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Summary

The objective of the Advanced Detection, Isolation, and

Accommodation (ADIA) Program is to improve the overall

demonstrated reliability of digital electronic control systems for

turbine engines. For this purpose, an algorithm developed to

detect, isolate, and accommodate sensor failures was combined

with an existing multivariable control algorithm to give a com-

plete control implementation with sensor analytical redundancy.

The algorithm has been evaluated on a real-time engine simula-

tion and demonstrated on a full-scale F 100 turbofan engine; this

was done by implementing it in real time on a microprocessor-

based controls computer with state-of-the-art microprocessor

hardware and software. The required computational power for

the real-time implementation was achieved with parallel pro-

cessing. High order language programming reduced the pro-

gramming and maintenance costs of the implementation

software.

This paper describes the real'time microprocessor imple-

mentation of the algorithm. Overviews of the multivariable

control and ADIA algorithms are given. The test equipment

used for evaluating and demonstrating the algorithm and the

microprocessor hardware and software necessary for implement-

ing it are described. The real-time implementation made possible

the successful completion of the ADIA evaluation and demon-

stration. Conclusions and recommendations for the

implementation strategy in future research programs are made.

Introduction

Over the past 35 yr, hydromechanical implementations of

turbine engine control systems have matured into highly reli-

able units. However, with the trend towards increased engine

complexity in order to meet ever-increasing engine performance

requirements, the engine control has also become increasingly

complex. Because of this trend toward complexity and the

revolution in digital electronics, the control has evolved from

a hydromechanical to a full authority digital electronic control

(FADEC) implementation. These FADEC's must demonstrate

levels of reliability as good or better than their hydromechanical

predecessors.

Thus, in an effort to improve the overall reliability of the

digital electronic control system, various redundancy manage-

ment techniques have been applied to both the total control

system and to individual components. Reference 1 shows that

the engine sensors are the least reliable of the control system

components. In fact, some type of sensor redundancy is required

to achieve adequate control system reliability. One important

type is analytical redundancy, wherein a mathematical model

generates redundant information that can be compared to meas-

ured information to detect failures. Future engine systems with

demanding mission reliability and flight safety requirements

will require redundant information not only in the sensor sub-

system but also in computers and actuator interfaces as well.

Analytically redundant systems such as in the Advanced Detec-

tion, Isolation, and Accommodation (ADIA) Program utilize

the full on-board computational capability to extract redundant

information from dissimilar sensors. These systems not only

will provide maximum system reliability with minimum hard-

ware replication and computer interfaces but also will, in turn,

offer weight and cost savings.

Considerable progress has been made in applying analytical

redundancy to improve the reliability of the turbine engine

control system. Reference 2 surveys these accomplishments

and defines several technology needs. These needs include

(1) the ability to detect small (soft) failures, (2) real-time

implementation of algorithms capable of detecting soft failures,

(3) a comparison of algorithm complexity versus performance,

(4) a full-scale demonstration of a soft-failure detection

capability, and (5) an evaluation of the pseudolinearized

modeling approach. The ADIA program addresses all of these

technology needs.

The ADIA program is organized into four phases: develop-

ment, implementation, evaluation, and demonstration. In the

development phase (refs. 3 and 4) the ADIA algorithm was

designed by using advanced filtering and detection method-

ologies. In the implementation phase (ref. 5) this advanced

algorithm was implemented in microprocessor-based hardware.

A parallel computer architecture (three processors) allowed

the algorithm to execute in a timeframe consistent with stable,

real-time operation. In the evaluation phase (refs. 6 and 7)

the advanced algorithm and its implementation were evaluated

against a real-time hybrid simulation of the F100 engine. The

objectives of this phase were to validate the algorithm's

performance in real time and to establish a data base for the

demonstration phase of the ADIA program. Recently, a full-

scale F100 engine in the NASA Lewis Propulsion Systems

Laboratory (PSL) was used to demonstrate the implemented

algorithm's operation and performance over a substantial

portion of the F100 engine's flight operating envelope

(refs. 8 and 9). This report describes the details



of the algorithm's implementationfor this engine
demonstration.Detailedresultsof theenginedemonstration
aregivenin reference9.

Thisreportbeginswithadescriptionofthetest-bedsystem
usedinevaluatinganddemonstratingtheADIAalgorithm.
Next,theF100multivariablecontrol(MVC)andADIA
algorithmsare described, as are the implementation hardware

and software. Then specific implementation details and opera-

tional procedures for the engine demonstration are given.

Finally, the results of the ADIA program implementation are

summarized, and recommendations are given for future work.

Evaluation and Demonstration Test-Bed

Configuration

Both the simulation evaluation and the engine demonstration

of the ADIA algorithm were carried out on the test-bed con-

figuration shown in figure 1. The test bed consisted of the F100

Zrrl
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CIM unit
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Z

Controls Imicrocomputer

m, Em

I Sensor I

failure I

simulator ]

FIO0 simplified, real-time engine slmula_

Figure 1 .--Test-bed configuration.

engine system or engine system simulation, the controls micro-

computer system containing the MVC and the ADIA algo-

rithms, the sensor failure simulator, and the F100 simplified

engine simulator. Each of these components is described in

the following sections.

FI00 Engine System

The engine system consisted of the F100 turbofan engine,

the actuators, and the sensors. The F100 engine is a high-

performance, low-bypass-ratio, twin-spool turbofan engine.

The engine has seven controlled inputs (four of which were

used for this effort), five engine outputs, and four environmen-

tal variables. These variables are defined in table I. Strictly

speaking, TT25 is an engine output variable; however, since

TT25 is used only as a scheduling variable in the control (like

TT2), it is considered an environmental variable and is not

covered by the ADIA logic.

F100 Engine System Simulation

A real-time hybrid computer simulation of the F 100 engine

(ref. 10) was developed by NASA Lewis to support controls

research programs (see fig. 2). The simulation has both wide-

range steady-state and transient computing capabilities. This

engine simulation was used for the preliminary control evalua-

tion during the F100 multivariable control synthesis (MVCS)

program (ref. 11) and for the algorithm evaluation phase of

the ADIA program. In addition to the engine itself, the hybrid

computers also simulate the engine actuators and sensors. Since

the simulation is essentially the same as that used for the F100

MVCS program, data from that program were compared

directly to data generated during the ADIA evaluation to

validate normal mode control operation.

TABLE I.--ENGINE VARIABLES

Variable I Definition

Controlled engine inputs, Uco m and Um

WF

AJ

CIVV

RCVV

Main combuster fuel flow

Exhaust nozzle area

Compressor inlet variable vanes

Rear compressor variable vanes

Sensed engine outputs, Z m

N1 Fan speed

N2 Compressor speed

PT4 Burner pressure

PT6 Exhaust nozzle pressure

FTIT Fan turbine inlet temperature

Sensed environmental variables, E m

P0 Ambient (static) pressure

PT2 Fan inlet (total) pressure

TT2 Fan inlet temperature

TT25 Compressor inlet temperature
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Figure 2.--Real-time hybrid simulation computers.

Controls Microcomputer System

The control, interface, and monitoring (CIM) unit (fig. 3)

was designed and fabricated to provide an effective means of

implementing control algorithms for research in real time using

realistic hardware--that is, microcomputer hardware similar

to that which would be used to build actual engine control

systems. The CIM unit contains the microcomputer that imple-

ments the combined MVC-ADIA algorithm in real time; this

microcomputer will be described in the section Microcomputer

Implementation. The CIM unit also contains hardware and

cabling to provide a flexible interface to and from the engine

or engine simulation being controlled (fig. 4). This interface

consists of cabling, a patching system, signal conditioning,

and connectors. A monitoring system in the CIM unit allows

the signals between the microcomputer and the controlled

engine to be examined. This monitoring system consists of

selection logic to determine which signal is to be examined

and scaling logic to allow the signal to be viewed in either

volts or engineering units. The interface and monitoring functions

of the CIM unit are described in detail in reference 12.

Figure 3.--Control, interface, and monitoring (CIM) unit.
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Figure 4.--Block diagram of CIM unit.

engine

Sensor Failure Simulator

The sensor failure simulator (SFS) provides an efficient

means of modifying engine sensor signals to simulate Sensor

failures. The SFS unit consists of a personal computer driving

discrete analog hardware. The personal computer allows a

menu-driven, top-down approach tO failure scenario creation,

retrieval, editing, and execution. A failure scenario consists

of the sensor channel(s) to be failed, the failure mode(s) for

each channel, and the time at which the failure occurs for each

channel. The SFS can simulate any of four basic sensor failure

modes: scale±factor change, bias, drift, and noise. These failure

modes are implemented in analog electronic hardware that is

controlled by the personal computer. The SFS allows complete

and repeatable control over the failure size and the timing of

failure injection. Details of the SFS are given in reference 13.

F100 Simplified Engine Simulator

The F100 simplified engine simulator is microprocessor-

based and uses hardware and software similar to that used for

the ADIA real-time implementation. During the engine

demonstration the simulator was used to validate changes made

to the controls microcomputer software; that is, all changes

to the MVC or ADIA software were tested with the simplified

engine simulator in order to guarantee the integrity of the

software. The changes were then run with the actual engine.

