
Advanced Detection of Selfish or Malicious
Nodes in Ad hoc Networks

Frank Kargl, Andreas Klenk, Stefan Schlott, and Michael Weber

University of Ulm, Dep. of Multimedia Computing, Ulm, Germany

Abstract. The fact that security is a critical problem when implement-
ing mobile ad hoc networks (MANETs) is widely acknowledged. One of
the different kinds of misbehavior a node may exhibit is selfishness. A
selfish node wants to preserve own resources while using the services of
others and consuming their resources. One way of preventing selfishness
in a MANET is a detection and exclusion mechanism. In this paper, we
focus on the detection phase and present different kinds of sensors that
can be used to find selfish nodes. First we present simulation results that
show the negative effects which selfish nodes cause in MANET. In the
related work section we will analyze some of the detection mechanisms
proposed in literature so far. Our new detection mechanisms described
next are called activity-based overhearing, iterative probing, and unam-
biguous probing. Simulation-based analysis of these mechanisms show
that they are highly effective and can reliably detect a multitude of self-
ish behaviors.

1 Misbehaving nodes in Ad hoc Networks

Mobile ad hoc networks (MANETs) rely on the cooperation of all the partici-
pating nodes. The more nodes cooperate to transfer traffic, the more powerful a
MANET gets. But supporting a MANET is a cost-intensive activity for a mo-
bile node. Detecting routes and forwarding packets consumes local CPU time,
memory, network-bandwidth, and last but not least energy. Therefore there is a
strong motivation for a node to deny packet forwarding to others, while at the
same time using their services to deliver own data.

In table 1 we analyze different possibilities for a selfish node to save resources
in a MANET based on the DSR routing protocol [1,2]. It uses the attack-tree
notation proposed by Bruce Schneier [3] that allows the categorization of attacks
that all lead an attacker to reach a specific goal. Alternatives to reach this goal
are denoted with OR, multiple steps that are necessary with AND. Using the
numbers in the table, we can easily describe different attacks. For example,
attack 3.1 stands for ”Drop data packets”.

Whereas most of the attacks based on manipulations of routing data can be
detected by the use of a secure routing protocol like Ariadne [4], SRP [5,6,7,8,9],
ARAN [10], or SAODV [11,12], there remain two attacks in the attack tree that
cannot be detected this easily. When nodes simply drop packets (case 1.1 and
3.1 in the attack tree), all of the secure routing protocols fail, as they focus only



Attack tree: Save own resources
OR 1. Do not participate in routing

OR 1. Do not relay routing data (case A)
OR 1. Do not relay route requests

2. Do not relay route replies
3. Set hop limit or TTL value in route request/reply to

smallest possible value
2. Modify routing data/topology
OR 1. Modify route request

OR 1. Insert additional hops
2. Modify route reply
OR 1. Replace own ID in returned route with detour leading

through neighboring nodes
2. Return completely wrong route, provoking RERR and

salvaging
3. Insert additional hops
4. Declare own ID in source route as external

2. Stop participation in current route
AND 1. Provoke route error

OR 1. Create arbitrary RERR messages
2. Do not send ACK messages (causing RERRs in other

nodes)
2. Do not participate in following route request (A.1)

3. Do not relay data packets
OR 1. Drop data packets (case B)

2. Set hop limit/TTL to 0/1 (causing a RERR)
Table 1. Attack Tree: Save own resources

on the detection of modifications to routing data but not on the concealment of
existing links.

In order to study how this behavior affects a MANET, we have done a number
of simulations where we modeled a varying number of selfish nodes according
to case A and B from table 1. The simulations were done using ns-2.1b8a and
the DSR routing protocol. The scenario included 50 nodes moving in an area of
1500x300m according to the random waypoint model at speeds of 1m

s and 20m
s

with no pause time. Twenty of the nodes were CBR sources sending 4 packets
per second. Details of the simulation parameters are given in table 2. These
parameters are typical for MANET simulations (see e.g. [13]) and are used for
all following simulations.

