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Abstract 

In this study, the advanced topologies of a DC–DC converter for applications involving the harvesting of solar energy are discussed. 
This work’s primary contribution is a guide for choosing the most effective topology for a DC–DC converter when developing solar en-
ergy collection systems. Several topologies of a DC–DC converter for solar energy harvesting applications are compared in terms of the 
range of power levels they can oversee, the complexity of the underlying hardware, the cost of implementation, the tracking efficiency 
and the overall efficiency of the converter. This article explains five innovative approaches for adapting boost converters to function as 
standard DC–DC converters to capture solar energy, consisting of (i) voltage-multiplier cell, (2) coupled inductor, (3) coupled inductor 
and switch capacitor, (4) cascaded topology and (5) voltage-lift technique. Because of the boost converter’s restrictions, it is necessary to 
deliver high performance. The comparison findings demonstrate that the voltage-lift-based boost-converter topology performs more 
effectively than the alternatives. In conclusion, the information presented in this paper can be utilized when developing solar energy 
collection systems to determine the sort of direct current to direct current converter that will be most effective.
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Introduction
Renewable energy has become very interesting to utilize since 
the enormous amount of fossil-fuel exploitation affects envir-
onmental issues [1–3]. It makes many researchers try to explore 
more renewable energy resources (RESs). Photovoltaic (PV)-based 
power plants have become the most favourable due to several 
advantages, such as longer life, environmental friendliness, less 
maintenance, greater mobility and portability, and the ability 
to produce more power to meet load requirements [4]. However, 
tracking solar energy’s maximum power point (MPP) becomes a 
significant problem due to the non-linear current–voltage (I–V) 
characteristics of the PV array [5]. Therefore, maximum power 
point tracking (MPPT) was introduced to achieve MPP during the 
operation of PV systems [6].

The production of high-efficiency power converters has in-
spired the development of a great deal of MPPT algorithmic re-
search. It is conducted because the electricity generated by the PV 
panels is highly dependent on the circumstances of the atmos-
phere, particularly the amount of solar radiation and the general 
temperature of the environment. As a result, it is essential for 
PV systems to make use of MPPT with an algorithm [7]. In add-
ition, when combined with MPPT, DC–DC converters should be 
able to match the load and obtain increased power from PV sys-
tems [8–10].

In solar energy harvesting systems, which convert a DC voltage 
to various levels, a DC–DC converter has played a pivotal role due 
to its ability to convert between multiple DC voltage levels [11]. 
As a result, it offers a voltage more suitable for many applica-
tions when PV panels are used as the source [12]. When choosing 
a DC–DC converter, it is imperative that several criteria be sat-
isfied. These criteria include high efficiency, high reliability, low 
conduction losses, low switching losses and low cost. Due to this, 
scientists worldwide are continually researching and inventing 
new topologies for DC–DC converters [13–16]. It increases the 
total number of DC–DC converters that can be used for a variety 
of power-conversion operations.

This paper looks at the trend for using DC–DC converters for 
solar energy harvesting systems and examines them. This study 
focuses on the fundamental topological structure and the more 
sophisticated strategies that can be used to increase its perform-
ance. As part of the development of renewable and sustainable 
energy sources, the principles of solar energy collecting sys-
tems are discussed in the second half of this article. Section 2 

then analyses the positive and negative aspects of each typical 
DC–DC converter. Section 3 discusses more sophisticated strat-
egies to increase the performance of typical DC–DC topologies, 
notably step-up converters. In Section 4, a comparison is made 
between each conventional DC–DC converter and the innovative 
approaches taken into consideration. The final part of the article 
is the conclusion, which can be found in Section 5.

1  Solar energy harvesting system
Energy harvesting is the acquisition of usable electrical power 
by collecting and transforming the energy already in the sur-
rounding environment from various sources [17]. The world’s 
ever-increasing demand for energy might be met in several ways, 
one of which is solar energy collection [18]. The solar energy 
harvesting system comprises a PV array, MPPT controller, DC–DC 
converter, battery, load (AC/DC) and an inverter. The comprehen-
sive block diagram of the solar energy harvesting system is shown 
in Fig. 1.