This procedure allowed checkout of software changes without

compromising the safety of the engine. Another function of

the engine simulator during engine testing was to simulate the

engine actuators so that actuator failures could be detected.

Details of how this was accomplished are in the Safety Proce-

dures section of this report. Details of the simplified engine

simulator design and implementation are described in refer-

ence 14. Figure 5 shows the SFS and the simplified engine

simulator mounted in the PSL control room.

F100 Multivariable Control Algorithm

The control algorithm for this effort was developed during the

F100 multivariable control synthesis (MVCS) program (ref. 15).

In the MVCS program, linear quadratic regulator (LQR) theory

wassuccessfully used to design and implement a practical

multivariable control (MVC) for a state-of-the-art turbofan

engine. The MVC algorithm was designed by using continuous

Simplified engine simulator (SES)

!

!

!

SFS user keyboard : : SES user keyboard

Figure 5.--Sensor failure simulator and simplified engine simulator,

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH



system design techniques, because it was assumed that the

update interval for the total control would be fast enough that

discrete design techniques would not be necessary. Originally

a high-speed minicomputer implemented the algorithm (ref. 16).

More recently, the algorithm was implemented with a micro-

computer. A simplified block diagram of the algorithm is shown

in figure 6. The control mode is proportional plus integral with

a feed-forward path to provide rapid response. The control

and output variables used in the MVC are those shown in

table I.

Seven modules make up the MVC algorithm: the reference

point schedules (RPSCH), the transition control, the integral

control, the linear quadratic regulator (LQR), the gain control,

the engine protection logic, and the fan turbine inlet

temperature (FTIT) estimator. Each of these modules is

described in the following paragraphs.

The RPSCH use the pilot-input power lever angle PLA along

with the flight conditions (ambient pressure P0, fan inlet pressure

FF2, fan inlet temperature TI'2, and compressor inlet temperature

TI'25) to calculate steady-state values throughout the entire engine

operating range for the control variables Us, the output variables

Z s, and the state variables Ys- In essence, the RPSCH contain

an accurate, steady-state model of the engine.

The transition control operates on the RPSCH outputs to

provide a transient model for the control to follow during

changes in flight conditions or pilot commands. The transition

control rate limits the outputs of the RPSCH to prevent

excessive deviations, which could saturate the LQR.

The LQR provides the proportional action in the MVC

algorithm by means of a set of proportional gains Ce

calculated by the gain control. These gains act through all of

the control variables to reduce deviations in the measured

engine states X from their scheduled values computed by the

transition control X s.

The integral control permits steady-state trimming of the

engine operating point to satisfy performance requirements and

engine limits. Using both integral gains Ct calculated by the

gain control and the limit flags from the engine protection

logic, the integral control eliminates any steady-state errors

in the outputs caused by slight variations between the scheduled

and actual engine parameters.

The gain control calculates gains for the LQR and the integral

control. Because of the nonlinear nature of the engine, a single

set of gains will not result in satisfactory performance at all

engine operating conditions. The gains, therefore, are scheduled

as functions of PT2, T_T2, and transition control compressor

speed N2 s. This allows the gains to reflect shifts in engine

dynamics due to changes in flight conditions and/or engine

power condition.

The engine protection logic limits the control variables to

safe operating ranges throughout the entire engine operating

envelope. In addition, whenever a limit is encountered on one

of the control variables, a flag is set to limit that particular

control's trim integrator in the integral control.

The FTIT estimator compensates for a slow FTIT sensor.

During transient operation an estimated value of FTIT is used

to predict whether or not overtemperature will occur. The

integral control cuts back engine fuel flow, if required, to

prevent the overtemperature. For the ADIA evaluation and

demonstration, the MVC FTIT estimate was replaced by the

ADIA FTIT estimate generated by the accommodation filter.

Additional information on the F100 MVC algorithm and its

original minicomputer implementation can be found in

references 16 and 17.

Us

PT2 Reference point

TT2 schedules

TT25 transition control

PLA

Zs

Engine states, X

End' ne °utputs' Z_'-l'_ _

Feed forward _,.

Proportional

LQR ]
gains

Gain 1-12
control

N2 s

---P.- Integral trim

Figure 6.--Structure of FI00 multivariable control.

Scaler

Nonscaler

+_,)_ = Control

[ Engl _e I Inputs, U

1,2_1 prot(ction

÷--e'÷ ] Io01_ I--"
k "

Limits



Advanced Detection, Isolation, and

Accommodation Algorithm

The ADIA algorithm to detect, isolate, and accommodate

sensor failures in an F100 turbofan engine control system

consists of three elements: (1) hard-failure detection and

isolation logic, (2) soft-failure detection and isolation logic,

and (3) an accommodation filter. Hard failures are defined as

out-of-range or large bias errors that Occur instantaneously

in the sensed values. Soft failures are defined as small bias

errors or drift errors that accumulate relatively slowly with

time. The algorithm incorporates advanced filtering and detection

logic, and is general enough to be applied to different engines

or other types of control systems.

In the normal or unfailed mode of operation, the accom-

modation filter uses the full set of engine measurements to

generate a set of optimal estimates of the measurements. These

estimates Z are used by the control law. If a_sensor failure

occurs, the detection logic notes the failure, and the isolation

logic determines which sensor is faulty. This structural infor-

mation is passed to the accommodation filter, which removes

the faulty measurement from further consideration. The accom-

modation filter, however, continues to generate the full set of

optimal estimates for the control. Thus the control mode does

not have to restructure for any sensor failure.

As shown in figure 7, the ADIA algorithm inputs are the

sensed engine output variables Zm, the engine environmental

variables Era, and the sensed engine input variables Urn. The

outputs of the algorithm, that is, the estimates _(t) of the

measured engine outputs Z,, (t), are inputs to the proportional

part of the control. During normal mode operation, engine

measurements are used by the integral control to ensure accu-

rate steady-state operation. However, when a sensor failure

is accommodated, the engine measurement is replaced with

the corresponding accommodation filter estimate by recon-

figuring the interface switch matrix.

Engine Model

The performance of the accommodation filter and the detection

and isolation iogic are strongly dependent on the model of

the engine. The model used herein has a linear state-space

structure. However, nonlinear engine characteristics are incor-

porated by representing the base points and the matrix elements

within the linear state-space structure as nonlinear functions

of various engine variables as follows:

= F(X - Xb) + G(U - UQ (1)

Z = H(X - Xb) + D(U - Ub) + Zb (2)

Here the subscript b represents the base point, and X is the

4 × 1 model state vector, U the 4 × 1 control vector, and

Z the 5 x 1 output vector. The F, G, H, and D matrices are

the appropriately dimensioned system matrices. The system

matrices and the model base points were determined at 109

operating points throughout the flight envelope. Three variables

are sufficient to completely define a model operating point.

Previous modeling efforts (ref. 3) used altitude, Mach number

(MN), and power lever angle (PLA). However, in this study

PLA, inlet pressure PT2, and inlet temperature TT2 were used.

The latter set of-variables is more appropriate for ensuring

that all significant model dynamics are considered. Once

gcom
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Figure 7.--Advanced detection, isolation, and accommodation (ADIA) block diagram.



system matrices are determined at all 109 operating points,

the individual matrix elements are corrected by the engine inlet

conditions Em and scheduled as nonlinear functions of Z.

These functions are given in reference 4.

Accommodation Filter

The accommodation filter incorporates the engine model

along with a Kalman gain update, to generate estimates of the

engine outputs Z and the engine states X as follows:

= F(X - Xb) + G(U m -- Ub) + K'y (3)

= H(IK - X0) + D(U m -- Ub) + Z b (4)

'y = Zm -- Z (5)

where K is the Kalman gain matrix, _, is the residual vector,

and the subscript m indicates the measured values.

Reconfiguration of the accommodation filter after the detec-

tion and isolation of a sensor failure is accomplished by forcing

the appropriate residual element to zero. For example, if a

failure has been isolated in the compressor speed sensor N2,

the reconfiguration is effected by forcing _¢2= 0. This is

equivalent to setting sensed N2 equal to the estimate of N2

generated by the filter.

The accommodation filter was improved by adding integral

action to improve steady-state accuracy of the FTIT estimate

Zs. Limiting the FTIT at high-power operation is an impor-

tant engine control mode. However because the FTIT sensor

is relatively slow, control action is based on the dynamically

faster FTIT estimate. The FTIT limiting control has integral

action; therefore a high degree of steady-state accuracy in the

FTIT estimate is required to ensure satisfactory control. This

accuracy is accomplished by augmenting the filter with the

following additional state and output equations:

b = K6'y (6)

FT'IT = Z5 + b (7)

where K 6 is a gain matrix, b is the temperature bias, and Zs

is the unbiased temperature estimate. The addition of these

dynamics, although improving FTIT estimation accuracy, results

in a larger minimum detectable FTIT drift failure rate. The

resulting filter structure, which includes the FTIT bias state,

is the structure used in the accommodation filter and in all

the hypothesis filters in the soft-failure detection and isolation

logic.