Figure 1 shows the results of these simulations. We have varied the number
of selfish nodes from 0 to 50 (the total number of nodes in the network). It is
obvious that this number has a significant effect on the rate of packets that are
successfully delivered in the network. In addition the movement rate has a clear
effect. The faster nodes move, the lower the delivery ratio becomes. Finally we
see that at lower speeds nodes of case B are more detrimental to the network
than those of type case A whereas at higher speeds there are no big differences.



Parameter Value

Number of Nodes 50

Area X (m) 1500

Area Y (m) 300

Traffic Model cbr

Sending rate (packets/s) 4.0

Max. number of connections 20

Packetsize (byte) 512

Simulationtime (s) 900

Table 2. Simulation parameters

Finally, when all the 50 nodes are selfish, we still get a delivery ratio of around
50%. This is due to the direct node-to-node traffic which does not need relaying.
In this case the sender can reach the receiver directly.

What explanations can be found for this behavior? When the number of case
A nodes rises in a network, there are fewer nodes available for building up routes.
So if no alternative route can be established, there is no route to the destination
which means that packets have to be discarded. That reduces the delivery rate.
When movement speed rises, the delivery ratio also diminishes as the network
in general gets more fragile. But the network still has a reasonable chance of
routing around the selfish nodes. This changes with type case B. Here the nodes
behave correctly during the route discovery phase. Thus they can be included
in regular routes, but then they start to drop all packets. This isn’t detected
by DSR and no countermeasures are taken. So at a movement speed of 20m

s
only 10% of the selfish nodes push the probability of a successful packet delivery
below 50%.

Our simulations with AODV have revealed a similar behavior. This demon-
strates clearly that an effective protection against selfish and malicious nodes is
absolutely mandatory for ad hoc networks.

Number of selfish nodes
0 10 20 30 40 50

D
el

iv
er

y 
ra

tio
 %

0

20

40

60

80

100

Attack case 1.1

Node movement: 1 m/s

Node movement: 20 m/s

Number of selfish nodes
0 10 20 30 40 50

D
el

iv
er

y 
ra

tio
 %

0

20

40

60

80

100

Attack case 3.1

Node movement: 1 m/s

Node movement: 20 m/s

Fig. 1. Selfish attack simulation



2 Preventing selfish nodes: Motivation vs. Detection &
Exclusion

There are two approaches of dealing with selfish nodes. The first approach tries
to give a motivation for participating in the network function. A typical system
representing this approach is Nuglets by Hubeaux et al. [14,15]. The authors
suggest to introduce a virtual currency called Nuglets that is earned by relaying
foreign traffic and spent by sending own traffic. The major drawback of this
approach is the demand for trusted hardware to secure the currency. There are
arguments that tamper-resistant devices in general might be next to impossible
to be realized [16,17]. A similar approach without the need of tamper proof
hardware has been suggested by Zhong et al. in [18]. There exist also other
unresolved problems with virtual currencies, like e.g. nodes may starve at the
edge of the network because no one needs them for forwarding etc.

Most of the existing work in this field concentrates on the second approach:
detecting and excluding misbehaving nodes. The first to propose a solution to
the problem of selfish (or as they call it ”misbehaving”) nodes in an ad hoc
network were Marti, Giuli, Lai and Baker in [19]. Their system uses a watchdog
that monitors the neighboring nodes to check if they actually relay the data
the way they should do. Then a component called pathrater will try to prevent
paths which contain such misbehaving nodes. As they indicate in their paper,
their detection mechanism has a number of severe drawbacks. Relying only on
overhearing transmissions in promiscuous mode may fail due to a number of
reasons. In case of sensor failure, nodes may be falsely accused of misbehavior.
The second drawback is that selfish nodes profit from being recognized as mis-
behaving. The paths in the network are then routed around them, but there is
no exclusion from service. We will later present more advanced sensors that will
allow a better detection of selfish nodes.

In [20,21] the authors describe a distributed intrusion detection system (IDS)
for MANETs that consists of the local components ”data collection”, ”detec-
tion” and ”response” and of the global components ”cooperative detection” and
”global response”. Whereas their architecture is very promising and similar to
the one we use in our project, they neglect the aspect how their local data
collection should find out on incidents like dropped packets, concealed links, etc.