Solar PV arrays are solar energy collectors that transform 
photons into electrons to create electrical power [19–21]. The 
output is sent to the DC–DC converter to achieve a power output 
that is more beneficial [22]. The DC–DC converter converts 
the variable DC voltage generated by a PV cell into a constant 
voltage based on the load requirements or the DC bus [23]. The 
MPPT controller simultaneously achieves MPP conversion from 
a PV module, resulting in the duty ratio value or the reference 
voltage [24]. Then it is compared to the sawtooth signal to gen-
erate a pulse width modulated (PWM) signal to regulate the 
period switching in the DC–DC converter [25]. The output of the 
DC–DC converter can supply load sides such as DC load or bat-
teries, or it can be connected to the inverter device, in which 
case the output can either be connected to the grid or supply 
an AC load.

2  Overview of conventional DC–DC 
converter topology for solar energy 
harvesting system
Power-converter technologies have been dramatically altered 
due to the development of power-electronics technology, particu-
larly those involving harvesting power from renewable sources. 
This work analyses and discusses the solar PV energy-harvesting 
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Fig. 1:  Block diagram of overall solar PV energy-harvesting systems
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technology known as the DC–DC converter. Non-isolated and iso-
lated kinds are the categories used to classify DC–DC converter 
topologies [26]. In a DC–DC converter, the term ‘isolated type’ re-
fers to an electrical barrier placed between the input side and 
the output side of the device [15], and the use of high-frequency 
transformers realizes this barrier. It is put to work as a device 
for converting high voltage and it may be set up in either a posi-
tive or a negative configuration, similar to a flyback converter. 
Unfortunately, the barrier on the power converter is cumbersome 
relative to the size of the converter and the power losses induced 
by the barrier are also relatively significant. As a result, a non-
isolated converter is an option that may be considered in order to 
circumvent the disadvantages above. In recent years, switching 
out isolated kinds has been standard practice. Common types of 
DC–DC converters include the buck converter, boost converter, 
buck–boost converter, Ćuk converter and single-ended primary 
inductance converter (SEPIC) [27]. They are appropriate for PV 
applications depending on the voltage-level conversion required. 
Fig. 2 shows the structural structure of each standard DC–DC 
converter used in solar energy harvesting systems.

2.1  Buck converter
The buck converter offers an output voltage (Vout) less than the 
input voltage (Vin), which means that this circuit decreases the 
DC voltage [28]. This converter consists of a switching device (S), 
a diode (D), an inductor (L) and a capacitor (C), as shown in Fig. 
2a. This converter is the basic step-down topology in a switching-
mode power supply. Equation (1) can be used to determine the 
output voltage of the buck converter according to the duty cycle 
of the switching device (Dt):

Dt =
Vout

Vin� (1)
The input of the buck converter can come from a battery, an AC 
rectifier or an RES such as PV systems or fuel cells. This allows 
the converter to be used in various settings and applications. The 
output of the buck converter can be utilized for low-level voltage 
devices, such as battery-management systems or solar battery 
chargers. The buck converter typically has two different operating 
modes: the continuous conduction mode (CCM) and the discon-
tinuous conduction mode (DCM). When the buck converter oper-
ates in CCM mode, the current through the inductor will never 
be equal to zero because it will always be greater than zero. 
In the meantime, while DCM is being carried out, the current 
flowing through the inductor will stop entirely not long after the 
switching period concludes [29–31]. To get more excellent per-
formance from the buck converter, a different working mode has 
been introduced.

2.2  Boost converter
The inductor (L), diode (D), switching device (S) and capacitor (C) 
are the components that make up the fundamental circuit of the 
boost-converter topology, which is depicted in Fig. 2b. The output 
voltage, Vout, will be raised to be higher than the input voltage, Vin 
[32, 33]. It can function as an interface between the PV array, the 
high input voltage of a battery bank and various DC loads [34]. As 
a result, this topology is excellent for applications dealing with 
renewable energy, which often produce low voltages and are un-
suitable for various applications. To determine the duty cycle of 
the boost converter, Equation (2) is utilized:

Dt =
Vout − Vin

Vout� (2)

Operating modes CCM and DCM are frequently utilized with the 
boost converter. Additionally, research concerning this topology 
has been undertaken by the other operating modes applied to im-
prove the system’s performance. Recent advances in research on 
boost converters used in solar energy harvesting systems have 
focused on power-quality management, specifically as it pertains 
to eliminating harmonics, regulating zero voltage, load balancing 
and power-factor correction (PFC) [35–37].

