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Abstract: Lightweight cryptography is a rapidly evolving area of research and it has great impact especially on the

new computing environment called the Internet of Things (IoT) or the Smart Object networks (Holler et al.,

2014), where lots of constrained devices are connected on the Internet and exchange information on a daily

basis. Every year there are many new submissions of cryptographic primitives which are optimized towards

both software and hardware implementation so that they can operate in devices which have limited resources

of hardware and are subject to both power and energy consumption constraints. In 2013, two families of

ultra-lightweight block ciphers were proposed, SIMON and SPECK, which come in a variety of block and

key sizes and were designed to be optimized in hardware and software implementation respectively (Beaulieu

et al., 2013). In this paper, we study the security of the 64-bit SIMON with 128-bit key against advanced

forms of differential cryptanalysis using truncated differentials (Knudsen, 1995; Courtois et al., 2014a). We

follow similar method as the one proposed in SECRYPT 2013 (Courtois and Mourouzis, 2013) in order to

heuristically discover sets of differences that propagate with sufficiently good probability and allow us to

combine them efficiently in order to construct large-round statistical distinguishers. We present a 22-round

distinguisher which we use it in a depth-first key search approach to develop an attack against 24 and 26 rounds

with complexity 2124.5 and 2126 SIMON encryptions respectively. Our methodology provides a framework

for extending distinguishers to attacks to a larger number of rounds assuming truncated differential properties

of relatively high probability were discovered.

1 INTRODUCTION

The new computing environment of Internet of

Things (IoT) is the network of physical objects em-

bedded with electronics, software, sensors and con-

nectivity to achieve greater value and user experience

(Holler et al., 2014; Mark, 2014). All these inter-

connected devices will exchange lots of data with the

manufacturer or operator or any other connected de-

vice in a daily basis in order to improve performance

and decrease power consumption. On the same time

all these data will be aggregated and being used for

building fault prediction models and other models that

could be used to benefit our the experience.

In order to enjoy this new environment we need to

guarantee the security of the nodes of the network up

to a desired level. The challenge in this space lies in

the implementation of secure enough cryptographic

functions on constrained devices due to the limita-

tion of their resources such as hardware availabil-

ity and power and energy consumption constraints.

Lightweight cryptography is the area of cryptography

which aims to develop more efficient cryptographic

primitives in response to typical constraints in hard-

ware and optimized towards both power and energy

consumption. As a result of this great demand of op-

timizing the performance, every year there are many

submissions of lightweight cryptosystems which are

designed towards both hardware and software imple-

mentation.

In July 2013, a team of cryptographers from Na-

tional Security Agency (NSA) has proposed two new

interesting lightweight block ciphers, SIMON and

SPECK (Beaulieu et al., 2013). Both ciphers come

in a variety of block and key sizes and were designed

towards optimization in hardware and software re-



spectively. In the same paper there was no advanced

analysis of the security of these ciphers against well-

known cryptanalytic attacks such as differential, lin-

ear and algebraic cryptanalysis. In the same year of

submission, we had many different attacks against

reduced-round versions of both ciphers such as; dif-

ferential cryptanalysis, linear cryptanalysis, impossi-

ble differentials and combined differential algebraic

techniques (cf. Table 1 and Table 2).

It is very important to note that SIMON has very

low multiplicative complexity, 32 multiplications per

round, which implies low non-linearity. Courtois et

al demonstrated that several rounds (10/44) of this ci-

pher can be attacked by pure algebraic attacks without

even guessing any key bits (Courtois et al., 2014b).

This is somehow reconfirms the heuristical approach

that multiplicative complexity reduction can reduce

the complexity of the underlying algebraic system and

thus a solution can be recovered by a solver soft-

ware, such as a SAT solver, in a more reasonable time

(Courtois and Bard, 2007; Courtois et al., 2011).