Another system is the ”Collaborative Reputation Mechanism” or CORE
[22,23]. It is similar to the distributed IDS by Zhang et al. and consists of local
observations that are combined and distributed to calculate a reputation value
for each node. Based on this reputation, nodes are allowed to participate in the
network or are excluded. In their work, the authors specify in detail how the dif-
ferent nodes should cooperate to combine the local reputation values to a global
reputation and how they should react to negative reputations of nodes. For the
actual detection of selfish nodes, they only refer to the work of Marti.

A similar approach is conducted by Buchegger et al. with the CONFIDANT
system [24,25]. Again, they only marginally describe their detection mechanism
and rely mostly on promiscuous overhearing.



3 The Mobile Intrusion Detection System (MobIDS)

We have developed a Mobile Intrusion Detection System (MobIDS ) that has a
similar structure like some of the systems mentioned above. Because most of the
other systems use overhearing, we tried to focus on enhancing this mechanism
and develop additional sensors that can be used in parallel to have a higher
detection accuracy. As you can see in figure 2, different sensors collect data from
the network. As MobIDS is embedded in a complete security architecture called
SAM [26], data from the routing protocol SDSR is also taken into account. SAM
provides also node authentication based on public/private key pairs that are
also used for authentication when distributing ratings (see below). SAM also
includes a secure routing protocol called SDSR that negotiates secret session
keys between the endpoints or a route and each of the inner nodes.

MobIDS

SDSR Routing Promiscous Mode Additional
Audit Data

Sensors Iterative
Probing

Act.-bas.
Overhearing

Unambigious
Probing

SDSR-
Check

Other
Sensors

Local Rating

Observations

Global RatingRating-Distribution

Local Excl. Global Excl.

Fig. 2. Overview of MobIDS

The sensors generate observations. σs
n ∈ [−1; 1] represents the nth observation

of sensor s. Positive values represent a positive behavior whereas a negative
value expresses non-cooperative behavior. All local observations of a node ki

and a sensor s regarding another node kj at time t lead to a sensor rating
rt
ki

(kj |s) ∈ [−1; 1]:

rt
ki

(kj |s) =

(∑
∀n

ρ(t, tn) · σn

)
/ n

where

ρ(t, tn) = 1 −
(

t − tn
T

)x

tn is the time when a specific observation σs
n was made. The function ρ makes

older observations less important than newer once, observations older than t−T



are ignored and can be discarded. x controls the degradation of older observa-
tions.

Finally all sensor ratings rt
ki

(kj |s) are combined into a local rating rt
ki

(kj) ∈
[−1; 1] that expresses the judgment of node ki regarding node kj at time t:

rt
ki

(kj) =
∑
∀s

ws · rt
ki

(kj |s)

The local ratings are then distributed to neighboring nodes by flooding them
periodically in a certain diameter surrounding a node. The distribution of ratings
is secured by a simple acknowledge and retransmit mechanism. A node averages
all received local ratings (including his own) which results in the global rating
grt

ki
(kj).
As the initial observations are often based on statistical sensors, no node can

prove that his rating is actually accurate. So when distributing ratings, these
are signed by private keys of each node, but no further attempt is made to prove
the credibility of a rating. Instead global ratings are only accepted when at least
N nodes have contributed to the rating. This prevents alliances of less than N
nodes from excluding other nodes from the network.

Based on the global rating, nodes may be excluded from the current network.
MobIDS defines different thresholds tt, te and tr where te is the exclusion thresh-
old. If the rating of a node ki regarding a node kj sinks below te, ki will invalidate
all routes containing kj and will ignore all packets related to kj . After some time,
old negative observations will expire, so the rating of kj will eventually increase
again. As soon as the global rating exceeds the rehabilitation threshold te, kj

will be serviced again.
There is one problem: as the distribution process takes some time to deliver

the local ratings to all nodes, the global ratings of different nodes regarding kj

may differ by a certain amount ε. If rt
ki

(kj) < te < rt
kl

(kj) then node ki will stop
servicing kj whereas kl will still regard kj as a cooperating node. So when ki

stops forwarding packets to kj , sensors of kl may detect this and punish ki.
Therefor the system contains a third threshold tt, the so called tolerance

threshold where te < tr < tt − ε. When rt
kl

(kj) is below tt, kl will tolerate any
node to deny service to kj without deducing negative ratings from this.