Hard-Failure Detection and Isolation Logic

The hard-failure detection and isolation logic is straight-

forward. The residuals generated by the accommodation filter

are used in the hard-failure detection logic. To detect and isolate

hard failures, the absolute value of each component of the

residual vector is compared to its own threshold. If the residual

absolute value is greater than the threshold, a failure at the

sensor corresponding to the residual element is detected and

isolated. Threshold sizes are initially based on the standard

deviation of the noise on the sensors. These standard deviation

magnitudes are then increased to account for modeling errors

in the accommodation filter. The hard-failure detection threshold

values are twice the magnitude of the adjusted standard devia-

tions, as can be seen in table II.

A failure is accommodated by reconfiguring the accommo-

dation filter and all of the hypothesis filters in the soft-failure

detection and isolation logic.

Soft-Failure Detection and Isolation Logic

The soft-failure detection logic consists of multiple hypothesis-

based testing. Each hypothesis is implemented by using a

Kalman filter. The soft-failure detection and isolation logic

structure, shown in figure 8, consists of six hypothesis filters,

one for normal mode operation and five for the failure modes

(one for each engine output sensor). The structure for each

hypothesis filter is identical to that of the accommodation filter.

However, each hypothesis filter operates with a different set

of measurements. For example, the first hypothesis filter Hi

uses all of the sensed engine outputs except the first, N1. The

second uses all of the sensed outputs except the second, N2,

and so on. Thus, each hypothesis filter generates a unique

residual vector, 3¢i.From this residual each hypothesis filter

generates a statistic or likelihood based on a weighted sum of

squared residuals (WSSR). Assuming Gaussian sensor noise,

each sample of "l(ihas a certain likelihood or probability

Zi = Pi('Yi) = ke-wssg, (8)

where k is a constant and WSSRi = ,,/T_ -17i with I; = diag

(0/2). The a i are the standard deviations defined in table II.

TABLE H.--HARD-FAILURE DETECTION

THRESHOLD MAGNITUDES

Sensor Adjusted Detection

standard threshold

deviation, o i

Speed, rpm

NI (fan) 300

N2 (compressor) 400

Pressure, psi

PT4 (burner) 30

PT6 (exhaust 5

nozzle)

Temperature, °R

FTIT (fan 250

turbine inlet)

600

8130

6O

10

5OO
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Figure 8.--Soft:failure detection and isolation logic structure.

These standard deviation values scale the residuals to unitless error was dominant in determining the fixed threshold level;

quantities that can be summed to form a WSSR. The WSSR this threshold, in turn, was clearly too large for desirable

statistic is smoothed to remove gross noise effects by a first- steady-state operation. Consequently, an adaptive threshold

order lag with a time constant of 0.1 sec. When the log of was incorporated to improve steady-state detection and isolation

the ratio of likelihoods LR is taken, then while maintaining the algorithm's robustness to transient model-

ing error. The adaptive threshold is defined as follows:

= log (_/ = WSSR0 - WSSRi (9) _,i _--- )kiSS0kEXP -]- 1) (10)LRi

T_kEX p + _kEXp = Mtran (11) _

If the maximum log likelihood ratio exceeds the threshold, =.

a failure is detected and isolated, and accommodation occurs. This heuristically determined threshold consists of two parts.

Ifa sensor failure has occurred in N1, for example, all of the One part, X,ss the steady-state detection and isolation threshold, =o

hypothesis filters except H1 will be corrupted by the faulty accounts for the steady-state, or low-frequency, modeling

information. Thus each of the corresponding likelihoods will be error. The second part, XEXP, accounts for the transient, or

small except for H1. So the Hi likelihood ratio will be the max- high-frequency modeling error. The adaptive threshold is

imum that will be compared to the threshold to detect the failure, triggered by an internal control system variable Mtran, which

Two steps are involved in accommodation. First, all seven is indicative of transient operation. To minimize false alarms =

of the filters (one accommodation and six hypothesis) are due to modeling during transients, the values of ;kiss, ¢, and

reconfigured to account for the detected failure mode; that is, Mtran were determined experimentally. When the engine

the appropriate residual in each filter is forced to zero. Second, experiences a transient, Mtra n is set to 4.5; otherwise it is 0.

the states and estimates of all seven filters are updated to the The time constant r = 2 sec. The adaptive threshold expansion :_

correct values of the hypothesis filter that corresponds to the logic enabled _,iss to be reduced to 40 percent of its original

failed sensor, value, which resulted in an 80 percent reduction in the detection

and isoiatioti threshold _,_. _

Adaptive Threshold

Since the WSSR statistic is the sum of Gaussian variables --

squared, it has a chi-squared distribution. Initially, the soft- Microcomputer Implementation
failure detection and isolation threshold was determined by

standard statistical analysis of this distribution, thereby setting The ADIA algorithm had been evaluated in nonreal time

the confidence level of false alarms and missed detections, during algorithm development. This a/10wed debugging of the

Next, the threshold was modified to account for modeling algorithm and a preliminary assessment of its capabilities. _-

error. Initial evaluation studies showed that transient modeling However, in order to evaluate the algorithm in detail and to

8
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demonstrate it with a full-scale engine, implementation in real

time was needed. One objective of the real-time implementation

of the algorithm, then, was to respond to this need. The second

objective was to use a realistic microcomputer, that is, hardware

and software typical of that to be used in next generation

turbofan engine controls.

The MVC-ADIA implementation has several distinct

hardware and software features. The hardware for the controls

computer is based on the Intel (Santa Clara, CA) 8086

processor architecture. Three CPU's operating in parallel

allow the fulI MVC-ADIA algorithm to run in real time. The

software is a combination of a previously developed 8086

implementation of the MVC algorithm (in its entirety) and the

software to implement the ADIA algorithm. The ADIA soft-

ware uses floating-point arithmetic and is coded almost entirely

in the application language, FORTRAN. The FORTRAN

subroutines have been optimized to execute in real time. Only

the reference point schedules and table lookup routines within

the ADIA algorithm remain in assembly language.

Algorithm Software

The ADIA algorithm is implemented by the four major soft-

ware modules shown in figure 9: the engine model matrices

calculation, EMODEL; the hard-failure detection and isolation

logic and accommodation filter, FDIA; the soft-failure

detection and isolation logic, FDISOL; and the filter calcula-

tion, FILTER, used by FDIA and FDISOL. Each of these

modules is discussed in the following paragraphs.

The EMODEL software Calculates the F, F- iG, H, D, and

K matrix elements as well as the U, X, and Z basepoints. The

reason for computing F-1G instead of G is explained in the

section describing FILTER. A block diagram of EMODEL

is shown in figure 10. The inputs to the calculation are the

transition control value of fan speed from the MVC (SNFTR),

sensed fan inlet temperature (TT2SN), and sensed Mach

number (SMNSEN). From these, the routine SNFMAP

calculates a virtual power code PCV. The PCV is an indicator

of the dynamic state of the engine and is equivalent to the PLA

that would be required to cause the steady-state fan speed

SNFTR

TT2SN

SMNSEN

EMODEL

RPSCH
SNFMAP (referenoe point U b

{fan speed map) schedules) Zb

I

Nonscaler Compute _ -IG

matdoes _D

Figure 10.--Engine model calculation, EMODEL.



indicated by SNFTR, given TT2SN and SMNSEN. The PCV

is an input to the reference point schedules (RPSCH), which

are identical to those used in the F100 multivariable control

except that PCV is substituted for PLA. The outputs of RPSCH

are basepoint values for the ADIA filter states X b, engine

outputs Zb, and the controlled engine inputs lib. All three sets

of basepoints are necessary for the accommodation filter and

hypothesis filter calculations. In addition, Z b is used to

compute the matrix elements for the F, F-IG, H, D, and K

matrices. Each of the matrix elements is either a constant or

expressed as a polynomial of the Z basepoints Zb, of no

greater than third order.

Figure 11 shows a block diagram of the FDIA module. The

operation of this module, which contains the sensor heat logic,

the hard-failure detection and isolation logic, and the accom-

modation filters, is described in the following paragraphs. The

sensor heal logic allows sensors that have been declared bad

because of spurious noise, or that have been failed during

engine testing and then healed, to be brought back into consid-

eration in computing the estimates of the engine outputs. The

measured outputs Zm of the engine are delayed so that the

measurements from the previous update interval are used. The

estimated sensor outputs from the last update interval, Z,,,,

are then subtracted from the measurements to get the residuals

GAMCH. For each sensor channel that has been declared

failed at some point in the past (i.e., its corresponding failure

isolation flag ICHAN is set), the residual is compared to a

heal threshold THRH multiplied by the standard deviation of

that signal GSDO (see table IT). If the residual is less than

this product for 10 update intervals, the sensor is declared

healed. The heal threshold is usually set to 10 percent of the

hard-failure detection threshold. A sensor that is declared

healed has its correspondifig failure flag ICHAN reset to zero.