2.3  Buck–boost converter
The topology circuit of the buck–boost converter is comparable 
to that of the boost converter; the primary distinction between 
the two lies in the location of the switching device, as shown in 
Fig. 2c. A buck converter and a boost converter are the two fun-
damental topologies in this multilevel topology. Henceforth, it is 
also referred to as a step-up/down converter because it can either 
raise or lower the input voltage. It is common practice to use a 
buck–boost converter to connect the voltage of the PV array to 
either the voltage of the DC load or the voltage of the battery [34]. 
Changing the duty cycle in this way will cause a different output 
voltage. The converter operates in buck mode whenever the duty 
cycle is <50%, which causes the output voltage to be less than 
the input voltage. When the applied duty cycle exceeds 50%, the 
converter will operate in boost mode so that the output voltage 
will be greater than the input voltage [29]; to determine the 
output voltage of a buck–boost converter, Equation (3) is utilized:

Vout = −Vin

Å
Dt

1− Dt

ã

� (3)

2.4  Ćuk converter
Fig. 2d presents the Ćuk converter topology for viewing pleasure. 
This converter can step the input voltage up or down. The polarity 
of the output voltage that is created will be backward. If its con-
nections are made correctly, the Ćuk converter will have a tiny 
ripple output, making it acceptable for a wide range of load appli-
cation needs [38–40]. The voltage produced by a topology such as 
the buck–boost converter may be determined by using Equation 
(3).

In the research that has been published [41–45], several types 
of traditional Ćuk converters have been provided. However, the 
modified Ćuk converter has a better efficiency level for control-
ling voltage and current in bidirectional operation [46]. Sliding 
mode control (SMC) and proportional-integral (PI) control are 
two of the many methods utilized in the closed-loop system 
architecture. It is also possible to integrate it with a fuzzy logic 
controller (FLC) to determine the voltage output by the Ćuk 
converter [47, 48]. In addition, the Ćuk converter is appropriate 
for brushless DC (BLDC) motors and renewable-energy systems 
applications such as PWM-based PV power-generating systems 
[49–53].

2.5  SEPIC converter
Fig. 2e shows the SEPIC circuit. The SEPIC converter, similarly 
to the Ćuk converter, can increase or decrease voltage. However, 
the output voltage generated does not have reverse polarity. 
If the time spent charging the inductor exceeds the time spent 
discharging it, this converter will provide a higher output voltage. 
This indicates that the switching period for ON-time is longer 
than the switching period for OFF-time. If this is not the case, the 
SEPIC converter will operate in a step-down mode to reduce the 
input voltage. Calculating the voltage that is put out by the SEPIC 
converter may be done with the help of Equation (4):
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Vout = Vin

Å
Dt

1− Dt

ã

� (4)
Several aspects must be considered when applying the SEPIC 
converter, since it generates problems. This topology will produce 
ripple on the output side of the SEPIC converter when used with 
a high-frequency transformer [54–56]. In addition, specific har-
monics are induced during AC–DC conversion. It causes ripples in 
the AC current, decreasing the power factor. So running the SEPIC 
converter in critical conduction mode (CRM) or boundary conduc-
tion mode (BCM) can be thought of to fix the PFC on the AC side [57].

The SEPIC converter has been widely applied to solar energy 
harvesting systems. To achieve maximum power, it employs 
various control methods, including SMC, PI control, dP/dV feed-
back control and FLC [58–60]. In addition, this topology can im-
plement sensorless control of solar-powered DC motors, which 
means it can be applied to support green transportation [61]. In 
addition, a soft-switching technique can be used to achieve better 
performance by reducing losses during the operation of the 
converter [62, 63].

