
 Copyright 2000, 2003 MD Ciletti 1

Advanced Digital Design with the Verilog HDL

M. D. Ciletti

Department
of

Electrical and Computer Engineering
University of Colorado

Colorado Springs, Colorado

ciletti@vlsic.uccs.edu

Chaps 1 - 3: Review of Combinational and Sequential Logic (rev 9/17/2003)

Copyright 2000, 2002, 2003. These notes are solely for classroom use by the instructor. No part of
these notes may be copied, reproduced, or distributed to a third party, including students, in any
form without the written permission of the author.

 Copyright 2000, 2003 MD Ciletti 2

Note to the instructor: These slides are provided solely for classroom use in academic institutions
by the instructor using the text, Advance Digital Design with the Verilog HDL by Michael Ciletti,
published by Prentice Hall. This material may not be used in off-campus instruction, resold,
reproduced or generally distributed in the original or modified format for any purpose without the
permission of the Author. This material may not be placed on any server or network, and is
protected under all copyright laws, as they currently exist. I am providing these slides to you subject
to your agreeing that you will not provide them to your students in hardcopy or electronic format or
use them for off-campus instruction of any kind. Please email to me your agreement to these
conditions.

 I will greatly appreciate your assisting me by calling to my attention any errors or any other
revisions that would enhance the utility of these slides for classroom use.

 Copyright 2000, 2003 MD Ciletti 3

COURSE OVERVIEW

 Review of combinational and sequential logic design
 Modeling and verification with hardware description languages
 Introduction to synthesis with HDLs
 Programmable logic devices
 State machines, datapath controllers, RISC CPU
 Architectures and algorithms for computation and signal processing
 Synchronization across clock domains
 Timing analysis
 Fault simulation and testing, JTAG, BIST

 Copyright 2000, 2003 MD Ciletti 4

Some References

Note: For an up-to-date list of books, including reviews, see www.sutherland.com

Bhasker, J., A Verilog HDL Primer, Star Galaxy Press, Allentown, PA, 1997

Chang, H. et al., Surviving the SOC Revolution, Kluwer Academic Publishers, 1999

Ciletti, M. D., Modeling, Synthesis, and Rapid Prototyping with the Verilog HDL, Prentice-Hall,
1999

IEEE Standard Verilog Language Reference Manual, IEEE Std. 1364-1996, The Institute of
Electrical and Electronic Engineers, Inc., 1996.

Lee, J.M., Verilog Quickstart, Kluwer Academic Publishers, Boston, 1997.

Lee, Sunggu, Design of Computers and Other Complex Digital Devices, Prentice-Hall, 2000

Open Verilog International, OVI Standard Delay Format, Format Manual, Los Gatos, CA, 1996

Open Verilog International, Verilog Language Reference Manual, Los Gatos, CA, 1996

 Copyright 2000, 2003 MD Ciletti 5

Open Verilog International, Programming Language Interface Reference Manual, Los Gatos,
CA, 1996

Palnitkar S., Verilog HDL, A Guide to Design and Synthesis, SunSoft Press, Sun
Microsystems, Inc., Mountain View, California, 1996.

PLI Reference Manual, Open Verilog International

Smith, D.J., HDL Chip Design, Doone Publications, Madison, AL, 1996

Smith, M. J., Application-Specific Integrated Circuits, Addison-Wesley Longman, Inc.,
Reading, Massachusetts, 1997

Sternheim, E. et al., Digital Design and Synthesis with Verilog HDL, Automata Publishing Co.,
San Jose, California, 1993.

Thomas, D.E. and Moorby, P., The Verilog Hardware Description Language, Third Edition,
Kluwer Academic Publishers, Boston, 1996.

 Copyright 2000, 2003 MD Ciletti 6

S
im

ul
at

io
n

/ F
un

ct
io

na
l

V
er

ifi
ca

tio
n

D
es

ig
n

En
try

: V
er

ilo
g

B
eh

av
io

ra
l M

od
el

in
g

D
es

ig
n

In
te

gr
at

io
n

an
d

V
er

ifi
ca

tio
n

P
os

t-S
yn

th
es

is
D

es
ig

n
V

al
id

at
io

n

P
os

t-S
yn

th
es

is
Ti

m
in

g
V

er
ifi

ca
tio

n
D

es
ig

n
P

ar
tit

io
n

D
es

ig
n

Sp
ec

ifi
ca

tio
n

98

54321

Te
st

 G
en

er
at

io
n

an
d

Fa
ul

t S
im

ul
at

io
n

10

V
er

ify
 P

hy
si

ca
l a

nd
E

le
ct

ric
al

 D
es

ig
n

R
ul

es
12

C
el

l P
la

ce
m

en
t,

S
ca

n
C

ha
in

 a
nd

 C
lo

ck
 T

re
e

In
se

rti
on

, C
el

l R
ou

tin
g

11

Ex
tra

ct
 P

ar
as

iti
cs

13

Pr
e-

Sy
nt

he
si

s
S

ig
n-

O
ff

6

D
es

ig
n

S
ig

n-
O

ff
14

S
yn

th
es

iz
e

an
d

M
ap

G
at

e-
Le

ve
l N

et
lis

t
7

Pr
od

uc
tio

n-
R

ea
dy

M
as

ks

 Copyright 2000, 2003 MD Ciletti 7

COMBINATIONAL LOGIC

Combinational logic forms Boolean functions of the input variables. The outputs at any time, t,
are a function of only the inputs at time t. The variables are assumed to be binary.

Combinational
Logic

y1

y2

y3

a
b
c
d

y1 = f1(a, b, c, d)

y2 = f2(a, b, c, d)

y3 = f3(a, b, c, d)

y4 = f4(a, b, c, d)

A binary variable may have a value of 0 or 1.
Later, the logic value system will be

expanded to have more values to support a
hardware description language.

POSITIVE LOGIC: Low voltage
corresponds to logic 0 and a high
voltage corresponds to a logic 1.

 Copyright 2000, 2003 MD Ciletti 8

LOGIC GATES

ENB

And Gate
y = a . b

Or Gate
y = a + b

Nand Gate

y = a . b

a
b

a
b

y

y

y
a
b

a
b

Nor Gate

y = a + b

y a
b

y

ya
b

Xor Gate
y = a ^ b

Xnor Gate

y = a ^ b

a y

Buffer
y = a

a a

Inverter
y = a

Three-State Buffer
y = a if ENB = 1, else y = z

y y

 Copyright 2000, 2003 MD Ciletti 9

LOGIC GATES - NOTATION

+ denotes logical "or"

. denotes logical "and"

^ denotes exclusive or

⊕ denotes "exclusive or"

' denotes logical negation

overbar denotes logical negation

LOGIC GATES - CMOS TECHNOLOGY

CMOS Inverter 3-input Nand Gate

d

dd

in out
d

dd

in out
d

dd

in out

V V V Vdd

B

A
Y

A B C

C

 Copyright 2000, 2003 MD Ciletti 10

BOOLEAN ALGEBRA (p 16)

A binary Boolean algebra consists of a set B = {0, 1} and the operators + and ., having
commutative and distributive properties such that for two Boolean variables A and B having
values in B, a + b = b + a, and a . b = b . a. The operators + and . have identity elements 0 and
1, respectively, such that for any Boolean variable a, a + 0 = a, and a . 1 = a. Each Boolean
variable a has a complement, denoted by a', such that a + a' = 1, and a . a' = 0.

Terminology:

• + is called the sum operator, the "OR" operator, or the disjunction operator.

• . is called the product operator, the "AND" operator, or the conjunction operator.

• The multi-dimensional space spanned by a set of n binary-valued Boolean variables is

denoted by Bn.

• A point in Bn is called a vertex of and is represented by an n-dimensional vector of
binary valued elements, e.g. (100).

• A binary variable can be associated with the dimensions of a binary Boolean space,

and a point is identified with the values of the variables.

 Copyright 2000, 2003 MD Ciletti 11

BOOLEAN CUBES

• A literal is an instance of a variable or its complement.

• A point in Bn is called a cube.

• A product of literals is a cube.

• A cube contains one or more vertices.

a

b

c

(a'b'c')

b

c

(ab'c')

(abc')

(abc)(a'bc)

(a'b'c)

(a'bc')

(100)
a

(111)

(110)
(010)

(001)

(011)

(101) (ab'c)

(000)

 Copyright 2000, 2003 MD Ciletti 12

BOOLEAN FUNCTIONS

A completely specified m-dimensional Boolean function is a mapping from Bn into Bm, denoted by f: Bn →
Bm. An incompletely specified function is defined over a subset of Bn, and is considered to have a value of
"don't-care" at points outside of the subset of definition: f: Bn → {0, 1, *}, where * denotes don't-care.

"On" Set: {x: x ∈ Bn and f(x) = 1 }

"Off" Set: {x: x ∈ Bn and f(x) = 0 }

"dc" Set: {x: x ∈ Bn and f(x) = * }

The don't-care set accommodates input patterns that never care, or outputs that will not be
observed.