If a channel's failure flag is set, the corresponding residual,

GAM, is set to zero; this guarantees that the channel will not

be considered in the subsequent logic. In the hard-failure

ICHAN

ISOLT

ICNEW

From
FDISOL

(

ICHAN t

I
] ,
^

zm J

) i

THRH GSDO

1 I
! If ICHANi _ 0 then I i

] If OAMCHf < THRH • GSDO i If ICHANI = 1
GAMCH _ ;for ten updates then then

Jheal sensor GAMI = 0

I(ICHAN_= 0)
I ICHAN t
I ICHANi = 0

I

I I

I I
J i i

I
_ Lv_LLL

--,d I
Failed

channel F
Information

-I_ m ,-- ,--_--i -I
ISOLT J I

r" DFLAGH I I 1 I
I " I I
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I I P I

Zlo _ t t i ' I
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T
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Figure 11 .--Hard-failure detection and isolation logic and accommodation filter, FDIA.
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detection and isolation logic, the residuals are compared to

the product of the hard-failure detection and isolation threshold

THRDI and the standard deviations GSDO. If the residuals

are greater than this product, a hard failure is declared on the

channel and the hard-failure detection flag DFLAGH is set

along with the corresponding ICHAN. At this point all

information concerning both the hard failures occurring in this

update interval, and the soft failures occurring in the last update

interval (flags ICHAN, ISOLT, and ICNEW to be explained

later) are in the failed channel information.

The ICHAN's are then examined, and for each ICHAN that

is set (i.e., for each channel that has had a failure isolated),

the corresponding column of the K-matrix is set to zero. This

removes that measurement from the accommodation filter

calculation. In addition, if ICItAN 5 is set (i.e., an FTIT failure

has occurred), then the entire sixth row of the K-matrix is set

to zero. This removes the integrator state described earlier.

If no hard failures have occurred in this update interval (i.e.,

DFLAGH = 0) but a soft-failure isolation has occurred (i.e.,

ISOLT -- 1), the states and estimated outputs of the accommo-

dation filter are reinitialized to the states and estimated outputs

of the correct hypothesis filter Xic, Zic, as indicated by the

ICNEW flag from the soft-failure isolation logic. In addition,

the soft-failure isolation initialization flag INITFL is set and

passed to the soft-failure isolation logic, to cause all six of

the hypothesis filters, as well, to be reinitialized to the correct

hypothesis filter. Last, the accommodation filter is calculated

by using the F, F- 1G, H, D, and modified K (KA) matrices

along with the control, output, and state basepoints, Ub, Zb,

and Xb respectively--all of which were computed by

EMODEL. The accommodation filter uses the delayed meas-

urement Z m to calculate the optimal estimates of the engine

outputs Z and the same estimates with sensor dynamics

incorporated Z,,. The unlagged estimates Z and the failure

isolation flags ICHAN are passed to the MVC control so that

the estimates can be used in the LQR and, ifa failure has been

isolated to a given channel, in the integral control.

The next major software module is the filter calculation

FILTER, which calculates the accommodation filter and all

six of the hypothesis filters. Figure 12 shows, in block diagram

form, the filter calculation that corresponds to the filter

equations given in the Accommodation Filter section earlier.

However, the equations are actually computed slightly differ-

ently. Previously, the equations were given as

X = F(X - Xb) + G(Um - Ub) + KV (3)

= H(X - Xb) + D(U m -- Ub ) -1- Zb (4)

_y= z,. - _ (5)

The filter is actually implemented as

= F[(X - Xb) + F-IG(U m - Ub)] + K_' (12)

= H(X - Xb) + D(Um - Uo) + Zb (4)

_, = z,, - _ (5)

An (F-tG)-matrix in place of a G-matrix permits isolation

of the steady-state and dynamic components of the states. (For

further details see ref. 3.) Two "switches" that allow the filter

to be initialized are included in this module; that is, the states

and the estimates can be set to a specified initial condition.

U b Xb

i _I

+

Z le

KGAM

Xb

GAMH

Z b

Z m

Figure 12.--Kalman filter calculation, FILTER.
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Initialization is required at startup and when a soft failure is

isolated, whereupon the states and estimates need to be set

to the correct hypothesis filter. The optimal estimates of the

engine outputs Z are shown (fig. 12) as one of the three outputs

of the filter calculation. These optimal estimates are then

filtered to simulate the sensor dynamics. For the two speeds

and two pressures, N1, N2, PT4, and PT6, the latter filters are

simple first-order lags. For FTIT, the filter is a combin_ati0n

of two first-order lags, one fast and one slow, which emulates

the FTIT thermocouple. The estimates Z,, of the sensor out-

puts are used in the FDIA sensor heal and hard-failure-

detection logics. The last outputs of the filter calculation, the

computed residuals GAMH, are used in the soft-failure

isolation logic.

The soft-failure detection and isolation logic, FDISOL, is

shown in figure 13. As explained earlier, there are six isolation

or hypothesis filters. Each of these has a unique set of states,

estimates, and residuals and a unique K-matrix. The K-matrix

for the hypothesis zero filter is identical to that computed by

EMODEL. However for each of the remaining hypothesis

filters, the column of the K-matrix corresponding to the filter

number is set to zero; that is, for hypothesis filter 1, column

1 is set to zero, for hypothesis filter 2, column 2 is set to zero,

and so forth. These modified K-matrices, KI: through KI,5,

are used in their respective hypothesis filter calculations. If

the initialization flag INITFL is set (i.e., the accommodation

filter has accommodated a new soft failure), then the states

and estimates of each hypothesis filter are Set to the states and

estimates of the correct hypothesis filter. In addition, all the

hypothesis filter outputs (Hloo to HI 5) are reset to zero, and

the soft-failure isolation flag ISOLT and INITFL are reset.

For each hyp6thesis_fiitez:_n which a failure'has been isolated

to a given channel (i.e., that channel's corresponding ICHAN

is set), the measurement for that channel is set to the filter

estimate. Since-the residual on that channel is 3' = Z,, - 7.,

setting Zm to the filter estimate sets the residual

corresponding to a failed channel to zero in each hypothesis

filter; this has the effect of removing that channel from the

hypothesis-generation procedure. The six hypothesis filters are

then calculated by using the FILTER calculation described pre-

viously. The output of interest from the filter is the residual

vector. The six residual vectors GAMtt o to GAMI-I 5 are

used along with the standard deviations GSDO to compute

six WSSR's (as discussed earlier). The WSSR's are smoothed

by using a simple first-order lag with a time constant of

TAUEXP = 0.1 sec. The five smoothed failure-case WSSR's,

_.__ F°r n= 1 t° 5 t
set column n

of KI, n = 0

tNIFTI_ ._[ IF INITFL =1 THEN IXTn R

Xl.c _..I Set Xl, n = X IC
l Set Zl,n= Z Ic

Zlc JSetHl,n=O

"----'l="l Set ISOLT, INITFL = 0

Zl=0r..15

CHAN_ FOr n" lt05 JZ 1,0,..., s

I iflCHANt = 1 then ].Z],0,...,5
Zm_. I setZ m,i =Zl,n,/

THRI

K F F-/G H D OSDO TAUEXP

CalctJlate Compute

hypothesis 0 WSSR
filter and smooth

Calculate Compute

hypothesis 1 WSSR
filter and smooth

Calculate Compute H ! 5
hypothesis 5 WSSR

filter and smooth

H 100

Um Ub Zb Xb

DH 1 eee DH 5

DHMAX = 0 I

for/= 1 to5

if IDHi I • DHMAX and ICHANI = 0 then

set DHMAX = DHi and IMAX = I

I DHMAX _ IMAX_

I ISOLTj " " I ICNEW
If ISOLT = 0 and DHMAX>THRIA then I_

/set ICNEW = IMAX _LT

_i-- THRIA = THRI 2. (I+KTHB) -dT/MTRTAU I THRIA I"i ICHAN(ICNEW} = 1 I LCHAN
/ KTHB=RM]'RAN - (RMTRAN-KTHB) • e I

/ ISOLT = 1 I _X lO! I tx ,0=
/z ,o

Non_er

Figure 13.--Soft-failure detection _ndisolation logic, FDISOL.
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HI 1 to HI 5, are subtracted from the unfailed one, Hloo, to give

the likelihood ratio for each failure case DH_ to DHs, where

DH_ corresponds to the likelihood of an NI failure, DH 2

corresponds to the likelihood of an N2 failure, and so on.

For channels that have not had a previous failure isolated

(their ICHAN's are not set), the maximum likelihood ratio

is found; DHMAX then contains the maximum likelihood

ratio, and IMAX contains the channel number corresponding

to that maximum likelihood ratio. The adaptive soft-failure

isolation threshold THRIA is computed as discussed earlier.

If ISOLT = 0 (i.e., all previous soft failures have been

accommodated), then DHMAX is compared to THRIA, and

if DHMAX is greater, a soft-failure is detected and isolated.