2.6  Flyback converter
The flyback converter is generally applied to PV systems for 
low power-level ranges [64]. This topology has also become a 
standard solution for offering a high-gain converter involving a 
transformer device. However, the transformer device requires sig-
nificant air gaps for high-power applications to save enormous 
energy. Consequently, it results in low magnetizing inductance 
and makes this converter suffer from significant flux leakage. In 
addition, it is implicated in poor power-transfer efficiency. This 
topology is developed from the buck–boost circuit, in which the 
transformer device isolates the electricity between the source 
and the output, as shown in Fig. 2f. The transformer turns the 
ratio coil, the primary side (Np) and the secondary side (Ns), which 
can be adjusted to regulate the output voltage. Equation (5) shows 
the duty-cycle calculation in the flyback converter:

Dt =
Vout ×Ns

(Vout ×Ns) +
(
Vin ×Np

)
� (5)
Although the flyback converter provides poorer efficiency than 
the Ćuk converter, it generates a non-inverting output voltage, 
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Fig. 2:  Circuit topology of DC–DC converters for PV applications. (a) Buck converter, (b) boost converter, (c) buck–boost converter, (d) Ćuk converter, (e) 
SEPIC converter, (f) flyback converter.
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which is more applicable to many applications. In addition, 
the Ćuk converter produces a high current in the switching 
device and the output diode, which are the disadvantages 
when applying it [65]. The flyback converter can partially dis-
charge energy in the transformer magnetizing inductance. It 
causes the inverter to behave as an off-load voltage source. 
Consequently, flyback converter operations in CCM are not 
very popular [66], so BCM solutions provide higher power 
levels and a wider switching-frequency bandwidth. Due to the 
variable switching frequency [67], this scheme makes it dif-
ficult to obtain a precise relationship between the converter 
output current and good current. Meanwhile, the efficiency 
performance of the flyback converter can be improved by 
using the zero-voltage-switching technique [68] or the soft-
switching method by clamping circuits and resonance-based 
flyback topology [69].

3 Advanced techniques considered for 
improving DC–DC converter performance
This article covers several types of DC–DC converters that are 
considered conventional. Among the various converters men-
tioned, it is well known that the boost converter is the topology 
type utilized most frequently in solar energy harvesting sys-
tems [70]. Much research has been done to build a novel top-
ology based on boost converters to obtain a significant voltage 
gain using sophisticated approaches. This is because traditional 
boost converters only produce a limited voltage gain. Fig. 3 illus-
trates how the DC–DC converter topology categorization should 

be considered for more sophisticated solar energy collection 
systems.

3.1   Voltage-multiplier cell
As can be seen in Fig. 4, the structure known as the voltage 
multiplier cell (VMC) incorporates several passive components, 
including diodes and capacitors. Because of this, it is possible to 
multiply the voltage that is being put in, in order to reach a greater 
voltage that is being produced. To obtain a higher voltage from a 
DC–DC converter, it is possible to use any of several distinct cell 
topologies used in VMCs. These topologies are illustrated in Fig. 5. 
The VMC has been integrated into a more complex circuit along 
with several step-up DC–DC converters to produce a high-gain 
converter. In the paper [71], the authors offer a VMC-enhanced 
quadratic boost converter. The proposed converter requires only 
two inductors and can achieve significant voltage gain. Another 
suggestion in [71] is for a non-isolated high-step-up DC–DC 
converter paired with a VMC. As a clamp circuit, it uses magnetic 
coupling and a VMC, with the latter dampening the voltage spike 
that would otherwise occur across the switching device. Because 
of this, it is possible to improve the effectiveness of the systems.

The proposed converter using a VMC and an asymmetric 
coupled inductor (CI) has been introduced by [72]. The proposed 
converter can recycle the leakage energy from the inductor and 
manage the voltage spikes. Therefore, the efficiency resulting 
from this can be improved. Some topologies combine an inter-
leaved boost converter with a VMC to achieve high voltage gain 
while putting minimal strain on semiconductor components 
[73–75]. Also, a non-isolated high-step-up DC–DC converter with a 
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Fig. 3:  Classification of DC–DC converter topology for solar energy harvesting
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VMC topology and a CI is proposed [76]. This results in a high gain 
with transfer energy saved in the coupled inductance. By adding 
a VMC, the proposed topology converter can enhance the output 
voltage more efficiently.