In addition to local exclusion the security architecture contains a mecha-
nism that allows global exclusion of nodes from MANETs by invalidating their
cryptographic identity. The certified key pairs representing the identities of mis-
behaving nodes can be revoked, when enough incidents of selfish behavior are
recorded. As this is outside the scope of this paper, please refer to [26] for de-
tails. We also will not go into any details on performance costs of the MobIDS
system as we want to focus on the sensor part for the remaining part of the
paper. A detailed description and analysis of the complete system can again be
found in [26].

Another question is how the different thresholds should be chosen. Up to now
we have adjusted them manually by running different simulations, testing the
results and modifying the thresholds. In the final section we will outline future
research on how to adjust them automatically.



It is obvious that without good sensors all the following steps (local and
global rating, exclusion) will fail to deliver good results. So the rest of the paper
focuses on this aspect of MobIDS.

4 MobIDS Sensors

4.1 Activity-Based Overhearing

We already mentioned that there are a number of problems when a node wants
to determine whether another node actually relays its packet by using promis-
cuous mode and listening for the transmission. There are a lot of cases where a
relay-node actually forwards a packet but the node overhearing the relay-node’s
activity will fail to realize that. If e.g. the overhearing node is currently trans-
mitting or receiving data in an IEEE 802.11 network at a lower wire speed (e.g.
5.5 or 2 Mbps) then it won’t be able to capture transmissions that happen at
other speeds. Other problems include collisions, cooperating selfish nodes and
many more.

We tried to improve the classical overhearing sensor, that simply tries to
detect missing forwarding like described in [19], to avoid some of these drawbacks.
We call the result activity-based overhearing. Here a node also tries to overhear
forwarding of data packets by its next hop. A node constantly monitors its
neighbors’ traffic activity for regular data packets sent out by the neighbor nodes.
The date of the last regular activity of a neighbor is stored in a table. When it
sends a packet to another node and cannot detect a forwarding of the packet by
the relaying node, this is esteemed a selfish behavior only when there has been a
recent regular activity by this node. This way, the likelihood of a false detection
in any of the cases described above is reduced. On the other hand a selfish node
can evade our sensor only if it does not generate own traffic. But then it may as
well leave the ad hoc network altogether.

Using this mechanism we can significantly improve the detection accuracy.
Additionally our architecture introduces a detection threshold . The monitoring
node will only trigger an alarm when it detects a certain number of packets being
dropped within a certain timeframe. This way a small number of false detections
will not lead to any actions against the assumed selfish node.

In order to verify our claim, we have performed a number of simulations
which compare traditional and activity-based overhearing. The simulation setup
was identical to table 2. Figure 3 shows simulation results at a movement speed
of 1m/s. It verifies the better performance of the activity-based overhearing
mechanism. The left graph shows the detection rate of MobIDS in the presence
of a specific number of selfish nodes that operate according to case B in the attack
tree (forward routing traffic, but drop subsequent data traffic). All values are
taken as the average of 10 different simulation runs. Let us assume a network
with 2 selfish nodes. Then each of the two nodes is (on average) detected by
1.1 monitoring nodes using traditional overhearing. When we use activity-based
overhearing there are 4.5 nodes detecting each selfish node which is 4 times



Number of selfish case−3.1 nodes
0 5 10 15 20 25

0

1

2

3

4

5

6

7

8

Number of detections per selfish case−3.1 node

Traditional overhearing
Activity−based overhearing
Combined traditional and activity−based overhearing

Number of selfish case−3.1 nodes
0 5 10 15 20 25

0

0.5

1

1.5

2

2.5

3

3.5

False−positive rate

Traditional overhearing
Activity−based overhearing
Combined traditional and activity−based overhearing

Fig. 3. Traditional vs. Activity-based Overhearing at 1m/s

better than the classical overhearing sensor. When the number of selfish nodes
gets higher (from 5 to 10), the traditional overhearing performs slightly better
than activity-based overhearing. We can use both approaches when the results
of both sensors are combined. The combined overhearing sensor always considers
a missing forwarding activity and devalues the rating of the corresponding node.
But the magnitude of this downrating is determined by the time since the last
seen activity by this node. The longer a node has been inactive, the smaller the
downrating. As you can see from the simulations, this delivers highly acceptable
results.