In such a case, ICNEW is set to the channel number of the

failed channel, the corresponding failure isolation flag ICHAN

is set, and the soft-failure isolation flag ISOLT is set. These

three variables along with the state and sensor estimates of

the correct hypothesis are then passed to FDIA to accommodate

the failure.

Controls Microcomputer Hardware and Software Design

Implementing the MVC-ADIA algorithm required integrating

the ADIA algorithm with the existing microcomputer implemen-

tation of the F 100 MVC algorithm. The update interval of the

microprocesso-based MVC implementation was 22 msec. The

F100 engine system dynamics required that the combined

MVC-ADIA algorithm update interval be 40 msec or less.

The microcomputer implementation of the MVC algorithm

had been developed by porting the minicomputer implementa-

tion of the MVC algorithm that was used for the F100 MVC

program to an Intel 8086 microprocessor-based controls micro-

computer. The ADIA algorithm was then merged with this MVC

implementation to give a full microcomputer implementation

of the control algorithm with sensor analytical redundancy.

The controls microcomputer, although still based on the Intel

8086 microprocessor architecture, used multiple processors

operating in parallel to be within the update interval of 40 msec

that was necessary for stable engine operation.

Initially, only the normal-mode accommodation filter and

the hard-failure detection and isolation logic of the ADIA

algorithm were added to the MVC algorithm. For this initial

configuration a second 8086-based CPU, running in parallel,

was added to the CPU that was used solely to implement the

MVC. Data were transferred between the Intel 86/30 single-

board computers through dual-ported memory, and synchroni-

zation between CPU's was achieved through interrupts. The

software for the combined MVC-ADIA algorithm was alloted

so that the ADIA software ran on the second CPU while the

MVC algorithm remained intact on the first CPU. This

straightforward way to partition the algorithm allowed the

parallel-processing mechanism to be evaluated. The soft-failure

detection and isolation logic was to be added to the second

CPU at a later date.

In the original design of the ADIA algorithm, the soft-failure

isolation logic would start only after a soft failure was detected

by the soft-failure detection logic. The soft-failure detection

logic was subsequently added to the second CPU, but because

the soft-failure isolation logic required a significant amount

of processing time, a third CPU was added to implement it

in parallel with the soft-failure detection logic. Data were

transferred and synchronized in the same manner as with the

two-CPU implementation. Recently, the three 8086-based

CPU's were replaced with three 80186-based CPU's. These

are Monolithic Systems (Englewood, CO) MSC 8186 single-

board computers (see fig. 14). The features of these single-

board computers are shown in table III.

The new CPU's are software-compatible with the old CPU's

but are considerably faster. Each of the new CPU's provides

approximately 0.7 million instructions per second (MIPS), so

the three processors combined provide on the order of 2 MIPS.

The three CPU's are contained in an 18-slot Multibus chassis

that also contains a floppy disk controller, a graphics interface,

and both analog and digital input/output boards. (The hardware

Figure 14.--Monolithic Systems 8186 single board computer.
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TABLE III,--MSC 8186 FEATURES

[Hardwareand software compatible with Intel iSBC 86/30,]

(a) General features

Dynamic RAM, dual-ported, 150 nsec

zero-wait-state, kB ...................................................... 128

EPROM, kB ............................................................... 256

Programmable timers/counters ............................................ 5

Levels of vectored interrupt control .................................... 13

Compatible serial interface ......................................... RS-232

Compatible bus interface ............................ Multibus (IEEE 796)

(b) Individual processor features

Registers, 16-bit, number

General purpose

Segment
Status and control

Register stack, 80-bit,
number

Arithmetic

Processing time, #sec
Addition

Multiplication
Division

8-MHz 80186

microprocessor_

Signed, fixed

point

1.25

4.5

7.6

8-MHz 8087 numerics

coprocessorb

8

Signed, floating

point

15.6
21

28.7

alias integrated peripherals including three timers, two DMA controllers, and a programmable

interrupt controller.

bcompatible with IEEE floating point standard 754.

configuration is shown in fig. 15.) The disk controller allows

programs to be loaded from disk into each CPU's memory and

permits research data to be saved to disk. The graphics interface

allows research data to be displayed on a graphics terminal.

The analog input/output boards provide an interface to the

engine or engine simulation. The digital input/output boards

not only provide an interface to switches on the CIM unit front

panel but also allow discrete controller inputs and outputs.

The relative timing for the three CPU's is shown in fig-

ure 16. The arrows in the figure represent interrupts. The first

event to occur is a timer interrupt to CPU 1; this indicates

the beginning of an update interval. The first CPU then samples

all the algorithm inputs through the analog-to-digital (A/D)

converters and all the mode switches through the digital input

boards. The measurements required for the ADIA part of the

algori_m on CPU's 2 and 3 are then converted by CPU 1

to floating-point numbers and transferred to CPU 2. An

interrupt is sent from CPU 1 to CPU 2 to indicate that the

algorithm inputs are now available. Next, CPU 1 computes

the parts of the MVC algorithm that are not dependent on the

outputs of the ADIA algorithm--the reference point schedules,

the transition control, and the gain control. Concurrently,

CPU 2 uses the algorithm inputs to compute the engine model

matrices an d basepoints and the Kalman gain matrix. This

information is passed to CPU 3 for use in the soft-failure

isolation logic. Then CPU 2 sends an interrupt to CPU 3 to

indicate the information is available. The soft-failure isolation

logic computes throughout the remainder of the current update

interval and into the next. Any soft-isolation information that

results is transferred from CPU 3 to CPU 2, which performs

the hard-failure detection and accommodation filter computa-

tions, using the isolation information if needed. An interrupt

is sent from CPU 2 to CPU 1 indicating the ADIA calculations

are complete. Next, CPU 1 reads the resulting ADIA outputs

(i.e., information about any sensors that have failed and the

computed estimates of the engine outputs) from CPU 2 and

then finishes the MVC calculations. The controlled variables

are sent to the engine actuators through the digital-to-analog

(D/A) converters. In the last step, CPU 2 calculates altitude

and Mach number from the engine environmental variables,

for use during the next update interval.

Data Acquisition Software

The microcontroller interactive data system (MINDS) is used

for data acquisition (ref. 18). This software runs on CPU 1

during the time when the CPU is not executing the MVC

algorithm (fig. 16). The MINDS package has both steady-state

and transient data-taking capabilities and can access any variable

in the MVC or ADIA algorithms. Variables are defined by name,

memory location, and for integer variables, their scale factors.

1!

Figure 15.--Hardware implementation of ADIA.
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from CPU 2 and conversion to fixed point
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INLET Mach number and attitude calculation

CPU 3

FDISOL Hypothesis tilters and soft detection and isolation

logic calculations
ITRANS Transfer of soft isolation information from CPU 3

Figure 16.--Advanced detection, isolation, and accommodation timing for

8-MHz MSC 8186. Arrows represent interrupts.

Large amounts of steady-state data can be obtained by group-

ing the variable names into tables and requesting a printout

of a given table. All the variables within a table are sampled

and printed on the CIM unit user console. Transient data are

collected by defining tables of variables to be sampled over

time. The variable definitions, as well as the steady-state and

transient table definitions, are saved to disk so that they may

be recalled each time MINDS is run. The transient data

sampling interval and the total sampling time are defined at

run time. The steady-state and/or transient data taken can be

uplinked to a mainframe computer for off-line processing. In

addition, the software has been enhanced to allow plotting of

transient data on-line, immediately following a transient data

sample, while the controls microcomputer continues to

operate. The on-line transient data display of internal MVC

and ADIA variables was an indispensable tool in the algorithm

evaluation process and in resolving operational difficulties

during the engine test.

Implementation Languages

As previously discussed, different parts of the combined

MVC-ADIA algorithm are divided among three CPU's. The

MVC is implemented in fixed-point assembly language on

CPU 1. When the MVC was originally implemented on a

microcomputer (3 yr prior to the ADIA implementation),

assembly language programming with fixed-point arithmetic

was necessary to achieve real-time execution of the algorithm.

With the development of efficient floating-point coprocessing

hardware--in this case the Intel 8087--came the capability of

implementing real-time controls in floating-point arithmetic.

The advantages of programming in floating-point arithmetic

and an application language such as FORTRAN, rather than

in fixed-point assembly language as was used for the MVC,

include increased software reliability and reduced software

development and maintenance costs. Thus, most of the ADIA

algorithm running on CPU's 2 and 3 is programmed in floating-

point arithmetic and FORTRAN.

The primary disadvantage to using an application language

is that it generally produces a less efficient object code than

the equivalent functions programmed in assembly language.

Execution efficiency is critical for real-time control systems

such as the MVC-ADIA. Programmed entirely in FORTRAN

and as originally coded, the ADIA algorithm took more than

an order of magnitude longer than the maximum 40-msec

update interval. To hasten execution, table lookup routines,

which are written to take advantage of the 8087 architecture

(ref. 19) and are executed frequently in the ADIA algorithm,

were implemented in assembly language, as were the hardware

interface routines, which have no FORTRAN equivalent. The

EMODEL schedules for computing the filter basepoints are

functionally identical to the reference point schedules in the

MVC, thus using the MVC assembly language schedules saves

additional computing time. So that the remainder of the

algorithm could remain in FORTRAN, the source code was

optimized to make it run more efficiently (ref. 20). As shown

in figure 16, the entire MVC-ADIA algorithm now executes

in less than the maximum 40 msec.