The VMC has become a popular strategy to increase the output 
voltage of the step-up converter. The major features offered 
are modular with a simple structure consisting of a diode and 
a capacitor. It also provides low voltage stress on the semicon-
ductor components. Some drawbacks must be considered, such 
as (i) limited voltage gain, (ii) increasing the number of compo-
nents while decreasing the number of multipliers and (iii) poor 
voltage regulation [77]. In contrast, modifying the step-up DC–DC 
converter with a VMC remains helpful for renewable-energy ap-
plications [73–75, 78–83]. These modified converters are very suit-
able for PV systems because they increase the PV output voltage 
to a higher level according to the load required. Moreover, this 
scheme is considered for application in grid-connected PV sys-
tems.

3.2   CI
When designing a non-isolated DC–DC converter, CIs have 
emerged as essential components. They can store energy during 
each switching period, which can later be transferred to the load. 
Since not all applications require electrical isolation, applying a 
CI to modify the conventional topology of the DC–DC converter 
becomes a technique that can be considered for safety, as shown 
in Fig. 6. Fig. 7 shows the variant of the CI cells that are being used 
at the same time. In most cases, the step-up DC–DC converter 
will benefit from adding this component through an increase in 
voltage gain. Changing the turn ratio of the CI and recovering 
energy from the leakage inductance are both necessary steps to 

complete the process. In addition, the CI can supply switching de-
vices with a low voltage when the device is in the OFF state [84]. 
Therefore, involving a CI is still required for researchers in order 
for them to propose a non-isolated DC–DC converter.

A high-step-up DC–DC converter that utilizes dual CIs in 
series connection is presented in [85]. In addition, the proposed 
converter uses an active clamp circuit with a combined regenera-
tive snubber. A new high-step-up DC–DC converter involving CIs 
is proposed in [86]. Some researchers use an interleaving tech-
nique and a VMC is combined with CI cells to achieve high-gain 
conversion while maintaining good performance [76, 87, 88]. Most 
of the proposed step-up DC–DC converters are intended solely for 
RES applications, designed to raise voltages from lower levels to 
higher ones. One factor that must be considered is the high input-
current ripple that might take place in the proposed converter. 
It calls for a sizable input filter and delays the reverse-diode re-
covery because of the leakage inductance. Adding CI components 
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will also increase the size and cost [89]. Additionally, the structure 
of the DC–DC converter with the addition of a CI can be found in 
the literature [76, 87, 89–95]. This structure can be found in these 
references.

3.3   CI and switched capacitor
Fig. 8 shows the general architecture of CI and switched capacitor 
(SC) circuits in a DC–DC converter to obtain high voltage conver-
sion. Moreover, it was used by the high-step-up DC–DC converter 
to accept a wide voltage-conversion range [96, 97]. The CI com-
ponent achieves voltage gain by regulating the turn coil ratio on 
both the primary and secondary sides. Meanwhile, the SC circuit 
limits the voltage stress across the active and passive semicon-
ductor components. Many researchers have investigated the 
modified step-up DC–DC converter with a CI component, and SC 
cells can be found in the literature [98–102]. In [98], researchers 
combine the advantages of SC cells, CI components and VMCs, re-
spectively. The addition of SC cells reduces the stress of switching 
devices and helps to generate voltage gain. Due to the ability to 
raise the output voltage, combining the CI component and SC 
cells, as shown in Fig. 9. Using the VMC, the energy that leaks 
from the CI is sent back to the output terminals to perform loss-
less passive clamping.

Similar work is also presented by [99], but the type of CI used 
is three windings. In addition, SC cells and VMCs have dual struc-
tures. Current and voltage stress can be reduced by applying dual 
structures. It is proportional to increasing the weight and the cost 
converter. In [100], a similar combination converter is proposed, 
but no additional snubber circuit is attached. Then, it is further 
modified in [101] by adding one diode and one capacitor. Thus, the 
voltage gain can be higher and the voltage across the semicon-
ductors is half of the output voltage.

Due to the ability to raise the output voltage, combining the CI 
component and SC cells, as shown in Fig. 9, has become a fash-
ionable way to obtain more voltage-gain conversion. It increases 
the output voltage from PV sources, making it more useful for 
broad applications. The number of components must be con-
sidered when designing the step-up DC–DC converter topology 

with CI and SC cells. It impacts the weight and complexity of the 
converter layout itself. In addition, proper strategy control should 
be considered to achieve better performance.