 Copyright 2000, 2003 MD Ciletti 13

BOOLEAN ALGEBRA

Combinations with 0, 1 a + 0 = a a . 1 =a
a + 1 = 1 a . 0 = 0

Commutative a + b = b + a ab = ba

Associative (a + b) + c = a + (b + c) (ab)c = a(bc) = abc
 = a + b + c

Distributive a(b + c) = ab + ac a + bc = (a + b)(a + c)

Idempote a + a = a a . a = a

Involution (a')' = a

Complementarity a + a' = 1 a . a' = 0

SOP Form POS FormBoolean Algebra Laws

 Copyright 2000, 2003 MD Ciletti 14

DeMorgan's Laws

(a + b + c + ...)' = a'b'c'.... and (abc)' = a' + b' + c'

For two variables: (a + b)' = a' . b'

a b

(a + b)

(a + b)'

a'

b'

a

b

a' . b'

 Copyright 2000, 2003 MD Ciletti 15

DeMorgan's Laws

(a + b + c + ...)' = a'b'c'.... and (abc)' = a' + b' + c'

For two variables: (a . b)' = a' + b'

(a . b)'

(a . b) a'

b'

(a' + b')

a b
a

b

 Copyright 2000, 2003 MD Ciletti 16

THEOREMS FOR BOOLEAN ALGEBRAIC MINIMIZATION

Logical Adjacency ab + ab' = a (a + b) (a + b') = a

Absorption a + ab = a a(a + b) = a
ab' + b = a + b (a + b')b = ab

 or: a + a'b = a + b (a' + b)a = ab

Multiplication and (a + b)(a' + c) = ac + a'b ab + a'c = (a + c)(a' + b)
Factoring

Consensus ab + bc +a'c = ab + a'c (a + b)(b + c)(a' + c) =
(a + b)(a' + c)

SOP Form POS FormTheorem

ab'
ab

a b

Logical Adjacency

a
b

c

bc

ab

Covered by ab

Covered by a'c

The consensus term,
bc, is redundant.

Consensus

 Copyright 2000, 2003 MD Ciletti 17

THEOREMS ... MINIMIZATION (Cont.)

Exclusive-Or Laws

Combinations with 0, 1

Commutative

Distributive
Associative

a ⊕ 0 = a
a ⊕ 1 = a'
a ⊕ a = 0
a ⊕ a' = 1
a ⊕ b = b ⊕ a
(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) = a ⊕ b ⊕ c
a (b ⊕ c) = ab ⊕ ac
(a ⊕ b)' = a ⊕ b' = a' ⊕ b = ab + a'b'

 Copyright 2000, 2003 MD Ciletti 18

REPRESENTATION OF COMBINATIONAL LOGIC

Common representations of combinational logic:

• Truth Table
• Boolean Equations

• Binary Decision Diagrams
• Circuit Schematic

EXAMPLE: HALF-ADDER TRUTH TABLE

b
a sum

c_out

a

b

sum

c_out
Add_half

a b c_out sum

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Inputs Outputs

 Copyright 2000, 2003 MD Ciletti 19

REPRESENTATION OF COMBINATIONAL LOGIC (Cont.)

EXAMPLE: HALF-ADDER BOOLEAN EQUATIONS

 sum = a'b + ab' = a ⊕ b

c_out = a . b

b
a sum

c_out

a

b

sum

c_out
Add_half

 Copyright 2000, 2003 MD Ciletti 20

SOP NOTATION (p 23)

• A cube is formed as the product of literals in which a literal appears in either

uncomplemented or complemented form.

Example: ab'cd is a cube; ab'cbd is not.

• A Boolean expression is a set of cubes, and is typically expressed in sum-of-products form

(SOP) as the "or" of product terms (cubes).

Example: abc' + bd

• Each term of a Boolean expression in SOP form is called an implicant of the function.

• A minterm is a cube in which every variable appears. The variable will be in either true

(uncomplemented) or complemented (but not both) form. Thus, a minterm corresponds to a
point (vertex) in Bn. (A term that is not a minterm represents two or more points in Bn). The
minterms correspond to the rows of the truth table at which the function has a value of 1.

Example: The cube ab'cd is a minterm in B4.

Example: The cube abc is not a minterm. It represents abcd + abcd'.

 Copyright 2000, 2003 MD Ciletti 21

SOP NOTATION

• A Boolean expression in SOP form is said to be canonical if every cube has all of the literals

in complemented or uncomplemented form.

Example: The expression abcd + a'bcd is a canonical sum of products.

• A canonic SOP function is also called a standard sum of products (SSOP).

• Decimal notation: a minterm is denoted by mi, and the pattern of 1s and 0s in the binary

equivalent of the decimal number i indicates the true and complemented literals.
•

Example: m7 = a'bcd.

 Copyright 2000, 2003 MD Ciletti 22

SOP NOTATION (Cont.)

In Bn There is a one-to-one
correspondence between a minterm
and a vertex of a n-dimensional cube.

a

b

c

m4

m7

m6
m2

m1

m3

m0

m5

Example: m3 = a' . b . c_in

A Boolean function is a set of minterms (vertices) at which the function is asserted

A Boolean function is expressed as a sum of minterms.

Example: c_out = m1 + m3 + m5 + m7 = Σ m(1, 3, 5, 7)

 sum = m3 + m5 + m6 + m7 = Σ m(3, 5, 6, 7)

 Copyright 2000, 2003 MD Ciletti 23

SOP NOTATION (Cont.)

Example:

a

b

c

(100)
m4

(111)
m7

(110)
m6

(010)
m2

(011)
m3

(101)
m5

(000)
m0

f(a, b, c) = m1 + m2 + m3

(001)
m1

 Copyright 2000, 2003 MD Ciletti 24

POS NOTATION (p 26)

A Boolean function can be expressed in a "product of sums" form.

Example (Full adder):

c_out' = a'b'c_in' + a'b'c_in + a'bc_in' + ab'c_in'

c_out = (a'b'c_in' + a'b'c_in + a'bc_in' + ab'c_in')'

Apply DeMorgan's Law:

c_out = (a'b'c_in')' . (a'b'c_in)' . (a'bc_in')' . (ab'c_in')'

a b c_in c_out sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Inputs Outputs

c_out = (a + b + c_in) . (a + b + c_in') . (a + b' _c_in) . (a' + b + c_in)

A Boolean expression in POS form is said to be canonical (standard) if each factor has all of
the literals in complemented or uncomplemented form, but not both.

 Copyright 2000, 2003 MD Ciletti 25

POS NOTATION (Cont.)

A maxterm is an OR-ed sum of literals in which each variable appears exactly once in true or
complemented form. A canonic POS expansion consists of a product of the maxterms of the
truth table of a function. The decimal notation of a maxterm is based on the rows of the truth
table at which the function is zero (i.e. where f' is asserted). The complements of the variables
are used to form the POS expression.

Example:

 c_out' = a'b'c_in' + a'b'c_in + a'bc_in' + ab'c_in'

c_out = M0 . M1 . M2 . M4 = Π M(0, 1, 2, 4)

c_out = (a + b + c_in) . (a + b + c_in') . (a + b' _c_in) . (a' + b + c_in)

Note: A canonical SOP expression can be a very efficient representation of a
Boolean function because there might be very few terms at which the function is
asserted. Alternatively, f' expressed as a POS expression might be very efficient
because there are only a few terms at which the function is de-asserted.

 Copyright 2000, 2003 MD Ciletti 26

SIMPLIFICATION OF BOOLEAN EXPRESSIONS

A SOP expression has a direct hardware implementation as a two-level And-Or logic circuit.

The cost of hardware implementing a Boolean expression is related to the number of terms in
the expression and to the number of literals in a term.

Although a Boolean expression can always be expressed in a canonical form, with every cube
containing every literal (in complemented or uncomplemented form), such descriptions usually
have more efficient descriptions. In practice, minimization is important.

 Copyright 2000, 2003 MD Ciletti 27

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

A Boolean expression in SOP form is said to be minimal if it contains a minimal number of
product terms and literals (i.e. a given term cannot be replaced by another that has fewer
literals).

A minimum SOP form corresponds to a two-level logic circuit having the fewest gates and the
fewest number of gate inputs.

A Boolean expression in POS form is said to be minimal of it contains a minimal number of
factors and literals (i.e. a given factor cannot be replace by another having fewer literals).

Three approaches:

(1) Karnaugh maps and extended karnaugh maps (Feasible for up to 6 variables)

(2) Quine-McCluskey minimization (computer-based)

(3) Boolean minimization (manual) uses the theorems describing relationships between
Boolean variables to find simpler equivalent expressions (It is not straightforward, is not easy,
and requires experience. Now embedded in synthesis tools such as mis II.)

 Copyright 2000, 2003 MD Ciletti 28

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

In a Boolean expression, a cube that is contained in another cube is redundant.

A Boolean expression is nonredundant (irredundant) if no cube contains another cube.

Example: Redundant Expression f(a, b) = a + ab

The expression is redundant because ab is a subset of a.

After removing the redundant cube: f(a, b) = a

Example: Nonredundant Expression f(c, d) = c'd' + cd

The cubes of a nonredundant expression do not share a common vertex, i.e. their
corresponding sets of vertices are pairwise disjoint.

Note: The minimum SOP form and minimum POS forms of a Boolean expression are not
unique.

Basic approach: To simplify/minimize a Boolean expression, repeatedly combine cubes that
differ in only the same literal, and eliminate redundant implicants.

 Copyright 2000, 2003 MD Ciletti 29

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

Example:

f(a, b, c) = abc + a'bc + abc' + a'b'c + ab'c' + a'b'c'

f(a, b, c) = ab + bc + a'c + b'c' + a'b'

ab a'b'

bc a'c b'c'

a

b

c

(100)
m4

(111)
m7

(010)
m2

(011)
m3

(101)
m5

(000)
m0

(001)
m1

(110)
m6

a'c
bc

ab

b'c'

a'b'

 Copyright 2000, 2003 MD Ciletti 30

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

An equivalent, minimal expression removes the cubes ab + a'b' and adds the cube ac'.

f(a, b, c) = ac' + a'c + bc + b'c'

a

b

c

(100)
m4

(111)
m7

(010)
m2

(011)
m3

(101)
m5

(000)
m0

(001)
m1

(110)
m6

a'c

bc

ac'

b'c'

Note: f(a, b, c) = ac' + a'c + a'b'c + abc is also equivalent, but not minimal.