Memory Requirements

The memory requirements for each of the three CPU's are

shown in figure 17. Each CPU has, in addition to its share of

6O

5O

4O

3O

2O

10

0

m

[_ Executive

Algorlthum

Minds

Safety

m

F
...|

CPU 1 CPU 2 CPU 3 Total Total

3 CPU'S 1 CPU

Figure 17.--Memory requirements o1 MVC-ADIA.
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the MVC-ADIA algorithm, an executive routine that maintains

correct real-time operation of the total algorithm. The amounts

of memory required for the algorithm and for the executive

routine are shown for each CPU. Also the memory require-

merits for MINDS on CPU 1 and for the safety software (which

is described in a later section of this report and which runs

only on CPU 1) are shown. In all cases the code and the con-

stants occupy about 75 percent, and the data and the Variables

about 25 percent, of the total memory required. Figure 17 also

shows the total number of kilobytes (kB) of memory required

for all three CPU's combined for each of the following: the

executive routines (16.9 kB), the total algorithm (54 kB),

MINDS (34.4 kB),and the safety software (2.5 kB). A state-

of-the-art 32-bit microprocessor is probably capable of real-

time execution of the MVC and ADIA algorithms on a single

CPU. If so, figure 17 shows what the total memory requirement

would be for such an MVC-ADIA implementation. Combining

the algorithms would eliminate some redundant code in the

executive routines and in that part of the algorithm which was

replicated because of being distributed across multiple CPU's.

About 5 kB of executive and 15 kB of algorithm are replicated

in the multiple CPU implementation; thus a single CPU imple-

mentation would take about 20 kB less memory.

Software Run-Time Environment

The programs for each of the CPU's are downloaded into

memory by using a commercially available disk operating

system, CP/M-86. The operating system allows research data

to be saved to disk and provides t6rminal interfaces to both

the CIM unit user console and graphics display.

Software Development Environment

Software development for the MVC-ADIA code was done

on an Intel Series III Microprocessor Development System.

Each routine was either assembled or compiled on this system.

The software for each of the CPU's was linked and located

in order to generate the executable object modules. The

executable modules were transferred to the CIM unit by

converting them to ASCII files and copying them to a CP/M-86

formatted file on a floppy disk. This floppy disk was then

transferred to the CIM unit.

On the CIM unit, a CP/M-86 executable file was generated

from the Intel executable object modules for each of the three

CPU's by using the CP/M-86 utility GENCMD. The routines

for CPU's 2 and 3 were then loaded from disk into RAM on

boards 2 and 3 by using the operating system. Lastly, the

software for CPU I was loaded from disk and executed. The

result was the multiprocessor operation described earlier in

this report.

In order to ensure software version control, any changes

to be made to the software were first documented in the

software listings, and then the module to be changed was

identified. As each change was made, a record of it was kept

in a software configuration control document. Finally, a new

version number for each of the individual modules changed

was incorporated into a new master version list. The software

configuration control document, the master version list, and

a narrative of the changes were given to the test conductor

for incorporation into the engine-test permanent records.

Engine Demonstration-Specific Hardware

and Software

This section summarizes the CIM unit safety and operational

procedures devised for the ADIA engine demonstration in the

PSL. A primary concern of the research staff was the safety

of the engine while it was operating under research control

(MVC-ADIA). Any event that could compromise the safety

of the engine had to be detected, and appropriate action taken.

Procedures to safely start the research control and to transition

smoothly and safely from backup or bill-of-material control

(BOM) to research control and back again were defined for

operation of the CIM unit during the engine test. Failure modes

within the CIM unit were identified, and safety procedures

to avoid compromising the safety of the engine were defined.

Operating Procedures

To allow for startup and a smooth transition from backup

control to research control and back again, the controls

microcomputer contains four operational modes: (1) startup,

(2) initialization, (3) run, and (4) abort.

The executive software in the controls microcomputer main°

tains real-time operation of the algorithm software and contains

the logic to switch between these operational modes. Each of

the modes is described herein.

Startup mode.--During a typical run, the CIM unit was

powered up and placed in the startup mode. In this mode, the

full MVC-ADIA algorithm was run with synthesized inputs

generated internally by software. This mode allowed any

obvious faults within the computer to be identified before an

attempt was made to run it with actual sensed values. With

the CIM unit in startup mode, the engine was started, and the

altitude cell was adjusted to obtain the correct values of P0,

PT2, and TT2 for the initial flight point.

Initialization mode.--If no problems were detected in the

startup mode with the engine at flight idle under BOM control,

the CIM unit was put in the initialization mode. In this mode

the control was run using actual sensed information from the

engine. All five integrator outputs within the MVC algorithm

integral control were fixed at zero. The MVC outputs were

compared with the sensed actuator feedbacks. If all of the

outputs were within a specific tolerance of the feedback signal,

the MVC integral control output initial conditions were set

so that the MVC actuator commands were exactly the same

as the corresponding sensed actuator positions; this ensured

a smooth transfer from BOM to research control. If no safety

problems were detected, the control was put into the run mode.
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Figure 18.--Actuator panels and missing-pulse detector.

Run mode.--In the run mode, a permit light on the CIM

unit front panel indicated that actuator panels could be switched

from the BOM control to the research control. These panels,

shown in figure 18, provided the interface between the CIM

unit and the engine actuators and provided the switching

between research and BOM controls. (Additional details on the

panels and research actuation system can be found in ref. 17.)

To transfer to research control, the actuator panel switches

(one for each actuator) were manually engaged, one at a time,

by the panel operator. This caused the actuator commands to

be derived from the MVC-ADIA logic instead of the backup

control. Since the MVC-ADIA actuator commands were set

equal to the actuator feedbacks during the initialization mode,

this transfer of control was very smooth. Once transfer to

research control was complete, the MVC integrators were

released, the CIM unit safety software was engaged, and full

control of the engine was assumed by the MVC-ADIA.

Abort mode.--If the CIM unit safety software (to be

discussed next) detected a problem, the control switched from

the run mode to the abort mode. In the abort mode, the control

software was frozen, thereby causing the PSL safety logic to

command the actuator panels to switch the engine to the backup

control. In addition, freezing the software allowed inspection

of the control inputs, internal variables, and outputs at the

moment of problem detection, in order to help determine the

cause of the abort. An abort could also be initiated by the

engine operator or actuator panel operator and detected by the

CIM unit through a sense line. At shutdown, the panel operator

issued an abort to switch control of the engine to backup, where

it remained throughout the shutdown procedure.

Safety Procedures

The normal PSL safety systems were used to ensure safe

engine operation. These included maximum speed and maximum

temperature protection, chop-to-idle or off logic, and master

fuel shutoff logic. However, certain failures, which compromise

engine safety, can occur during operation of the engine on

research control. When these failures were detected, as a safety

measure, control reverted to the backup until the cause of the

problem could be identified. The following failure modes cause

adverse behavior of the MVC-ADIA control:

(1) Failure on input of sensors, sensor lines, and/or CIM unit

A/D converters

(2) Failure on output of CIM unit D/A converters, output

lines, and/or actuators

(3) Failure of controls microcomputer hardware

(4) Failure of controls microcomputer software

Safety systems were designed to accommodate each of these

failure modes. The failure modes and the action taken to accom-

modate them are summarized in table IV. Once a sensor,

actuator system, or output failure has been detected, the

controls microcomputer is automatically frozen. This causes

a reversion to backup control for any anticipated failure modes

and thus minimizes risk to the engine. Specific safety proce-

dures for sensor system failures, actuator system failure, and

controls computer hardware and software failures are

presented in the following paragraphs.

Sensor and actuator system failures.--For the preliminary

engine runs in which the MVC was run wilhout the ADIA sensor

failure logic, sensor failure checks determined the health of

all the sensors. In addition, actuator failure checks were used

to check the integrity of the CIM unit outputs, output lines,

actuator panels, and actuator hardware. The following para-

graphs describe the sensor and actuator failure checks.

