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Figure 2 Model-based manufacturing and data-driven manufacturing
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misunderstanding of the features, thus mislead the final 

decision. In total, the aggregated error can be tremen-

dous, which poses great challenge to develop advanced 

manufacturing systems. While detailed evolutional trend 

of data-driven manufacturing process will be demon-

strated in Sections 3 and 4, we first analyze some typical 

applications in Section 2.2.

2.2  Typical Applications in Data‑Driven Manufacturing

2.2.1  Product Design

Product design is an iterative decision-making pro-

cess to seek optimal solutions to the target customer 

needs. �e cost of product design can go up to 75% of 

the entire product cost, according to Li et al. [13], which 

was mainly due to the constant trial-and-error itera-

tions during the product design phase until the custom-

ers get satisfied. It was particularly difficult for customers 

to monitor and dominate the designing process which 

truly reflected their needs until the popularization of 

rapid prototyping and Internet. As an additive manu-

facturing technology, rapid prototyping [18] revolution-

ized the way how 3D product can be fabricated quickly 

from virtual design, offering the most intuitive feedback 

to the designers as well as to the customers. Internet 

increases direct communications between the customers 

and the company, through which customers can directly 

post their demands, share first-hand experience and 

even participate in a customized designing process of a 

product. Regarding the state of the art, a new paradigm 

named cloud-based design (CBD) was established to let 

design engineers conduct market research more effec-

tively and efficiently through spreading feedbacks and 

reviews in social media [19]. Cloud-based CAx software 

such as AutoCAD 360 was also invented to enable real-

time monitoring and collaboration among design teams 

that are geographically apart. In addition to the cloud-

based infrastructure, high performance cloud computing 

and big data analytics have enabled expensive computa-

tions such as analysis of market preference and customer 

demands at a reduced cost [20].

2.2.2  Logistics and Supply Chain Management

Manufacturing supply chain refers to the flow of raw 

materials from distributed original suppliers to manufac-

turing sites, and finally to places of consumption. Trace-

ability of the supply chain is an important feature for 

modern manufacturing enterprise to reduce logistic cost 

and increase its production efficiency in a long run. Aim-

ing at a better supply chain visibility and tracking, radio 

frequency identification (RFID) and GPS work together 

to provide a seamless and detailed trace of the product 

[21]. Supply chain analytics (SCA) has been extensively 

investigated to assist decision makers in identifying and 

assessing supply chain risks, and improving supply chain 

flexibility and capability. According to a latest review in 

this subject [22], analytic techniques in SCA include sta-

tistical analysis, simulation and optimization, which take 

full advantage of big data to analyze the supply chain per-

formance and to make appropriate decisions.

2.2.3  Shop Floor Monitoring

Shop floor monitoring is essential to keep track of the 

running state of each machine, make adaptive scheduling 

and maintenance. Modern manufacturing shop floors are 
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Figure 3 Framework of data-driven manufacturing
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equipped with smart sensors, among which RFID sen-

sors are widely adopted to enable enormous data acquisi-

tion [23]. Data pre-treatment and analysis using machine 

learning algorithms are then applied for shop floor 

scheduling and fault prediction [24]. Real-time machine 

availability and execution status monitoring is also an 

important issue to render distributed process schedul-

ing in shop floor and cloud-based manufacturing. Wang 

[25] proposed a tiered system architecture with function 

blocks for monitoring the machine availability and execu-

tion status in real time, such that a closed-loop informa-

tion flow can be established. As the variety and volume 

of data keeps increasing, the integrated data becomes too 

intricate to handle and perceive. Cyber physical system 

(CPS) provides an ultimate solution to this issue by estab-

lishing a synchronized virtual shop floor to the actual one 

[26]. In this way, a series of smart operations can be real-

ized, including smart interaction, smart control and man-

agement, etc. making the networked machines perform 

more efficiently, responsively and collaboratively.

2.2.4  Manufacturing Process

�e importance of manufacturing process can never be 

overstated. In the last few decades, new types of manu-

facturing process, such as high speed machining (HSM), 

additive manufacturing (AM) and hybrid manufacturing, 

have been rapidly emerged to satisfy growing demands of 

product. �e complexity of modern manufacturing pro-

cess has already gone beyond the level to be manually 

observed and controlled. Monitoring the manufacturing 

process via dedicated monitoring system has become a 

critical and essential target to avoid anomalies and reduce 

the maintenance cost. Towards this target, machining 

monitoring system became a research hotspot in recent 

literature [27]. Machining monitoring system encom-

passes signal acquisition, signal processing and decision 

making steps, in order to identify tool conditions, chip 

conditions, processing conditions [28] and part surface 

conditions [29]. Monitoring system for additive manu-

facturing, especially for metal-based AM, has been fully 

investigated to enhance the part quality and repeatability 

in order to satisfy the stringent requirements from aero-

space and healthcare sectors [30]. Vision and camera-

based monitoring systems are widely adopted for in-situ 

metrology inspection and closed-loop control of additive 

manufacturing [31].

As the development of advanced sensors and artificial 

intelligence, data-driven manufacturing process is also 

in its evolution. �ere has been two diverse trends in 

modern manufacturing process. �e first one is to devise 

smart sensors for direct measurement of those high-value 

data. �ese direct measurement approach can effectively 

bypass the tedious data processing stage and improve the 

fidelity to a whole new level. �e other one is to excavate 

valuable knowledge from low-value data using advanced 

machine intelligence. As mentioned earlier, data collec-

tor and data analyzer are the key components to achieve 

these two targets. Pertaining to the former, the acquired 

manufacturing data from advanced sensors is of unprec-

edented fidelity and accuracy compared to the one from 

legacy data collectors. On the other hand, data analyzers 

utilizes the latest data processing and machine learning 

technologies to make better decisions than ever before. 

In the remainder of this paper, a thorough investigation is 

made to review the state-of-the-art development of data 

collection and data analysis towards data-driven manu-

facturing process, and to discuss the future trend of data-

driven smart manufacturing.

3  Advanced Data Collection in Data-Driven 
Manufacturing Process

Modern manufacturing system is equipped with 

advanced sensors collecting sequential data from differ-

ent physical events. �ese data are of low value density 

if treated individually, but they together form great value 

for the system to keep track of the manufacturing pro-

cess, in order to make simulations, evaluations and pre-

dictions, etc. �erefore, high-quality data collection is a 

desirable target in modern manufacturing by means of 

various types of sensors.

As alluded earlier, the lifecycle of manufacturing data 

consists of data collection and data analysis. In data 

collection stage, manufacturing data is generated and 

collected from equipment, human operators and prod-

ucts. �ese data can be classified into structured, semi-

structured and unstructured data [32], depending on the 

selection of sensors and their working principles. In data 

analysis, the target is to extract informative knowledge/

decision from the raw data end to end. High dimensional 

raw data sometimes needs a prior feature extractor to 

extract low dimensional representative features in either 

time domain or frequency domain [29], the extracted 

features from different data sources are fused together 

to make valuable decisions to control the manufacturing 

process.