Table 1: Cryptanalysis of SIMON64/128

Authors Rounds Time

(Alkhzaimi and Lauridsen, 2013) 26 294

(Farzaneh et al., 2013) 24 258.4

(Farzaneh et al., 2013) 16 292.0

(Courtois et al., 2014b) 10 298.8

This paper 26 2126

Table 2: Type of attacks against SIMON64/128

Authors Type

(Alkhzaimi and Lauridsen, 2013) Differential

(Farzaneh et al., 2013) Differential

(Farzaneh et al., 2013) Imp-Diff

(Courtois et al., 2014b) Alg-Trunc

This paper Trunc

In this paper, we evaluate the security of 64-bit

version of SIMON with 128-bit key against advanced

forms of differential cryptanalysis using large-round

statistical distinguishers. We employ a simple heuris-

tical approach in order to discover truncated differen-

tial properties that hold with sufficiently high proba-

bility, similar to the method proposed in (Courtois and

Mourouzis, 2013; Courtois et al., 2014a). Our heuris-

tical approach includes analysis of patterns of several

transitions of low Hamming-distance pairs.

We manage to construct a 22-round distinguisher

by combining several truncated differential properties

and then we use this distinguisher to attack 24 and

26 rounds of the cipher in a depth-first search style

approach as proposed in (Mourouzis, 2014). This

method invlolves several key guessing for several

outer rounds and measuring the number of plaintext

and ciphertext pairs that follow the specified input-

output differences of the statistical distinguisher.

The rest of this paper is organized as follows:

• Section 2: We provide an introduction to SIMON

cipher and we study especially its round function

and key schedule algorithm for the particular 64-

bit version.

• Section 3: We provide an introduction to differen-

tial cryptanalysis and in particular truncated dif-

ferentials.

• Section 4: We discuss construction of large-round

statistical distinguishers using truncated differen-

tial properties.

• Section 5: We present a 22-round distinguisher

for SIMON64/128.

• Section 6: We mount a differential attacks against

24 and 26 rounds of SIMON using statistical dis-

tinguishers.

• Section 7: Conclusions and Future Research

2 SIMON CIPHER

SIMON is a lightweight block cipher designed by

NSA. with the aim to have optimal hardware perfor-

mance (Beaulieu et al., 2013). It follows the classi-

cal Feistel design paradigm and operates on two n-bit

halves in each round.

Each round of SIMON applies a non-linear, non-

bijective function F : GF(2)n → GF(2)n to the left

half of the state which is repeated for 44 rounds. The

operations used are as follows:

1. bitwise XOR,

2. bitwise AND and

3. left circular shift, S j by j bits.

We denote the input to thei-th round by Li−1||Ri−1

and in each round the left word Li−1 is used as input

to the round function F defined by,

F(Li−1)= (Li−1 <<< 1).(Li−1 <<< 8)⊕(Li−1 <<< 2),
(1)

where . is the bitwise AND operator.

The next state Li||Riis computed in the following

way (cf. Figure 1),

Li = Ri−1 ⊕F(Li−1)⊕Ki−1 (2)

Ri = Li−1 (3)



Figure 1: The round function of the SIMON block cipher.

The output of the last round is the ciphertext af-

ter applying the round function for 44 times for the

particular variant SIMON64/128.

Note that SIMON cipher has a very low multi-

plicative complexity since the only non-linear part is

the bitwise multiplication, resulting in 32 multiplica-

tions per round. Multiplicative complexity is known

to be a measure of non-linearity and hence a (heuris-

tic) measure against resistance to known forms of

cryptanalytics attacks against hash functions (Boyar

et al., 2013) and block ciphers (Courtois et al., 2011).

SIMON’s key schedule is based on an LSFR-like

procedure (cf. Figure 2). The nm-bits of the key are

used to generate the keys K0,K1, ...,Kr−1 to be used

as round keys. There are three different key schedule

procedures depending on the number of words that the

secret key consists of (m = 2,3,4). In the particular

version of the cipher we study, we are interested in the

version where m = 4.