 Copyright 2000, 2003 MD Ciletti 31

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

Another equivalent and minimal expression is given by:

f(a, b, c) = abc + a'bc + abc' + a'b'c + ab'c' + a'b'c'

f(a, b, c) = bc + ab + a'b' + b'c'

ab

b'c'

a'b'

bc

a

b

c

(100)
m4

(111)
m7

(010)
m2

(011)
m3

(101)
m5

(000)
m0

(001)
m1

(110)
m6

bc

b'c'

ab

a'b'

 Copyright 2000, 2003 MD Ciletti 32

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

Implicant: Each term of a Boolean expression in SOP form is called an implicant of the
function. An implicant may cover more than one vertex of the function.

(101)

a

b

c

(100)

(111)

(110)
(010)

(001)

(011)

(000)

cube:ab

f(a, b, c) = abc + abc'
 = ab

vertex

implicant

An implicant covers a vertex if the vertex is included in the set of vertices at which the
implicant is asserted. The fewer the number of literals in a cube, the larger the set of covered
vertices. So the hardware implementation is minimized if a cube has as few literals as
possible

 Copyright 2000, 2003 MD Ciletti 33

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

Prime Implicant: An implicant which does not imply any other implicant of the function is called
a prime implicant. A prime implicant is a cube that is not properly contained in some other
cube of the function.

Example: f(a, b, c, d) = a'b'cd + a'bcd + ab'cd + abcd + a'b'c'd'

 = a'cd + acd + a'b'c'd'

 = cd + a'b'c'd'

Note that a'cd and acd both imply cd, so they are not prime implicants. The term a'b'c'd is a
prime implicant.

A prime implicant cannot be combined with another implicant to eliminate a literal or to be
eliminated from the expression by absorption.

An implicant that implies another implicant is said to be "covered" by it; the set of its vertices is
a subset of the vertices of the implicant that covers it. The covering implicant, having fewer
literals, has more vertices.

 Copyright 2000, 2003 MD Ciletti 34

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

The set of prime implicants of a Boolean expression is unique.

a

b

c

(100)
m4

(111)
m7

(010)
m2

(011)
m3

(101)
m5

(000)
m0

f(a, b, c) = ab'c' + abc' + abc + a'b'c

f(a, b, c) = ac' + ab + a'b'c

(001)
m1

(110)
m6

ab

ac'

Implicants

Prime Implicants

 Copyright 2000, 2003 MD Ciletti 35

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

Essential prime implicant: A prime implicant that is not covered by any set of other implicants
is an essential prime implicant.

Example: f(a, b, c) = a'bc + abc + ab'c' + abc'

a

b

c

(100)
m4

(111)
m7

(010)
m2

(011)
m3

(101)
m5

(000)
m0

(001)
m1

(110)
m6

ab

ac'

bc

Prime Implicants: {ac', ab, bc}
Essential Prime Implicants: {ac', bc}

SOP Expression: f (a, b, c) = ac' + ab + bc
Minimal SOP Expression: f (a, b, c) = ac' + bc

 Copyright 2000, 2003 MD Ciletti 36

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

Process for minimization:

(1) Find the set of all prime implicants

(2) Find a minimal subset which covers all of the prime implicants (includes essential prime
implicants).

Minimal Cover: A subset of prime implicants that covers all of the prime implicants is called a
minimal cover for the function.

Example: f(a, b, c, d) = a'b'cd + a'bcd + ab'cd + abcd + a'b'c'd'

 = a'cd + acd + a'b'c'd'

 = cd + a'b'c'd'

Prime implicants: {cd, a'b'c'd'}

Minimal cover: {cd, a'b'c'd'}

 Copyright 2000, 2003 MD Ciletti 37

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

Combine terms that are logically adjacent, i.e. that differ in only one literal.

Example: ab + ab' = a
Example: ab'cd + ab'cd' = ab'c(d + d') = ab'c
Example:
c_out = a' . b . c_in + a . b' . c_in + a . b . c_in' + a . b. c_in

c_out = b . c_in + a . c_in + a . b

a b

c_in

sum sum

c_out c_out

c_out

sum
c_out

sum

 Copyright 2000, 2003 MD Ciletti 38

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

Apply logical adjacency to complementary expressions.

Example:

Consider the expression: (c + db)(a + e') + c'(d' + b')(a + e')

and note that: (c + db)' = c'(d' + b')

Then
 (c + db)(a + e') + c'(d' + b')(a + e') = (c + db)(a + e') + (c + db)'(a + e')
 = a + e'

 Copyright 2000, 2003 MD Ciletti 39

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

Use absorption and consensus to eliminate redundant terms.

Absorption: a + ab = a

Example (Absorption): a'bc + a'bcd = a'bc

Consensus: ab + bc + a'c = ab + a'c

ab + bc +a'c = ab + a'c

a
b

c

bc

ab

Covered by ab

Covered by a'c

The consensus term,
bc, is redundant.

Consensus

Example: Consensus ab + bc + a'c = ab + a'c

e'fg' + fgh + e'fh = e'fg' + fgh

 Copyright 2000, 2003 MD Ciletti 40

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

Use absorption repeatedly to eliminate literals.

Example: efgh' + e'f'g'h' + e'f = efgh' + e'(f + f'g'h')

 = efgh' + e'(f + g'h')

 = f(egh' + e') + e'g'h'

 = f(gh' + e') + e'g'h'

 = fgh' + e'f + e'g'h'

 Copyright 2000, 2003 MD Ciletti 41

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

Introduce redundant terms to support absorption and logical adjacency.

A logical expression in SOP form is preserved under the following operations:

 (1) Add the term: aa'

 (2) Add the consensus term, bc, to the terms ab + a'c

 (3) Add ab to a or to b.

A logical expression in POS form is preserved under the following operations:

 (1) Multiply by the factor (a + a')

 (2) Introduce the consensus factor, (b + c), in (a + b) (a' + c)

 (3) Multiply a by the factor (a + b)

 Copyright 2000, 2003 MD Ciletti 42

SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)

Consensus: ab + bc + a'c = ab + a'c

Example: Completion of consensus

Consider: bcd + bce + ab + a'c

Terms from consensus

Add the consensus term:

b'c + bcd + bce + ab + bc + a'c
Absorb terms:

ab + c

Expanding with the consensus term is helpful when it can absorb other terms or eliminate a
literal.

 Copyright 2000, 2003 MD Ciletti 43

SIMPLIFICATION WITH EXCLUSIVE-OR

a ⊕ 0 = a

a ⊕ 1 = a'

a ⊕ a = 0

a ⊕ a' = 1

a ⊕ b = b ⊕ a Commutative Law

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) = a ⊕ b ⊕ c Associative Law

a(b ⊕ c) = ab ⊕ ac Distributive Law

(a ⊕ b)' = a ⊕ b' = a' ⊕ b = ab + a'b' Distributive Law

Example: sum = a' . b' . c_in + a' . b . c_in' + a . b' . c_in' + a . b . c_in

 sum = (a ⊕ b) ⊕ c_in = a ⊕ b ⊕ c_in

 Copyright 2000, 2003 MD Ciletti 44

KARNAUGH MAPS (SOP FORM) (p 36)

Karnaugh maps reveal logical adjacencies and opportunities for eliminating a literal from two
or more cubes. K-maps facilitate finding the largest possible cubes that cover all 1s without
redundancy. Requires manual effort.

Example:

cd

00

10

11

01

00 01 11 10

1
ab

0 0 1

0 1 0

0 1 x 0

1 0 0 1

x
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

Logically
Adjacent

• The map shows all possible (16) vertices

for a 4-variable function.

• Row ordering assures that each row
(column) is logically adjacent to its
physically adjacent neighboring row
(column).

• The top-most and bottom-most rows are
adjacent.

• The left-most and right-most columns are
adjacent.

• Logically adjacent cells that contain a 1
can be combined.

• A rectangular cluster of cells that are
logically adjacent can be combined.

• Use don't-cares to form prime implicants.

 Copyright 2000, 2003 MD Ciletti 45

KARNAUGH MAPS (Cont.)

00

10

00 01 11 10

1

d

0 0 1

1 1

1 x 0

1 0 0 1

x
m0 m1 m3 m2

m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

Logically
Adjacent

11

01 0

0
m4Combined: Combined: a'b'd' + b'c'd' + ab'd' + b'cd' = b'd'

ab
cCorners: Corners: a'b'c'd' + a'b'cd' + a'b'c'd' + ab'c'd' = a'b'd' + b'c'd'

 ab'cd' + ab'c'd' + ab'cd' + a'b'cd' = ab'd' + b'cd'

Inner block: a'bc'd + a'bcd + abc'd + abcd = bc'd + bcd = bd

 f = b'd' + bd = (b ⊕ d)'

Note: Each corner terms imply b'd', and b'd' does not imply another implicant. Therefore, it is
a prime implicant. It is also an essential prime implicant. Similarly, bd is an essential prime
implicant.

 Copyright 2000, 2003 MD Ciletti 46

KARNAUGH MAPS (Cont.)

To form a minimal realization from a Karnaugh map, (1) identify all of the essential prime
implicants, using don't-cares as needed (2) use the prime implicants to form a cover of the
remaining 1s in the map (ignoring don't-cares).