Figure  4 summarizes two typical workflow of data-

driven manufacturing process, which are based on direct 

and indirect data measurement. In direct measurement, 

sensors are specifically designed to measure the physi-

cal value or its direct covariant during the process. �ese 

sensors are usually expensive and exclusive to certain 

working environment. �e captured data from direct 

monitoring is of high fidelity and accuracy. For example, 

the touch-trigger probes offer a direct way to precisely 

measure the coordinates of the part by discrete physi-

cal contact points. Alternatively, indirect measurement 



Page 6 of 21Xu et al. Chin. J. Mech. Eng.           (2020) 33:43 

offers a more cost-effective way to collect indirect but 

correlated value using generic sensors, such as cur-

rent sensor, accelerometer. �e major difference from 

direct monitoring is that the captured physical value is 

no longer the target one but a correlated value through 

a non-deterministic transfer function. For example, large 

spindle current sometimes implies a large cutting force 

during metal cutting process, and sometimes only indi-

cates an accelerating spindle speed, which is hard to tell 

unless more information is provided. Building up the 

exact inverse transfer function to deduce the target value 

is impossible, which always involves simplifications and 

assumptions, inevitably leading to accuracy loss, which 

has become the major issue for indirect monitoring.

Abellan-Nebot and Subiron [33] gave a comprehen-

sive review of machining monitoring systems developed 

so far, including sensors, signal processing and fea-

ture extraction. In their point of view, they argued that 

indirect measurement was more prevalent for its cost-

effectiveness and versatility. Lauro et al. [27] in their lat-

est review suggested to take great care of the choice of 

measurement due to implementation cost and require-

ments. For tool condition monitoring, such as tool wear 

diagnosis, direct methods, e.g., optical and radioactive 

sensors were deprecated due to the inaccessibility of the 

cutting area during the cutting process [34]. However, 

direct vision/camera-based systems were widely used for 

monitoring in-situ metrology for additive manufactur-

ing process [31], in order to achieve a close-loop identi-

fication of material discontinuities and failure modes. As 

manufacturing processes are becoming more and more 

complicated, generic sensors may not satisfy the increas-

ing demands of high accuracy because of the inevitable 

simplifications and assumptions between the target and 

the captured value. �e following section will demon-

strate the evolutional trends for various monitoring tasks 

in manufacturing process.

3.1  Data Collection in Manufacturing Process

Extensive studies in manufacturing data collection have 

been conducted for various applications. From the per-

spective of machining process, as depicted in Figure  5, 

people care mostly about the real time condition of the 

process, the tool and the part. Applications include cut-

ting force monitoring, chatter detection, tool wear/break-

age diagnosis, online inspection of surface roughness and 

dimensional accuracy.

3.1.1  Cutting Force Monitoring

Cutting force monitoring is among the earliest achievable 

capabilities in numerical controlled machining, for its 

high correlation with the in-process workpiece and tool 

status. Large cutting force is detrimental to the part accu-

racy as well as to the cutting effectiveness [35]. Initially, 

the measurement of cutting force value was conducted 

indirectly by using current signals of servo motors [36] or 

feed motors [37]. �ese methods are cheap and easy to 

implement, but with very limited upper bound in terms 

of accuracy. Albrecht et  al. [38] proposed an innovative 

indirect force measurement by integrating capacitance 

displacement sensor into the spindle. �e sensor was 

capable of measuring deflection of the tool and finally 

converted to the value of force. At certain frequency 

(650  Hz), the sensor reliably measured cutting force 
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with around 10% error in magnitude. �e major draw-

back of this indirect sensor was its limited bandwidth, 

which, even after applying a Kalman filter, can only reach 

1000 Hz. �ese indirect methods were either of low accu-

racy or with limited frequency bandwidth. Direct force 

sensors were developed which was equipped with sensing 

elements to convert external force load into deformation 

of the elastic element. Piezoelectric transducer and strain 

gage are two major branches in modern cutting force 

dynamometers. Strain gauges force transducers offer 

high frequency response and long-term stability of defor-

mation under an external force. Yaldiz et  al. [39] devel-

oped a table dynamometer using strain gauge to measure 

static and dynamic milling forces. An octagonal ring was 

manufactured to locate the strain gauges, whose orienta-

tions and locations were carefully determined to maxi-

mize the overall sensitivity. After calibration, the final 

accuracy can reach up to 98.5% in real milling process. 

Piezoelectric sensors, as compared to strain gage, are 

superior for dynamic force measurement for their high 

dynamic range and sensitivity [40], which were usually 

mounted on the spindle side for dynamic force measure-

ment. As for the state-of-the-art, advanced measurement 

apparatus were developed to measure micro-cutting 

force in wireless manner, and with higher accuracy up to 

99.8% [41]. Polyvinylidene fluoride (PVDF) sensors were 

embedded in each inserts of the cutter to estimate real-

time working condition for separate insert in a wireless 

manner [42]. Some recent studies tried to develop a so-

called smart tool with built-in piezoelectric sensor array 

[43, 44], which could be a future trend towards smart 

manufacturing process. Table 1 lists the evolution of cut-

ting force measurement.

3.1.2  Machining Chatter Inspection

Machining chatter has always been an important issue in 

manufacturing process, for its complex physical mecha-

nism and negative effects leading to poor surface finish, 

tool damage, etc. [45]. Real time chatter monitoring has 

also been classified into indirect and direct methods. 

As the outcome of chatter is usually in the form of self-

excited vibration, direct methods using microphone [46] 

and accelerometer [47] have been demonstrated as effi-

cient and effective solutions for chatter recognition. �ey 

however suffer from a common drawback that the ambi-

ent sound/vibration could introduce noise to the target 

signal. Especially for the microphone, the suppression of 

environmental noise is mandatory to make it truly appli-

cable. Later on, indirect methods came out focusing on 

the correlated effect of chattering and utilized relevant 

signals for chatter detection, such as using cutting force 

signal [48], motor current signal [49], acoustic emission 

[50] and the fusion of multiple signals [51]. �e correla-

tion between these signals and the chatter occurrence 

needs to be meticulously analyzed to achieve feasible 

results. �e accuracy of these indirect measurements 

has been greatly enhanced after adopting machine learn-

ing algorithms, such as in [49], using a support vector 

machine to recognize the chatter pattern based on servo 

motor current signal can reach over 95% in terms of 

accuracy rate. Nevertheless, the frequency bandwidth of 

these generic indirect sensors may not suffice the detec-

tion of chatter, especially in high-speed machining. Con-

sequently, direct measurements using microphone has 

been revived after the reliability of sensor was improved 

in monitoring milling operations. Specifically, the micro-

phone response inside the machine-tool chamber was 

sensibly corrected using equalization filters to ensure 

adequate accuracy in chatter detection task [52]. Optical 

measurement such as using a laser beam and an optical 

position detector (OPD) to identify the vibration of the 

in-process tool was also regarded as a direct method 

[53]. In this study, the laser beam was reflected on the 

rotating cutter and captured by the OPD, by which the 

displacement of the cutter can be recorded in real time. 

�e development of high-resolution vision system also 

facilitated the online measurement of chatter by analyz-

ing the surface texture/marks in real time [54]. Ding et al. 