3.4   Cascaded topology
The multistage converter connection is the most straightforward 
approach to increasing the voltage gain. It is popularly mentioned 
as a cascaded or multilevel topology composed of two or more 
step-up DC–DC converters [103]. The family of cascaded topology 
DC–DC converters is shown in Fig. 10. Therefore, the cascaded 
topology can obtain a higher voltage gain than the conventional 
step-up DC–DC converter [104]. Due to its ease of implementation 
and analysis, many researchers have developed the step-up DC–
DC converter based on cascaded topology for RESs, such as solar 
energy harvesting system applications.

Studies in [105] and [106] proposed a cascaded converter 
involving a single switching device. It simplifies the semicon-
ductor device by reducing the number of components used and 
parasitic elements that occur. Then, the novel cascading topology 
based on a boost converter is introduced by [107] with reduced 
conduction losses. They propose a hybrid cascaded converter 
based on boost topology and integrated with a VMC [108]. The 
main feature offered is that input-current ripples are reduced. It 
can be realized due to the two parallel primary windings in the 
CI component.
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As explained previously, the cascaded converter topology is 
still a good technique for various voltage-amplification applica-
tions [109]. However, the main concern when applying this ap-
proach is the number of components used. These will increase 
weight, size, design complexity and cost for the higher voltage 
gain. In addition, the other technical drawback is that power 
losses increase due to parasitic elements, which impacts lower 
efficiency results. The cascading topology of the DC–DC converter 
is commonly used in medium- to high-power applications [110]. 
Furthermore, some modified topologies can be found in pub-
lished works [103–108, 111].

3.5   Voltage-lift techniques
The voltage lift (VL) technique was popularly applied to the basic 
step-up converter. Fig. 11 shows the basic architecture of the DC–
DC converter with VL cells and the variation in VL cells that can 
be applied in the DC–DC converter is shown in Fig. 12. This tech-
nique was introduced by [112] and has become a helpful method 
to raise the output voltage of the DC–DC converter. It works by 
charging the capacitor to a specific voltage sourced by the input 
voltage. The output voltage is then proportional to the voltage 
level of the charged capacitor. Repeating this operation with ad-
vanced capacitors creates rebound, triple-lift and quadruple-lift 
circuits, in which the output voltage can be improved.

Furthermore, [113–116] used the VL technique, modified with 
the boost converter, to achieve high-voltage-gain conversion. 
In [117], the VL technique is combined with a voltage doubler 
or VMC to the quadratic boost converter to increase the input 
voltage approximately four times and decrease the voltage stress 
through the switching devices by one-half of the output voltage. 
[117] proposes a modified boost converter with the VL technique 
and a single switch. This structure makes the design less compli-
cated because it is easier to understand.

The performance of the VL technique is based on energy-
storage elements such as inductors and capacitors. In addition 
to increasing the output voltage, another advantage is that it can 
operate over a wide power range, from low-power to high-power 
applications, while remaining efficient [92]. The VL technique 
is simpler to implement, has a higher power density and pro-
duces less output-voltage ripple than the other advanced step-up 
methods. As a result, the VL technique is appropriate for solar 
energy harvesting systems [118, 119].

4  Comparison of DC–DC converter and 
step-up advanced techniques considered
The variations of DC–DC converter topologies discussed in this art-
icle are the most suitable for PV energy-harvesting applications. 
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The focus of this paper is on the step-up DC–DC converter that is 
used to increase PV output voltage. Boost, buck–boost, Ćuk, SEPIC 
and flyback converters are chosen due to the voltage step-up 
capability. They are widely used in many applications because of 
their more straightforward structure than other converter topolo-
gies, especially for PV energy-harvesting applications.

The boost converter becomes the primary topology choice for 
proposing a novel step-up converter dedicated to solar energy 
harvesting applications. A study by [120] reviews DC–DC con-
verters based on boost topology for low power with high gain 
involving modification circuits. From 27 literature references, 
seven modification strategies are identified: VMC, voltage doubler, 
CI component, CI and SC cells, switched inductor (SI) and SC, cas-
cade technique and VL technique. Each technique is judged on 
how well it could increase the voltage, how many parts it has, 
how much voltage it could manage, how much power it could 
manage, how hard it is to build and how well it works.