00

10

11

01

00 01 11 10

0
ab

cd

0 x 1

0 1 1

1 1 1 0

0 0 0 1

0
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

Logically
Adjacent

In general, the covering set of prime
implicants is not unique.

Prime Implicants: m3, m2, m7, m6 → a'c (essential)
 m2, m10 → b'cd' (essential)
 m7, m15 → bcd
 m13, m15 → abd
 m12, m13 → abc' (essential)

Minimal Covers: (1) a'c, b'cd', bcd, abc'
 (2) a'c, b'cd', abd, abc'

 Copyright 2000, 2003 MD Ciletti 47

KARNAUGH MAPS (Cont.)

General Process to Form a Minimal Cover:

(1) Select an uncovered minterm and identify all of its neighboring cells containing a 1 or an x.
A single term (not necessarily a minterm) that covers the minterm and all of its adjacent
neighbors having a 1 or an x is an essential prime implicant. Add the term to the set of
essential prime implicants.

(2) Repeat (1) until all of the essential prime implicants have been selected.

(3) Find a minimal set of prime implicants that cover the other 1s in the map (do not cover cells
containing x).

The above steps may produce more than one possible minimal cover. Select the cover
having the fewest literals.

 Copyright 2000, 2003 MD Ciletti 48

KARNAUGH MAPS (POS FORM) (p 39)

The minimal product of sums form of a Boolean expression is found by finding a minimal cover
of the 0s in the Karnaugh map, then applying DeMorgan's Theorem to the result.

00

10

11

01

00 01 11 10

0
ab

cd

0 x 1

0 1 1

1 1 1 0

0 0 0 1

0
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 y

m0, m1, m4, m5: a'b'c'd' + a'b'c'd + a'bc'd' + a'bc'd → a'c'

m0, m1, m8, m9: a'b'c'd' + a'b'c'd + ab'c'd' + ab'c'd → b'c'

m9, m11: ab'c'd + ab'cd → ab'd

m14: abcd'

Result: f '(a, b, c, d) = a'c' + b'c' + ab'd + abcd'

f(a, b, c, d) = (a + c)(b + c)(a' + b + d')(a' + b' + c' + d)

 Copyright 2000, 2003 MD Ciletti 49

K-MAPS AND DON'T-CARES

Don't cares represent situations where an input cannot occur, or the output does not matter.
Use (cover) don't cares when they lead to an improved representation.

Example. Suppose a function is asserted when the BCD representation of a 4-variable input is
0, 3, 6 or 9. f(a, b, c, d) = a'b'c'd' + a'b'cd + abc'd' + abc'd + abcd + abcd' + ab'c'd + ab'cd has
32 literals.

00

10

11

01

00 01 11 10

1
ab

cd

0 1 0

0 0 1

- - -

0 1 - -

0
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

-

Without don't cares

00

10

11

01

00 01 11 10

1
ab

cd

0 1 0

0 0 1

- - - -

0 1 - -

0
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

With don't cares

Without don't-cares (16 literals): f(a, b, c, d) = a'b'c'd' + a'b'cd + a'bcd' + ab'c'd

With don't cares (12 literals): f(a, b, c, d) = a'b'c'd' + b'cd + bcd' + ad

f(a, b, c, d) = a'b'c'd' + b'cd + ab + ac'd

 Copyright 2000, 2003 MD Ciletti 50

EXTENDED KARNAUGH MAPS

A 4-variable Karnaugh map can be extended by entering variables to indicate assertion
contingent on the variable being asserted; no entry indicates that the function is not asserted if
the variable is not asserted.

Example:

 Copyright 2000, 2003 MD Ciletti 51

EXTENDED KARNAUGH MAPS (Cont.)

Process:

(1) Find the minimal cover with the variables de-asserted.

(2) For each variable, find the minimal sum with all 1s changed to x in the map, and all other variables set to 0.
Form the product of the minimal sum and the variable.

(3) Form the sum obtained by combining (1) with the sum of the results of (2) .

Note: The result is a minimal representation if the map-entered variables can be assigned independently.

Note: fe is contained in e and f.

 Copyright 2000, 2003 MD Ciletti 52

GLITCHES AND STATIC HAZARDS (p 42)

The output of a combinational circuit may make a transition even though the patterns applied at
its inputs do not imply a change. These unwanted switiching transients are called "glitches."

Glitches are a consequence of the circuit structure and the application of patterns that cause the
glitch to occur. A circuit in which a glitch may occur under the application of appropriate inputs
signals is said to have a hazard.

A static 1-hazard occurs if an output has an initial value of 1, and an input pattern that does not
imply an output transition causes the output to change to 0 and then return to 1.

1-Hazard

A static 0-hazard occurs if an output has an initial value of 0, and an input pattern that does not
imply an output transition causes the output to change to 1 and then return to 0.

0-Hazard

 Copyright 2000, 2003 MD Ciletti 53

GLITCHES AND STATIC HAZARDS

Static hazards are caused by differential propagation delays on reconvergent fanout paths.

A "minimal"realization of a circuit might not be hazard-free.

Static hazards can be eliminated by introducing redundant cubes in the cover of the output
expression (the added cubes are called a hazard cover).

 Copyright 2000, 2003 MD Ciletti 54

STATIC HAZARDS: Example

A
C

B

F Reconvergent
fanout paths

1

1 0

1

0 1 0 1

F0

F1

1 0

1 0 1

Consider F = AC + BC'

Initial inputs: A = 1, B = 1, C = 1 and F = 1

New inputs: A = 1, B = 1, C = 0 and F = 1

• In a physical realization of the circuit (i.e. non-zero propagation delays), the path to F1 will be

longer than the path to F0, causing a change in C to reach F1 later than it reaches F0.

• Consequently, when C changes from 1 to 0, the output undergoes a momentary transition to 0

and returns to 1.

• The presence of a static hazard is apparent in the Karnaugh map of the output.

 Copyright 2000, 2003 MD Ciletti 55

STATIC HAZARDS: Example (Cont.)

Static 1-Hazard occurs
when F0 and F1 are both

momentarily 0.

y

00

10

11

01

0 1

0
AB

C

0

1

1 1

0 1

0F = AC + BC'

00

10

11

01

0 1

0
AB

C

0

1

1 1

0 1

0
Redundant

cube

• AC de-asserts before BC' asserts

• Hazards might not be significant in a
synchronous sequential circuit if the clock
period can be extended.

• A hazard is problematic if the signal serves

as the input to an asynchronous
subsystem. (e.g a counter or a reset
circuit).

• In this example, the hazard occurs because

the cube AC is initially asserted, while BC'
is not. The switched input causes AC to
de-assert before BC' can assert.

• Hazard Removal: A hazard can be

removed by covering the adjacent prime
implicants by a redundant cube (AB, a
'hazard cover") to eliminate the
dependency on C (the boundary between
the cubes is now covered).

 Copyright 2000, 2003 MD Ciletti 56

STATIC HAZARDS: Example (Cont.)

• Hazard covers require extra hardware.

Example: For the hazard-free cover: F = AC + BC' + AB

A
C

B

F

 Copyright 2000, 2003 MD Ciletti 57

ELIMINATION OF STATIC HAZARDS (SOP Form)

If the output cubes of the initial and final inputs are covered by the same prime implicant, a
glitch cannot occur. Otherwise, if the output cubes of the initial and final inputs are not
covered by the same prime implicant a glitch can occur, depending on the accumulated delays
along the signal propagation paths from the inputs to the output.

For a circuit whose static 1-hazard is caused by a transition in a single bit of a single signal:

• Form a SOP cover in which every pair of adjacent 1s is covered by a cube. This
gurantees that every single-bit input change is covered by such a prime implicant.

• The set of prime implicants is a hazard-free cover for a two-level (And-Or) realization

of the circuit, but a better alternative might be found.

 Copyright 2000, 2003 MD Ciletti 58

ELIMINATION OF STATIC HAZARDS (Cont.)

To eliminate a static 0-hazard:

• Method #1: Cover the adjacent 0s in the corresponding POS expression.

• Method #2: First eliminate the static 1-hazards. Then form complement function and

consider whether the implicants of the 0s of the expression that is free of static 1-hazards
also cover all adjacent 0s of the original function. If they do not, then a static 0-hazard
exists.

 Copyright 2000, 2003 MD Ciletti 59

EXAMPLE: ELIMINATION OF STATIC HAZARDS

Static 1-hazard:

f = Σ m(0, 1, 4, 5, 6, 7, 14, 15) = a'c' + bc

00

10

11

01

00 01 11 10

1
ab

cd

1 0 0

1 1 1

0 0 1 1

0 0 0 0

1
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

Cover the cube
boundaries by
adding a'bd or a'b
to eliminate the
static 1- hazard

a'c'

bc

f = a'c' + bc + a'b

• With a = 0, b = 1, and D = 1, a glitch
can occur as c changes from 1 to 0 or
visa-versa.

• Adding the redundant prime implicant
term eliminates the static 1-hazard.

• Note: m4 and m6 interface

Static 0-hazard (First method):
From 0s of the K-map and DeMorgan's Law:

f' = ac' + b'c and f = (a' + c) (b + c')

11 10

00

10

11

01

00 01

1
ab

cd

1 0 0

1 1 1

0 0 1 1

0 0 0 0

1
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

Cover by
adding (a' + b)
to eliminate
static-0 hazard
Note: ab'd
covers too, but
is not mimimal

f = (a' + c) (b + c') (a' + b)

Add a'b to f', and including the redundant
prime implicant product factor (a' + b) in f to
eliminate the static 0-hazard.