[55] invented an active control system to detect and sup-

press machining chatter. Chatter was detected by directly 

sensing the workpiece displacement using a displace-

ment sensor and then controlled via a voice coil motor. 

In terms of offline chatter identification, chatter stability 

diagram offers a scientific reference for a proper choice 

of chatter-free machining parameters [56], the genera-

tion of which relies hugely on the frequency response 

functions (FRF) at the tool tip. Accelerometers are widely 

adopted for FRF measurement [57] based on standard 

impact test using a hammer integrated with force sensor. 

�e impact test is nominated as a direct measurement 

for FRF determination but requires tedious setting-ups 

for pose-dependent tool tip dynamics in bi-rotary milling 

head [58]. Table 2 lists the evolution of machining chatter 

inspection.

Table 1 Evolution of cutting force measurement

Year Indirect measurement Direct measurement

Before 2000 Current sensor [36, 37]

2001–2010 Displacement sensor [38] Strain gauge [39]
Piezoelectric sensor [40]

2011–2020 Smart tooling [43, 44]
Wireless cutting force sensor 

[41]
Embedded PVDF [42]
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3.1.3  Tool Condition Monitoring

Tool condition monitoring (TCM) is vital to keep track of 

the remaining useful life (RUL) of the tool. Late replace-

ment of dull or broken tool may decrease the accuracy 

and quality of the final part and cause machine break-

down [34]. �ough with much effort spent in the past 

[59], direct inspection of the in-process tool condition 

was developed in the first place which includes the usage 

of proximity sensors, radioactive sensors and vision sen-

sors. Proximity sensors, such as ultrasonic sensor [60] 

estimate the differential of distance between cutting edge 

and workpiece, whose accuracy is highly affected by the 

thermal expansion and cutting force induced deflection. 

Radioactive sensors [61] detect the amount of residue 

radioactive materials implanted on the flank face of the 

cutting tool in order to estimate the wear percentage, 

which was regarded detrimental and thus limited for lab 

usage. Vision-based tool condition monitoring, especially 

using structured light [62] was also patented long ago, 

but required an ideal condition of lighting and cutting 

environment to achieve acceptable accuracy.

Deficiencies of these early direct TCM methods lead 

to the prosperity of indirect TCM methods, which uti-

lized correlated signals, such as cutting force [63], acous-

tic emission [64], vibration [65], current [66–68] and 

surface roughness [69]. �ese representative indirect 

methods advanced the development of signal processing 

and sensor fusion techniques to enhance the prediction 

accuracy. �ough many review articles highly voted for 

the indirect TCM methods [29, 34] as the future trend 

due to the increasing accuracy, the major drawback is 

still prominent in that these methods are case-sensitive 

and requires fine-tuning and calibration to achieve high 

authenticity. Direct TCM methods, especially for the 

vision-based, can bypass this issue by directly inspect-

ing the geometric change of the tool. Two-dimensional 

[70] and three-dimensional vision systems [71, 72] were 

developed for direct TCM and achieved sub-pixel accu-

racy using advanced image processing techniques. �ese 

vision-based TCM systems all require a pause between 

two sequential operations to capture a steady image of 

the tool. �is inconvenience has been fully addressed in 

recent studies, among which, Ramirez-Nunez et  al. [73] 

came up with a smart sensor consisting of an infrared 

camera and a temperature sensor, which facilitates the 

in-process tool breakage inspection even with the exist-

ence of coolant fluid. �e tool condition is well estimated 

by processing the infrared thermography. Dai and Zhu 

[74] in their recent study proposed an integrated vision 

system for micro-milling TCM. �e system was designed 

with a telecentric lens, light source and a 3-DOF motion 

platform to achieve uniform image quality and high auto-

mation. As the availability of powerful image processing 

algorithms, direct TCM using smart sensors and inte-

grated systems is believed to have a promising future. 

Table 3 lists the evolution of tool condition monitoring.

3.1.4  Part Condition Monitoring

�e condition of in-process part (a.k.a. workpiece) needs 

to be monitored to take timely adjustment of the pro-

cess, in order to yield high-quality part. Surface finish 

and dimensional accuracy are the two dominant factors 

of the workpiece condition to determine the final qual-

ity of product. Especially for the surface finish metrology, 

which has been overwhelmingly concerned as a direct 

indicator to the capability of modern manufacturing sys-

tem. Conventional surface inspection methods [75] are 

usually conducted subsequently to the manufacturing 

process. �ese post-processing based methods can usu-

ally achieve higher accuracy using dedicated instruments, 

such as the stylus profilometer [76], but are inactive to 

take responsive actions to prevent further accuracy loss 

Table 2 Evolution of machining chatter inspection

Year Indirect chatter inspection Direct chatter inspection

Before 2000 Acoustic emission sensor [50] Microphone [46]
Accelerometer [47]

2001–2010 Dynamometer [48]
Sensor fusion [51]

Optical sensor [53]

2011–2020 Current sensor [49] Integrated microphone transducer [52]
Vision-based system [54]
Displacement sensor [55]

Table 3 Evolution of tool condition monitoring

Year Indirect monitoring Direct monitoring

Before 2000 Accelerometer [65] Radioactive sensor [61]
Proximity sensor [60]
Structured light [62]

2001–2010 Current sensor [66–68] 3D metrology [72]

2011–2020 AE sensor [64]
Surface roughness inspector 

[69]
Dynamometer [63]

2D vision [70]
3D vision [71]
Infrared thermography [73]
Integrated vision system [74]
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during the process. �erefore, quality control based 

on in-situ monitoring offers a more practical solution. 

However, it is intractable to incorporate sophisticated 

roughness scanners into the harsh operating environ-

ment with metal chips, lubricants and vibrations. Con-

sequently, indirect methods for the inspection of in-situ 

surface roughness took over the mainstream in the past 

[77], which contain the usage of accelerometer [78], 

dynamometer [79], acoustic sensor [80], ultrasonic sen-

sor [81], etc. Prevalent shortcoming of these indirect 

methods is lower achievable accuracy due to the nature 

of uncertainty. Currently, vision-based surface rough-

ness evaluation system [82] has been developed for effi-

cient and accurate in-situ surface inspection. �e essence 

behind was the usage of graph theory-based image 

analysis to achieve real-time identification of surface 

roughness distribution without interrupting the machin-

ing process. For metal additive manufacturing process 

where quality matters, vision-based systems are also the 

primary choice for in-situ metrology monitoring [31]. 

It is also suggested to apply hybrid instrumentation as a 

future direction to overcome the compromise between 

spatial resolution and the field of view, in which low reso-

lution sensor detects the whole area while high resolu-

tion sensor focuses on the area of interest.