According to the evaluation results, the SI, SC and voltage-
doubler topologies perform worse than the other options. Both 
solutions result in modified boost converters with limited gain 

and considerable voltage stress, which contributes to their poor 
efficiency. The number of components employed also increases 
the complexity of the hardware. As a result, the comparison pro-
vided in this article focuses solely on five modification topology 
options in terms of implementation cost and tracking efficiency 
in order to acquire maximum power in solar energy harvesting 
applications. Table 1 compares standard topology and advanced 
strategies for improving DC–DC converter performance, focusing 
on increasing the voltage from solar energy harvesting systems. 
Each comparison is examined in terms of the characteristics it 
provides, as well as the benefits and drawbacks that resulted.

Each advanced modification process has its own set of 
traits, which include: (i) VMC: low cost, modular, simple struc-
ture, better for low power ratings; (ii) CI component: popular 
voltage-boosting approach with high power-handling capability, 
used for both isolated and non-isolated applications and best 
for low power ratings; (iii) CI and SC: lower voltage stress on the 
switch than CI, a more significant number of components and a 
more complex structure, a common approach to produce more 
voltage-gain conversion, and a wide voltage-conversion range; (4) 
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Table 1:  Comparison of DC–DC converters and advanced techniques for solar energy harvesting systems

Features Pros Cons 

Basic 
topology 

Boost 
[121–123] 

•Low hardware complexity
•Simple to control
•Inexpensive cost
•Compact design
•Familiar to use

•The dwindling number of components
•Suitable for low to high PV power applications
•Medium converter efficiency
•Can support MPPT in achieving high efficiency

•Voltage-gain limitation
•High voltage stress
•Extreme duty cycle to achieve high 
step-up voltage

Buck–
boost 
[124–126]

•Low hardware complexity
•Simple to control
•Inexpensive cost
•Compact design
•Familiar to use

•The low number of components
•Suitable for low to high PV power applications
•Medium converter efficiency
•Can support MPPT in achieving high efficiency
•Non-linear relationship between duty cycle 
and output voltage

•Voltage-gain limitation
•High voltage stress
•Voltage imbalance for multi-input 
and multi-output applications
•High output ripples
•Discontinuous output current

Ćuk [89, 
127, 128]

•Low hardware complexity
•Simple to control
•Inexpensive cost
•Compact design

•The low number of components
•Suitable for low to medium PV power 
applications
•Medium converter efficiency
•Can support MPPT in achieving high efficiency 
and stability under varying atmospheric 
conditions
•Using capacitors for power transfer and energy 
storage
•Non-linear relationship between duty cycle 
and output voltage

•Medium voltage gain
•High voltage stress
•Negative output polarity 
concerning input
•Drop efficiency in multiple output 
network
•Need complex compensation 
circuit to operate converter properly
•The presence of resonance of 
the L–C pair makes discontinuous 
output current uncontrolled

SEPIC 
[129–131]

•Low hardware complexity
•Simple to control
•Inexpensive cost
•Compact design
•Familiar to use

•The low number of components
•Suitable for low to high PV power applications
•Medium converter efficiency
•Can support MPPT in achieving high efficiency 
and stability under varying atmospheric 
conditions
•Non-inverting output
•Non-linear relationship between duty cycle 
and output voltage

•Medium voltage gain
•High voltage stress

Flyback 
[132–134]

•Medium hardware 
complexity
•Simple to control
•Inexpensive cost
•Familiar to use

•The low number of components
•Suitable for high PV power applications
•Can support MPPT in achieving high efficiency
•Component more safety from short circuit
•Provided isolate electricity

•Bulk converter design
•High voltage stress
•Large leakage flux
•Poor energy-transfer efficiency

Advanced 
techniques

VMC 
[78, 120, 
135–139]

•Simple technique and 
modular structure
•Inexpensive cost

•Can achieve extremely high gain
•Suitable for low to high PV power applications
•Efficiency following basic topology used
•Can support MPPT in achieving high efficiency