 Copyright 2000, 2003 MD Ciletti 60

EXAMPLE: ELIMINATION OF STATIC HAZARDS (Cont.)

Note: In this example, the POS expression that eliminates the static 0-hazard is equivalent to the
expression that eliminates the static 1-hazard.

f = (a' + c) (b + c') (a' + b)

f = a'ba' + a'bb + a'c'a' + a'c'b + cba' + cbb + cc'a' + cc'b

f = a'b + a'c' + bc

Note: see text for additonal details

 Copyright 2000, 2003 MD Ciletti 61

DYNAMIC HAZARDS (Multiple glitches)

• A circuit has a dynamic hazard if an input transition is supposed to cause a single transition

in an output, but causes two or more transitions before reached its expected value.

Dynamic Hazard

• Dynamic hazards are a consequence of multiple static hazards caused by multiply
reconvergent paths in a multilevel circuit.

• Dynamic hazards are not easy to eliminate.

• Elimination of all static hazards eliminates dynamic hazards.

• Approach: Transform a multilevel circuit into a two-level circuit and eliminate all of the static

hazards.

 Copyright 2000, 2003 MD Ciletti 62

DYNAMIC HAZARDS (Cont.)

EXAMPLE:

A
C

B

F_static

F_dynamic

First
reconvergence

Second
reconvergence

F0

F1
C_late

F_static has a static 1-hazard.

F_dynamic has a dynamic
hazard.

 Copyright 2000, 2003 MD Ciletti 63

DYNAMIC HAZARDS (Cont.)

00

10

11

01

0 1

0
AB

C

0

1

1 1

0 1

0
Redundant

cube

The redundant cube eliminates the
static 1-hazard and assures that
F_dynamic will not depend on the
arrival of the effect of the transition
in C.

 Copyright 2000, 2003 MD Ciletti 64

DYNAMIC HAZARDS (Cont.)

A
C

B

F_static

F_dynamic

F0

F1
C_late

F2

 Copyright 2000, 2003 MD Ciletti 65

BUILDING BLOCKS: NAND-NOR STRUCTURES (p 55)

In CMOS technology, AND gates and OR gates are not implemented as efficiently as NAND
gates and NOR gates. An SOP form or a POS form can always be converted to a NAND logic
structure or a NOR logic structure. The "NAND" gate and "NOR" gate are universal logic
gates - any Boolean function can be realized from only NAND gates or only NOR gates.

DeMorgan's Theorem provides equivalent structures for NAND and NOR gates.

Gate DeMorgan Equivalent

a
b

b

b

b
a

a

a

y

y = (a . b)'

y = (a + b)'

y = a' + b'

y = a' . b'

Networks realizing SOP forms can be transformed to a realization that uses only nand gates
and inverters.

 Copyright 2000, 2003 MD Ciletti 66

EXAMPLE: SOP TO NAND STRUCTURES

Y = G + EF + AB'D + CD

G

E
F

A
B'
D

C
D

Y

G

E
F

A
B'
D

C
D

Y

G

E
F

A
B'
D

C
D

Y

(a) (b) (c)

• In the original And-Or structure: replace And by Nand, place inversion bubbles at
inputs of Or, include inverter for G to balance bubble at input of Or.

• In the new circuit, replace Or gates having bubble inputs by equivalent Nand gates.

Check: Y = [(G') (EF)' (AB'D)' (CD)']' = (G')' + [(EF)']' + [(AB'D)']' + [(CD)']'

 Y = G + EF + AB'D + CD

 Copyright 2000, 2003 MD Ciletti 67

EXAMPLE: POS TO NOR STRUCTURES

Y = D(B + C) (A + E + F') (A + G)

D

B
C

A
E
F'

A
G

Y

(a) (b)

D

B
C

A
E
F'

A
G

Y

(c)

D

B
C

A
E
F'

A
G

Y

• In the original Or-And structure: replace Or by Nor, place inversion bubbles at inputs of
And, include inverter for D to balance bubble at input of the And gate.

• In the new circuit, replace And gates having bubble inputs by equivalent Nor gates.

Check: Y = [D' + (B + C)' + (A + E + F')' + (A + G)']' = (D')' [(B + C)']' [(A + E+ F')']' [(A + G)']'

 Y = D (B + C) (A + E + F') (A + G)

 Copyright 2000, 2003 MD Ciletti 68

EXAMPLE: GENERAL STRUCTURES

Conversion to Nand:

• In the original structure: replace And by Nand; place inversion bubbles at inputs of Or.

• To convert the new circuit to a Nand structure, replace Or gates having bubble inputs
by equivalent Nand gates.

• If, after the above change have been made, the output of a Nand gate drives the input

of a nand gate, place an inverter at the input of the driven Nand gate.

(a) (b)

Matched
bubbles

• If the output of an Or gate having bubbles at its inputs drives an Or gate with bubbles
at its inputs, place an inverter between the gates.

(a)

Matched
bubbles

(b)

 Copyright 2000, 2003 MD Ciletti 69

EXAMPLE: GENERAL STRUCTURES (Cont.)

Conversion to Nor:
• Replace Or by Nor; place inversion bubbles at inputs of And.
•
• To convert the new circuit to a Nor structure, replace And gates having bubble inputs

by equivalent Nor gates.

• If, after the above change have been made, the output of a Nor gate drives the input
of a Nor gate, place an inverter at the input of the driven Nor gate.

(a) (b)

Matched
bubbles

• If the output of an And gate having bubbles at its inputs drives an And gate with
bubbles at its inputs, place an inverter between the gates.

Matched

(a)

bubbles

(b)

 Copyright 2000, 2003 MD Ciletti 70

 BUILDING BLOCKS: MULTIPLEXERS (p 60)

MUXES PROVIDE STEERING FOR DATAPATHS.

a

b

sel y_out

y_out = sel . a + sel' . b

 Copyright 2000, 2003 MD Ciletti 71

MULTIPLEXERS

• A multiplexer has n datapath inputs and a single output. An m-bit address determines
which of the inputs is connected to the output.

Address

Data_In

Data_In [n-1]

Data_In [0]

m

Address[m-1: 0]

Data_Out

Multiplexer

Input channel selection:

Data_Out = Data_In [Address[k]]

• A multiplexer is used to control the flow of data in a digital machine.

 Copyright 2000, 2003 MD Ciletti 72

DEMULTIPLEXERS

A demultiplexer has a single datapath input, n datapath outputs, and m address inputs. The
m-bit address determines which of the n outputs is connected to the input.

Address

Data_In

Data_Out [n-1]

Data_Out [0]

m

Address[m-1: 0]

Data_In

Demultiplexer

Output channel selection:

Data_Out [n-1: 0] = Data_In [Address[k]]

 Copyright 2000, 2003 MD Ciletti 73

ENCODERS

An encoder has n inputs and m outputs, with n = 2m. Ordinarily, only one of the inputs is
asserted at a time. A unique output bit pattern (code) is assigned to each of the n inputs. The
asserted output is determined by the index of the asserted bit of the n-bit binary input word.

Data_In Data_Out

Encoder

n m

Data_Out

Data_In[n-1]

Encoder

m

Data_In[0]

Example: n = 4, m = 2, Data_In [3] = 1 and Data_In [k] = 0 for 0 < k < n, k ≠ 3

 Data_Out [1:0] = 112 = 310

A Mux does not change the data input, but encoders transform the data input to form the data
output. The encoder assigns a unique bit pattern to each input line.

 Copyright 2000, 2003 MD Ciletti 74

PRIORITY ENCODERS

A priority encoder allows multiple input bits to be asserted simultaneously, and uses a priority
rule to form an output bit pattern.

Example:

Data_In [3:0] Data_out [1:0]
 - - - 1 00
 - - 1 - 01
 - 1 - - 10
 1 - - - 11

 Note: "-" denotes a don't care condition.

 Copyright 2000, 2003 MD Ciletti 75

DECODERS

A decoder has m inputs and n outputs, with n = 2m. Only one of the outputs is asserted at a
time. The asserted output is determined by the decimal equivalent of the m-bit binary input
word.

Data_In Data_out

Decoder

m n

Data_In

Data_Out[n-1]

Decoder

m

Data_Out[0]

Example: n = 4, m = 2

 Data_In = 112 and Data_Out [3] = 1 and Data_Out[k] = 0 for k ≠ 3

 Copyright 2000, 2003 MD Ciletti 76

STORAGE ELEMENTS: R-S LATCH

• Storage elements are used to store information in a binary format (e.g. state, data, address,
opcode, machine status).

• Storage elements may be clocked or unclocked.
• Two types: level-sensitive, edge-sensitive

Example: R-S latch (Unclocked) The state of an R-S latch is dependent on the value of its R
and S inputs.

S' R' Qnext Q'next

R

S

Q

Q'

Not
Allowed

Set

0

0

1

1

0

1

0

1

1

1

0

Q

1

0

1

Q'

Reset

Hold

S R Qnext Q'next

Hold

Reset

0

0

1

1

0

1

0

1

Q

0

1

0

Q'

1

0

0

Set
Not

Allowed

Q

Q'

S'

R'

Note: Avoid applying 11 to a R-S Nor latch,
and 00 to an R'S' Nand latch. The circuit is
unstable and oscillation will result.