Real-time dimensional accuracy monitoring is vital to 

render in-process quality control. Dimensional accuracy 

is prone to be violated for parts consisting of thin-wall 

features, due to either the deflection by external cutting 

force or the internal release of residual stress. As the in-

process part is usually securely mounted by fixture and 

hard to access by exotic instruments, integration of fix-

tures with sensing technology will be a potential direc-

tion according to the state-of-art review [83]. In terms of 

the deflection caused by external force, Azouzi and Guil-

lot [84] predicted the workpiece dimensional deviation 

in turning process via cutting feed, depth of cut and cut-

ting force signal. Cutting force and vibration signal were 

fused together for the prediction of deviation in turning 

a slender part [85]. For thin-walled part, such as a blisk, 

a common method to identify its in-situ deflection is by 

simulation using cutting force value and modeling tech-

niques [86], which is not only time-consuming but also 

uncertain in terms of accuracy. As for the deflection error 

caused by the release of residual stress, it was particu-

larly tricky to predict such error since each piece of raw 

stock has its own stress pattern. Instead, people strived 

to characterize the residual stress field distribution via 

nondestructive methods, such as using ultrasonic devices 

[87] and X-ray diffraction [88]. �e key to these nonde-

structive methods is to formulate the stress gradient with 

respect to the center frequencies, which can achieve 

plausible accuracy in workpiece with simple geometries. 

However, for realistic complex parts, the distribution of 

residual stress can be elusive especially when the work-

piece profile is constantly changing during the process. In 

light of this concern, direct measurement would be a bet-

ter choice.

To directly measure the deflection, the on-machine 

measurement system using a touch-trigger stylus was 

adopted to inspect the workpiece deformation, and adap-

tively change the subsequent tool path for compensation 

[89]. �e utilization of inspecting stylus was a prevalent 

choice for online measurement, it yet required the sus-

pension of the manufacturing process, which prolongs 

the overall processing time and is technically incapable of 

real-time monitoring. More advanced instruments were 

developed recently to address these issues. Luo et al. [90] 

devised a thin film PVDF sensor attached to the non-

machining side of the thin-walled part to monitor the 

deflection and vibration caused by machining force. �e 

change of output voltage faithfully reflected the high-fre-

quency deflection of workpiece during different machin-

ing stages. Real-time surface normal measurement for 

maintaining high accuracy of thickness is indispensable 

in machining freeform thin-walled part. Yuan et al. [91] 

established an online surface normal measurement using 

four eddy current displacement sensors installed in the 

frontend of the spindle, achieving a remarkable reduction 

in displacement errors (from 12% to 1%) after compen-

sation. A more intractable case of deformation is caused 

by the release of residual stress during the removal of 

raw material, such deformation remains obscure as long 

as the workpiece is securely fixed on the machine table. 

Indirect prediction model of the residual stress distribu-

tion [92] is too complicated to be accurate, due to a large 

set of remaining uncertainties. In light of this issue, Li 

et  al. [93] inaugurated a novel responsive fixture appa-

ratus for direct inspection of in-process deformation of 

large aerospace parts. �is smart fixture automatically 

opens up to release the deformation once the built-in 

stress sensor reaches its threshold. In this way, adaptive 

adjustment of the process can be made as long as the 

final shape is still enveloped by the remaining workpiece. 

Inspired by this idea, Hohring and Wiederkehr [94] fol-

lowed up with a similar intelligent fixture for the purpose 

of mitigation of chatter and compensation of work-

piece distortion to achieve high performance machin-

ing. Table  4 lists the evolution of workpiece condition 

monitoring.

3.2  Discussion and Future Trend

Data collection and analysis are two essential stages 

in data-driven manufacturing process. Depending on 

the correlation of captured and target value, manu-

facturing data can be collected via direct and indirect 
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measurement. Although indirect measurement offer 

more possibilities and larger scalability in diversified 

applications and are more cost-effective, they usually 

require the establishment of a physical transfer function 

to indicate the correlation between the measured and 

target value, which inevitably induce error as long as such 

correlation contains physical uncertainty. Consequently, 

the accuracy of indirect measurement is undermined 

so long as the correlation is not rigorously and math-

ematically identified. �is gap encouraged more studies 

to improve the accuracy by developing various sensor 

fusion and data analysis methods [95]. On a different 

perspective, direct measurement using dedicated sen-

sors can achieve high fidelity and accuracy. Although it 

seems to be contradictive to the big data scenario where 

obtained data is usually trivial and individually inaccu-

rate, the design of exclusive sensor is still one important 

trend in the manufacturing field to facilitate accurate 

process monitoring, and thus to make precise decision 

and control. �is pictures one possible future of intelli-

gent manufacturing.

4  Advanced Data Analysis in Data-Driven 
Manufacturing Process

Manufacturing process is decisive to the whole product 

life cycle. As elaborated in the previous section, vari-

ous sensors are being devised and integrated onto the 

machine to enable in-process monitoring by captur-

ing target or correlated values. Nevertheless, the data 

acquired by these sensors, no matter directly or indi-

rectly, only gives partial view of the manufacturing pro-

cess. �ese data still needs post analysis to be converted 

into perceptible knowledge and decisions. Making deci-

sions from data rather than human knowledge has 

become the dominant trend in data-driven manufactur-

ing. In data analysis, we believe there have been at least 

three paradigms so far, as depicted in Figure  6, which 

also illustrates the evolution of modern manufacturing 

process.

In the first paradigm of data analysis, a physical model 

describing the mechanism is developed by the expert. 

Once the input data and information is imported into 

the physical model as prior knowledge, a mathematical 

solver is established to find the optimal solution, i.e., the 

decision. For example, finite element analysis is a typi-

cal data analysis which employs linear solver to solve a 

partial differential equation, e.g., deformation of the 

part. Obviously, two simplifications are involved in this 

pipeline. First, the physical models developed by human 

experts are usually based on certain assumption and 

simplification which deviates from actual scenario. Sec-

ondly, solving the physical model with limited input data 

is sometimes ill-posed, which can possibly lead to faulty 

results. However, it should not be denied that when data 

is scarce and expensive to acquire, this paradigm effec-

tively offers a plausible way to interpret the process.

�e second paradigm of data analysis utilizes machine 

learning techniques to train a shallow encoders which 

consist exponentially greater number of unknown 

parameters than the physical model. �rough sufficient 

training stage using paired feature-result set, the trained 

model is capable of producing sensible answers on new 

input features. Due to the high generalization ability of 

machine learning models, it successfully bypasses the 

model simplification encountered in the previous para-

digm. Nevertheless, the ability for a shallow encoder to 

directly process high-dimensional raw data is still limited, 

it thus requires careful feature engineering and consider-

able domain knowledge to reduce the input dimension.

As the density and dimension of manufacturing raw 

data is experiencing a rapid growth, the key factor to the 

final accuracy is how the data is processed in the first 

place. Motivated by this need, the third paradigm using 

deep learning can potentially eradicate the error-prone 

handicraft of feature extraction, which instead is achieved 

automatically using a general learning procedure. In this 

way, feature extraction induced error can be reduced to 

a great extent. It is expected that this paradigm will give 

the best performance on data analysis as long as the deep 

model is fed with sufficient data.

In the following sections, we will first provide a com-

prehensive review on existing methods for feature extrac-

tion from manufacturing raw data, given that feature 

extraction is an essential stage for the first two para-

digms. Some typical manufacturing applications using 

data analysis will then be elaborated according to the 

above three paradigms.