Furthermore, at the beginning K0,K1, ...,Km−1 are

initialized keys, while the remaining are generated by

the LSFR- like construction which is depicted on Fig-

ure 2. For the variant of our interest, where m = 4, the

rest of the keys are generated as follows:

Y = Ki+1 ⊕ (Ki+3 >>> 3) (4)

Ki+4 = Ki ⊕Y ⊕ (Y >>> 1)⊕ c⊕ (z j)i (5)

The constant c = 0x f f ... f c is used for preventing

slide attacks and attacks exploiting rotational symme-

tries (Beaulieu et al., 2013).

In addition, the generated subkeys are xored with

a bit (zj)i, that denotes the i-th bit from the one of the

five constant sequences z0, ...,z4 . These sequences

are defined in (Beaulieu et al., 2013) and for our vari-

ant we use z3.

The way that the key schedule operates it implies

that if we recover lots of key bits from the very first

rounds, then we have higher chances of recovering

next bits since they are generated in a LSFR-like ap-

proach. In the methodology we describe in the next

sections we focus on recovering several key bits from

the very first rounds of encryption.

Figure 2: The SIMON two, three and four-word key expan-
sions.

3 DIFFERENTIAL

CRYPTANALYSIS

Differential Cryptanalysis is a general form of

probabilistic or statistical cryptanalytic technique that

is primarily applicable to block ciphers but also to

stream ciphers and cryptographic hash functions. It

belongs to the category of chosen-plaintext attacks

and its discovery was attributed to Eli Biham and Adi

Shamir in the later 1980s (Biham and Shamir, 1993;

Biham and Shamir, 1990).

However, around 1994, Don Coppersmith as a

member pf the original IBM DES team, confirmed

that the technique of DC was known to IBM, as early

as 1974. In addition, he said that one of the secu-

rity criteria used to design DES was the resistance

against this particular type of attack and this attack

was known as T- attack or Tickle attack.

In this type of attack, the main task is to study

the propagation of differences of inputs from round to

round inside the cipher, and discover specific differ-

ences that propagate with comparatively higher prob-



ability as the probability expected assuming a uni-

form distribution. In this way, an attacker discov-

ers where the cipher exhibits non-random behavior

and by exploiting these properties further can recover

parts of the secret key or the full key with time com-

plexity lower than an exhaustive search on the key

length which is the reference time complexity in case

of block ciphers.

In differential attacks, the first task is to find series

of input and output differences over several rounds,

which appear with relatively high probability. For

each pair of input-output difference, we need to de-

termine the probability of propagation for each round

individually. For the linear components, we can pre-

dict the propagation of the difference with probability

one. However, in non-linear components, such as S-

boxes, a probabilistic analysis is needed.

Figure 3: The diagram on the left illustrates the propaga-
tion of differences (0),(1), ...,(r) through different rounds,
which is called differential characteristic. The diagram on
the right illustrates a differential, where only input-output
differences are considered, while middle differences are ig-
nored.

We can either construct round to round paths and

join them together to form a larger round differen-

tial characteristic or we can search directly for spe-

cific input-output differences after a certain number

of rounds and this is called differential. Figure 3 illus-

trates both differential characteristic and differential.

3.0.1 Truncated Differentials

Truncated Differential Cryptanalysis is a gener-

alization of differential cryptanalysis developed by

Lars Knudsen (Knudsen, 1995). Usually, in DC we

study the propagation of single differences between

two plaintexts, while in truncated DC we consider dif-

ferences that are partially determined (i.e we are inter-

ested only in some parts of the difference). This tech-

nique has been successfully applied to many block ci-

phers such as SAFER, IDEA, Skipjack, Twofish and

many others. We define the truncation T RUNC(a) of

a n-bit string a as in Definition 1.