When the number of selfish nodes becomes large1, detection rates get really
bad. Only one or two nodes will detect a selfish node during the average simu-
lation run. This is partially because we assume that selfish nodes do not act as
sensors anymore. So in case of 10 selfish nodes you also have to take into con-
sideration that 20% of the sensors are gone. In order to get good results here,
we need to combine the overhearing sensor with other sensors like the probing
sensor described later.

The right graph in figure 3 shows the false-positives that the overhearing
sensors produce. It is important to note that these values are always low com-
pared to the correct positive identifications of selfish nodes. In MobIDS, a node
is excluded from the network only if multiple nodes agree on it being selfish or
malicious. So when only one node has a false-positive this has no negative effects
on the detected node.

Simulations at 20m/s (figure 4) show that the detection rate of the activity-
based and combined overhearing even increases at higher speeds. This is due to
the larger number of routing protocol packets that circulate in the network. This
enables the activity detector to predict more precisely whether another host is
still in communication range.

1 more than 10 nodes or 20% of all nodes!



Number of selfish case−3.1 nodes
0 5 10 15 20 25

0

2

4

6

8

10

12

14

16

Number of detections per selfish case−3.1 node

Traditional overhearing
Activity−based overhearing
Combined traditional and activity−based overhearing

Number of selfish case−3.1 nodes
0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

False−positive rate

Traditional overhearing
Activity−based overhearing
Combined traditional and activity−based overhearing

Fig. 4. Traditional vs. Activity-based Overhearing at 20m/s

4.2 Iterative Probing

In [27] the authors describe a mechanism called probing to detect selfish or
selfish nodes in a MANET route from source S to destination D. They use onion-
encryption to embed a probe command for a specific node X into the normal
data packets. When X decrypts its onion layer, it will find this command and
send back an acknowledge packet to the source. As soon as an acknowledge is
missing, S starts a binary search in the path to find out, where packets are being
dropped. S simply sends probes to the selected nodes and waits for their replies.
Figure 5 shows the binary search after which we call it binary probing.

This approach has a number of drawbacks. The onion-encryption is rela-
tively expensive, as the sender has to encrypt each probe packet multiple times
depending on the path length. Furthermore each node has to decrypt the packet
once and each packet has to be acknowledged explicitly by the recipient D.

But there is one even more severe problem. There is no reliable detection of
the node dropping packets. When a selfish node gets a probe packet it will notice
that a probing is under way. Now it can choose to cooperate and forward packets
for a limited time (until the probe is over) and then continue to drop packets.
Even worse depending on how the probing is realized ([27] is not completely
clear on this), it may even be able to selectively drop probe packets destined for
another host. This host then doesn’t acknowledge the probe and is marked as
hostile.

In our mechanism, that we call iterative probing, we use a different approach.
Like [27] we assume that a source S has established a secret key kSXi

with each
node Xi (i = 1...n − 1) in it’s path to a destination Xn. There is a command
field C included in the packet header that may contain a node id Xi which
is encrypted by kSXi

, so C = enckSXi
(Xi, P ) (i = 1...n). Otherwise the field

contains a random number. P is a random padding which makes multiple probe
commands to the same node still look different. So no node can tell whether C
contains only garbage or a probe command to another node.



S

X1

X2
(mal.)

X3

X4

Probe 1

Probe 2

Probe 3

Fig. 5. Binary Probing

S

X1

X2
(mal.)

X3

X4

Probe 1

Probe 2

Probe 3

Probe 4

Fig. 6. Iterative Probing

Each intermediate node Xj will now try to decrypt C. If the result is its
node ID, it will send an (encrypted) probe reply packet back to S, otherwise
it will process the packet as usual. So S has to encrypt only a small portion
of the packet and it has to do so only once (compared to the onion-encryption
approach) Intermediary nodes will only have to decrypt the small command field
and not the whole packet.