4.1  Pre‑processing of Manufacturing Data

Manufacturing raw data can be regarded as a sequential 

of digital bits if not further processed. Data processing is 

an essential stage especially for indirect data to convert 

Table 4 Evolution of workpiece condition monitoring

Year Indirect accuracy 
monitoring

Direct accuracy monitoring

Before 2000 Ultrasonic sensor [81]
AE sensor [80]
Dynamometer [84]

2001–2010 Dynamometer [79]
Accelerometer [78, 85]

2011–2020 Simulation [86]
Ultrasonic sensor [87]
X-ray diffraction [88]

Vision based system [82, 31]
Touch-trigger stylus [89]
Thin film sensor [90]
Responsive fixture [93, 94]
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them into perceptible values. In general, data processing 

methods are specifically designed to extract useful fea-

tures and can be categorized into time domain, frequency 

domain, time-frequency domain and statistical process-

ing [34]. Specifically, time domain data processing refers 

to direct feature extraction of the time series data, such as 

the mean, peak and root mean square (RMS) value [33]. 

Song et  al. [96] characterized the vibration time series 

using autoregressive moving average (ARMA) model and 

discovered a linear relationship between the AR param-

eter and the surface roughness. Campatelli and Scippa 

[97] predicted the cutting force coefficients by analyz-

ing the time domain behavior of the cutting force signal. 

Ertekin et al. [98] calculated the RMS value of the AEDC 

signal which was observed as the most sensitive feature 

to the tool wear. �e average RMS feature of the current 

signal also contributes the estimation of tool wear [99].

Frequency domain data processing can extract more 

intrinsic features from a cyclic data series, especially 

when such data contains background noise which is 

hard to distinguish in time domain. Altintas et  al. [100] 

analyzed the cutting force and chatter stability during 

dynamic cutting process using Nyquist law in frequency 

domain. �e analysis of tool vibrations using fast Fourier 

transform (FFT) was proved an effective mean for the 

prediction of surface roughness [101]. Frequency spectra 

of the AE signal was identified to evaluate the tool condi-

tion in broaching process [102]. By analyzing the motor 

current in frequency domain, the sensorless automated 

condition monitoring was achieved for predictive main-

tenance of machine tool [103]. FFT was also utilized to 

filter out noise from the audible energy sound to achieve 

better monitoring performance [104].

�e FFT gives the entire frequency spectrum with the 

average frequency composition. Practically, the sensory 

data is dynamically changing over time. �erefore, a 

time-frequency data processing gives a more reasonable 

outcome by partitioning the time series data into short 

time intervals for frequency analysis [29]. Specifically, 

wavelet analysis and short time Fourier transform (STFT) 
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Figure 6 Three paradigms of data analysis based on (a) physical modeling; (b) machine learning; (c) deep learning
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are the two prevalent techniques to analyze cutting force 

[105], vibration [106], AE [107, 108], current [109] and 

sound signal [51].

Statistical data processing offers a better way to indi-

cate short term impulses and analyze variance between 

different factors. In particular, Aouici et al. [110] utilized 

a statistical analysis of variance (ANOVA) to predict the 

surface roughness during hard turning. Similar approach 

was found in Ref. [111] using vibration signal. Kannatey-

Asibu and Dornfeld found that the skew and kurtosis of 

the AE signal was sensitive to the tool wear [112]. Lu and 

Wan [113] studied the high-frequency sound signal for 

tool wear monitoring using class mean scattering criteria. 

Table 5 lists the processing methods for different manu-

facturing signals.

No matter what data processing strategy is utilized, it 

is a primary stage in the entire data analysis for the fol-

lowing two benefits. First, raw sensory data is usually of 

high dimension and contains stochastic noise, data pro-

cessing can tremendously reduce the dimension and filter 

out disturbance without losing much valuable informa-

tion. On the other hand, the extracted low-dimensional 

features are more comprehensible in terms of develop-

ing analytical algorithms to make decisions accordingly, 

which will be discussed in the following section.

4.2  Data Analysis in Manufacturing Process

4.2.1  Tool Condition Analysis

Analyzing in-process tool condition from limited data is 

an important issue through which manufacturing process 

can be more precise and efficient. Tool wear is the most 

phenomenal condition people cared. Identifying the tool 

wear mechanism is intractable as it involves physical and 

chemical process, such as abrasion, adhesion, diffusion 

and other types of wear during cutting process. A few 

pioneered studies strived to understand the wear mecha-

nism as the addition of brittle fracture, mechanical abra-

sion, physicochemical mechanism and others [114]. A 

recent study [115] developed a fundamental wear model 

by using a dedicated tribometer, which consists of cut-

ting and thermal simulations. However, the formulation 

of all these factors is subject to certain simplifications 

and assumptions, and calibrating the pending coefficients 

of the model using limited testing data would introduce 

more statistical errors, which together make the physical 

model inaccurate and unstable towards real complicated 

machining process.

Instead of formulating complex and error-prone physi-

cal models for tool wear mechanism, most research-

ers intended to estimate tool wear in a more statistical 

manner, i.e., to estimate remaining useful life by fitting 

historical data into an empirical model. Endeavors to 

estimate the tool life can be traced back to the early 20th 

century when FW Taylor [116] proposed the well-known 

Taylor equation, which is an empirical model with two 

unknowns. Ever since then, various empirical models 

[117–119] and experimental studies [120, 121] were pre-

sented targeting at different tool-workpiece combina-

tions. A comprehensive list of variant tool wear empirical 

models for dry machining can be found in Ref. [122]. 

�eir procedures were in similar fashion: first a nonlin-

ear formula describing the tool condition based on the 

observer’s domain expertise was established ahead of 

time, then factorial design of physical experiments were 

conducted to calibrate the unknowns of the formula, 

experimental validations were eventually conducted to 

prove the feasibility. Although the prediction accuracy 

reported in these works can reach as high as 95% in 

their experimental setups, it is perceived that any slight 

change of the actual cutting condition would devastate 

the accuracy. As the demand for accuracy and the com-

plexity of manufacturing process keep growing rapidly, 

physical and empirical models have been widely depre-

cated. Zhao et al. [123] argued that this was mainly due 

to the following reasons: First, the performance of these 

models was highly dependent on the domain expertise of 

the observer, whose robustness was unsecured due to the 

uncertainty and complexity of working conditions. Sec-

ondly, these models were unable to evolve along with the 

accumulation of data, and thus insensitive to the chang-

ing conditions, which lead to limited effectiveness and 

flexibility in real cases. �ese two deficiencies of model-

based approach would introduce considerable amount of 

error, not to mention the error from the feature extrac-

tor, which together makes the physical model-based data 

analysis hardly compatible with wider applications.

�e advance of volume and veracity of data makes it 

possible to adopt various machine learning algorithms to 

predict tool condition more accurately. Prevalent choices 

of machine learning techniques for tool condition analy-

sis include support vector machine (SVM), artificial neu-

ral networks (ANN), Hidden Markov models (HMM) 

Table 5 Processing methods for  di�erent manufacturing 

signals

Signal Time domain Frequency 
domain

Time‑
frequency 
domain

Statistical 
analysis

Cutting force [97] [100] [105] [110]

Vibration [96] [101] [106] [111]

Acoustic emis-
sion

[98] [102] [107, 108] [112]

Current [99] [103] [109]

Audible sound [104] [51] [113]
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and decision tree. With sufficient training data, trained 

ANN model using back propagation can be compara-

tively accurate for tool wear estimation [124]. Palanisamy 

[125] compared ANN against classic regression model 

in terms of the capability in tool wear estimation, ANN 

was found to be more robust and accurate for its pow-

erful fitting ability. As a statistical learning approach, 

SVM is superior for non-linear classification of data by 

mapping them into higher dimensional feature space, 

by which discretized state of tool wear can be classified. 