Definition 1. (Truncation, (Knudsen, 1995))

Let a = a0a1...an−1 be an n-bit string, then its

truncation is the n-bit string b given by b0b1..bn−1 =
T RUNC(a0a1..an−1), where either bi = ai or bi = ∗,

for all 0 ≤ i ≤ n−1 and ∗ is an unknown value

The notion of truncated differentials (cf. Defini-

tion 2) extends naturally to differences.

Definition 2. (Truncated Differentials, (Knudsen,

1995))

Let (α,β) be an i-round differential, then if α′ and

β′ are truncations of α and β respectively, then (α′,β′)
is an i-round truncated differential.

Remark 1. Note that we need to exclude the zero dif-

ference from our set.

Example 1. The truncated differential on 8 bytes of

the form 0000000000∗00000 (in hexadecimal repre-

sentation), where ∗= x1x2x3x4, is a set of differences

of size 16−1 (excluding the zero difference).

Given an s-round characteristic ∆0 → ∆1 → ...→
∆s, then ∆′

0 → ∆′
1 → ...→ ∆′

s is a truncated character-

istic, if ∆′
i = T RUNC(∆i) for 0 ≤ i ≤ s. A truncated

characteristic predicts only part of the difference in a

pair of texts after each round of encryption. A trun-

cated differential is a collection of truncated charac-

teristics. Truncated differentials proved to be a very

useful cryptanalytic tool against many block ciphers

which at first glance seem secure against basic differ-

ential cryptanalysis.

In the next section we employ a simple heuristic

discovery algororithm for discovering truncated dif-

ferential properties which propagate with sufficiently

high probability. In a later stage we combine these

properties to construct a large round distinguisher

which we use to mount a differential attack on a larger

number of rounds.



4 LARGE-ROUND STATISTICAL

DISTINGUISHERS

4.0.2 Hypothesis Testing

In cryptanalysis, we very often study the problem

of distinguishing distributions, one distribution that

describes the variable of the number of certain events

that occur at random and another distribution that de-

scribes the same variable but due to propagation in-

side the cipher. Thus, we would like to design a clever

distinguisher which would be able to distinguish a

given a cipher from a random permutation by captur-

ing as much as possible of its mathematical structure.

Such a distinguishing attack might reveal information

which can be used to reduce the space of the key can-

didates and thus lead to an attack faster than exhaus-

tive search. In cryptographic literature, there are sev-

eral examples of succesful attacks against either the

full block cipher or some reduced-round version or

more frequently against stream ciphers.

Thus, this can be seen as a hypothesis testing prob-

lem of distinguishing the two distributions as shown

in Figure 2. Suppose that a source is used to gener-

ate independent random samples in some given finite

set with some distribution P , which is either P = P0

or P = P1. A distinguisher is a construction used

to determine which one is the most likely the one

which was used to generate the sample. Hence, the

overall attack based on the distinguishers considers

the following underlying statistical hypothesis test-

ing problem, where we have either a null hypothesis

H0 : P = P0 or an alternative hypothesis H1 : P = P1.

Our scope is to study this hypothesis problem ap-

plied to differential cryptanalysis and its variants. The

variable of our interest is the number of plaintext

pairs whose output difference after r rounds lies in

a particular truncated differential set ∆Y given that

their difference lies in another truncated differential

set ∆X . We aim to use particular sets of differences

which capture the mathematical structure of the ci-

pher and these are known as general open sets and we

described them in the previous section.

Assuming that we have two random variables W
and R which are described by Gaussian distributions

with parameters (E(W ),V (W )) and (E(R),V (R)) re-

spectively. Our task is given a measurement of the

variable of our interest to determine from which dis-

tribution this sample is more likely to be taken. Thus,

we have the following hypothesis testing problem,

H0 : P = W and H1 : P = R . For cryptanalytic pur-

poses, we assume that distribution W corresponds to

a wrong key, while R corresponds to the right key. In

case of a Gaussian distribution, the probability den-

sity function of distribution W is given by the fol-

lowing equation,

fW (x) =
1

√

2πV (W )
exp

− 1
2V (W )

(x−E(W ))2

. (6)