 Copyright 2000, 2003 MD Ciletti 77

STORAGE ELEMENTS: TRANSPARENT LATCHES

Latches are level-sensitive storage elements; data storage is dependent on the level (value)
of the input clock (or enable) signal. The output of a transparent latch changes in response to
the data input while the latch is enabled. Changes at the input are visible at the output

data

q_out

enable

data

enable
10 20 30 400

1

tsim50

10 20 30 400

1

tsim50

10 20 30 400

1

tsim50

q_out

 Copyright 2000, 2003 MD Ciletti 78

STORAGE ELEMENTS: FLIP-FLOPS

Flip-flops are edge-sensitive storage elements; data storage is synchronized to an edge of a
clock. The value of data stored depends on the data that is present at the data input(s) when
the clock makes a transition at its active (rising or falling) edge.

Example: D-type flip-flop

Q

clk

D

Q'

D Q Qnext

0 0 0
0 1 0
1 0 1
1 1 1

clk

D

Q

t

t

t

Ignored

• Characteristic equation: qnext = D.

• This example is active on the rising
(positive) edge of the clock.

• Intermediate data transitions are

ignored.

• Timing constraints (setup, hold,

minimum pulse width) must be met.

 Copyright 2000, 2003 MD Ciletti 79

MASTER-SLAVE FLIP-FLOP

A master-slave configuration of two data latches samples the input during the active cycle of
the clock applied to the master stage. The input is propagated to the output during the slave
cycle of the clock.

Master-slave implementation of a negative edge-triggered D-type flip-flop:

D

Enable

Q
Data
Latch

D

Enable

Q
Data
Latch

Q'

q

q'

clock

data

Master Slave

Timing constraint: the output of the master stage must settle before the enabling edge of the
slave stage. The master stage is enabled on the inactive edge of the clock, and the slave
stage is enabled on the active edge. Timing constraints apply to the active edge.

 Copyright 2000, 2003 MD Ciletti 80

CMOS TECHNOLOGY - MASTER-SLAVE FLIP-FLOP

CMOS Transmission Gate:

output_sig

~enable

enable

input_sig

D-type flip-flops in CMOS technology are
formed by combining transmission gates
with glue logic to form a master-slave circuit.

clock

Data

~clock

clock ~clock

~clock

~clock

clock

clock

Q_bar

Q

Clear_bar

t

Data

clock

Q

Clear_bar

 Copyright 2000, 2003 MD Ciletti 81

CMOS TECHNOLOGY MASTER-SLAVE FLIP-FLOP (Cont.)

clock

data

~clock

clock ~clock

~clock

~clock

clock

clock

Q_

Q

clear_

1
0

0
1

1
0

clock(n-∆) = 0

w1 w2

w3

w4

w01
w04

clock

data

~clock

clock ~clock

~clock

~clock

clock

clock

Q_

Q

clear_

clock(n+∆) = 1

0
1

1
0

w1 w2

w3

w4

w04
w01

• Master stage: output capacitor (node w2)

is charged and sustained by the feedback
loop. The delays of the master stage
determine the setup conditions of the flip-
flop.

• Slave stage: The output of the slave

stage is sustained while the master stage
is charging. At the active edge of the flip-
flop, the output of the master stage
charges the output of the slave stage,
which is sustained by the feedback loop
during the active cycle.

• Note: the read operation is non-

destructive.

 Copyright 2000, 2003 MD Ciletti 82

J-K FLIP-FLOP

J-K Flip-flops are edge-sensitive storage
elements; data storage is synchronized
to an edge of a clock. The value of data
stored is conditional, depending on the
data that is present at the j and k inputs
when the clock makes a transition at its
active (rising or falling) edge. Cell
libraries may omit the J-K flip-flop and
implement the functionality with a D-type
flip-flop combined with input logic.

• Characteristic Equation: qnext = jq' + k'q

q

clk

j

q'

j k q qnext

0 0 q q
0 1 q 0
1 0 q 1
1 1 q q'

clk

j

q

t

t

t

k

k

 Copyright 2000, 2003 MD Ciletti 83

T FLIP-FLOP

T-type flip-flops are edge-sensitive
storage elements; data storage is
synchronized to an edge of a clock. The
value of data stored is conditional,
depending on the T-input and the state
of the device when the clock makes a
transition at its active (rising or falling)
edge. If T is asserted, the output
toggles, otherwise it has no change.

A T-type flip-flop can be more efficient in
implementing a counter.

• Characteristic Equation:

 qnext = q T' + q' T = q ⊕ T

• Note: connect T to the j and k inputs of a

j-k flip-flop to for a T-type flip-flop.

q

clk q'

T q qnext

0 q q
1 q q'

clk

T
t

t

T

q

t

 Copyright 2000, 2003 MD Ciletti 84

 BUILDING BLOCKS: THREE-STATE DEVICES

Three-state devices provide high-impedance interface devices.

0
0
1
1

0
1
0
1

Hi-Z
0

Hi-Z
1

x_in en y_out

0
0
1
1

0
1
0
1

0
Hi-Z

1
Hi-Z

x_in en y_out

0
0
1
1

0
1
0
1

Hi-Z
1

Hi-Z
0

x_in en y_out

0
0
1
1

0
1
0
1

1
Hi-Z

0
Hi-Z

x_in en y_out

y_outx_in

en

y_outx_in

en

y_outx_in

en

y_outx_in

en

Typical applications: i/o pad and bus isolation.

register

inbound_dat
a

reg_to_bus

send_data

rcv_data

data_to_from_bus

32

32 32

 Copyright 2000, 2003 MD Ciletti 85

 BUILDING BLOCKS: THREE-STATE DEVICES (Cont.)

Combine a multiplexer with a three-state device to reduce bus loading of multiple bus drivers.

Mux

reg_a_to_bus

reg_b_to_bus

enab_a

enab_b

data_to_from_bussel

32

32

32

 Copyright 2000, 2003 MD Ciletti 86

 BUILDING BLOCKS: BUSSES

• Busses provide parallel datapaths and

control interfaces and between functional
units.

• Synchronous and asynchronous busses
• Handshaking protocols are required for

coherent communication
• Key Issues: Bus Contention and Arbitration

Example: Register-to-Register transfer on a 4-
bit datapath.

OE_b_3

IE_b_1

CLK

DB 4

D3 D2 D1 D0

O3 O2 O1 O0

IE

OE

CLK

D3 D2 D1 D0

O3 O2 O1 O0

IE

OE

CLK

D3 D2 D1 D0

O3 O2 O1 O0

IE

OE

CLK

D3 D2 D1 D0

O3 O2 O1 O0

IE

OE

CLK

DB3 DB2 DB1 DB0

Data Bus

IE_b_0

OE_b_0

IE_b_1

OE_b_1

IE_b_2

OE_b_2

IE_b_3

OE_b_3

CLK

Register outputs are
internally three-stated.

 Copyright 2000, 2003 MD Ciletti 87

SEQUENTIAL MACHINES (p 80)

• Sequential machines, also called finite state machines, are characterized by an input/output

relationship in which the value of the outputs at a given time depend on the history of the
applied inputs as well as their present value.

Example: A machine that is to count the number of 1s in a serially transmitted frame of bits.

• The history of the inputs applied to a sequential machine is represented by the state of the

machine, and requires hardware elements that store information, i.e. requires memory to store
the state of the machine as an encoded binary word.

• All sequential machines require feedback that allows the next state of the machine to be

determined from the present state and inputs.

Next State forming
Logic

Inputs

Memory
Present
State (PS)
Outputs

Feedback of present state

Next State
(NS)

The set of states of a sequential
machine is always finite, and the
number of states is determined by
the number of bits that represent
the state.

 Copyright 2000, 2003 MD Ciletti 88

SEQUENTIAL MACHINES (Cont.)

• Sequential machines may be asynchronous or synchronous (clocked).

• The state transitions of a (edge-triggered) flip-flop-based synchronous machine are

synchronized by the active edge (i.e. rising or falling) of a common clock. State changes give
rise to changes in the combinational logic that determines the next state and the output of the
machine.

period

Rising edge

Falling edge

• A lower bound on the cycle time (period) of the machine's clock is set by the requirement that
the period of the clock must be long enough to allow all transients activated by an a transition
of the clock to settle at the outputs of the combinational logic before the next active edge
occurs.

 Copyright 2000, 2003 MD Ciletti 89

SEQUENTIAL MACHINES (Cont.)

• The inputs to the flip-flops must remain stable for a sufficient interval before and after the active

edge of the clock. The former constraint establishes an upper bound on the longest path
through the circuit, which constrains the latest allowed arrival of data. The latter constraint
imposes a lower bound on the shortest path through the combinational logic that is driving the
storage device. It constrains the earliest time at which data from the previous cycle could be
overwritten.

• Together, these constraints ensure that valid data is stored. Otherwise, timing violations may

occur at the inputs to the flip-flops, with the result that invalid data is stored.

• In an edge-triggered clocking scheme, the clock isolates a storage register's inputs from its

output, thereby allowing feedback without race conditions.

• The outputs of a state machine controls the synchronous datapath operations and register

operations of more general digital machine.

 Copyright 2000, 2003 MD Ciletti 90

 FINITE STATE MACHINES

• Synchronous (i.e. clocked) finite state machines (FSMs) have widespread application in digital

systems, e.g. as datapath controllers in computational units and processors. Synchronous
FSMs are characterized by a finite number of states and by clock-driven state transitions.

• Mealy Machine: The next state and the outputs depend on the present state and the inputs.

• Moore Machine: The next state depends on the present state and the inputs, but the output

depends on only the present state.

 Copyright 2000, 2003 MD Ciletti 91

FINITE STATE MACHINES (Cont.)