Support vector regression (SVR) is a variant of SVM for 

continuous regression of tool wear value. Tool breakage 

detection [126] and tool wear estimation [127] were suc-

cessfully carried out via SVM/SVR with over 99% success 

rate when the design parameters of the SVM model was 

fine-tuned. It was also noticed in a more recent study 

that a hybrid estimator combining analytic fuzzy classi-

fier (AFC) and SVM can reach higher accuracy in tool 

wear estimation [128]. Other learning techniques, such 

as decision tree classifier [129] and HMM [130], were 

also applied in application of tool wear estimation and 

achieved plausible performance. It was however stated 

in Ref. [129] that the performance of decision tree clas-

sifier combined with a PCA was case-sensitive. It is 

noticed that there has always been a hidden trade-off 

issue between the complexity of learning model and the 

training cost. To achieve high accuracy, a more complex 

learning model would thus require a larger training data 

set and heavier computational load, otherwise overfitting 

issue would lower the performance.

Most of the aforementioned tool condition analysis is 

majorly dependent on time series data such as cutting 

force and vibration. Shallow function approximators 

like ANN and SVM are technically incapable of deal-

ing with such high-dimensional data and thus require a 

dedicated feature extractor beforehand [131], as already 

elaborated in Section  4.1 and illustrated in Figure  6(b). 

Conceivably, the quality of the extracted features directly 

affect the accuracy of subsequent operations. Improper 

choice of feature extractor may fundamentally suppress 

the eventual performance. �erefore, it would be better 

if one can directly handle the raw data series and bypass 

the feature extraction stage. �e development of deep 

neural networks such as convolutional neural network 

(CNN) [132] and long short-term memory (LSTM) net-

work [133] can fully satisfy this requirement. Specifically 

in the application of tool condition analysis, Li et al. [134] 

adopted CNN to detect tool breakage by spindle current 

signal, which achieved higher accuracy (93%) than that 

of the traditional BP neural network (around 80%). How-

ever, time-domain feature extraction was still adopted 

in this work, CNN was thus only regarded as a tradi-

tional machine learning methods with higher achievable 

accuracy. Another recent study [135] was to monitor 

the tool wear level based on audio signal using CNN, 

which strived to eradicate the need of feature extraction 

by using the absolute values of Fourier transformation 

as input. As a result, the tool wear prediction accuracy 

reached to as high as 96.3%. A Convolutional Bi-direc-

tional Long Short-Term Memory networks (CBLSTM) 

was designed in Ref. [123] to eliminate feature engineer-

ing in tool health monitoring. In this network, CNN 

was served as local feature extractor, while LSTM was 

to address sequences of varying length data and capture 

long-term dependencies, in that tool wear was a time-

variant sequential progress.

�e extrusive challenge for the adoption of deep learn-

ing to make accurate analysis is the demand of large vol-

ume of labeled data, the acquisition of which is extremely 

costly and time-consuming for many manufacturing 

applications. For example, the identification of tool tip 

dynamics for a newly inserted tool needs hundreds of 

impact tests at different tool postures. In this situation, 

the utilization of historical data to facilitate the training 

of a new case becomes a potential and appealing solution. 

Chen et al. [136] proposed a transfer learning-based pre-

diction for pose-dependent tool tip dynamics in five-axis 

machine, by which the number of required impact tests 

is highly reduced. Sun et  al. [137] utilized deep trans-

fer learning to predict tool life, by taking advantage of 

the learnt similar characteristic across different objects. 

A recent study on tool wear prediction based on meta-

learning was proposed by Li et  al. [138]. Meta-learning 

has the ability of learning the hidden rules behind a vari-

ety of different but similar tasks/models. �e adoption of 

meta-learning in this study successfully predicts the tool 

wear status in changing cutting conditions with enhanced 

accuracy, while only a few training samples are needed 

upon a new learning task. �is meta-learning approach 

provides a new perspective to solve manufacturing prob-

lems where the acquisition of data samples are expensive 

and time-consuming. Table  6 lists the evolution of tool 

condition analysis.

4.2.2  Process Condition Analysis

Process condition analysis is a typical classification task. 

In machining process, the condition can be categorized 

Table 6 Evolution of tool condition analysis

Physical model Machine learning

Simulation Empirical 
model

Shallow 
learning

Deep 
learning

Learning 
from fewer 
data

[115] [116–119, 
122]

[124–130] [123, 134, 
135]

[136–138]
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into idling, stable and chatter state. Timely and precise 

identification of process condition is always desired to 

make adaptive adjustment of process control. Previous 

studies made some important progress in identifying the 

mechanism of cutting process. Budak and Altintas [139] 

explored the mechanism of chatter during milling pro-

cess and came up with a physical model to identify the 

chatter stability induced by the dynamic milling forces. 

According to this study, the cutter is simplified as a two 

degree-of-freedom system subject to a dynamic radial 

force, based on which the theoretical chatter stability 

lobe was derived. On the other hand, the calculation of 

dynamic cutting force is also simplified using numerical 

method. �is plausible offline solution may not prac-

tically satisfy real machining cases [45], as it requires a 

complete analysis of machine dynamics including the 

spindle, tool holder, tool and the workpiece, which is not 

only intractable to precisely identify but also requires 

tedious calibration works for different process conditions. 

�e simplifications and unpredictable systematic bias 

further reduced the accuracy in offline analysis. Although 

researchers carried forward this theory to adapt to more 

complex situations, e.g., five-axis machining [140], they 

were still of limited usage since the fundamental gap was 

not completely filled.

When it comes to online identification of process 

condition, the preferred option is to make diagnosis as 

early as possible, in order to prevent workpiece damage 

ahead of time. Traditional estimation algorithm, such as 

maximum likelihood [141] though achieved great suc-

cessful rate, but lacked the ability for early prediction. 

�e main reason is that subtle features are prone to be 

overlooked before they become phenomenal. Machine 

learning methods have been employed in this task for 

the superiority in classification, especially in those hard-

to-recognize scenario. In particular, acceleration signals 

were analyzed based on wavelet transform and SVM, this 

combination was able to detect transition state between 

stable and chatter state, showing excellent performance 

with over 95% accuracy rate [142]. In this way, chatter 

could be firmly suppressed in its infancy stage. Later on, 

neural network approaches were also developed for pro-

cess condition classification using vibratory signal [143]. 

In addition to the feature generation which is mandatory 

for traditional machine learning approaches, this work 

introduced a feature selection strategy based on envelope 

analysis to rank the features according to their entropy, 

and only those high-ranking features were selected for 

classification. �is operation essentially reduced the 

error from irrelevant features and hence increased the 

final accuracy.