Assume that we were given a sample P from

which we can observe x events of our interest, in

the particular case of differential cryptanalysis is the

number of pairs which follow the differential α → β
after r rounds. Then, from Figure 2 we observe that

if x is greater than E(R) then we can assume that

that this observation corresponds to the right key with

probability set to 1
2
. On the other hand, the probabil-

ity of a false positive, for example accepting the key

as correct while it is wrong, which is also known as

Type I error, is represented by the red-shaded region

in Figure 4 and given by the following formulae,

P(W >R )=
∫ ∞

E(R)
fW (x)dx=

1

2
(1−er f (

E(R)−E(W )
√

2V (W )
)

(7)

where er f (x) is the Gaussian error function given

by

er f (x) =
2√
π

∫ x

0
exp−t2

dt. (8)

Figure 4: The two Gaussian distributions corresponding to
wrong key guess (red) and right key guess (green). The red-
shaded region corresponds to the probability of false posi-
tives or Type I error value.

In terms of Type II error (right key rejection) we

set it to constant probability 1
2
. This is achieved by

simply accepting a certain key bits assumptios as cor-

rect if the number of observed pairs of our interest

(truncated differential propertied verified) exceeds the

mean of the Gauss distribution corresponding to the

right key which is E(R) in our example.

In the next section we describe how to construct

a 22-round distinguisher for SIMON cipher. Then,

we use this distinguisher to mount an attack against a

larger number of rounds.



5 CONSTRUCTION OF

22-ROUND DISTINGUISHERS

In this section we combine several truncated dif-

ferential properties in order to construct a 22-round

distinguisher. In particular, we combine two transi-

tions discovered to propagate with sufficiently high

probability for 10 and 2 rounds. The transitions are

shown on Figure 5.

In order to compute the probability of a transition

we use a very simple algorithm that simply counts

the number of events of our interest for a given fixed

number of trials. We assume that the distribution of

the number of events of our interest follows (approx-

imately) a Poisson distribution. We use this distribu-

tion as we have experimentally observed that for all

cases we have tried,

• We have a discrete distribution of small integers

• In all cases we have tried and are included in this

thesis the variance is relatively close to the mean.

For a sample of sizeN if x denotes the number

of events that were observed (approximated by Pois-

son with parameter Poisson mean N p where p is the

true mean), then the approximated Standard Devia-

tion (SD) of the variable x
N

, where N is assumed

to be constant and p the observed mean, is given

by
√

N p/N =
√

p/N . This is because the variance

equals to the mean in case of a Poisson distribution.

Let I1 be the interval [pt
√

p′/N, p+ t
√

p/N]. In

our simulations we would like I1 to be contained in the

interval I2 = [p.2a, p.2a], where a is an error we allow

in the exponent of the mean as a power of 2. We as-

sume that the true mean that we are aiming to approx-

imate by simulations is bigger than some probability

value p0 in order to ensure that our algorithm termi-

nates in reasonable time. The inclusion of sets implies

that we need to run N > N0 simulations, where N0 is

given by

N0 =
22at2

(2a −1)2
.

1

p0
(9)

in order to achieve the desired precision. Since

we record the mean x
N

we expect by Central Limit

Theorem that the distribution of our mean converges

to a Normal Distribution.

Following precisely this methodology we end up

in the problem of distinguishing the following two

Gaussian distributions.

• Natural Propagation: X: N (212,26)

• SIMON: Y: N (212 +27,
√

(212 +27))

Figure 5: A 22-round statistical distinguisher.

Explanation: We have in total 263.23 = 266

pairs of plaintexts (P,P′) that satisfy P ⊕ P′ ∈
[0000002200000080]. A proportion 210/264 is ex-

pected to have a ciphertext difference C ⊕ C′ ∈
[0A50002209010008] by accident (random permuta-

tion) after either a large number of rounds or by sim-

ply at random, which implies 212 pairs. Now in case

of SIMOn we expect 266−17.0−38.0−4.0 = 27 to fol-

low this truncated differential path with the speci-

fied differences in the middle. Since these distribu-

tion converge to Gauss distributions, but the underly-

ing source of generating samples is approximated by

Poisson, we can assume that the standard deviation

can be computed by the square root of the mean.