In normal operation (that is while S receives packets from Xn as a reply
to the packets it sent to Xn) there is no need for probing. But when S hasn’t
received a packet from Xn for a certain amount of time t, it will sent a probe
packet to Xn. If there is no reply within a certain timeout, it will send a probe
to Xn−1 and so on until it receives a reply from a node or reaches X1. This is
called iterative probing and shown in figure 6.

Iterative Probing has one advantage over binary probing: a selfish node only
gains knowledge of an ongoing probing when it is his turn to answer a probe.
So he is not able to blame any nodes on an arbitrary position later in the path
by selectively filtering out or forwarding probe packets. Instead there are only
two possibilities: he can reply to the probe or he can discard it. All later probe
packets are sent to nodes earlier in the path and can not be manipulated any
more.

But there is still one problem remaining. Let Xj be the first node from
which S receives an acknowledge. There are two possibilities now. In the first
case Xj+1 is the selfish node dropping all packets. Then Xj+1 will also dropping
probe packets and Xj is working properly. In the second case Xj is the selfish
node dropping packets. But before dropping a packet, Xj checks if it is a probe
addressed to himself. In order to be harder to detect, Xj will then reply to the



S

X1

X2
(mal.)

X3

X4

Probe 1

Probe 2

Probe 3

Probe 4

Fig. 7. X2 answers probes: possible self-
ish nodes {X2, X3}

S

X1

X2
(mal.)

X3

X4

Probe 1

Probe 2

Probe 3

Fig. 8. X2 answers not: possible selfish
nodes {X1, X2}

probe. Due to space limitations we cannot show and discuss the result graphs
here.

Although the iterative probing sensor is harder to fail than the binary prob-
ing, it can not distinguish which of the two nodes is actually the malicious one.
We call this problem the probing dilemma. In the next section we will present an
approach to prevent this. But first we give an analysis of the iterative probing.

Figure 9 (left side) shows the simulation results for the iterative probing
sensor facing the standard adversary – a selfish case B node. Even for 10 selfish
nodes we still have an average of 4.9 nodes detecting each selfish node. The

Number of selfish case−3.1 nodes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0

2

4

6

8

10

12

14

Iterative−Probing

Number of detections per selfish case−3.1 node

False−positive rate

Number of selfish case−3.1 nodes
0 2 4 6 8 10 12 14

D
et

ec
te

d 
an

d 
ex

cl
ud

ed
 s

el
is

h 
no

de
s 

(in
 %

)

0

20

40

60

80

100

Exclusions

Movement speed 1 m/s

Movement speed 20 m/s

Fig. 9. Iterative Probing and exclusion of selfish nodes



false-positives are negligibly low. So probing is an efficient way of detecting
selfish nodes.

4.3 Unambiguous-Probing

As indicated above, the probing techniques described so far face a serious prob-
lem: probing can not unambiguously detect a selfish node. Even worse, the stan-
dard probing described in [27] allows a malicious node to make another arbitrary
node look selfish. Our iterative-probing can narrow the potential adversary nodes
down to two nodes. In order to clearly identify one of these nodes as being re-
sponsible for the dropped data packets, we can combine the iterative probing
with overhearing. Let Xj and Xj+1 be the nodes that are suspicious of dropping
packets like described above. Now we can verify if Xj is dropping the packet
by asking Xj−1 to check if he can overhear the forwarding of a following probe
packet by node Xj . If this probe fails and Xj−1 can’t hear Xj forwarding the
packet, then it is very likely that Xj is dropping the packets, otherwise Xj+1 is
the node responsible for the packet drop.

4.4 Overall Detection Rate

MobIDS combines all the presented sensors in order to make a decision on ex-
cluding nodes from the network. Our simulation results show that the detection
of misbehaving nodes is very accurate and we have practically no false accu-
sations. Figure 9 (right side) shows the percentage of discovered and excluded
selfish nodes at different movement speeds. In this scenario, three different nodes
were needed to detect another node as selfish in order to exclude it from the net-
work. In the simulations, we used combined-overhearing, unambiguous-probing
and route-request scanning sensors in parallel. The route-request scanning sensor
is a specialized overhearing sensor that specifically checks whether route requests
of the routing protocol are rebroadcasted correctly by neighboring nodes. So it
can detect misbehaving nodes that do not forward route requests properly. Due
to space limitations, it was not presented here.