Next State and Output
Combinational

Logic

Inputs

State
Register

Outputs

Next State
Combinational

Logic

Inputs
State

Register
OutputsOutput

Combinational
Logic

clock

clock

Moore machine

Mealy machine

 Copyright 2000, 2003 MD Ciletti 92

 MEALY FINITE STATE MACHINE - EXAMPLE

A serially-transmitted BCD (8421 code) word is to be converted into an Excess-3 code. An
Excess-3 code word is obtained by adding 3 to the decimal value and taking the binary
equivalent. Excess-3 code is self-complementing [Wakerly, p. 80], i.e. the 9's complement of a
code word is obtained by complementing the bits of the word.

Decimal 8-4-2-1 Excess-3
Digit Code Code

(BCD)

0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100

Excess-3
Code

Converter

clk

Bout = 8Excess-3

1 0 0 0
+

1 1 10

Bin = 8 bcd

Bout

0 0 1 1
1 0 1 1

LSBMSB

0 0 0 1
t

LSB MSB

t

MSB
Bin

 Copyright 2000, 2003 MD Ciletti 93

 MEALY FINITE STATE MACHINE - EXAMPLE (Cont.)

The serial code converter is described by the state transition graph of a Mealy FSM.

 State Transition Graph

S_5

S_0

input / output

1/00/1

0/1

0/0, 1/1

1/0

0/1
1/0

0/10/0, 1/1

0/0, 1/1

S_1 S_2

S_4S_3

S_6

state
next state/output

input
0 1

S_0 S_1 / 1 S_2 / 0
S_1 S_3 / 1 S_4 / 0
S_2 S_4 / 0 S_4 / 1
S_3 S_5 / 0 S_5 / 1
S_4 S_5 / 1 S_6 / 0
S_5 S_0 / 0 S_0 / 1
S_6 S_0 / 1 - / -

Next State/OutputTable

• The vertices of the state transition graph of a Mealy machine are labeled with the states.
• The branches are labeled with (1) the input that causes a transition to the indicated next state,

and (2) with the output that is asserted in the present state for that input.
• The state transition is synchronized to a clock.
• The state table summarizes the machine's behavior in tabular format.

 Copyright 2000, 2003 MD Ciletti 94

 DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.)

To design a D-type flip-flop realization of a FSM having the behavior described by a state
transition graph, (1) select a state code, (2) encode the state table, (3) develop Boolean
equations describing the input of a D-type flip-flop, and (4) using K-maps, optimize the Boolean
equations.

state
next state/output

input
0 1

S_0 S_1 / 1 S_2 / 0
S_1 S_3 / 1 S_4 / 0
S_2 S_4 / 0 S_4 / 1
S_3 S_5 / 0 S_5 / 1
S_4 S_5 / 1 S_6 / 0
S_5 S_0 / 0 S_0 / 1
S_6 S_0 / 1 - / -

Next State/Output Table

1

0 1

q0

S_0

S_6 S_4

S_2

S_5 S_31

1 0

0 1

0 0

q2 q1

S_1

State Assigment

q2 q1 q0 q2
+ q1

+ q0
+

input
0 1

state next state output

input
0 1

S_0 000 001 101 1 0

001 111 011 1 0

101 011 011 0 1

111 110 110 0 1

011 110 010 1 0

110 000 000 0 1

010 000 - 1 -

100 - - - -

S_1

S_2

S_3

S_4

S_5

S_6

Encoded Next state/ Output Table

 Copyright 2000, 2003 MD Ciletti 95

 DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.)

Note: We will optimize the equations
individually. In general - this does not
necessarily produce the optimal (area, speed)
realization of the logic. We'll address this
when we consider synthesis.

q2

+ = q1'q0'Bin + q2'q0Bin' + q2q1q0

q2
+ = q1'q0'Bin + q2'q0Bin' + q2q1q0

q2
+ = q1'q0'Bin q2'q0Bin' q2q1q0

q2
+ = q1'q0'Bin q2'q0Bin' q2q1q0

 Copyright 2000, 2003 MD Ciletti 96

 DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.)

Realization of the sequential BCD-to-Excess-3 code converter (Mealy machine):

q1'
q0'

q2'
q0

q0q1
q2

D

Q

Q

D

Q

Q

D

Q

Q

Bout

Bin

clk

q2'

q2

q1'

q1

q0

q0'

q1'

q0

Bin

Bin'
Bin'

 Copyright 2000, 2003 MD Ciletti 97

 DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.)

Simulation results for Mealy machine:

0 10 0
1 11 0

B_in
B_out

 Copyright 2000, 2003 MD Ciletti 98

 DESIGN OF A SERIAL LINE CODE CONVERTER (p 89)

Serial Line Codes [Wakerly] are used for serial data transmission or storage. Data recovery
requires a clock to define the boundaries of the data bits, a synchronizing signal to define word
boundaries, and a data stream. As an alternative to having three separate signal channels, a
phone system or a disk read/write head will have a single channel and use a coding scheme to
enable clock recovery and synchronization.

NRZ Code (Non-Return to Zero): The signal waveform duplicates the bit pattern over the entire
bit time. Phase lock loops (PLL) can recover the clock if there are no long series of 1s or 0s.

NRZI Code (Non-Return to Zero Invert-on-Ones) A 0 in the bit stream causes the value of the
previous bit to be transmitted; a 1 in the bit stream causes the value of the complement of the
previous bit to be transmitted. A PLL can recover the clock if there is no long string of 0s.

RZ Code (Return-to-Zero): A 0 in the bit stream is transmitted as a 0 for the entire bit time. A 1 in
the bit stream is transmitted as a 1 for 1/2 of the bit time, and 0 for the remaining bit time
(typically). A PLL can recover the clock if there is no long string of 0s.

Manchester Code: A 0 in the bit stream is transmitted as a 0 for the lead half of the bit time, and
as a 1 for the remaining half. A 1 in the bit stream is transmitted as a 1 for the leading half of the
bit time, and as a 0 for the remaining bit time. Requires higher bandwidth, but allows clock
recovery independent of the data stream.

 Copyright 2000, 2003 MD Ciletti 99

 SERIAL LINE CODE FORMATS

Serial
Bit Value 0 1 1 1 0 0 1 0

NRZMealy

RZ

Manchester

time

clock_1

clock_2

NRZMoore

NRZIMealy

NRZIMoore

B_in

 Copyright 2000, 2003 MD Ciletti 100

 MEALY FSM - SERIAL LINE CODE CONVERTER (p 92)

Objective: Design a Mealy-type FSM that converts a data stream in NRZ format to a data stream
in Manchester code format.

NRZ-to-
Manchester

Code
Converter

DataManchesterDataNRZ

S_0 S_1S_2

0 / 0

0 / 11 / 0

1 / 1

 Copyright 2000, 2003 MD Ciletti 101

 MEALY FSM - SERIAL LINE CODE CONVERTER (Cont.)

 State Transition Graph

S_0 S_1S_2

0 / 0

0 / 11 / 0

1 / 1

State Table:

state
next state/output

input
0 1

S_0 S_1 / 0 S_2 / 1
S_1 S_0 / 1 -
S_2 - S_0 / 0

State Code:

0 1

q0

S_0

S_21

0

q1

S_1

Encoded State Table:

q1 q0 q1
+ q0

+

input
0 1

state next state output

input
0 1

S_0 00 01 10 0 1

01 00 - 1 -

10 - 00 - 0

S_1

S_2

 Copyright 2000, 2003 MD Ciletti 102

 MEALY FSM - SERIAL LINE CODE CONVERTER (Cont.)

q1 q0 q1
+ q0

+

input
0 1

state next state output

input
0 1

S_0 00 01 10 0 1

01 00 00 1 -

10 00 00 - 0

S_1

S_2
Karnaugh Maps:

10

01

00

0 1

0

Bin
q1 q0

1

1 1
S_0 S_0

S_1

-

S_2
- 0

S_1

-

S_2

Bout = q1' (q0 + Bin)

11

10

01

00

0 1

1

Bin

q1 q0

0

0 0
S_0 S_0

S_1

-

S_2
0 0

S_1

-

S_2

q0
+ = q1'q0'Bin'

1111

10

01

00

0 1
0

Bin

q1 q0

1

0 0
S_0 S_0

S_1

0
S_2

- -
S_1

0
S_2

q1
+ = q1'q0'Bin

q0'

B_in'

D

Q

Q

D

Q

Q

Bout

clk
q1'

q1

q0

q0'

q1'

q0'
Bin

q1'
Bin

 Copyright 2000, 2003 MD Ciletti 103

 MEALY FSM - SERIAL LINE CODE CONVERTER (Cont.)

Input and output bit times coincide

Note: The Mealy machine's output is
subject to glitches in the input bit
stream.

 Copyright 2000, 2003 MD Ciletti 104

 SERIAL LINE CODE CONVERTER - MOORE FSM (p 93)

Serial
Bit Value 0 1 1 1 0 0 1 0

NRZ

NRZI

RZ

Manchester

time

clock_1

clock_2

State Table:

state
next state/output

input
0 1

S_0 S_1 / 0 S_3 / 1
S_1 S_2 / 1 -
S_3 - S_0 / 1
S_2 S_1 / 0 S_3 / 0

State Transition Graph:

0S_0
0

S_1
0

S_3
1

S_2
11

0

0

011

 Copyright 2000, 2003 MD Ciletti 105

 SERIAL LINE CODE CONVERTER - MOORE FSM (Cont.)

State Transition Graph

0S_0
0

S_1
0

S_3
1

S_2
11

0 011

<00> <01>

<10><11>

state code

State code:

0 1

q0

S_0

S_2 S_31

0

q1

S_1

Encoded State Table:

q1 q0 q1
+ q0

+

input
0 1

state next state output

S_0 00 01 11 0

01 10 - 0

11 - 00 1

S_1

S_3

10 01 11 1S_2

 Copyright 2000, 2003 MD Ciletti 106

 SERIAL LINE CODE CONVERTER - MOORE FSM (Cont.)