The other problem that we need to consider is

the problem of the number of pairs that by accident

have also this intermediate differences after 10 and

20 rounds as specified by the distinguisher. For this

particular example, we have that 216.2−17−38 are ex-



pected to have these intermediate differences which

implies it is zero and thus the two sets of events are

completely disjoint.

Note that we follow the following hypothesis test-

ing; if the number of pairs observed during the attack

exceeds 212 + 27 then we accept the key assumption

as correct, otherwise we reject it. This implies that

the Type II error of our attack is automatically set to

half. That implies that we have to repeat twice our at-

tack in order to retrieve the correct key, More details

about Type II error (false key assumption acceptance)

is analyzed in the next chapter.

6 DIFFERENTIAL ATTACKS

AGAINST 24 AND 26 ROUNDS

OF SIMON

In this section we present attacks against reduced

round versions of SIMON64/128 using the statisti-

cal distinguisher we have constructed and presented

in the previous section. Our distinguisher combines

several truncated differential properties for 10+10+2

rounds, resulting in a 22-round distinguisher with

Type I error 2−4.5 while Type II error is set to half.

To sum up, Type I error corresponds to false pos-

itives, i.e. the number of wrongly accepted keys as

correct by following the distinguisher construction for

given pairs of plaintext and ciphertexts. The attack

that we describe is a depth-first key search like ap-

proach, where we guess a specified set of key bits

for each round in order to determine the number of

plaintext-ciphertext pairs that follows the differences

as specified by the statistical distinguisher.

As we have already mentioned in the previous sec-

tion we are interested in distinguishing the following

two Gauss distributions,

• Natural Propagation: X: N (212,26)

• SIMON: Y: N (212 +27,
√

(212 +27))

The Type I error for this case can be computed

by computing the ration 27

26 = 2 which corresponds to

Type I error 2−4.5 by computing the associated Gauss

Error function.

We present two attacks, one against 24 rounds of

SIMON and another one, but essentially weaker at-

tack, on 26 rounds of SIMON. The aim of these at-

tacks is to show the generic nature of our attack that

makes use of a well-constructed distinguisher to at-

tack several number of rounds. Importantly, the per-

formance of this distinguisher can be improved if bet-

ter ad-hoc heuristics regarding the structure of the ci-

pher are discovered or there is a significant improve-

ment in the discovery method. Figure 6 illustrates pre-

cisely our steps in our attack.

6.0.3 Attack against 24 rounds

Consider a partition of 24 rounds of SIMON as

2+22, where 22 is the distinguisher but inverted. Note

that we do not have to guess full round keys but we are

only interested in guessing the key bits which allows

to check if the path of the plaintext pairs gives colli-

sions on the 0s of the truncated differential masks in

the input of the distinguisher.

1. For each of the 28+26 key bits of k1,k2 do the

following

2. Compute the partial encryption of all 264 plain-

texts for the first two rounds under the selected

key bits defined in the previous step.

3. Set a counter T = 0.

4. If all corresponding bits after 2 rounds of encryp-

tion equal to 0 for the selected key bits as specified

in the truncated differential mask, then increase T

by 1.

5. Repeat this for all 264 P-C pairs.

6. If T > 212 + 26 accept the key bits as correct for

the round keys k1,k2.

7. Out of the total 228+26 key assumption we expect

to filter out 249.5 cases to continue the attack

8. Brute force on the rest 128−28−26= 74 key bits

by requesting more pairs of plaintext-ciphertext.

9. Repeat the attack for another time

The time complexity of this attack is computed by

computing the complexity in each step. Intially we

have to perform 228+26.264 = 2118 encryptions. We

are left with 249.5 cases to continue the attack. The

complexity for the rest steps is 254−4.5−74 = 2123.5.