5 Conclusion and Future Work

As we have seen the construction of sensors to detect selfish or malicious nodes
in ad hoc networks is a complex task. In this paper we have presented a number
of different sensors that can detect different kinds of selfish nodes with a good
confidence as shown by our simulation results. If multiple sensors are active in
parallel and a selfish node is detected by a number of these sensors, then this is
a good indication for excluding the node from the network.

One remaining problem with our current simulations is that all the thresholds
need to be set manually in order to get good detection results. So in the future
we will try to find ways how these values can be set and adjusted automatically
during operation. Possible candidates might be some kind of an adjustment



algorithm or a self-learning system using neural networks. Furthermore we plan
to develop and test additional sensors that will e.g. use topology information
from the routing protocol in order to detect selfish nodes.

References

1. David B. Johnson, David A. Maltz, Yih-Chun Hu, and Jorjeta G. Jetcheva. The
Dynamic Source Routing Protocol for Mobile Ad Hoc Networks (DSR). http:

//www.ietf.org/internet-drafts/draft-ietf-manet-dsr-09.txt, April 2003.

2. Charles E. Perkins, editor. Ad Hoc Networking. Addison-Wesley, 2001.

3. Bruce Schneier. Modeling security threats. Dr Dobb’s Journal, December 1999.
also available as http://www.ddj.com/documents/s=896/ddj9912a/9912a.htm.

4. Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: A secure On-
Demand Routing Protocol for Ad hoc Networks. In Proceedings of MobiCom 2002,
Atlanta, Georgia, USA, September 2002.

5. Panagiotis Papadimitratos and Zygmunt J. Haas. Secure Routing for Mobile Ad
hoc Networks. In SCS Communication Networks and Distributed Systems Modeling
and Simulation Conference (CNDS 2002), San Antonio, TX, January 2002. also
available as http://wnl.ece.cornell.edu/Publications/cnds02.pdf.

6. Panagiotis Papadimitratos and Zygmunt J. Haas. Secure Routing for Mobile Ad
Hoc Networks. Working Session on Security in Wireless Ad Hoc Networks, EPFL,
(published in Mobile Computing and Communications Review, vol.6, no.4), June
2002.

7. Panagiotis Papadimitratos and Zygmunt J. Haas. Securing Mobile Ad Hoc Net-
works. In M. Ilyas, editor, Handbook of Ad Hoc Wireless Networks. CRC Press,
2002.

8. Panagiotis Papadimitratos, Zygmunt J. Haas, and P. Samar. The Secure Rout-
ing Protocol (SRP) for Ad Hoc Networks. draft-papadimitratos-secure-routing-
protocol-00.txt, December 2002.

9. Panagiotis Papadimitratos and Zygmunt J. Haas. Secure Link State Routing for
Mobile Ad Hoc Networks. In IEEE Workshop on Security and Assurance in Ad hoc
Networks, in conjunction with the 2003 International Symposium on Applications
and the Internet, Orlando, FL, January 2003.

10. Kimaya Sanzgiri, Bridget Dahill, Brian Neil Levine, Clay Shields, and Elizabeth M.
Belding-Royer. A Secure Routing Protocol for Ad Hoc Networks. In Proceedings
of 2002 IEEE International Conference on Network Protocols (ICNP), November
2002. also available as http://signl.cs.umass.edu/pubs/aran.icnp02.ps.

11. Manel Guerrero Zapata. Secure Ad hoc On-Demand Distance Vector Routing.
ACM Mobile Computing and Communications Review (MC2R), 6(3):106–107, July
2002. also available as http://doi.acm.org/10.1145/581291.581312.

12. Manel Guerrero Zapata and N. Asokan. Securing Ad hoc Routing Protocols. In
Proceedings of the 2002 ACM Workshop on Wireless Security (WiSe 2002), pages
1–10, September 2002. also available as http://doi.acm.org/10.1145/570681.

570682.

13. Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta
Jetcheva. A Performance Comparison of Multi-Hop Wireless Ad Hoc Network
Routing Protocols. In Mobile Computing and Networking, pages 85–97, 1998. also
available as http://citeseer.nj.nec.com/broch98performance.html.



14. Levente Buttyán and Jean-Pierre Hubaux. Nuglets: a Virtual Currency to Stim-
ulate Cooperation in Self-Organized Mobile Ad Hoc Networks. Technical Report
DSC/2001/001, EPFL-DI-ICA, January 2001.

15. Levente Buttyán and Jean-Pierre Hubaux. Stimulating Cooperation in Self-
Organizing Mobile Ad Hoc Networks. ACM/Kluwer Mobile Networks and Ap-
plications, 8(5), October 2003.

16. R. Anderson and M. Kuhn. Tamper Resistance - a Cautionary Note. In
Proceedings of the Second Usenix Workshop on Electronic Commerce, pages 1–
11, November 1996. also available as http://citeseer.nj.nec.com/article/

anderson96tamper.html.
17. Ross Anderson and Markus Kuhn. Low cost attacks on tamper resistant devices. In

IWSP: International Workshop on Security Protocols, LNCS, 1997. also available
as http://citeseer.nj.nec.com/anderson97low.html.

18. Sheng Zhong, Jiang Chen, and Yang Richard Yang. Sprite: A simple, cheat-proof,
credit-based system for mobile ad-hoc networks. In Proceedings of IEEE Infocom
’03, San Francisco, CA, April 2003.

19. Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating routing misbehav-
ior in mobile ad hoc networks. In Mobile Computing and Networking, pages 255–
265, 2000. also available as http://citeseer.nj.nec.com/marti00mitigating.

html.
20. Yongguang Zhang and Wenke Lee. Intrusion detection in wireless ad-hoc networks.

In Mobile Computing and Networking, pages 275–283, 2000. also available as http:
//citeseer.nj.nec.com/zhang00intrusion.html.

21. Yongguang Zhang, Wenke Lee, and Yi-An Huang. Intrusion Detection Techniques
for Mobile Wireless Networks. to appear in ACM Wireless Networks (WINET), 9,
2003. also available as http://www.wins.hrl.com/people/ygz/papers/winet03.

pdf.
22. Pietro Michiardi and Refik Molva. Prevention of Denial of

Service attacks and Selfishness in Mobile Ad Hoc Networks.
http://www.eurecom.fr/ michiard/pub/michiardi adhoc dos.ps.

23. Pietro Michiardi and Refik Molva. A Collaborative Reputation mechanism to
enforce node cooperation in Mobile Ad Hoc Networks. In Proceedings of the 6th
IFIP Communication and Multimedia Security Conference, Portorosz, Slovenia,
September 2002.

24. Sonja Buchegger and Jean-Yves Le Boudec. Nodes Bearing Grudges: Towards
Routing Security, Fairness, and Robustness in Mobile Ad Hoc Networks. In Pro-
ceedings of the Tenth Euromicro Workshop on Parallel, Distributed and Network-
based Processing, pages 403–410, Canary Islands, Spain, January 2002. IEEE Com-
puter Society. http://citeseer.nj.nec.com/article/buchegger02nodes.html.

25. Sonja Buchegger and Jean-Yves Le Boudec. Performance Analysis of the CONFI-
DANT Protocol: Cooperation Of Nodes - Fairness in Distributed Ad-hoc Networks.
In Proceedings of IEEE/ACM Workshop on Mobile Ad Hoc Networking and Com-
puting (MobiHOC), Lausanne, CH, June 2002.

26. Frank Kargl. Sicherheit in Mobilen Ad hoc Netzwerken. PhD thesis, University of
Ulm, Ulm, Germany, 2003. also available as http://medien.informatik.uni-ulm.
de/~frank/research/dissertation.pdf.

27. Baruch Awerbuch, David Holmer, Cristina Nita-Rotaru, and Herbert Rubens. An
On-Demand Secure Routing Protocol Resilient to Byzantine Failures. In ACM
Workshop on Wireless Security (WiSe), Atlanta, Georgia, September 2002. also
available as http://citeseer.nj.nec.com/article/awerbuch02demand.html.