Encoded State Table:

state next state
q1 q0 q1

+ q0
+

input
0 1

output

S_0 00 01 11 0

01 10 - 0

11 - 00 1

S_1

S_3

10 01 11 1S_2

q0

D

Q

Q

D

Q

Q
Bout

clk

q0'

q0

q1

q1'

q1'

q0'

Bin

Karnaugh Maps

1

0

0 1

0

q0
q1

0

1 1
S_0 S_0

S_1 S_1

B_out = q1

10

01

00

0 1

1

Bin
q1 q0

1

0 -
S_0 S_0

S_1

0

S_2
1 1

S_1

-

S_2

q0
+ = q0'

11
S_3 S_3

11

10

01

00

0 1

0

Bin
q1 q0

1

1 -
S_0 S_0

S_1

1
S_2

- 0
S_1

0
S_2

q1
+ = q1'q0 + q0'Bin

S_3 S_3

 Copyright 2000, 2003 MD Ciletti 107

 SERIAL LINE CODE CONVERTER - MOORE FSM (Cont.)

NRZ bit time

Manchester bit time

The Manchester encoder must run at
twice the frequency of the incoming
data.

The output bit stream lags the input bit
stream by one-half the input cycle
time.

 Copyright 2000, 2003 MD Ciletti 108

 EQUIVALENT STATES (p 95)

Two states are equivalent if they have the same next state and output for all inputs. Equivalent
states can be combined without changing the input/output behavior of the machine. Combine
equivalent states to simplify the state table and the STG. For every FSM there is a unique
equivalent machine that is minimal.

S_0 S_6 S_3 0 0
S_1 S_1 S_6 0 1
S_2 S_2 S_5 0 1
S_3 S_7 S_3 0 1
S_4 S_7 S_2 0 0
S_5 S_7 S_2 0 0
S_6 S_0 S_1 0 0
S_7 S_4 S_5 S_3 0 0

0
Input

Output

1 0 1

Next State
Input

State

Equivalent
States

S_4

S_5

S_7S_2

0 / 01 / 0

0 / 01 / 0

 Copyright 2000, 2003 MD Ciletti 109

 COMBINATION OF EQUIVALENT STATES

Consider conditions for pair-wise
equivalence and eliminate states that
cannot be equivalent. Form an array
representing pair-wise combinations of
states.

(1) Eliminate cells that have a different
output for the same input (Shaded
cells)

(2) For the remaining states, identify the
conditions that are necessary for
equivalence, and enter into the array
(Labeled cells).

The remaining cells identify equivalent
states.

S_1

S_2

S_3

S_4

S_6

S_7

S_0 S_1 S_2 S_3 S_4 S_6

S_1 - S_7
S_6 - S_3

S_6 - S_7
S_3 - S_2

S_6 - S_4

S_3 - S_1

S_6 - S_4

S_2 - S_7
S_4 - S_3

S_7 - S_0
S_2 - S_1

S_2 - S_3 S_0 - S_4
S_1 - S_3

 Copyright 2000, 2003 MD Ciletti 110

 COMBINATION OF EQUIVALENT STATES (Cont.)

S_0 S_4 S_3 0 0
S_1 S_1 S_4 0 1
S_3 S_0 S_3 0 1
S_4 S_0 S_1 0 0

0
Input

Output

1 0 1

Next State
Input

State

 Copyright 2000, 2003 MD Ciletti 111

 COMBINATION OF EQUIVALENT STATES (Cont.)

(3) Strike out any cells having the label of
a shaded state-pair. (Labeled cells with \).

(4) Remove cells that have a label that
has been struck out in (3) (Shaded cells
with labels).

S_2 - S_3

S_1

S_2

S_3

S_4

S_6

S_7

S_0 S_1 S_2 S_3 S_4 S_6

S_1 - S_7
S_6 - S_3

S_6 - S_7
S_3 - S_2

S_3 - S_1

S_2 - S_7
S_4 - S_3

S_0 - S_4
S_1 - S_3S_6 - S_4

S_6 - S_4

S_7 - S_0
S_2 - S_1

	M. D. Ciletti
	
	Copyright 2000, 2002, 2003. These notes are solely for classroom use by the instructor. No part of these notes may be copied, reproduced, or distributed to a third party, including students, in any form without the written permission of the author.
	COURSE OVERVIEW
	Some References

	Note: For an up-to-date list of books, including reviews, see www.sutherland.com
	Bhasker, J., A Verilog HDL Primer, Star Galaxy Press, Allentown, PA, 1997
	
	
	
	
	
	COMBINATIONAL LOGIC
	LOGIC GATES
	LOGIC GATES - NOTATION
	LOGIC GATES - CMOS TECHNOLOGY
	BOOLEAN ALGEBRA (p 16)
	BOOLEAN CUBES
	BOOLEAN FUNCTIONS
	BOOLEAN ALGEBRA
	DeMorgan's Laws
	DeMorgan's Laws
	THEOREMS FOR BOOLEAN ALGEBRAIC MINIMIZATION
	THEOREMS ... MINIMIZATION (Cont.)
	REPRESENTATION OF COMBINATIONAL LOGIC
	REPRESENTATION OF COMBINATIONAL LOGIC (Cont.)
	SOP NOTATION (p 23)
	SOP NOTATION
	SOP NOTATION (Cont.)
	SOP NOTATION (Cont.)
	POS NOTATION (p 26)
	POS NOTATION (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION OF BOOLEAN EXPRESSIONS (Cont.)
	SIMPLIFICATION WITH EXCLUSIVE-OR
	KARNAUGH MAPS (SOP FORM) (p 36)
	KARNAUGH MAPS (Cont.)
	KARNAUGH MAPS (Cont.)
	KARNAUGH MAPS (Cont.)
	KARNAUGH MAPS (POS FORM) (p 39)
	K-MAPS AND DON'T-CARES
	EXTENDED KARNAUGH MAPS
	EXTENDED KARNAUGH MAPS (Cont.)
	GLITCHES AND STATIC HAZARDS (p 42)
	GLITCHES AND STATIC HAZARDS
	STATIC HAZARDS: Example
	STATIC HAZARDS: Example (Cont.)
	STATIC HAZARDS: Example (Cont.)
	ELIMINATION OF STATIC HAZARDS (SOP Form)
	ELIMINATION OF STATIC HAZARDS (Cont.)
	EXAMPLE: ELIMINATION OF STATIC HAZARDS
	EXAMPLE: ELIMINATION OF STATIC HAZARDS (Cont.)
	DYNAMIC HAZARDS (Multiple glitches)
	DYNAMIC HAZARDS (Cont.)
	DYNAMIC HAZARDS (Cont.)
	DYNAMIC HAZARDS (Cont.)
	BUILDING BLOCKS: NAND-NOR STRUCTURES (p 55)
	EXAMPLE: SOP TO NAND STRUCTURES
	EXAMPLE: POS TO NOR STRUCTURES
	EXAMPLE: GENERAL STRUCTURES
	EXAMPLE: GENERAL STRUCTURES (Cont.)

	BUILDING BLOCKS: MULTIPLEXERS (p 60)
	MULTIPLEXERS
	DEMULTIPLEXERS
	ENCODERS
	PRIORITY ENCODERS
	DECODERS
	STORAGE ELEMENTS: R-S LATCH
	STORAGE ELEMENTS: TRANSPARENT LATCHES
	STORAGE ELEMENTS: FLIP-FLOPS
	MASTER-SLAVE FLIP-FLOP
	CMOS TECHNOLOGY - MASTER-SLAVE FLIP-FLOP
	CMOS TECHNOLOGY MASTER-SLAVE FLIP-FLOP (Cont.)
	J-K FLIP-FLOP
	T FLIP-FLOP

	BUILDING BLOCKS: THREE-STATE DEVICES
	BUILDING BLOCKS: THREE-STATE DEVICES (Cont.)
	BUILDING BLOCKS: BUSSES
	SEQUENTIAL MACHINES (p 80)
	SEQUENTIAL MACHINES (Cont.)
	SEQUENTIAL MACHINES (Cont.)
	FINITE STATE MACHINES
	FINITE STATE MACHINES (Cont.)
	MEALY FINITE STATE MACHINE - EXAMPLE
	MEALY FINITE STATE MACHINE - EXAMPLE (Cont.)
	DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.)
	DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.)
	DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.)
	DESIGN OF A FINITE STATE MACHINE - EXAMPLE (Cont.)
	DESIGN OF A SERIAL LINE CODE CONVERTER (p 89)
	SERIAL LINE CODE FORMATS
	MEALY FSM - SERIAL LINE CODE CONVERTER (p 92)
	MEALY FSM - SERIAL LINE CODE CONVERTER (Cont.)
	MEALY FSM - SERIAL LINE CODE CONVERTER (Cont.)
	MEALY FSM - SERIAL LINE CODE CONVERTER (Cont.)
	SERIAL LINE CODE CONVERTER - MOORE FSM (p 93)
	SERIAL LINE CODE CONVERTER - MOORE FSM (Cont.)
	SERIAL LINE CODE CONVERTER - MOORE FSM (Cont.)
	SERIAL LINE CODE CONVERTER - MOORE FSM (Cont.)
	EQUIVALENT STATES (p 95)
	COMBINATION OF EQUIVALENT STATES
	COMBINATION OF EQUIVALENT STATES (Cont.)
	COMBINATION OF EQUIVALENT STATES (Cont.)