Thus, the total time complexity is 2123.5 and data com-

plexity 264. The overall complexity due to Type II

error is 2124.5.

6.0.4 Attack against 26 rounds

In this section we use a partition of 26 rounds as

2+22+2, where the middle 22 rounds is the statistical

distinguisher. The attack is summarized below.

1. For each of the (28+26)+(30+31) key bits of

k1,k2,k25,k26 do the following

2. Compute the partial encryption of all 264 plain-

texts for the first two and last two rounds under

the selected key bits defined in the previous step.

3. Set a counter T = 0.



4. If all corresponding bits aequal to 0 for the se-

lected key bits as specified in the truncated differ-

ential masks, then increase T by 1.

5. Repeat this for all 264 P-C pairs.

6. If T > 212 + 26 accept the key bits as correct for

the round keys k1,k2,k25,k+26.

7. Out of the total 228+26+30+31 key assumption we

expect to filter out 2110.5 cases to continue the at-

tack

8. Brute force on the rest 128−28−26= 74 key bits

by requesting more pairs of plaintext-ciphertext.

9. Repeat the attack for another time

The data complexity for this attack is 264 as we

again use the entire codebook. The time complex-

ity of the first step is (228+26 +230+31).264 = 2125 SI-

MON encryptions. Then, we have to bruteforce on

the rest 254−4.5+74 = 2123.5 to get the correct key. The

total time complexity turns out to be 2126 due to Type

II error.

Note that we have not optimized the number of

key bits required to be guessed in the final steps

to recover k3,k4 by knowning lots of key bits from

k1,k2,k25,k26. In order to do this we need to analyze

the LFSR-like key schedule and this could be our fu-

ture work.

7 CONCLUSIONS

Lightweight cryptography is the field of cryptogra-

phy that studies the level of security of cryptographic

algorithms designed to be implemented and run ef-

ficiently on constrained devices. Nowadays, as we

move closer to the evolution of Internet of Things

(IoT) network (Holler et al., 2014), where a lot of

constrained devices will be connected on the internet

and exchange information, the concept of lightweight

cryptography gets even more attraction. Constructing

an algorithm with the aim to run efficiently on lim-

ited hardware constraints, optimal power consump-

tion and simultaneously offer a desired level of se-

curity is a highly non-trivial optimization task. Ev-

ery year researchers are proposing new lightweight ci-

phers that are designed based on the security and limi-

tation in hardware optimization task in mind. In 2013,

a team of researchers from NSA published two new

families of lightweight ciphers, SIMON and Speck,

which are designed towards hardware and software

implementation respectively. In this paper, our aim

is to evaluate the level of security that the 64-bit

version of SIMON that uses a 128-bit key offers,

against advanced forms of differential cryptanalysis

and especially against truncated differentials (Knud-

sen.,1995). Truncated differentials is a powerful form

of advanced differential cryptanalysis and it was used

to break ciphers which initially seem to be secure

against nave differential cryptanalysis, such as for ex-

ample GOST (Courtois et al., 2013). In this paper,

we follow the idea suggested by Courtois et al in SE-

CRYPT 2013 to extend statistical distinguishers to at-

tacks against either the full number of rounds of the

cipher or a selected number of rounds. We achieve in

obtaining a 26-round attack against 26(/44) rounds of

SIMON with time complexity 2126 SIMON encryp-

tions and 264 plaintext-ciphertext pairs. Importantly,

this attack is not optimized as we can update the dis-

covery method to obtain even better truncated differ-

ential properties which will enable us to either build

stronger statistical distinguishers or extend our distin-

guishers to more than 22 rounds and this would be a

topic of our future research.
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Figure 6: Illustration of an attack against 26 rounds of
GOST in the form of a depth-first key search approach. The
red circle represents guessing of well-chosen sets of bits
which are 0 which is equivalent to searching for collisions.