Input failure logic: The purpose of the input failure logic

is to determine the validity of a particular sensor signal. This

is done by using a subset of four possible checks on each signal

that is fed to the control. The first check is a minimum-

17



TABLEIV.-CIMUNITSAFETYSYSTEMS

Failurecomponent Detectionmethod Actiontaken

Sensorsystems

Enginesensors(withoutADIA)
Enginesensors(withADIA)
Environmentalsensors
A/Dconverters
Cabling

Sensorchecksoftware
ADIAalgorithm
Sensorchecksoftware
Sensorchecksoftware
Sensorchecksoftware

Reverts to backup

ADIA failure accommodation

Reverts to backup

Reverts to backup

Reverts to backup

CIM unit controls computer

Reverts to backupHardware

Software

Abort logic (watchdog

timer on each CPU)

Abort logic

Output rate checks

Overflow checks

Reverts to backup

Reverts to backup

Reverts to backup

Research actuation system

Research actuators

Actuator feedback sensors

D/A converters

Cabling

Simulate actuators on

simplified engine simulator

Error check on difference

between simulated and

actual actuator feedbacks

Reverts to backup

Reverts to backup

maximum check:

Stain < S_ < Smax

where S,, is the current value of a sensed signal, Smin is the

minimum value of a sensed signal, and S_ is the maximum

value of a sensed signal. This check allows the detection of

a gross, hard, out-of-range failure that would be erroneous

anywhere within the engine's flight envelope.

The second check is a rate check:

ISn-Sn_tt <e

where s,_ 1 is the value of the sensed signal for the last

update interval and e is the error tolerance within which the

difference must lie.

...... "-_yco-@5_i'_n_'tfie_pre_ent atid_a-st Values of the Signal, an

erratically responding sensor can be detected, and a hard

failure anticipated.

The third check is a percent-of-point deviation checki

S (N-percent S) _< S_ _< S + (N-percent S)

where S± (N-percent S) is the nominal sensor value plus or

minus a given percentage. This third check is basically a

minimum-maximum check with the error bounds defined as

being plus or minus a given percentage of the original sensed

value. This check is effective only on variables that are not

expected to change at a given flight condition. However, since

the error bounds are considerably narrower than for the

minimum-maximum check, a hard-failure or slow-drift condi-

tion can be detected much more quickly.

The fourth check is a reference-point deviation check:

IS_-S_,f,_-_l <--e

where Sref, n_ 1 is the modeled value of the sensor from the

previous update interval. This check uses the control's reference

point schedules and transition control to produce steady-state

and transient signal models that can be compared with the actual

sensed value. This error check detects not only hard failures

and failures caused by erratically responding sensors but also

drift or sensors whose dynamic responses maybe incorrect.
The actuator failure check is based on the difference between

a sensed actuator feedback value A and a simulated one A_

as follows:

IA-AEs I--<e

The modeled values are computed in the F100 simplified

engine simulator from simulations of the fuel flow, exhaust

nozzle, RCVV, and CIVV actuators. This check allows detec-

tion of errors in the forward loop, such as D/A converter

failures, transmission line failures, actuator panel failures, and

actuator hardware failures, before they are detected indirectly

through a sensor and do inadvertent damage to the engine.

Discussion of sensor and actuator failure checks: Table V

shows all of the sensed signals, including actuator feedbacks,

grouped according to the types of failure checks applicable

to each, along with their corresponding error tolerances and
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SeBsor

PT2

TT2

P0

N1

N2

PT6

PT4

WF

FTIT

TT25

PLA

RCVV

CIVV

AJ

TABLE V.-SENSOR AND ACTUATOR FAILURE CHECKS

[Values are percentage of full scale.]

Minimum-maximum

Minimum Maximum

1.30 75.00

-2.60 43.00

.25 70.00

20.00 77.00

57.00 93.00

1.00 65.00

3.30 67.00

.60 82.00

17.00 60.00

4.50 55.00

6.60 66.60

0 100

0 100

0 100

Delta Percent-

of-point

deviation

..... ±20.00 .....

..... +2.00 .....

..... +20.00 .....

............. 6.00

............. 5.30

............. 15.00

............. 8.20

............. 9.00

8.30 .............

12.00 .............

14.60 .............

Reference-point

deviation

Steady Transient

state

13.30

7.30

25.00

14.60

21.00

Actuator model

Steady Transient

state

9.00 12.00

18.00 27.00

24.00 36.00

4.20 9.80

limit values. Note that a minimum-maximum failure check is

performed on each signal to provide an initial failure screen

for a hard failure. In addition, group-specific checks are made

to provide additional coverage.

The percent-of-point deviation checks are made on the test

cell conditions (i.e., PT2, TT2, and P0) since they will vary

only a small percentage at any given flight condition. Clearly,

if this type of system were being used in a flight environment,

independent checks of this type (i.e., very tight minimum-

maximum limits) could be made by using Mach number and alti-

tude information from the airplane's central air-data computer.

The reference-point deviation checks are performed on N1,

N2, PT6, WF, and PT4. These signals are all modeled by the

control's reference-point schedules and transition logic to

provide open-loop trajectories for the LQR. Therefore, in

essence, the magnitude of LQR state deviations is being

examined at all times to determine if a sensor failure exists.

The rate checks are used to anticipate failure of sensors

whose signals have no modeled values and no attributes that

would allow limitation of their valid range. Failure of any one

of these signals may be catastrophic. In the event of a PLA

failure, the engine would be unable to hold a reference point.

Failure of FTIT could result in an overtemperature, especially

if the engine was run at military power. A TT25failure could

result in an engine stall due to compressor geometry mis-

scheduling. However, since both FTIT and TT25 are thermo-

couples, they would most likely fail in a hard-failure mode,

which is easy to detect.

The actuator model checks are performed on the WF, AJ,

CIVV, and RCVV feedback signals.

For all of the failure checks discussed, a signal must fail

four consecutive times to be declared bad. Each signal has

10-Hz analog filters to provide extra protection against spurious

noise that might inadvertently abort the control.

The error tolerance and limit values for all of the failure

checks that are summarized in table V were obtained from

the MVCS engine tests. They were originally derived from

the MVCS hybrid simulation evaluation results. The reference-

point deviation checks and the actuator model checks have two

sets of error tolerances: one for steady state and one for

transient. This is desirable since most of the test time is spent

at steady state, and the dynamic models are not as good as

the ones for steady state. Thus, to provide rapid detection of

most failures, tight error tolerances are used in steady state.

These error tolerances are increased during a transient to prevent

detection of false failures.

For the later runs of the engine, the ADIA logic was engaged

and the sensor failure checks on N1, N2, PT4, PT6, and FTIT

were performed entirely with the ADIA algorithm. As a result,

the sensor failure checks from the MVCS program were no

longer needed for these channels; however, all other sensor

and actuator failure checks remained in effect.

Controls computer hardware failures.--The controls

microcomputer in the CIM unit contains three CPU's. Since

all three are used for computation of the MVC-ADIA

algorithm, a hardware failure of any one of these CPU's would

adversely affect operation of the research control. For this

reason, monitoring the health of each of the CPU's is desirable.

Each CPU generates a signal indicating that it is operating

correctly. These signals are sent from the CIM unit as modified

square waves or pulse trains so that a simple monostable circuit

in the PSL safety systems can detect if the signal is absent.

An abort logic circuit, or missing-pulse detector (fig. 18) was

designed, built, and placed in the PSL control room for this
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purpose. Thus a hardware failure or power loss on any one

of the CPU's can be detected. This information is OR'd with

the engine operator's abort signal and passed to the permit

input on the actuator panels; this procedure allows reversion

to backup to be initiated by either a CIM unit failure or by

the operator. In addition, the OR'd output of the abort logic

is monitored by the CIM unit so that the MVC-ADIA is frozen

by any abort situation.

Controls computer software faUures.--The system just

described will also detect gross errors in the MVC-ADIA

software if those errors cause one or more of the CPU's to

stop generating their health signal. However, if the CPU's

continue to function, checks are needed to ensure that the CIM

unit is computing the MVC-ADIA algorithm correctly and

is producing correct outputs. The controls computer software

screens for software execution errors, including integer and

floating-point overflows and divide by zero. Any of these

execution errors will cause reversion to backup control. The

computer software also does output checks to prevent erratic

control outputs from being sent to the actuators.

Output processing and failure checking scales the control

outputs to make them compatible with the inputs to the research

actuators, and it performs the following check on WF, AJ,

CIVV and RCVV:

[ O.-On-1 ] _<e

where O, is the current value of control output; On_ 1 is the

past value of control output; and e is the error tolerance within

which the difference must lie.

This check allows one last test of the control's health by

ascertaining that the outputs are not behaving erratically. Erratic

behavior could be caused by an undetected overflow in an arith-

metic or shift operation or, possibly, by an actual hard failure

of the computer arithmetic unit. The error tolerances for the out-

put check were derived by analyzing data from the algorithm

evaluation on the hybrid simulation. The fuel flow and nozzle

area control outputs may fail this check only once to be con-

sidered a failure. A failure at this point would indicate a pos-

sible catastrophic computer problem, so reverting to backup

control should be done as quickly as possible. Because of the

control's filtering action, noise on the input sensors should

not cause noise on the fuel flow and nozzle area control outputs.

However, for the RCVV and CIVV outputs, noise is a problem

owing to the pass-through nature of the schedules for these

outputs. For instance, the noise on the inputs to the RCVV

schedule (TT25 and N2) could cause noise on the RCVV con-

trol output. Thus the RCVV and CIVV control outputs must

fail this test three times in order to be considered a failure.