To further reduce the error induced by feature extrac-

tion, deep learning methods were also utilized for 

machining process condition analysis. Among existing 

deep learning algorithms, CNN is known for its powerful 

image (second order tensor) processing and classification 

capability. However, most captured data from machin-

ing process is in the form of first order tensor (time 

sequence), which is not practical to be processed via 

CNN. Fu et al. [144] innovatively transformed measured 

signals into plotted image and employed convolutional 

neural network to achieve real-time identification of cut-

ting vibration state. �is work realized directly use of 

the original signal sequence for cutting state monitoring 

with significant performance of over 99.5% accuracy in 

most testing cases. Deep Belief Network (DBN) has been 

majorly dealing with voice and speech recognition [145]. 

�e in-process vibration signal is similar to the voice. Fu 

et al. [146] got inspired by this and came up with a DBN 

approach for cutting state monitoring. It turned out that 

DBN can steadily achieve high performance on the raw 

vibration signal without much data preparation.

Since data is relatively convenient to acquire during the 

manufacturing process, most deep learning approaches 

can already achieve very promising accuracy in their 

case studies. Still, conditions can be quite different in real 

machining situation where various materials, tools and 

parameters are combined in each individual task. Trans-

fer learning has been attracting more attention to deal 

with varying conditions [147] and proved to be effective 

for chatter detection with accuracy up to 95%. �is new 

learning technology will not only reduce the data needed 

for training a deep model, but also increase model ver-

satility to adapt to complex manufacturing process sce-

nario. Table  7 lists the evolution of process condition 

analysis.

4.2.3  Part Condition Analysis

�e well-being of in-process part directly affects the 

quality of final product. Surface roughness [77] and part 

dimensional error [148] are the two most concerned 

aspects, since they respectively reflect the manufactur-

ing quality in microscopic and macroscopic view. For the 

formal one, physical models and experimental data based 

regression are the two mainstream solutions people uti-

lized to understand the surface roughness mechanism. 

Lin and Chang [149] established a surface topogra-

phy simulation model incorporating the effects of tool 

Table 7 Evolution of process condition analysis

Physical model Machine learning

Analytical 
model

Shallow 
learning

Deep learning Learning 
from fewer data

[139, 140] [142, 143] [144–146] [147]
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geometry, cutting parameters and tool motions to simu-

late the surface finish profile during turning operation. 

Kim and Chu [150] determined the surface roughness 

by proposing a geometrical model to calculate the maxi-

mum height of the effective scallop. �is model was par-

ticularly complicated as it considered the cutter runout 

effect and cutter marks. Others conducted experimental 

studies to unveil the relationship between tool life, sur-

face roughness and vibration [101]. Regression analysis 

was adopted to handle the experimental data.

�e dimensional error of in-process part can be catego-

rized into plastic deformation caused by residual stress 

and elastic deformation caused by large cutting load. 

Finite element method (FEM) was a primary choice for 

the evaluation of these two types of deformation, due to 

the large uncertainty of part shape and stress distribution 

during the process. �e distortion of thin-walled work-

piece induced by machining residual force was predicted 

using a modified finite element model [151]. �e combi-

nation of experimental results with FEM was proposed to 

predict the shape deviation of complex geometry [152]. 

Elastic deflection also induces machining error, especially 

for thin-walled part. Wan et al. [153] estimated the cutter 

deflection using a simple cantilever beam model, and the 

workpiece deflection using FEM simulation. �e induced 

error was compensated accordingly [154].

Both analytical model and FEM have to make a great 

deal of simplifications since accurate prediction of sur-

face roughness and part deformation require tedious 

trial-and-error process and excessive computing power. 

Targeting at online analysis, trade-off between model 

complexity and its performance has always been a puz-

zling task. In light of this issue, machine learning algo-

rithms started to take over online quality analysis with 

higher performance. As for the surface roughness predic-

tion, although people spent great effort investigating its 

mechanism, it however varied with different processes 

and conditions. Any sophisticated physical models will 

only take effect in a limited range of applications. In this 

case, ANN has been widely adopted [155, 156] in both 

turning and milling process. Using a small number of 

training samples, ANN is capable of generating accurate 

prediction values but would essentially require a good 

design of network structure. As compared to linear and 

exponential regression model [155], neural networks 

were found to be capable of better predictions for sur-

face roughness. Support vector regression (SVR) method 

was also utilized for the prediction of roughness. A com-

parison of three types of SVRs and ANN was conducted 

in Ref. [157], results showed that SVR can achieve pre-

diction accuracy as high as 95%, while for ANN it was 

slightly lower (91.4%) and required more computational 

time at the same time.

When it comes to dimensional error prediction, online 

prediction and real time compensation has always been 

a preferable choice. Li et al. [158] developed a soft-touch 

sensor which provides proximity information when the 

tool is approaching the workpiece, and a neuro-fuzzy 

network for predicting machining errors. �is hybrid 

learning system succeeded in precise prediction of the 

aggregate sum of thermal error, force-induced deflection 

error and other source error in turning process. Another 

dimensional error prediction in milling process was 

achieved using ANN [159]. In this work, data set of pro-

cess parameters that can affect dimensional errors was 

yielded via experiments. �e large number of influencing 

parameters led to the choice of ANN, which generated 

more accurate models than the previous empirical mod-

els after training process.

Conventional machine learning approaches suffice the 

demand for real-time prediction of surface roughness 

and part deformation. A foreseeable trend in this sec-

tion would be more precise identification of part condi-

tions, such as the types of defect and crack, by further 

exploiting the advanced vision-based sensors. Towards 

this goal, traditional shallow learning approaches require 

artificially defined feature descriptors from the captured 

raw pixels, while deep networks are able to directly pro-

cess raw data. In particular, CNN serves as a primary 

choice for surface inspection task. A max-pooling CNN 

was developed in Ref. [160] to identify steel defect with 

an error rate of 7%, which outperformed the best trained 

classifier using artificial feature descriptors (15%). Part 

et al. [161] showed that using CNN can achieve 250 times 

faster inspecting speed compared to manpower inspec-

tion, without sacrificing the accuracy. Ren et  al. [162] 

proposed a CNN based feature extractor for pixel-wise 

surface inspection, which did not require large-scale 

training data using pretrained model. �e heat map 

showing distribution of defects was then generated for 

the identification of seven types of defects using image 

processing algorithms. �is work showed improved accu-

racies in both classification and segmentation tasks for all 

seven defect types. Crack identification was also realized 

using a deep RBM from consumer-grade camera images 

[163], which provided an alternative option in addition to 

CNN. In terms of part deformation prediction and con-

trol, the utilization of responsive fixture made it possible 

to measure and accumulate online deformation data for 

different parts in different machining stages. Such data 

potentiates the training of a mixed deep learning model, 

as proposed by Zhao et  al. [164], to predict the part 

deformation and make process adjustments in an early 

stage. As can be concluded from previous studies, most 

deep learning based part condition analysis takes image 

as raw input. It is conceivable that when the amount of 
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training data is limited, deep neural network, such as 

CNN, can be easily over-fitted to jeopardize the accuracy. 