•More component counts
•High voltage stress
•Poor voltage regulation

CI [33, 
121, 122, 
126, 127]

•Compact structure
•Familiar to use
•Can integrate into various 
topologies

•Can achieve extremely high gain by increasing 
the turns ratio
•The low number of components
•Suitable for low to high PV power applications
•Efficiency following basic topology used
•Can support MPPT in achieving high efficiency
•Enhanced power-handling ability
•Good voltage regulation

•Bulk converter design
•High voltage stress
•Non-modular
•Resulting leakage inductance
•Complex manufacturing in dual-
coupled inductors

CI and 
SC [91, 
97, 98, 
140–143]

•Can integrate into various 
topologies
•Familiar to use

•Can achieve extremely high gain by increasing 
the turns ratio
•Suitable for low to high PV power applications
•The low voltage stress on power switches
•Increased efficiency results from basic 
topology used
•Can support MPPT in achieving high efficiency
•Energy-leakage handling capability

•More component counts
•Bulk converter design
•Poor voltage regulation
•Inrush current

Cascaded 
topology 
[108, 120, 
144–146]

•Modular structure
•More variation of topology

•Can achieve extremely high gain
•Suitable for medium- to high-power PV 
applications
•Efficiency following basic topology used

•More component counts
•Bulk converter design
•An auxiliary clamp circuit is 
required to restrict the voltage 
stress
•Difficult to operate with the MPPT 
to achieve high efficiency
•Poor voltage regulation
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cascaded topology: it uses several stages of converter modules, 
voltage gains are increased linearly or exponentially, requiring 
more components, and it is suitable for medium- to high-power 
applications; and (5) VL technique: simple structure but superior 
performance, increased efficiency and is suitable for recycling CI 
leakage.

VMC, CI and VL methods can make a more straightforward 
hardware structure possible. When considering the cost of imple-
mentation, the most appropriate options are the VMC, CI, CI and 
SC, and VL approaches. In addition, the techniques have evolved 
to where they are now suited for fast-tracking applications that 

capture solar energy. Modification can be achieved by CIs using 
SC and VL approaches to achieve potentially productive effi-
ciency. From the power-application point of view, low-power uses 
are VMC, CI, CI and SC, and VL methods. All advanced approaches 
can be used for medium-power applications, while VMC, CI, CI 
and SC, and cascaded topology can be used for high-power appli-
cations. Fig. 13 shows the final comparison of all advanced strat-
egies discussed in this paper. It should be noted that, specifically 
for term cost and number of components, the assessment points 
are reversed, meaning that the larger the real value, the smaller 
the assigned value on the chart.

Features Pros Cons 

VL 
technique 
[114, 
120, 135, 
147–151]

•More compact and simple 
structure
•Familiar to use

•Can achieve extremely high gain
•Suitable for low- to medium-power PV 
applications
•Reduced voltage stress
•Increased efficiency results from basic 
topology used
•Can support MPPT in achieving high efficiency
•Can integrate with CI to recycle leakage 
inductance energy
•Reduced input-current ripple

•More component counts
•Bulk converter design

Table 1. Continued
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Fig. 13:  Performance comparison of the advanced technique for DC–DC converters. (a) Voltage-multiplier circuit; (b) coupled inductor; (c) coupled 
inductor and switch capacitor; (d) cascaded topology; (e) voltage lift.
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5  Conclusion
Various types of DC–DC converters have been evaluated, including 
basic topology, modified topology and innovative techniques to 
increase their performance, emphasizing applications of solar 
energy harvesting systems. Boost converters are the architecture 
that is the most widely used to raise the output voltage of PV 
systems. As a result, the development of boost converters is still 
being carried out by adding more complex approaches to achieve 
higher performance levels. Comparisons have been made be-
tween each advanced technology to provide precise information 
regarding the complexity of the hardware, the cost of implemen-
tation, the tracking efficiency, the efficiency of the converter and 
the power-level ranges. According to the comparison findings, the 
modified boost converter that utilizes the VL technique can be 
deemed more appealing in terms of performance. In conclusion, 
this work can be utilized to map the appropriate advanced meth-
odologies for the design of a novel step-up DC–DC converter that 
is based on boost topology and is intended for usage in solar en-
ergy harvesting systems.
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