Engine Test Facility Signal Interface

When the algorithm was evaluated with the F100 hybrid

simulation, all inputs to and outputs from the CIM unit were

represented by linear, + 10-V signals. The inputs were read

in by A/D converters within the controls microcomputer;

likewise all outputs, including the CPU health signals discussed

previously, were generated by the D/A converters within the

controls microcomputer. For the engine demonstration,

however, the real characteristics of the measurement devices

and actuators had to be accounted for in the controls micro-

computer. These devices included thermocouples, pressure

transducers, slide-wire transducers, electro-hydraulic actuators,

and the like. Interface electronics to minimize the impact of

these varied devices on the CIM unit controls microcomputer

were provided by the PSL operations personnel. However,

software that would accommodate nonlinearities and scale

factors different from those used with the hybrid simulation

was required.

Results and Discussion

The real-time microcomputer implementation of the

combined MVC-ADIA algorithm performed extremely well.

Research results Of the evaluation and demonstration of the

ADIA algorithm with a real-time hybrid simulation and with

an actual F100 engine are given in references 7 to 9. These

results, which include steady-state and transient data for the

FI00 MVC combined with the ADIA algorithm for the

no-failure case and for a variety of failure scenarios, show

excellent algorithm performance.

Several features of particular interest demonstrate the

feasibility of implementing the ADIA algorithm in a production

engine control.

First, the algorithm is programmed almost entirely in a high

order language (HOL). All previous research control applica-

tions and most current engine controls are programmed in

assembly language in order to attain real-time operation.

The commonly held belief that assembly language program-

ming (although it is deemed necessary in some real-time

applications) is less reliable than HOL programming seemed

to be supported during the simulation evaluation and engine

demonstration of the ADIA algorithm. During this 3-yr perio d,

the software Was updated a number of times because of its

evolution from the initial evaluation version to the final demon-

stration version. Even with this extensive software experience

base, several latent faults in the software emerged during the

PSL demonstration. Note that the MVC code on CPU 1 was

the most mature part of the ADIA code, having been developed

almost 2 yr prior to the ADIA implementation. In addition, it

was a direct translation from the code used for the MVCS engine

demonstration; yet all of the software faults were in the

assembly language programs in the MVC running on CPU 1.

Furthermorel all were in sections of the code that were manipu-

lating scaled integer numbers. Using a HOL, then, should be

accompanied by the use of floating-point arithmetic. This

is accommodated in hardware with most state-of-the-art

microprocessors.

Several comments are also in order about using parallel

processing in the implementation of the ADIA. When this

z
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decisionwasbeingmade,two factors were considered impor-

tant: first, using off-the-shelf microprocessors to realistically

emulate next generation engine control computers, and second,

maintaining the original structure of the ADIA algorithm so

as to minimize the impact on the ADIA algorithm software.

(As mentioned in the implementation languages section, the

ADIA algorithm required considerable code optimization in

order to be implemented in real time. However, the structure

of the algorithm remained identical to the original version

delivered to NASA Lewis at the end of algorithm development.)

Some alternatives to using parallel processors were considered,

including updating the model matrices every few update intervals

and freezing control outputs while isolating and accommodating

failures. However, parallel processing allowed the algorithm

to be used as originally formulated and to be fully updated

each control update interval.

An additional benefit, and a direct result of the increased

computing power provided by adding a third parallel processor,

was continuous execution of the soft-failure isolation logic;

this eliminated the need for the original soft-failure detection

logic. That is, soft-failure detection and isolation were both

performed by the same logic, thereby actually simplifying the

ADIA algorithm. Finally, the way the algorithm was parti-

tioned onto multiple processors accentuated the simple interface

between the MVC control algorithm and the ADIA sensor

failqre logic, and in turn, showed the generic nature of the

ADIA algorithm.

Concluding Remarks

The use of parallel processing and high order language

programming not only has demonstrated the value of these

technologies for sophisticated control applications but also has

allowed the research implementation of a combined control

and sensor failure algorithm in a cost-effective manner.

Research results of the simulation evaluation and engine

demonstration of the advanced detection, isolation, and accom-

modation (ADIA) algorithm show that the real-time implemen-

tation worked very well. Indeed, with the actual F100 engine

the algorithm performed almost exactly as predicted by the

real-time simulation evaluation. The fact that the ADIA

algorithm performed as predicted, and in a timeframe, memory

size, and with hardware and software that realistically emulates

future engine control systems, leads to the conclusion that it

not only works well but also is practical and feasible for engine

control systems.

As turbofan engine control system complexity continues to

increase to provide improved engine system performance, the

software cost (already a major part of the control system cost)

will dominate total system cost. Consequently, sophisticated

hardware, and more importantly improved software engineering

techniques, will be required. Toward the latter goal, the

assembly language executive routine in the ADIA program

should be replaced with a high-level-language, real-time execu-

tive routine to take advantage of real-time operating systems

and/or real-time constructs found in high-level languages such

as Ada. With respect to hardware, since the speed of computers

has been increasing at a rapid pace (and is expected to continue

to do so), current 32-bit microprocessors, most notably the

Intel 80386, could perform the entire ADIA algorithm on a

single CPU rather than on three CPU's. This single-CPU

implementation would decrease the hardware cost of the ADIA

implementation even further. Clearly, combining advanced

microprocessors with structured software design and implemen-

tation techniques will enable the use of analytical redundancy

in future complex aerospace control systems.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, July 28, 1989
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AppendixmSymbols and Abbreviations

A

AES

A/D

ADIA

AJ

BOM

b

cl

cp

CIM

CIVV

CPU

D

D/A

DFLAGH

DH

DHMAX

E

EMODEL

e

F

FADEC

FDIA

FDISOL

FILTER

FORTRAN

FTIT

F-1G

F100

GAM

GAMCH

GAMH

GENCMD

GSDO

H

HI

HOL

ICHAN

ICNEWsensed value of actuator feedback

simulated value of actuator feedback

analog to digital IMAX

advanced detection, isolation, and

accommodation INITFL

exhaust nozzle area ISOLT

bill-of-material control K

temperature bias K6

integral gain KA

proportional gain KI

control, interface, and monitoring KTHB

L
compressor inlet variable vanes

central processing unit LQR

system feedthrough matrix LR

digital to analog Mtran

hard-failure detection flag
MINDS

likelihood ratio for each failure case
MIPS

maximum likelihood ratio

environmental variables MTRTAU

MVC
engine model matrices calculation

error tolerance MVCS

system matrix N1
N2

full authority digital electronic control
O

hard-failure detection and isolation logic and
accommodation filter P

soft-failure detection and isolation logic PCV

Kalman filter calculation PLA

application-oriented programming language PSL

fan turbine inlet temperature PT2

steady-state gain matrix PT4

turbofan engine PT6

residual vector P0

residual vector used for sensor heal RAM

hypothesis residual vector RCVV

command file generator RPSCH

sensor adjusted standard deviation S

system output matrix, hypothesis filter SFS

hypothesis or smoothed weighted sum of SMNSEN

squared residuals SNFMAP

high order language SNFTR

corresponding failure isolation flag dT

channel number of the most recent failed

channel

channel number with the maximum likeli-

hood ratio

soft-failure isolation initialization flag

soft-failure isolation flag

Kalman gain matrix

FTIT integral gain matrix

modified K-matrix

hypothesis or isolation K-matrix

adaptive threshold bias value

likelihood of residual vector

linear quadratic regulator

likelihood ratio

control system variable indicating transient

operation

microcontroller interactive data system

million instructions per second

Mtran time constant

multivariable control

multivariable control synthesis program

fan speed

compressor speed

value of control output

probability

virtual power code

power level angle

Propulsion Systems Laboratory

fan inlet (total) pressure

burner pressure

exhaust nozzle pressure

ambient (static) pressure

random access memory

rear compressor variable vanes

reference point schedules

nominal value of sensed signal

sensor failure simulator

sensed mach number

virtual power code calculation

transition control value of fan speed

update interval
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TAUEXP
THRDI
THRH
THRI
THRIA
TT2
TT25

TT2SN

U

WF

WSSR

X

Y

Z

"y

X

O

7"

Subscripts:

b

corn

EXP

first-order lag time constant

hard-failure detection and isolation threshold

heal threshold

steady-state soft-failure isolation threshold

adaptive soft-failure isolation threshold

fan inlet temperature

compressor inlet temperature

sensed fan inlet temperature

controlled engine inputs

main combustor fuel flow

weighted sum of squared residuals

engine state vector

control state variables

engine outputs

residual vector

adaptive threshold

diagonal matrix of adjusted standard

deviations

adjusted standard deviation of sensor noise

threshold time constant

base point or steady-state operation

command

transient

I

IO

i

ic

m

max

rain

mod

n

n--1

ref

S

SS

0/00

1

2

3

4

5

Superscripts:

T

isolation

isolation output

ith value of vector

correct isolation hypothesis filter

measured

maximum value

minimum value

modified

current value

past value

modeled value

scheduled

steady-state

normal mode

N1 output

N2 output

PT4 output

PT6 output

FTIT output

estimated

time derivative

transpose
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