In order to reduce data dependency, Ferguson et al. [165] 

trained a CNN using openly-available image datasets and 

leveraged transfer learning to adapt the pre-trained CNN 

model to the detection of defects, by using small X-ray 

dataset. Cheng et  al. [166] applied a parameter-based 

transfer learning in modeling shape deviations during 

additive manufacturing, as one particular example to 

represent the future trend. Table 8 lists the evolution of 

part condition analysis.

4.3  Discussion and Future Trend

Data analysis has been comprehensively reviewed from 

three aspects in manufacturing process: tool condition, 

process condition and part condition. �e evolutions of 

data analysis in all three aspects follow the same routine 

from physical modeling to machine learning and reach-

ing deep learning in the state-of-the-art.

Due to the great complexity of manufacturing pro-

cess, the establishment of physical models would induce 

noticeable errors. First of all, the construction of physi-

cal model requires domain expertise which may contain 

cognitive bias to the actual mechanism. �ese manufac-

turing process usually comprise intricate and unstable 

physical/chemical processes that are hard to precisely 

constructed, which inevitably require certain level of 

assumption and simplification. Mathematical solution 

based on limited observable data is sometimes ill-posed, 

making the final physical model barely accurate to deliver 

satisfactory results. �e development of machine learn-

ing techniques inaugurated a new paradigm to analyze 

manufacturing processes, without needing to manually 

develop complicated but inaccurate physical models. 

After some crafted feature extraction and training pro-

cess, complex manufacturing process can be established 

in a more unified, efficient and effective way. �rough 

the training process, hidden and obscure correlations 

between the input and output can be unveiled. Neverthe-

less, even the most powerful feature extractor still cannot 

guarantee zero discrepancy and error from the raw data, 

which directly affects the final accuracy. �is dilemma 

is well resolved by deep neural networks, in which these 

features are automatically extracted rather than by a 

third-party agent. Consequently, when data is abundant, 

deep learning achieves better performance than conven-

tional machine learning approaches.

On a different perspective, utilizing deep learning 

may be troublesome in manufacturing field, since the 

acquisition of meaningful manufacturing data is not as 

convenient as data from internet. Advanced machine 

learning technologies, such as transfer learning [136] and 

meta learning [138], already left some successful marks 

in manufacturing applications where data acquisition 

is expensive and slow. It is foreseeable in the future that 

more advanced machine learning methods dealing with 

insufficient data will emerge and apply in manufacturing 

process.

In the state-of-the-art development of machine learn-

ing techniques, new types of machine learning algo-

rithms for various tasks are being developed. Specifically, 

deep reinforcement learning using deep Q-network was 

proposed by Google DeepMind [167], which opened 

up a new era to learn successful policies directly from 

high-dimensional inputs and achieve human-level per-

formance in game play. �e same group later proposed 

a meta-reinforcement learning system inspired from the 

activity of dopamine system in human brain [168], which 

expedited the learning process from past experience. 

�ese new findings in reinforcement learning would 

potentially render new possibilities for manufacturing 

systems to understand rules from source data and real-

ize true automation [169]. �e lately reported domain-

transform manifold learning made a huge success in 

noise-reduced image reconstruction from raw sensory 

data [170], which could also be a promising tool in manu-

facturing data pre-processing stage for higher fidelity.

5  Conclusions and Outlook
5.1  Conclusions

Manufacturing data collection and analysis are the key 

enablers to realize data-driven manufacturing. As the 

two crucial components in manufacturing monitoring 

system, they have been evolving to cater to increas-

ing demands in modern manufacturing. �e develop-

ment of these two components have been thoroughly 

investigated from literature, with conclusion depicted 

in Figure 7. In terms of data collection, in most manu-

facturing circumstances valuable data is measured via 

sensors. Direct and indirect measurement are the two 

categories in this stage. While indirect measurement 

has been more widely adopted in recent manufacturing 

applications for its cost-effectiveness and high compat-

ibility, it is still facing a considerable amount of dis-

crepancies in terms of accuracy. Although people have 

made great efforts to reduce the error, it is theoretically 

incapable to achieve high precision measurement due 

Table 8 Evolution of part condition analysis

Physical model Machine learning

Topography 
simulation

FEM 
simulation

Shallow 
learning

Deep 
learning

Learning 
from fewer 
data

[149, 150] [151–153] [155, 156, 
158, 159]

[160–164] [165, 166]
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to the uncertainty and simplification of the correlation 

between the target value and the measured value. On 

the other hand, direct measurement though encounter-

ing incompatibility issue in some manufacturing cases, 

it will be ultimately adopted for its high fidelity and 

achievable accuracy. �ere have already been sporadic 

developments of advanced sensors that can directly 

measure the in-process data without violating the pro-

cess condition.

Data analysis is another crucial phase in data-driven 

manufacturing to make diagnosis, predictions and other 

decisions based on the obtained data. �ree paradigms 

of data analysis, i.e., physical modeling, conventional 

machine learning and deep learning based data analysis 

have been investigated in this paper. �e development 

of physical modeling to describe high dimensional non-

linear manufacturing process is challenging and experi-

encing low accuracy. �ese physical models are usually 

oversimplified, containing observation bias, and thus 

theoretically incapable of accommodating the increas-

ing demand for accurate data analysis. Machine learning 

based data analysis was developed to resolve this issue by 

using generic model such as neural networks, and train-

ing process, which can successfully overcome the model 

simplification issue. As long as for a sufficient training 

procedure, the learning model can achieve high nonlin-

earity to describe an arbitrarily complex process. While 

shallow learning models can only deal with low-dimen-

sional data due to the limited capacity, deep learning 

based data analysis can achieve an end-to-end modeling 

from the raw sensory data to the final decision. �e deep 

stacks of layers combined with dedicated training pro-

cess can automatically learn to extract useful features 

without human intervention. Practically however, since 

the amount of manufacturing data is usually limited, 

advanced machine learning techniques such as trans-

fer learning and meta learning that require fewer train-

ing samples are investigated in some recent studies to 

achieve better results and handle varying conditions.

5.2  Outlook

�anks to the development of advanced sensoring and 

data analyzing technologies, modern manufacturing 

outperforms with higher efficiency, accuracy and self-

diagnosis by the extensive use of data. Direct process 

monitoring combined with advanced machine learn-

ing technologies have achieved remarkable effectiveness 

and will perhaps trend the development of data-driven 

manufacturing. �ough deep learning obtained huge 

success in a variety of fields, training a deep model in 

manufacturing scenario remains challenging due to the 

prolonged time and cost needed for collecting sufficient 

labeled data. To overcome this crucial deficiency, there 

are two suggested directions. First, it is though theoreti-

cally impractical to train a deep model with high per-

formance using insufficient sample data, one can adopt 

few-shot learning to extract common rules from exist-

ing well-trained knowledge, instead of training from 

scratch. Another potential direction is to combine physi-

cal mechanism, such as Newton’s law and energy con-

servation, with machine learning models in order to take 

advantage of both, which would significantly reduce the 

amount of training data and enhance the generalization 

of the trained model. �ese are perhaps among the future 

shapes of data-driven smart manufacturing.
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